Kyungmin Park | a598345 | 2008-11-19 16:26:54 +0100 | [diff] [blame] | 1 | /* |
| 2 | * Copyright (c) International Business Machines Corp., 2006 |
| 3 | * Copyright (c) Nokia Corporation, 2006, 2007 |
| 4 | * |
| 5 | * This program is free software; you can redistribute it and/or modify |
| 6 | * it under the terms of the GNU General Public License as published by |
| 7 | * the Free Software Foundation; either version 2 of the License, or |
| 8 | * (at your option) any later version. |
| 9 | * |
| 10 | * This program is distributed in the hope that it will be useful, |
| 11 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 12 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See |
| 13 | * the GNU General Public License for more details. |
| 14 | * |
| 15 | * You should have received a copy of the GNU General Public License |
| 16 | * along with this program; if not, write to the Free Software |
| 17 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
| 18 | * |
| 19 | * Author: Artem Bityutskiy (Битюцкий Артём) |
| 20 | */ |
| 21 | |
| 22 | /* |
| 23 | * UBI input/output unit. |
| 24 | * |
| 25 | * This unit provides a uniform way to work with all kinds of the underlying |
| 26 | * MTD devices. It also implements handy functions for reading and writing UBI |
| 27 | * headers. |
| 28 | * |
| 29 | * We are trying to have a paranoid mindset and not to trust to what we read |
| 30 | * from the flash media in order to be more secure and robust. So this unit |
| 31 | * validates every single header it reads from the flash media. |
| 32 | * |
| 33 | * Some words about how the eraseblock headers are stored. |
| 34 | * |
| 35 | * The erase counter header is always stored at offset zero. By default, the |
| 36 | * VID header is stored after the EC header at the closest aligned offset |
| 37 | * (i.e. aligned to the minimum I/O unit size). Data starts next to the VID |
| 38 | * header at the closest aligned offset. But this default layout may be |
| 39 | * changed. For example, for different reasons (e.g., optimization) UBI may be |
| 40 | * asked to put the VID header at further offset, and even at an unaligned |
| 41 | * offset. Of course, if the offset of the VID header is unaligned, UBI adds |
| 42 | * proper padding in front of it. Data offset may also be changed but it has to |
| 43 | * be aligned. |
| 44 | * |
| 45 | * About minimal I/O units. In general, UBI assumes flash device model where |
| 46 | * there is only one minimal I/O unit size. E.g., in case of NOR flash it is 1, |
| 47 | * in case of NAND flash it is a NAND page, etc. This is reported by MTD in the |
| 48 | * @ubi->mtd->writesize field. But as an exception, UBI admits of using another |
| 49 | * (smaller) minimal I/O unit size for EC and VID headers to make it possible |
| 50 | * to do different optimizations. |
| 51 | * |
| 52 | * This is extremely useful in case of NAND flashes which admit of several |
| 53 | * write operations to one NAND page. In this case UBI can fit EC and VID |
| 54 | * headers at one NAND page. Thus, UBI may use "sub-page" size as the minimal |
| 55 | * I/O unit for the headers (the @ubi->hdrs_min_io_size field). But it still |
| 56 | * reports NAND page size (@ubi->min_io_size) as a minimal I/O unit for the UBI |
| 57 | * users. |
| 58 | * |
| 59 | * Example: some Samsung NANDs with 2KiB pages allow 4x 512-byte writes, so |
| 60 | * although the minimal I/O unit is 2K, UBI uses 512 bytes for EC and VID |
| 61 | * headers. |
| 62 | * |
| 63 | * Q: why not just to treat sub-page as a minimal I/O unit of this flash |
| 64 | * device, e.g., make @ubi->min_io_size = 512 in the example above? |
| 65 | * |
| 66 | * A: because when writing a sub-page, MTD still writes a full 2K page but the |
| 67 | * bytes which are no relevant to the sub-page are 0xFF. So, basically, writing |
| 68 | * 4x512 sub-pages is 4 times slower then writing one 2KiB NAND page. Thus, we |
| 69 | * prefer to use sub-pages only for EV and VID headers. |
| 70 | * |
| 71 | * As it was noted above, the VID header may start at a non-aligned offset. |
| 72 | * For example, in case of a 2KiB page NAND flash with a 512 bytes sub-page, |
| 73 | * the VID header may reside at offset 1984 which is the last 64 bytes of the |
| 74 | * last sub-page (EC header is always at offset zero). This causes some |
| 75 | * difficulties when reading and writing VID headers. |
| 76 | * |
| 77 | * Suppose we have a 64-byte buffer and we read a VID header at it. We change |
