blob: 7e1ed4f9b20a46e2ed38d2afd1330b30209f0b4f [file] [log] [blame]
Lei Wenb834a392012-09-28 04:26:42 +00001/* deflate.c -- compress data using the deflation algorithm
2 * Copyright (C) 1995-2010 Jean-loup Gailly and Mark Adler
3 * For conditions of distribution and use, see copyright notice in zlib.h
4 */
5
6/*
7 * ALGORITHM
8 *
9 * The "deflation" process depends on being able to identify portions
10 * of the input text which are identical to earlier input (within a
11 * sliding window trailing behind the input currently being processed).
12 *
13 * The most straightforward technique turns out to be the fastest for
14 * most input files: try all possible matches and select the longest.
15 * The key feature of this algorithm is that insertions into the string
16 * dictionary are very simple and thus fast, and deletions are avoided
17 * completely. Insertions are performed at each input character, whereas
18 * string matches are performed only when the previous match ends. So it
19 * is preferable to spend more time in matches to allow very fast string
20 * insertions and avoid deletions. The matching algorithm for small
21 * strings is inspired from that of Rabin & Karp. A brute force approach
22 * is used to find longer strings when a small match has been found.
23 * A similar algorithm is used in comic (by Jan-Mark Wams) and freeze
24 * (by Leonid Broukhis).
25 * A previous version of this file used a more sophisticated algorithm
26 * (by Fiala and Greene) which is guaranteed to run in linear amortized
27 * time, but has a larger average cost, uses more memory and is patented.
28 * However the F&G algorithm may be faster for some highly redundant
29 * files if the parameter max_chain_length (described below) is too large.
30 *
31 * ACKNOWLEDGEMENTS
32 *
33 * The idea of lazy evaluation of matches is due to Jan-Mark Wams, and
34 * I found it in 'freeze' written by Leonid Broukhis.
35 * Thanks to many people for bug reports and testing.
36 *
37 * REFERENCES
38 *
39 * Deutsch, L.P.,"DEFLATE Compressed Data Format Specification".
40 * Available in http://www.ietf.org/rfc/rfc1951.txt
41 *
42 * A description of the Rabin and Karp algorithm is given in the book
43 * "Algorithms" by R. Sedgewick, Addison-Wesley, p252.
44 *
45 * Fiala,E.R., and Greene,D.H.
46 * Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595
47 *
48 */
49
50/* @(#) $Id$ */
51
52#include "deflate.h"
Simon Glass48b6c6b2019-11-14 12:57:16 -070053#include <u-boot/crc.h>
Lei Wenb834a392012-09-28 04:26:42 +000054
55const char deflate_copyright[] =
56 " deflate 1.2.5 Copyright 1995-2010 Jean-loup Gailly and Mark Adler ";
57/*
58 If you use the zlib library in a product, an acknowledgment is welcome
59 in the documentation of your product. If for some reason you cannot
60 include such an acknowledgment, I would appreciate that you keep this
61 copyright string in the executable of your product.
62 */
63
64/* ===========================================================================
65 * Function prototypes.
66 */
67typedef enum {
68 need_more, /* block not completed, need more input or more output */
69 block_done, /* block flush performed */
70 finish_started, /* finish started, need only more output at next deflate */
71 finish_done /* finish done, accept no more input or output */
72} block_state;
73
74typedef block_state (*compress_func) OF((deflate_state *s, int flush));
75/* Compression function. Returns the block state after the call. */
76
77local void fill_window OF((deflate_state *s));
78local block_state deflate_stored OF((deflate_state *s, int flush));
79local block_state deflate_fast OF((deflate_state *s, int flush));
80#ifndef FASTEST
81local block_state deflate_slow OF((deflate_state *s, int flush));
82#endif
83local block_state deflate_rle OF((deflate_state *s, int flush));
84local block_state deflate_huff OF((deflate_state *s, int flush));
85local void lm_init OF((deflate_state *s));
86local void putShortMSB OF((deflate_state *s, uInt b));
87local void flush_pending OF((z_streamp strm));
88local int read_buf OF((z_streamp strm, Bytef *buf, unsigned size));
89#ifdef ASMV
90 void match_init OF((void)); /* asm code initialization */
91 uInt longest_match OF((deflate_state *s, IPos cur_match));
92#else
93local uInt longest_match OF((deflate_state *s, IPos cur_match));
94#endif
95
96#ifdef DEBUG
97local void check_match OF((deflate_state *s, IPos start, IPos match,
98 int length));
99#endif
100
101/* ===========================================================================
102 * Local data
103 */
104
105#define NIL 0
106/* Tail of hash chains */
107
108#ifndef TOO_FAR
109# define TOO_FAR 4096
110#endif
111/* Matches of length 3 are discarded if their distance exceeds TOO_FAR */
112
113/* Values for max_lazy_match, good_match and max_chain_length, depending on
114 * the desired pack level (0..9). The values given below have been tuned to
115 * exclude worst case performance for pathological files. Better values may be
116 * found for specific files.
117 */
118typedef struct config_s {
119 ush good_length; /* reduce lazy search above this match length */
120 ush max_lazy; /* do not perform lazy search above this match length */
121 ush nice_length; /* quit search above this match length */
122 ush max_chain;
123 compress_func func;
124} config;
125
126#ifdef FASTEST
127local const config configuration_table[2] = {
128/* good lazy nice chain */
129/* 0 */ {0, 0, 0, 0, deflate_stored}, /* store only */
130/* 1 */ {4, 4, 8, 4, deflate_fast}}; /* max speed, no lazy matches */
131#else
132local const config configuration_table[10] = {
133/* good lazy nice chain */
134/* 0 */ {0, 0, 0, 0, deflate_stored}, /* store only */
135/* 1 */ {4, 4, 8, 4, deflate_fast}, /* max speed, no lazy matches */
136/* 2 */ {4, 5, 16, 8, deflate_fast},
137/* 3 */ {4, 6, 32, 32, deflate_fast},
138
139/* 4 */ {4, 4, 16, 16, deflate_slow}, /* lazy matches */
140/* 5 */ {8, 16, 32, 32, deflate_slow},
141/* 6 */ {8, 16, 128, 128, deflate_slow},
142/* 7 */ {8, 32, 128, 256, deflate_slow},
143/* 8 */ {32, 128, 258, 1024, deflate_slow},
144/* 9 */ {32, 258, 258, 4096, deflate_slow}}; /* max compression */
145#endif
146
147/* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
148 * For deflate_fast() (levels <= 3) good is ignored and lazy has a different
149 * meaning.
150 */
151
152#define EQUAL 0
153/* result of memcmp for equal strings */
154
155#ifndef NO_DUMMY_DECL
156struct static_tree_desc_s {int dummy;}; /* for buggy compilers */
157#endif
158
159/* ===========================================================================
160 * Update a hash value with the given input byte
161 * IN assertion: all calls to to UPDATE_HASH are made with consecutive
162 * input characters, so that a running hash key can be computed from the
163 * previous key instead of complete recalculation each time.
164 */
165#define UPDATE_HASH(s,h,c) (h = (((h)<<s->hash_shift) ^ (c)) & s->hash_mask)
166
167
168/* ===========================================================================
169 * Insert string str in the dictionary and set match_head to the previous head
170 * of the hash chain (the most recent string with same hash key). Return
171 * the previous length of the hash chain.
172 * If this file is compiled with -DFASTEST, the compression level is forced
173 * to 1, and no hash chains are maintained.
174 * IN assertion: all calls to to INSERT_STRING are made with consecutive
175 * input characters and the first MIN_MATCH bytes of str are valid
176 * (except for the last MIN_MATCH-1 bytes of the input file).
177 */
178#ifdef FASTEST
179#define INSERT_STRING(s, str, match_head) \
180 (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
181 match_head = s->head[s->ins_h], \
182 s->head[s->ins_h] = (Pos)(str))
183#else
184#define INSERT_STRING(s, str, match_head) \
185 (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
186 match_head = s->prev[(str) & s->w_mask] = s->head[s->ins_h], \
187 s->head[s->ins_h] = (Pos)(str))
188#endif
189
190/* ===========================================================================
191 * Initialize the hash table (avoiding 64K overflow for 16 bit systems).
192 * prev[] will be initialized on the fly.
193 */
194#define CLEAR_HASH(s) \
195 s->head[s->hash_size-1] = NIL; \
196 zmemzero((Bytef *)s->head, (unsigned)(s->hash_size-1)*sizeof(*s->head));
197
198/* ========================================================================= */
Michal Simekf555f192024-03-27 15:14:53 +0100199int ZEXPORT deflateInit_(strm, level, stream_size)
Lei Wenb834a392012-09-28 04:26:42 +0000200 z_streamp strm;
201 int level;
Lei Wenb834a392012-09-28 04:26:42 +0000202 int stream_size;
203{
204 return deflateInit2_(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL,
Michal Simekf555f192024-03-27 15:14:53 +0100205 Z_DEFAULT_STRATEGY, stream_size);
Lei Wenb834a392012-09-28 04:26:42 +0000206 /* To do: ignore strm->next_in if we use it as window */
207}
208
209/* ========================================================================= */
210int ZEXPORT deflateInit2_(strm, level, method, windowBits, memLevel, strategy,
Michal Simekf555f192024-03-27 15:14:53 +0100211 stream_size)
Lei Wenb834a392012-09-28 04:26:42 +0000212 z_streamp strm;
213 int level;
214 int method;
215 int windowBits;
216 int memLevel;
217 int strategy;
Lei Wenb834a392012-09-28 04:26:42 +0000218 int stream_size;
219{
220 deflate_state *s;
221 int wrap = 1;
Lei Wenb834a392012-09-28 04:26:42 +0000222
Lei Wenb834a392012-09-28 04:26:42 +0000223 if (strm == Z_NULL) return Z_STREAM_ERROR;
224
225 strm->msg = Z_NULL;
226 if (strm->zalloc == (alloc_func)0) {
227 strm->zalloc = zcalloc;
228 strm->opaque = (voidpf)0;
229 }
230 if (strm->zfree == (free_func)0) strm->zfree = zcfree;
231
232#ifdef FASTEST
233 if (level != 0) level = 1;
234#else
235 if (level == Z_DEFAULT_COMPRESSION) level = 6;
236#endif
237
238 if (windowBits < 0) { /* suppress zlib wrapper */
239 wrap = 0;
240 windowBits = -windowBits;
241 }
242#ifdef GZIP
243 else if (windowBits > 15) {
244 wrap = 2; /* write gzip wrapper instead */
245 windowBits -= 16;
246 }
247#endif
248 if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED ||
249 windowBits < 8 || windowBits > 15 || level < 0 || level > 9 ||
250 strategy < 0 || strategy > Z_FIXED) {
251 return Z_STREAM_ERROR;
252 }
253 if (windowBits == 8) windowBits = 9; /* until 256-byte window bug fixed */
254 s = (deflate_state *) ZALLOC(strm, 1, sizeof(deflate_state));
255 if (s == Z_NULL) return Z_MEM_ERROR;
256 strm->state = (struct internal_state FAR *)s;
257 s->strm = strm;
258
259 s->wrap = wrap;
260 s->gzhead = Z_NULL;
261 s->w_bits = windowBits;
262 s->w_size = 1 << s->w_bits;
263 s->w_mask = s->w_size - 1;
264
265 s->hash_bits = memLevel + 7;
266 s->hash_size = 1 << s->hash_bits;
267 s->hash_mask = s->hash_size - 1;
268 s->hash_shift = ((s->hash_bits+MIN_MATCH-1)/MIN_MATCH);
269
270 s->window = (Bytef *) ZALLOC(strm, s->w_size, 2*sizeof(Byte));
271 s->prev = (Posf *) ZALLOC(strm, s->w_size, sizeof(Pos));
272 s->head = (Posf *) ZALLOC(strm, s->hash_size, sizeof(Pos));
273
274 s->high_water = 0; /* nothing written to s->window yet */
275
276 s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */
277
Tom Rinic3411d42022-05-10 14:36:59 -0400278 /* We overlay pending_buf and sym_buf. This works since the average size
279 * for length/distance pairs over any compressed block is assured to be 31
280 * bits or less.
281 *
282 * Analysis: The longest fixed codes are a length code of 8 bits plus 5
283 * extra bits, for lengths 131 to 257. The longest fixed distance codes are
284 * 5 bits plus 13 extra bits, for distances 16385 to 32768. The longest
285 * possible fixed-codes length/distance pair is then 31 bits total.
286 *
287 * sym_buf starts one-fourth of the way into pending_buf. So there are
288 * three bytes in sym_buf for every four bytes in pending_buf. Each symbol
289 * in sym_buf is three bytes -- two for the distance and one for the
290 * literal/length. As each symbol is consumed, the pointer to the next
291 * sym_buf value to read moves forward three bytes. From that symbol, up to
292 * 31 bits are written to pending_buf. The closest the written pending_buf
293 * bits gets to the next sym_buf symbol to read is just before the last
294 * code is written. At that time, 31*(n-2) bits have been written, just
295 * after 24*(n-2) bits have been consumed from sym_buf. sym_buf starts at
296 * 8*n bits into pending_buf. (Note that the symbol buffer fills when n-1
297 * symbols are written.) The closest the writing gets to what is unread is
298 * then n+14 bits. Here n is lit_bufsize, which is 16384 by default, and
299 * can range from 128 to 32768.
300 *
301 * Therefore, at a minimum, there are 142 bits of space between what is
302 * written and what is read in the overlain buffers, so the symbols cannot
303 * be overwritten by the compressed data. That space is actually 139 bits,
304 * due to the three-bit fixed-code block header.
305 *
306 * That covers the case where either Z_FIXED is specified, forcing fixed
307 * codes, or when the use of fixed codes is chosen, because that choice
308 * results in a smaller compressed block than dynamic codes. That latter
309 * condition then assures that the above analysis also covers all dynamic
310 * blocks. A dynamic-code block will only be chosen to be emitted if it has
311 * fewer bits than a fixed-code block would for the same set of symbols.
312 * Therefore its average symbol length is assured to be less than 31. So
313 * the compressed data for a dynamic block also cannot overwrite the
314 * symbols from which it is being constructed.
315 */
316
317 s->pending_buf = (uchf *) ZALLOC(strm, s->lit_bufsize, 4);
318 s->pending_buf_size = (ulg)s->lit_bufsize * 4;
Lei Wenb834a392012-09-28 04:26:42 +0000319
320 if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL ||
321 s->pending_buf == Z_NULL) {
322 s->status = FINISH_STATE;
323 strm->msg = (char*)ERR_MSG(Z_MEM_ERROR);
324 deflateEnd (strm);
325 return Z_MEM_ERROR;
326 }
Tom Rinic3411d42022-05-10 14:36:59 -0400327 s->sym_buf = s->pending_buf + s->lit_bufsize;
328 s->sym_end = (s->lit_bufsize - 1) * 3;
329 /* We avoid equality with lit_bufsize*3 because of wraparound at 64K
330 * on 16 bit machines and because stored blocks are restricted to
331 * 64K-1 bytes.
332 */
Lei Wenb834a392012-09-28 04:26:42 +0000333
334 s->level = level;
335 s->strategy = strategy;
336 s->method = (Byte)method;
337
338 return deflateReset(strm);
339}
340
341/* ========================================================================= */
342int ZEXPORT deflateSetDictionary (strm, dictionary, dictLength)
343 z_streamp strm;
344 const Bytef *dictionary;
345 uInt dictLength;
346{
347 deflate_state *s;
348 uInt length = dictLength;
349 uInt n;
350 IPos hash_head = 0;
351
352 if (strm == Z_NULL || strm->state == Z_NULL || dictionary == Z_NULL ||
353 strm->state->wrap == 2 ||
354 (strm->state->wrap == 1 && strm->state->status != INIT_STATE))
355 return Z_STREAM_ERROR;
356
357 s = strm->state;
358 if (s->wrap)
359 strm->adler = adler32(strm->adler, dictionary, dictLength);
360
361 if (length < MIN_MATCH) return Z_OK;
362 if (length > s->w_size) {
363 length = s->w_size;
364 dictionary += dictLength - length; /* use the tail of the dictionary */
365 }
366 zmemcpy(s->window, dictionary, length);
367 s->strstart = length;
368 s->block_start = (long)length;
369
370 /* Insert all strings in the hash table (except for the last two bytes).
371 * s->lookahead stays null, so s->ins_h will be recomputed at the next
372 * call of fill_window.
373 */
374 s->ins_h = s->window[0];
375 UPDATE_HASH(s, s->ins_h, s->window[1]);
376 for (n = 0; n <= length - MIN_MATCH; n++) {
377 INSERT_STRING(s, n, hash_head);
378 }
379 if (hash_head) hash_head = 0; /* to make compiler happy */
380 return Z_OK;
381}
382
383/* ========================================================================= */
384int ZEXPORT deflateReset (strm)
385 z_streamp strm;
386{
387 deflate_state *s;
388
389 if (strm == Z_NULL || strm->state == Z_NULL ||
390 strm->zalloc == (alloc_func)0 || strm->zfree == (free_func)0) {
391 return Z_STREAM_ERROR;
392 }
393
394 strm->total_in = strm->total_out = 0;
395 strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */
396 strm->data_type = Z_UNKNOWN;
397
398 s = (deflate_state *)strm->state;
399 s->pending = 0;
400 s->pending_out = s->pending_buf;
401
402 if (s->wrap < 0) {
403 s->wrap = -s->wrap; /* was made negative by deflate(..., Z_FINISH); */
404 }
405 s->status = s->wrap ? INIT_STATE : BUSY_STATE;
406 strm->adler =
407#ifdef GZIP
408 s->wrap == 2 ? crc32(0L, Z_NULL, 0) :
409#endif
410 adler32(0L, Z_NULL, 0);
411 s->last_flush = Z_NO_FLUSH;
412
413 _tr_init(s);
414 lm_init(s);
415
416 return Z_OK;
417}
418
419/* ========================================================================= */
420int ZEXPORT deflateSetHeader (strm, head)
421 z_streamp strm;
422 gz_headerp head;
423{
424 if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
425 if (strm->state->wrap != 2) return Z_STREAM_ERROR;
426 strm->state->gzhead = head;
427 return Z_OK;
428}
429
430/* ========================================================================= */
431int ZEXPORT deflatePrime (strm, bits, value)
432 z_streamp strm;
433 int bits;
434 int value;
435{
436 if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
437 strm->state->bi_valid = bits;
438 strm->state->bi_buf = (ush)(value & ((1 << bits) - 1));
439 return Z_OK;
440}
441
442/* ========================================================================= */
443int ZEXPORT deflateParams(strm, level, strategy)
444 z_streamp strm;
445 int level;
446 int strategy;
447{
448 deflate_state *s;
449 compress_func func;
450 int err = Z_OK;
451
452 if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
453 s = strm->state;
454
455#ifdef FASTEST
456 if (level != 0) level = 1;
457#else
458 if (level == Z_DEFAULT_COMPRESSION) level = 6;
459#endif
460 if (level < 0 || level > 9 || strategy < 0 || strategy > Z_FIXED) {
461 return Z_STREAM_ERROR;
462 }
463 func = configuration_table[s->level].func;
464
465 if ((strategy != s->strategy || func != configuration_table[level].func) &&
466 strm->total_in != 0) {
467 /* Flush the last buffer: */
468 err = deflate(strm, Z_BLOCK);
469 }
470 if (s->level != level) {
471 s->level = level;
472 s->max_lazy_match = configuration_table[level].max_lazy;
473 s->good_match = configuration_table[level].good_length;
474 s->nice_match = configuration_table[level].nice_length;
475 s->max_chain_length = configuration_table[level].max_chain;
476 }
477 s->strategy = strategy;
478 return err;
479}
480
481/* ========================================================================= */
482int ZEXPORT deflateTune(strm, good_length, max_lazy, nice_length, max_chain)
483 z_streamp strm;
484 int good_length;
485 int max_lazy;
486 int nice_length;
487 int max_chain;
488{
489 deflate_state *s;
490
491 if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
492 s = strm->state;
493 s->good_match = good_length;
494 s->max_lazy_match = max_lazy;
495 s->nice_match = nice_length;
496 s->max_chain_length = max_chain;
497 return Z_OK;
498}
499
500/* =========================================================================
501 * For the default windowBits of 15 and memLevel of 8, this function returns
502 * a close to exact, as well as small, upper bound on the compressed size.
503 * They are coded as constants here for a reason--if the #define's are
504 * changed, then this function needs to be changed as well. The return
505 * value for 15 and 8 only works for those exact settings.
506 *
507 * For any setting other than those defaults for windowBits and memLevel,
508 * the value returned is a conservative worst case for the maximum expansion
509 * resulting from using fixed blocks instead of stored blocks, which deflate
510 * can emit on compressed data for some combinations of the parameters.
511 *
512 * This function could be more sophisticated to provide closer upper bounds for
513 * every combination of windowBits and memLevel. But even the conservative
514 * upper bound of about 14% expansion does not seem onerous for output buffer
515 * allocation.
516 */
517uLong ZEXPORT deflateBound(strm, sourceLen)
518 z_streamp strm;
519 uLong sourceLen;
520{
521 deflate_state *s;
522 uLong complen, wraplen;
523 Bytef *str;
524
525 /* conservative upper bound for compressed data */
526 complen = sourceLen +
527 ((sourceLen + 7) >> 3) + ((sourceLen + 63) >> 6) + 5;
528
529 /* if can't get parameters, return conservative bound plus zlib wrapper */
530 if (strm == Z_NULL || strm->state == Z_NULL)
531 return complen + 6;
532
533 /* compute wrapper length */
534 s = strm->state;
535 switch (s->wrap) {
536 case 0: /* raw deflate */
537 wraplen = 0;
538 break;
539 case 1: /* zlib wrapper */
540 wraplen = 6 + (s->strstart ? 4 : 0);
541 break;
542 case 2: /* gzip wrapper */
543 wraplen = 18;
544 if (s->gzhead != Z_NULL) { /* user-supplied gzip header */
545 if (s->gzhead->extra != Z_NULL)
546 wraplen += 2 + s->gzhead->extra_len;
547 str = s->gzhead->name;
548 if (str != Z_NULL)
549 do {
550 wraplen++;
551 } while (*str++);
552 str = s->gzhead->comment;
553 if (str != Z_NULL)
554 do {
555 wraplen++;
556 } while (*str++);
557 if (s->gzhead->hcrc)
558 wraplen += 2;
559 }
560 break;
561 default: /* for compiler happiness */
562 wraplen = 6;
563 }
564
565 /* if not default parameters, return conservative bound */
566 if (s->w_bits != 15 || s->hash_bits != 8 + 7)
567 return complen + wraplen;
568
569 /* default settings: return tight bound for that case */
570 return sourceLen + (sourceLen >> 12) + (sourceLen >> 14) +
571 (sourceLen >> 25) + 13 - 6 + wraplen;
572}
573
574/* =========================================================================
575 * Put a short in the pending buffer. The 16-bit value is put in MSB order.
576 * IN assertion: the stream state is correct and there is enough room in
577 * pending_buf.
578 */
579local void putShortMSB (s, b)
580 deflate_state *s;
581 uInt b;
582{
583 put_byte(s, (Byte)(b >> 8));
584 put_byte(s, (Byte)(b & 0xff));
585}
586
587/* =========================================================================
588 * Flush as much pending output as possible. All deflate() output goes
589 * through this function so some applications may wish to modify it
590 * to avoid allocating a large strm->next_out buffer and copying into it.
591 * (See also read_buf()).
592 */
593local void flush_pending(strm)
594 z_streamp strm;
595{
596 unsigned len = strm->state->pending;
597
598 if (len > strm->avail_out) len = strm->avail_out;
599 if (len == 0) return;
600
601 zmemcpy(strm->next_out, strm->state->pending_out, len);
602 strm->next_out += len;
603 strm->state->pending_out += len;
604 strm->total_out += len;
605 strm->avail_out -= len;
606 strm->state->pending -= len;
607 if (strm->state->pending == 0) {
608 strm->state->pending_out = strm->state->pending_buf;
609 }
610}
611
612/* ========================================================================= */
613int ZEXPORT deflate (strm, flush)
614 z_streamp strm;
615 int flush;
616{
617 int old_flush; /* value of flush param for previous deflate call */
618 deflate_state *s;
619
620 if (strm == Z_NULL || strm->state == Z_NULL ||
621 flush > Z_BLOCK || flush < 0) {
622 return Z_STREAM_ERROR;
623 }
624 s = strm->state;
625
Lei Wen86a36282012-09-28 04:26:45 +0000626 if (s->status == FINISH_STATE && flush != Z_FINISH) {
Lei Wenb834a392012-09-28 04:26:42 +0000627 ERR_RETURN(strm, Z_STREAM_ERROR);
628 }
629 if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR);
630
631 s->strm = strm; /* just in case */
632 old_flush = s->last_flush;
633 s->last_flush = flush;
634
635 /* Write the header */
636 if (s->status == INIT_STATE) {
637#ifdef GZIP
638 if (s->wrap == 2) {
639 strm->adler = crc32(0L, Z_NULL, 0);
640 put_byte(s, 31);
641 put_byte(s, 139);
642 put_byte(s, 8);
643 if (s->gzhead == Z_NULL) {
644 put_byte(s, 0);
645 put_byte(s, 0);
646 put_byte(s, 0);
647 put_byte(s, 0);
648 put_byte(s, 0);
649 put_byte(s, s->level == 9 ? 2 :
650 (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ?
651 4 : 0));
652 put_byte(s, OS_CODE);
653 s->status = BUSY_STATE;
654 }
655 else {
656 put_byte(s, (s->gzhead->text ? 1 : 0) +
657 (s->gzhead->hcrc ? 2 : 0) +
658 (s->gzhead->extra == Z_NULL ? 0 : 4) +
659 (s->gzhead->name == Z_NULL ? 0 : 8) +
660 (s->gzhead->comment == Z_NULL ? 0 : 16)
661 );
662 put_byte(s, (Byte)(s->gzhead->time & 0xff));
663 put_byte(s, (Byte)((s->gzhead->time >> 8) & 0xff));
664 put_byte(s, (Byte)((s->gzhead->time >> 16) & 0xff));
665 put_byte(s, (Byte)((s->gzhead->time >> 24) & 0xff));
666 put_byte(s, s->level == 9 ? 2 :
667 (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ?
668 4 : 0));
669 put_byte(s, s->gzhead->os & 0xff);
670 if (s->gzhead->extra != Z_NULL) {
671 put_byte(s, s->gzhead->extra_len & 0xff);
672 put_byte(s, (s->gzhead->extra_len >> 8) & 0xff);
673 }
674 if (s->gzhead->hcrc)
675 strm->adler = crc32(strm->adler, s->pending_buf,
676 s->pending);
677 s->gzindex = 0;
678 s->status = EXTRA_STATE;
679 }
680 }
681 else
682#endif
683 {
684 uInt header = (Z_DEFLATED + ((s->w_bits-8)<<4)) << 8;
685 uInt level_flags;
686
687 if (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2)
688 level_flags = 0;
689 else if (s->level < 6)
690 level_flags = 1;
691 else if (s->level == 6)
692 level_flags = 2;
693 else
694 level_flags = 3;
695 header |= (level_flags << 6);
696 if (s->strstart != 0) header |= PRESET_DICT;
697 header += 31 - (header % 31);
698
699 s->status = BUSY_STATE;
700 putShortMSB(s, header);
701
702 /* Save the adler32 of the preset dictionary: */
703 if (s->strstart != 0) {
704 putShortMSB(s, (uInt)(strm->adler >> 16));
705 putShortMSB(s, (uInt)(strm->adler & 0xffff));
706 }
707 strm->adler = adler32(0L, Z_NULL, 0);
708 }
709 }
710#ifdef GZIP
711 if (s->status == EXTRA_STATE) {
712 if (s->gzhead->extra != Z_NULL) {
713 uInt beg = s->pending; /* start of bytes to update crc */
714
715 while (s->gzindex < (s->gzhead->extra_len & 0xffff)) {
716 if (s->pending == s->pending_buf_size) {
717 if (s->gzhead->hcrc && s->pending > beg)
718 strm->adler = crc32(strm->adler, s->pending_buf + beg,
719 s->pending - beg);
720 flush_pending(strm);
721 beg = s->pending;
722 if (s->pending == s->pending_buf_size)
723 break;
724 }
725 put_byte(s, s->gzhead->extra[s->gzindex]);
726 s->gzindex++;
727 }
728 if (s->gzhead->hcrc && s->pending > beg)
729 strm->adler = crc32(strm->adler, s->pending_buf + beg,
730 s->pending - beg);
731 if (s->gzindex == s->gzhead->extra_len) {
732 s->gzindex = 0;
733 s->status = NAME_STATE;
734 }
735 }
736 else
737 s->status = NAME_STATE;
738 }
739 if (s->status == NAME_STATE) {
740 if (s->gzhead->name != Z_NULL) {
741 uInt beg = s->pending; /* start of bytes to update crc */
742 int val;
743
744 do {
745 if (s->pending == s->pending_buf_size) {
746 if (s->gzhead->hcrc && s->pending > beg)
747 strm->adler = crc32(strm->adler, s->pending_buf + beg,
748 s->pending - beg);
749 flush_pending(strm);
750 beg = s->pending;
751 if (s->pending == s->pending_buf_size) {
752 val = 1;
753 break;
754 }
755 }
756 val = s->gzhead->name[s->gzindex++];
757 put_byte(s, val);
758 } while (val != 0);
759 if (s->gzhead->hcrc && s->pending > beg)
760 strm->adler = crc32(strm->adler, s->pending_buf + beg,
761 s->pending - beg);
762 if (val == 0) {
763 s->gzindex = 0;
764 s->status = COMMENT_STATE;
765 }
766 }
767 else
768 s->status = COMMENT_STATE;
769 }
770 if (s->status == COMMENT_STATE) {
771 if (s->gzhead->comment != Z_NULL) {
772 uInt beg = s->pending; /* start of bytes to update crc */
773 int val;
774
775 do {
776 if (s->pending == s->pending_buf_size) {
777 if (s->gzhead->hcrc && s->pending > beg)
778 strm->adler = crc32(strm->adler, s->pending_buf + beg,
779 s->pending - beg);
780 flush_pending(strm);
781 beg = s->pending;
782 if (s->pending == s->pending_buf_size) {
783 val = 1;
784 break;
785 }
786 }
787 val = s->gzhead->comment[s->gzindex++];
788 put_byte(s, val);
789 } while (val != 0);
790 if (s->gzhead->hcrc && s->pending > beg)
791 strm->adler = crc32(strm->adler, s->pending_buf + beg,
792 s->pending - beg);
793 if (val == 0)
794 s->status = HCRC_STATE;
795 }
796 else
797 s->status = HCRC_STATE;
798 }
799 if (s->status == HCRC_STATE) {
800 if (s->gzhead->hcrc) {
801 if (s->pending + 2 > s->pending_buf_size)
802 flush_pending(strm);
803 if (s->pending + 2 <= s->pending_buf_size) {
804 put_byte(s, (Byte)(strm->adler & 0xff));
805 put_byte(s, (Byte)((strm->adler >> 8) & 0xff));
806 strm->adler = crc32(0L, Z_NULL, 0);
807 s->status = BUSY_STATE;
808 }
809 }
810 else
811 s->status = BUSY_STATE;
812 }
813#endif
814
815 /* Flush as much pending output as possible */
816 if (s->pending != 0) {
817 flush_pending(strm);
818 if (strm->avail_out == 0) {
819 /* Since avail_out is 0, deflate will be called again with
820 * more output space, but possibly with both pending and
821 * avail_in equal to zero. There won't be anything to do,
822 * but this is not an error situation so make sure we
823 * return OK instead of BUF_ERROR at next call of deflate:
824 */
825 s->last_flush = -1;
826 return Z_OK;
827 }
828
829 /* Make sure there is something to do and avoid duplicate consecutive
830 * flushes. For repeated and useless calls with Z_FINISH, we keep
831 * returning Z_STREAM_END instead of Z_BUF_ERROR.
832 */
833 } else if (strm->avail_in == 0 && flush <= old_flush &&
834 flush != Z_FINISH) {
835 ERR_RETURN(strm, Z_BUF_ERROR);
836 }
837
838 /* User must not provide more input after the first FINISH: */
839 if (s->status == FINISH_STATE && strm->avail_in != 0) {
840 ERR_RETURN(strm, Z_BUF_ERROR);
841 }
842
843 /* Start a new block or continue the current one.
844 */
845 if (strm->avail_in != 0 || s->lookahead != 0 ||
846 (flush != Z_NO_FLUSH && s->status != FINISH_STATE)) {
847 block_state bstate;
848
849 bstate = s->strategy == Z_HUFFMAN_ONLY ? deflate_huff(s, flush) :
850 (s->strategy == Z_RLE ? deflate_rle(s, flush) :
851 (*(configuration_table[s->level].func))(s, flush));
852
853 if (bstate == finish_started || bstate == finish_done) {
854 s->status = FINISH_STATE;
855 }
856 if (bstate == need_more || bstate == finish_started) {
857 if (strm->avail_out == 0) {
858 s->last_flush = -1; /* avoid BUF_ERROR next call, see above */
859 }
860 return Z_OK;
861 /* If flush != Z_NO_FLUSH && avail_out == 0, the next call
862 * of deflate should use the same flush parameter to make sure
863 * that the flush is complete. So we don't have to output an
864 * empty block here, this will be done at next call. This also
865 * ensures that for a very small output buffer, we emit at most
866 * one empty block.
867 */
868 }
869 if (bstate == block_done) {
870 if (flush == Z_PARTIAL_FLUSH) {
871 _tr_align(s);
872 } else if (flush != Z_BLOCK) { /* FULL_FLUSH or SYNC_FLUSH */
873 _tr_stored_block(s, (char*)0, 0L, 0);
874 /* For a full flush, this empty block will be recognized
875 * as a special marker by inflate_sync().
876 */
877 if (flush == Z_FULL_FLUSH) {
878 CLEAR_HASH(s); /* forget history */
879 if (s->lookahead == 0) {
880 s->strstart = 0;
881 s->block_start = 0L;
882 }
883 }
884 }
885 flush_pending(strm);
886 if (strm->avail_out == 0) {
887 s->last_flush = -1; /* avoid BUF_ERROR at next call, see above */
888 return Z_OK;
889 }
890 }
891 }
892 Assert(strm->avail_out > 0, "bug2");
893
894 if (flush != Z_FINISH) return Z_OK;
895 if (s->wrap <= 0) return Z_STREAM_END;
896
897 /* Write the trailer */
898#ifdef GZIP
899 if (s->wrap == 2) {
900 put_byte(s, (Byte)(strm->adler & 0xff));
901 put_byte(s, (Byte)((strm->adler >> 8) & 0xff));
902 put_byte(s, (Byte)((strm->adler >> 16) & 0xff));
903 put_byte(s, (Byte)((strm->adler >> 24) & 0xff));
904 put_byte(s, (Byte)(strm->total_in & 0xff));
905 put_byte(s, (Byte)((strm->total_in >> 8) & 0xff));
906 put_byte(s, (Byte)((strm->total_in >> 16) & 0xff));
907 put_byte(s, (Byte)((strm->total_in >> 24) & 0xff));
908 }
909 else
910#endif
911 {
912 putShortMSB(s, (uInt)(strm->adler >> 16));
913 putShortMSB(s, (uInt)(strm->adler & 0xffff));
914 }
915 flush_pending(strm);
916 /* If avail_out is zero, the application will call deflate again
917 * to flush the rest.
918 */
919 if (s->wrap > 0) s->wrap = -s->wrap; /* write the trailer only once! */
920 return s->pending != 0 ? Z_OK : Z_STREAM_END;
921}
922
923/* ========================================================================= */
924int ZEXPORT deflateEnd (strm)
925 z_streamp strm;
926{
927 int status;
928
929 if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
930
931 status = strm->state->status;
932 if (status != INIT_STATE &&
933 status != EXTRA_STATE &&
934 status != NAME_STATE &&
935 status != COMMENT_STATE &&
936 status != HCRC_STATE &&
937 status != BUSY_STATE &&
938 status != FINISH_STATE) {
939 return Z_STREAM_ERROR;
940 }
941
942 /* Deallocate in reverse order of allocations: */
943 TRY_FREE(strm, strm->state->pending_buf);
944 TRY_FREE(strm, strm->state->head);
945 TRY_FREE(strm, strm->state->prev);
946 TRY_FREE(strm, strm->state->window);
947
948 ZFREE(strm, strm->state);
949 strm->state = Z_NULL;
950
951 return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK;
952}
953
954/* =========================================================================
955 * Copy the source state to the destination state.
956 * To simplify the source, this is not supported for 16-bit MSDOS (which
957 * doesn't have enough memory anyway to duplicate compression states).
958 */
959int ZEXPORT deflateCopy (dest, source)
960 z_streamp dest;
961 z_streamp source;
962{
963#ifdef MAXSEG_64K
964 return Z_STREAM_ERROR;
965#else
966 deflate_state *ds;
967 deflate_state *ss;
Lei Wenb834a392012-09-28 04:26:42 +0000968
969
970 if (source == Z_NULL || dest == Z_NULL || source->state == Z_NULL) {
971 return Z_STREAM_ERROR;
972 }
973
974 ss = source->state;
975
976 zmemcpy(dest, source, sizeof(z_stream));
977
978 ds = (deflate_state *) ZALLOC(dest, 1, sizeof(deflate_state));
979 if (ds == Z_NULL) return Z_MEM_ERROR;
980 dest->state = (struct internal_state FAR *) ds;
981 zmemcpy(ds, ss, sizeof(deflate_state));
982 ds->strm = dest;
983
984 ds->window = (Bytef *) ZALLOC(dest, ds->w_size, 2*sizeof(Byte));
985 ds->prev = (Posf *) ZALLOC(dest, ds->w_size, sizeof(Pos));
986 ds->head = (Posf *) ZALLOC(dest, ds->hash_size, sizeof(Pos));
Tom Rinic3411d42022-05-10 14:36:59 -0400987 ds->pending_buf = (uchf *) ZALLOC(dest, ds->lit_bufsize, 4);
Lei Wenb834a392012-09-28 04:26:42 +0000988
989 if (ds->window == Z_NULL || ds->prev == Z_NULL || ds->head == Z_NULL ||
990 ds->pending_buf == Z_NULL) {
991 deflateEnd (dest);
992 return Z_MEM_ERROR;
993 }
994 /* following zmemcpy do not work for 16-bit MSDOS */
995 zmemcpy(ds->window, ss->window, ds->w_size * 2 * sizeof(Byte));
996 zmemcpy(ds->prev, ss->prev, ds->w_size * sizeof(Pos));
997 zmemcpy(ds->head, ss->head, ds->hash_size * sizeof(Pos));
998 zmemcpy(ds->pending_buf, ss->pending_buf, (uInt)ds->pending_buf_size);
999
1000 ds->pending_out = ds->pending_buf + (ss->pending_out - ss->pending_buf);
Tom Rinic3411d42022-05-10 14:36:59 -04001001 ds->sym_buf = ds->pending_buf + ds->lit_bufsize;
Lei Wenb834a392012-09-28 04:26:42 +00001002
1003 ds->l_desc.dyn_tree = ds->dyn_ltree;
1004 ds->d_desc.dyn_tree = ds->dyn_dtree;
1005 ds->bl_desc.dyn_tree = ds->bl_tree;
1006
1007 return Z_OK;
1008#endif /* MAXSEG_64K */
1009}
1010
1011/* ===========================================================================
1012 * Read a new buffer from the current input stream, update the adler32
1013 * and total number of bytes read. All deflate() input goes through
1014 * this function so some applications may wish to modify it to avoid
1015 * allocating a large strm->next_in buffer and copying from it.
1016 * (See also flush_pending()).
1017 */
1018local int read_buf(strm, buf, size)
1019 z_streamp strm;
1020 Bytef *buf;
1021 unsigned size;
1022{
1023 unsigned len = strm->avail_in;
1024
1025 if (len > size) len = size;
1026 if (len == 0) return 0;
1027
1028 strm->avail_in -= len;
1029
1030 if (strm->state->wrap == 1) {
1031 strm->adler = adler32(strm->adler, strm->next_in, len);
1032 }
1033#ifdef GZIP
1034 else if (strm->state->wrap == 2) {
1035 strm->adler = crc32(strm->adler, strm->next_in, len);
1036 }
1037#endif
1038 zmemcpy(buf, strm->next_in, len);
1039 strm->next_in += len;
1040 strm->total_in += len;
1041
1042 return (int)len;
1043}
1044
1045/* ===========================================================================
1046 * Initialize the "longest match" routines for a new zlib stream
1047 */
1048local void lm_init (s)
1049 deflate_state *s;
1050{
1051 s->window_size = (ulg)2L*s->w_size;
1052
1053 CLEAR_HASH(s);
1054
1055 /* Set the default configuration parameters:
1056 */
1057 s->max_lazy_match = configuration_table[s->level].max_lazy;
1058 s->good_match = configuration_table[s->level].good_length;
1059 s->nice_match = configuration_table[s->level].nice_length;
1060 s->max_chain_length = configuration_table[s->level].max_chain;
1061
1062 s->strstart = 0;
1063 s->block_start = 0L;
1064 s->lookahead = 0;
1065 s->match_length = s->prev_length = MIN_MATCH-1;
1066 s->match_available = 0;
1067 s->ins_h = 0;
1068#ifndef FASTEST
1069#ifdef ASMV
1070 match_init(); /* initialize the asm code */
1071#endif
1072#endif
1073}
1074
1075#ifndef FASTEST
1076/* ===========================================================================
1077 * Set match_start to the longest match starting at the given string and
1078 * return its length. Matches shorter or equal to prev_length are discarded,
1079 * in which case the result is equal to prev_length and match_start is
1080 * garbage.
1081 * IN assertions: cur_match is the head of the hash chain for the current
1082 * string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
1083 * OUT assertion: the match length is not greater than s->lookahead.
1084 */
1085#ifndef ASMV
1086/* For 80x86 and 680x0, an optimized version will be provided in match.asm or
1087 * match.S. The code will be functionally equivalent.
1088 */
1089local uInt longest_match(s, cur_match)
1090 deflate_state *s;
1091 IPos cur_match; /* current match */
1092{
1093 unsigned chain_length = s->max_chain_length;/* max hash chain length */
1094 register Bytef *scan = s->window + s->strstart; /* current string */
1095 register Bytef *match; /* matched string */
1096 register int len; /* length of current match */
1097 int best_len = s->prev_length; /* best match length so far */
1098 int nice_match = s->nice_match; /* stop if match long enough */
1099 IPos limit = s->strstart > (IPos)MAX_DIST(s) ?
1100 s->strstart - (IPos)MAX_DIST(s) : NIL;
1101 /* Stop when cur_match becomes <= limit. To simplify the code,
1102 * we prevent matches with the string of window index 0.
1103 */
1104 Posf *prev = s->prev;
1105 uInt wmask = s->w_mask;
1106
1107#ifdef UNALIGNED_OK
1108 /* Compare two bytes at a time. Note: this is not always beneficial.
1109 * Try with and without -DUNALIGNED_OK to check.
1110 */
1111 register Bytef *strend = s->window + s->strstart + MAX_MATCH - 1;
1112 register ush scan_start = *(ushf*)scan;
1113 register ush scan_end = *(ushf*)(scan+best_len-1);
1114#else
1115 register Bytef *strend = s->window + s->strstart + MAX_MATCH;
1116 register Byte scan_end1 = scan[best_len-1];
1117 register Byte scan_end = scan[best_len];
1118#endif
1119
1120 /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1121 * It is easy to get rid of this optimization if necessary.
1122 */
1123 Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1124
1125 /* Do not waste too much time if we already have a good match: */
1126 if (s->prev_length >= s->good_match) {
1127 chain_length >>= 2;
1128 }
1129 /* Do not look for matches beyond the end of the input. This is necessary
1130 * to make deflate deterministic.
1131 */
1132 if ((uInt)nice_match > s->lookahead) nice_match = s->lookahead;
1133
1134 Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
1135
1136 do {
1137 Assert(cur_match < s->strstart, "no future");
1138 match = s->window + cur_match;
1139
1140 /* Skip to next match if the match length cannot increase
1141 * or if the match length is less than 2. Note that the checks below
1142 * for insufficient lookahead only occur occasionally for performance
1143 * reasons. Therefore uninitialized memory will be accessed, and
1144 * conditional jumps will be made that depend on those values.
1145 * However the length of the match is limited to the lookahead, so
1146 * the output of deflate is not affected by the uninitialized values.
1147 */
1148#if (defined(UNALIGNED_OK) && MAX_MATCH == 258)
1149 /* This code assumes sizeof(unsigned short) == 2. Do not use
1150 * UNALIGNED_OK if your compiler uses a different size.
1151 */
1152 if (*(ushf*)(match+best_len-1) != scan_end ||
1153 *(ushf*)match != scan_start) continue;
1154
1155 /* It is not necessary to compare scan[2] and match[2] since they are
1156 * always equal when the other bytes match, given that the hash keys
1157 * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at
1158 * strstart+3, +5, ... up to strstart+257. We check for insufficient
1159 * lookahead only every 4th comparison; the 128th check will be made
1160 * at strstart+257. If MAX_MATCH-2 is not a multiple of 8, it is
1161 * necessary to put more guard bytes at the end of the window, or
1162 * to check more often for insufficient lookahead.
1163 */
1164 Assert(scan[2] == match[2], "scan[2]?");
1165 scan++, match++;
1166 do {
1167 } while (*(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1168 *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1169 *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1170 *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1171 scan < strend);
1172 /* The funny "do {}" generates better code on most compilers */
1173
1174 /* Here, scan <= window+strstart+257 */
1175 Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1176 if (*scan == *match) scan++;
1177
1178 len = (MAX_MATCH - 1) - (int)(strend-scan);
1179 scan = strend - (MAX_MATCH-1);
1180
1181#else /* UNALIGNED_OK */
1182
1183 if (match[best_len] != scan_end ||
1184 match[best_len-1] != scan_end1 ||
1185 *match != *scan ||
1186 *++match != scan[1]) continue;
1187
1188 /* The check at best_len-1 can be removed because it will be made
1189 * again later. (This heuristic is not always a win.)
1190 * It is not necessary to compare scan[2] and match[2] since they
1191 * are always equal when the other bytes match, given that
1192 * the hash keys are equal and that HASH_BITS >= 8.
1193 */
1194 scan += 2, match++;
1195 Assert(*scan == *match, "match[2]?");
1196
1197 /* We check for insufficient lookahead only every 8th comparison;
1198 * the 256th check will be made at strstart+258.
1199 */
1200 do {
1201 } while (*++scan == *++match && *++scan == *++match &&
1202 *++scan == *++match && *++scan == *++match &&
1203 *++scan == *++match && *++scan == *++match &&
1204 *++scan == *++match && *++scan == *++match &&
1205 scan < strend);
1206
1207 Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1208
1209 len = MAX_MATCH - (int)(strend - scan);
1210 scan = strend - MAX_MATCH;
1211
1212#endif /* UNALIGNED_OK */
1213
1214 if (len > best_len) {
1215 s->match_start = cur_match;
1216 best_len = len;
1217 if (len >= nice_match) break;
1218#ifdef UNALIGNED_OK
1219 scan_end = *(ushf*)(scan+best_len-1);
1220#else
1221 scan_end1 = scan[best_len-1];
1222 scan_end = scan[best_len];
1223#endif
1224 }
1225 } while ((cur_match = prev[cur_match & wmask]) > limit
1226 && --chain_length != 0);
1227
1228 if ((uInt)best_len <= s->lookahead) return (uInt)best_len;
1229 return s->lookahead;
1230}
1231#endif /* ASMV */
1232
1233#else /* FASTEST */
1234
1235/* ---------------------------------------------------------------------------
1236 * Optimized version for FASTEST only
1237 */
1238local uInt longest_match(s, cur_match)
1239 deflate_state *s;
1240 IPos cur_match; /* current match */
1241{
1242 register Bytef *scan = s->window + s->strstart; /* current string */
1243 register Bytef *match; /* matched string */
1244 register int len; /* length of current match */
1245 register Bytef *strend = s->window + s->strstart + MAX_MATCH;
1246
1247 /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1248 * It is easy to get rid of this optimization if necessary.
1249 */
1250 Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1251
1252 Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
1253
1254 Assert(cur_match < s->strstart, "no future");
1255
1256 match = s->window + cur_match;
1257
1258 /* Return failure if the match length is less than 2:
1259 */
1260 if (match[0] != scan[0] || match[1] != scan[1]) return MIN_MATCH-1;
1261
1262 /* The check at best_len-1 can be removed because it will be made
1263 * again later. (This heuristic is not always a win.)
1264 * It is not necessary to compare scan[2] and match[2] since they
1265 * are always equal when the other bytes match, given that
1266 * the hash keys are equal and that HASH_BITS >= 8.
1267 */
1268 scan += 2, match += 2;
1269 Assert(*scan == *match, "match[2]?");
1270
1271 /* We check for insufficient lookahead only every 8th comparison;
1272 * the 256th check will be made at strstart+258.
1273 */
1274 do {
1275 } while (*++scan == *++match && *++scan == *++match &&
1276 *++scan == *++match && *++scan == *++match &&
1277 *++scan == *++match && *++scan == *++match &&
1278 *++scan == *++match && *++scan == *++match &&
1279 scan < strend);
1280
1281 Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1282
1283 len = MAX_MATCH - (int)(strend - scan);
1284
1285 if (len < MIN_MATCH) return MIN_MATCH - 1;
1286
1287 s->match_start = cur_match;
1288 return (uInt)len <= s->lookahead ? (uInt)len : s->lookahead;
1289}
1290
1291#endif /* FASTEST */
1292
1293#ifdef DEBUG
1294/* ===========================================================================
1295 * Check that the match at match_start is indeed a match.
1296 */
1297local void check_match(s, start, match, length)
1298 deflate_state *s;
1299 IPos start, match;
1300 int length;
1301{
1302 /* check that the match is indeed a match */
1303 if (zmemcmp(s->window + match,
1304 s->window + start, length) != EQUAL) {
1305 fprintf(stderr, " start %u, match %u, length %d\n",
1306 start, match, length);
1307 do {
1308 fprintf(stderr, "%c%c", s->window[match++], s->window[start++]);
1309 } while (--length != 0);
1310 z_error("invalid match");
1311 }
1312 if (z_verbose > 1) {
1313 fprintf(stderr,"\\[%d,%d]", start-match, length);
Heinrich Schuchardt8239a7f2020-12-28 21:41:40 +01001314 do { putc(s->window[start++]); } while (--length != 0);
Lei Wenb834a392012-09-28 04:26:42 +00001315 }
1316}
1317#else
1318# define check_match(s, start, match, length)
1319#endif /* DEBUG */
1320
1321/* ===========================================================================
1322 * Fill the window when the lookahead becomes insufficient.
1323 * Updates strstart and lookahead.
1324 *
1325 * IN assertion: lookahead < MIN_LOOKAHEAD
1326 * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
1327 * At least one byte has been read, or avail_in == 0; reads are
1328 * performed for at least two bytes (required for the zip translate_eol
1329 * option -- not supported here).
1330 */
1331local void fill_window(s)
1332 deflate_state *s;
1333{
1334 register unsigned n, m;
1335 register Posf *p;
1336 unsigned more; /* Amount of free space at the end of the window. */
1337 uInt wsize = s->w_size;
1338
1339 do {
1340 more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart);
1341
1342 /* Deal with !@#$% 64K limit: */
1343 if (sizeof(int) <= 2) {
1344 if (more == 0 && s->strstart == 0 && s->lookahead == 0) {
1345 more = wsize;
1346
1347 } else if (more == (unsigned)(-1)) {
1348 /* Very unlikely, but possible on 16 bit machine if
1349 * strstart == 0 && lookahead == 1 (input done a byte at time)
1350 */
1351 more--;
1352 }
1353 }
1354
1355 /* If the window is almost full and there is insufficient lookahead,
1356 * move the upper half to the lower one to make room in the upper half.
1357 */
1358 if (s->strstart >= wsize+MAX_DIST(s)) {
1359
1360 zmemcpy(s->window, s->window+wsize, (unsigned)wsize);
1361 s->match_start -= wsize;
1362 s->strstart -= wsize; /* we now have strstart >= MAX_DIST */
1363 s->block_start -= (long) wsize;
1364
1365 /* Slide the hash table (could be avoided with 32 bit values
1366 at the expense of memory usage). We slide even when level == 0
1367 to keep the hash table consistent if we switch back to level > 0
1368 later. (Using level 0 permanently is not an optimal usage of
1369 zlib, so we don't care about this pathological case.)
1370 */
1371 n = s->hash_size;
1372 p = &s->head[n];
1373 do {
1374 m = *--p;
1375 *p = (Pos)(m >= wsize ? m-wsize : NIL);
1376 } while (--n);
1377
1378 n = wsize;
1379#ifndef FASTEST
1380 p = &s->prev[n];
1381 do {
1382 m = *--p;
1383 *p = (Pos)(m >= wsize ? m-wsize : NIL);
1384 /* If n is not on any hash chain, prev[n] is garbage but
1385 * its value will never be used.
1386 */
1387 } while (--n);
1388#endif
1389 more += wsize;
1390 }
1391 if (s->strm->avail_in == 0) return;
1392
1393 /* If there was no sliding:
1394 * strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
1395 * more == window_size - lookahead - strstart
1396 * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
1397 * => more >= window_size - 2*WSIZE + 2
1398 * In the BIG_MEM or MMAP case (not yet supported),
1399 * window_size == input_size + MIN_LOOKAHEAD &&
1400 * strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.
1401 * Otherwise, window_size == 2*WSIZE so more >= 2.
1402 * If there was sliding, more >= WSIZE. So in all cases, more >= 2.
1403 */
1404 Assert(more >= 2, "more < 2");
1405
1406 n = read_buf(s->strm, s->window + s->strstart + s->lookahead, more);
1407 s->lookahead += n;
1408
1409 /* Initialize the hash value now that we have some input: */
1410 if (s->lookahead >= MIN_MATCH) {
1411 s->ins_h = s->window[s->strstart];
1412 UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]);
1413#if MIN_MATCH != 3
1414 Call UPDATE_HASH() MIN_MATCH-3 more times
1415#endif
1416 }
1417 /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
1418 * but this is not important since only literal bytes will be emitted.
1419 */
1420
1421 } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0);
1422
1423 /* If the WIN_INIT bytes after the end of the current data have never been
1424 * written, then zero those bytes in order to avoid memory check reports of
1425 * the use of uninitialized (or uninitialised as Julian writes) bytes by
1426 * the longest match routines. Update the high water mark for the next
1427 * time through here. WIN_INIT is set to MAX_MATCH since the longest match
1428 * routines allow scanning to strstart + MAX_MATCH, ignoring lookahead.
1429 */
1430 if (s->high_water < s->window_size) {
1431 ulg curr = s->strstart + (ulg)(s->lookahead);
1432 ulg init;
1433
1434 if (s->high_water < curr) {
1435 /* Previous high water mark below current data -- zero WIN_INIT
1436 * bytes or up to end of window, whichever is less.
1437 */
1438 init = s->window_size - curr;
1439 if (init > WIN_INIT)
1440 init = WIN_INIT;
1441 zmemzero(s->window + curr, (unsigned)init);
1442 s->high_water = curr + init;
1443 }
1444 else if (s->high_water < (ulg)curr + WIN_INIT) {
1445 /* High water mark at or above current data, but below current data
1446 * plus WIN_INIT -- zero out to current data plus WIN_INIT, or up
1447 * to end of window, whichever is less.
1448 */
1449 init = (ulg)curr + WIN_INIT - s->high_water;
1450 if (init > s->window_size - s->high_water)
1451 init = s->window_size - s->high_water;
1452 zmemzero(s->window + s->high_water, (unsigned)init);
1453 s->high_water += init;
1454 }
1455 }
1456}
1457
1458/* ===========================================================================
1459 * Flush the current block, with given end-of-file flag.
1460 * IN assertion: strstart is set to the end of the current match.
1461 */
1462#define FLUSH_BLOCK_ONLY(s, last) { \
1463 _tr_flush_block(s, (s->block_start >= 0L ? \
1464 (charf *)&s->window[(unsigned)s->block_start] : \
1465 (charf *)Z_NULL), \
1466 (ulg)((long)s->strstart - s->block_start), \
1467 (last)); \
1468 s->block_start = s->strstart; \
1469 flush_pending(s->strm); \
1470 Tracev((stderr,"[FLUSH]")); \
1471}
1472
1473/* Same but force premature exit if necessary. */
1474#define FLUSH_BLOCK(s, last) { \
1475 FLUSH_BLOCK_ONLY(s, last); \
1476 if (s->strm->avail_out == 0) return (last) ? finish_started : need_more; \
1477}
1478
1479/* ===========================================================================
1480 * Copy without compression as much as possible from the input stream, return
1481 * the current block state.
1482 * This function does not insert new strings in the dictionary since
1483 * uncompressible data is probably not useful. This function is used
1484 * only for the level=0 compression option.
1485 * NOTE: this function should be optimized to avoid extra copying from
1486 * window to pending_buf.
1487 */
1488local block_state deflate_stored(s, flush)
1489 deflate_state *s;
1490 int flush;
1491{
1492 /* Stored blocks are limited to 0xffff bytes, pending_buf is limited
1493 * to pending_buf_size, and each stored block has a 5 byte header:
1494 */
1495 ulg max_block_size = 0xffff;
1496 ulg max_start;
1497
1498 if (max_block_size > s->pending_buf_size - 5) {
1499 max_block_size = s->pending_buf_size - 5;
1500 }
1501
1502 /* Copy as much as possible from input to output: */
1503 for (;;) {
1504 /* Fill the window as much as possible: */
1505 if (s->lookahead <= 1) {
1506
1507 Assert(s->strstart < s->w_size+MAX_DIST(s) ||
1508 s->block_start >= (long)s->w_size, "slide too late");
1509
1510 fill_window(s);
1511 if (s->lookahead == 0 && flush == Z_NO_FLUSH) return need_more;
1512
1513 if (s->lookahead == 0) break; /* flush the current block */
1514 }
1515 Assert(s->block_start >= 0L, "block gone");
1516
1517 s->strstart += s->lookahead;
1518 s->lookahead = 0;
1519
1520 /* Emit a stored block if pending_buf will be full: */
1521 max_start = s->block_start + max_block_size;
1522 if (s->strstart == 0 || (ulg)s->strstart >= max_start) {
1523 /* strstart == 0 is possible when wraparound on 16-bit machine */
1524 s->lookahead = (uInt)(s->strstart - max_start);
1525 s->strstart = (uInt)max_start;
1526 FLUSH_BLOCK(s, 0);
1527 }
1528 /* Flush if we may have to slide, otherwise block_start may become
1529 * negative and the data will be gone:
1530 */
1531 if (s->strstart - (uInt)s->block_start >= MAX_DIST(s)) {
1532 FLUSH_BLOCK(s, 0);
1533 }
1534 }
1535 FLUSH_BLOCK(s, flush == Z_FINISH);
1536 return flush == Z_FINISH ? finish_done : block_done;
1537}
1538
1539/* ===========================================================================
1540 * Compress as much as possible from the input stream, return the current
1541 * block state.
1542 * This function does not perform lazy evaluation of matches and inserts
1543 * new strings in the dictionary only for unmatched strings or for short
1544 * matches. It is used only for the fast compression options.
1545 */
1546local block_state deflate_fast(s, flush)
1547 deflate_state *s;
1548 int flush;
1549{
1550 IPos hash_head; /* head of the hash chain */
1551 int bflush; /* set if current block must be flushed */
1552
1553 for (;;) {
1554 /* Make sure that we always have enough lookahead, except
1555 * at the end of the input file. We need MAX_MATCH bytes
1556 * for the next match, plus MIN_MATCH bytes to insert the
1557 * string following the next match.
1558 */
1559 if (s->lookahead < MIN_LOOKAHEAD) {
1560 fill_window(s);
1561 if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1562 return need_more;
1563 }
1564 if (s->lookahead == 0) break; /* flush the current block */
1565 }
1566
1567 /* Insert the string window[strstart .. strstart+2] in the
1568 * dictionary, and set hash_head to the head of the hash chain:
1569 */
1570 hash_head = NIL;
1571 if (s->lookahead >= MIN_MATCH) {
1572 INSERT_STRING(s, s->strstart, hash_head);
1573 }
1574
1575 /* Find the longest match, discarding those <= prev_length.
1576 * At this point we have always match_length < MIN_MATCH
1577 */
1578 if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) {
1579 /* To simplify the code, we prevent matches with the string
1580 * of window index 0 (in particular we have to avoid a match
1581 * of the string with itself at the start of the input file).
1582 */
1583 s->match_length = longest_match (s, hash_head);
1584 /* longest_match() sets match_start */
1585 }
1586 if (s->match_length >= MIN_MATCH) {
1587 check_match(s, s->strstart, s->match_start, s->match_length);
1588
1589 _tr_tally_dist(s, s->strstart - s->match_start,
1590 s->match_length - MIN_MATCH, bflush);
1591
1592 s->lookahead -= s->match_length;
1593
1594 /* Insert new strings in the hash table only if the match length
1595 * is not too large. This saves time but degrades compression.
1596 */
1597#ifndef FASTEST
1598 if (s->match_length <= s->max_insert_length &&
1599 s->lookahead >= MIN_MATCH) {
1600 s->match_length--; /* string at strstart already in table */
1601 do {
1602 s->strstart++;
1603 INSERT_STRING(s, s->strstart, hash_head);
1604 /* strstart never exceeds WSIZE-MAX_MATCH, so there are
1605 * always MIN_MATCH bytes ahead.
1606 */
1607 } while (--s->match_length != 0);
1608 s->strstart++;
1609 } else
1610#endif
1611 {
1612 s->strstart += s->match_length;
1613 s->match_length = 0;
1614 s->ins_h = s->window[s->strstart];
1615 UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]);
1616#if MIN_MATCH != 3
1617 Call UPDATE_HASH() MIN_MATCH-3 more times
1618#endif
1619 /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not
1620 * matter since it will be recomputed at next deflate call.
1621 */
1622 }
1623 } else {
1624 /* No match, output a literal byte */
1625 Tracevv((stderr,"%c", s->window[s->strstart]));
1626 _tr_tally_lit (s, s->window[s->strstart], bflush);
1627 s->lookahead--;
1628 s->strstart++;
1629 }
1630 if (bflush) FLUSH_BLOCK(s, 0);
1631 }
1632 FLUSH_BLOCK(s, flush == Z_FINISH);
1633 return flush == Z_FINISH ? finish_done : block_done;
1634}
1635
1636#ifndef FASTEST
1637/* ===========================================================================
1638 * Same as above, but achieves better compression. We use a lazy
1639 * evaluation for matches: a match is finally adopted only if there is
1640 * no better match at the next window position.
1641 */
1642local block_state deflate_slow(s, flush)
1643 deflate_state *s;
1644 int flush;
1645{
1646 IPos hash_head; /* head of hash chain */
1647 int bflush; /* set if current block must be flushed */
1648
1649 /* Process the input block. */
1650 for (;;) {
1651 /* Make sure that we always have enough lookahead, except
1652 * at the end of the input file. We need MAX_MATCH bytes
1653 * for the next match, plus MIN_MATCH bytes to insert the
1654 * string following the next match.
1655 */
1656 if (s->lookahead < MIN_LOOKAHEAD) {
1657 fill_window(s);
1658 if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1659 return need_more;
1660 }
1661 if (s->lookahead == 0) break; /* flush the current block */
1662 }
1663
1664 /* Insert the string window[strstart .. strstart+2] in the
1665 * dictionary, and set hash_head to the head of the hash chain:
1666 */
1667 hash_head = NIL;
1668 if (s->lookahead >= MIN_MATCH) {
1669 INSERT_STRING(s, s->strstart, hash_head);
1670 }
1671
1672 /* Find the longest match, discarding those <= prev_length.
1673 */
1674 s->prev_length = s->match_length, s->prev_match = s->match_start;
1675 s->match_length = MIN_MATCH-1;
1676
1677 if (hash_head != NIL && s->prev_length < s->max_lazy_match &&
1678 s->strstart - hash_head <= MAX_DIST(s)) {
1679 /* To simplify the code, we prevent matches with the string
1680 * of window index 0 (in particular we have to avoid a match
1681 * of the string with itself at the start of the input file).
1682 */
1683 s->match_length = longest_match (s, hash_head);
1684 /* longest_match() sets match_start */
1685
1686 if (s->match_length <= 5 && (s->strategy == Z_FILTERED
1687#if TOO_FAR <= 32767
1688 || (s->match_length == MIN_MATCH &&
1689 s->strstart - s->match_start > TOO_FAR)
1690#endif
1691 )) {
1692
1693 /* If prev_match is also MIN_MATCH, match_start is garbage
1694 * but we will ignore the current match anyway.
1695 */
1696 s->match_length = MIN_MATCH-1;
1697 }
1698 }
1699 /* If there was a match at the previous step and the current
1700 * match is not better, output the previous match:
1701 */
1702 if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) {
1703 uInt max_insert = s->strstart + s->lookahead - MIN_MATCH;
1704 /* Do not insert strings in hash table beyond this. */
1705
1706 check_match(s, s->strstart-1, s->prev_match, s->prev_length);
1707
1708 _tr_tally_dist(s, s->strstart -1 - s->prev_match,
1709 s->prev_length - MIN_MATCH, bflush);
1710
1711 /* Insert in hash table all strings up to the end of the match.
1712 * strstart-1 and strstart are already inserted. If there is not
1713 * enough lookahead, the last two strings are not inserted in
1714 * the hash table.
1715 */
1716 s->lookahead -= s->prev_length-1;
1717 s->prev_length -= 2;
1718 do {
1719 if (++s->strstart <= max_insert) {
1720 INSERT_STRING(s, s->strstart, hash_head);
1721 }
1722 } while (--s->prev_length != 0);
1723 s->match_available = 0;
1724 s->match_length = MIN_MATCH-1;
1725 s->strstart++;
1726
1727 if (bflush) FLUSH_BLOCK(s, 0);
1728
1729 } else if (s->match_available) {
1730 /* If there was no match at the previous position, output a
1731 * single literal. If there was a match but the current match
1732 * is longer, truncate the previous match to a single literal.
1733 */
1734 Tracevv((stderr,"%c", s->window[s->strstart-1]));
1735 _tr_tally_lit(s, s->window[s->strstart-1], bflush);
1736 if (bflush) {
1737 FLUSH_BLOCK_ONLY(s, 0);
1738 }
1739 s->strstart++;
1740 s->lookahead--;
1741 if (s->strm->avail_out == 0) return need_more;
1742 } else {
1743 /* There is no previous match to compare with, wait for
1744 * the next step to decide.
1745 */
1746 s->match_available = 1;
1747 s->strstart++;
1748 s->lookahead--;
1749 }
1750 }
1751 Assert (flush != Z_NO_FLUSH, "no flush?");
1752 if (s->match_available) {
1753 Tracevv((stderr,"%c", s->window[s->strstart-1]));
1754 _tr_tally_lit(s, s->window[s->strstart-1], bflush);
1755 s->match_available = 0;
1756 }
1757 FLUSH_BLOCK(s, flush == Z_FINISH);
1758 return flush == Z_FINISH ? finish_done : block_done;
1759}
1760#endif /* FASTEST */
1761
1762/* ===========================================================================
1763 * For Z_RLE, simply look for runs of bytes, generate matches only of distance
1764 * one. Do not maintain a hash table. (It will be regenerated if this run of
1765 * deflate switches away from Z_RLE.)
1766 */
1767local block_state deflate_rle(s, flush)
1768 deflate_state *s;
1769 int flush;
1770{
1771 int bflush; /* set if current block must be flushed */
1772 uInt prev; /* byte at distance one to match */
1773 Bytef *scan, *strend; /* scan goes up to strend for length of run */
1774
1775 for (;;) {
1776 /* Make sure that we always have enough lookahead, except
1777 * at the end of the input file. We need MAX_MATCH bytes
1778 * for the longest encodable run.
1779 */
1780 if (s->lookahead < MAX_MATCH) {
1781 fill_window(s);
1782 if (s->lookahead < MAX_MATCH && flush == Z_NO_FLUSH) {
1783 return need_more;
1784 }
1785 if (s->lookahead == 0) break; /* flush the current block */
1786 }
1787
1788 /* See how many times the previous byte repeats */
1789 s->match_length = 0;
1790 if (s->lookahead >= MIN_MATCH && s->strstart > 0) {
1791 scan = s->window + s->strstart - 1;
1792 prev = *scan;
1793 if (prev == *++scan && prev == *++scan && prev == *++scan) {
1794 strend = s->window + s->strstart + MAX_MATCH;
1795 do {
1796 } while (prev == *++scan && prev == *++scan &&
1797 prev == *++scan && prev == *++scan &&
1798 prev == *++scan && prev == *++scan &&
1799 prev == *++scan && prev == *++scan &&
1800 scan < strend);
1801 s->match_length = MAX_MATCH - (int)(strend - scan);
1802 if (s->match_length > s->lookahead)
1803 s->match_length = s->lookahead;
1804 }
1805 }
1806
1807 /* Emit match if have run of MIN_MATCH or longer, else emit literal */
1808 if (s->match_length >= MIN_MATCH) {
1809 check_match(s, s->strstart, s->strstart - 1, s->match_length);
1810
1811 _tr_tally_dist(s, 1, s->match_length - MIN_MATCH, bflush);
1812
1813 s->lookahead -= s->match_length;
1814 s->strstart += s->match_length;
1815 s->match_length = 0;
1816 } else {
1817 /* No match, output a literal byte */
1818 Tracevv((stderr,"%c", s->window[s->strstart]));
1819 _tr_tally_lit (s, s->window[s->strstart], bflush);
1820 s->lookahead--;
1821 s->strstart++;
1822 }
1823 if (bflush) FLUSH_BLOCK(s, 0);
1824 }
1825 FLUSH_BLOCK(s, flush == Z_FINISH);
1826 return flush == Z_FINISH ? finish_done : block_done;
1827}
1828
1829/* ===========================================================================
1830 * For Z_HUFFMAN_ONLY, do not look for matches. Do not maintain a hash table.
1831 * (It will be regenerated if this run of deflate switches away from Huffman.)
1832 */
1833local block_state deflate_huff(s, flush)
1834 deflate_state *s;
1835 int flush;
1836{
1837 int bflush; /* set if current block must be flushed */
1838
1839 for (;;) {
1840 /* Make sure that we have a literal to write. */
1841 if (s->lookahead == 0) {
1842 fill_window(s);
1843 if (s->lookahead == 0) {
1844 if (flush == Z_NO_FLUSH)
1845 return need_more;
1846 break; /* flush the current block */
1847 }
1848 }
1849
1850 /* Output a literal byte */
1851 s->match_length = 0;
1852 Tracevv((stderr,"%c", s->window[s->strstart]));
1853 _tr_tally_lit (s, s->window[s->strstart], bflush);
1854 s->lookahead--;
1855 s->strstart++;
1856 if (bflush) FLUSH_BLOCK(s, 0);
1857 }
1858 FLUSH_BLOCK(s, flush == Z_FINISH);
1859 return flush == Z_FINISH ? finish_done : block_done;
1860}