| 78 | * the data and want to write this VID header out. As we can only write in |
| 79 | * 512-byte chunks, we have to allocate one more buffer and copy our VID header |
| 80 | * to offset 448 of this buffer. |
| 81 | * |
| 82 | * The I/O unit does the following trick in order to avoid this extra copy. |
| 83 | * It always allocates a @ubi->vid_hdr_alsize bytes buffer for the VID header |
| 84 | * and returns a pointer to offset @ubi->vid_hdr_shift of this buffer. When the |
| 85 | * VID header is being written out, it shifts the VID header pointer back and |
| 86 | * writes the whole sub-page. |
| 87 | */ |
| 88 | |
| 89 | #ifdef UBI_LINUX |
| 90 | #include <linux/crc32.h> |
| 91 | #include <linux/err.h> |
| 92 | #endif |
| 93 | |
| 94 | #include <ubi_uboot.h> |
| 95 | #include "ubi.h" |
| 96 | |
| 97 | #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID |
| 98 | static int paranoid_check_not_bad(const struct ubi_device *ubi, int pnum); |
| 99 | static int paranoid_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum); |
| 100 | static int paranoid_check_ec_hdr(const struct ubi_device *ubi, int pnum, |
| 101 | const struct ubi_ec_hdr *ec_hdr); |
| 102 | static int paranoid_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum); |
| 103 | static int paranoid_check_vid_hdr(const struct ubi_device *ubi, int pnum, |
| 104 | const struct ubi_vid_hdr *vid_hdr); |
| 105 | static int paranoid_check_all_ff(struct ubi_device *ubi, int pnum, int offset, |
| 106 | int len); |
| 107 | #else |
| 108 | #define paranoid_check_not_bad(ubi, pnum) 0 |
| 109 | #define paranoid_check_peb_ec_hdr(ubi, pnum) 0 |
| 110 | #define paranoid_check_ec_hdr(ubi, pnum, ec_hdr) 0 |
| 111 | #define paranoid_check_peb_vid_hdr(ubi, pnum) 0 |
| 112 | #define paranoid_check_vid_hdr(ubi, pnum, vid_hdr) 0 |
| 113 | #define paranoid_check_all_ff(ubi, pnum, offset, len) 0 |
| 114 | #endif |
| 115 | |
| 116 | /** |
| 117 | * ubi_io_read - read data from a physical eraseblock. |
| 118 | * @ubi: UBI device description object |
| 119 | * @buf: buffer where to store the read data |
| 120 | * @pnum: physical eraseblock number to read from |
| 121 | * @offset: offset within the physical eraseblock from where to read |
| 122 | * @len: how many bytes to read |
| 123 | * |
| 124 | * This function reads data from offset @offset of physical eraseblock @pnum |
| 125 | * and stores the read data in the @buf buffer. The following return codes are |
| 126 | * possible: |
| 127 | * |
| 128 | * o %0 if all the requested data were successfully read; |
| 129 | * o %UBI_IO_BITFLIPS if all the requested data were successfully read, but |
| 130 | * correctable bit-flips were detected; this is harmless but may indicate |
| 131 | * that this eraseblock may become bad soon (but do not have to); |
| 132 | * o %-EBADMSG if the MTD subsystem reported about data integrity problems, for |
| 133 | * example it can be an ECC error in case of NAND; this most probably means |
| 134 | * that the data is corrupted; |
| 135 | * o %-EIO if some I/O error occurred; |
| 136 | * o other negative error codes in case of other errors. |
| 137 | */ |
| 138 | int ubi_io_read(const struct ubi_device *ubi, void *buf, int pnum, int offset, |
| 139 | int len) |
| 140 | { |
| 141 | int err, retries = 0; |
| 142 | size_t read; |
| 143 | loff_t addr; |
| 144 | |
| 145 | dbg_io("read %d bytes from PEB %d:%d", len, pnum, offset); |
| 146 | |
| 147 | ubi_assert(pnum >= 0 && pnum < ubi->peb_count); |
| 148 | ubi_assert(offset >= 0 && offset + len <= ubi->peb_size); |
| 149 | ubi_assert(len > 0); |
| 150 | |
| 151 | err = paranoid_check_not_bad(ubi, pnum); |
| 152 | if (err) |
| 153 | return err > 0 ? -EINVAL : err; |
| 154 | |
| 155 | addr = (loff_t)pnum * ubi->peb_size + offset; |
| 156 | retry: |
Sergey Lapin | 3a38a55 | 2013-01-14 03:46:50 +0000 | [diff] [blame] | 157 | err = mtd_read(ubi->mtd, addr, len, &read, buf); |
Kyungmin Park | a598345 | 2008-11-19 16:26:54 +0100 | [diff] [blame] | 158 | if (err) { |
| 159 | if (err == -EUCLEAN) { |
| 160 | /* |
| 161 | * -EUCLEAN is reported if there was a bit-flip which |
| 162 | * was corrected, so this is harmless. |
| 163 | */ |
| 164 | ubi_msg("fixable bit-flip detected at PEB %d", pnum); |
| 165 | ubi_assert(len == read); |
| 166 | return UBI_IO_BITFLIPS; |
| 167 | } |
| 168 | |
| 169 | if (read != len && retries++ < UBI_IO_RETRIES) { |
| 170 | dbg_io("error %d while reading %d bytes from PEB %d:%d, " |
| 171 | "read only %zd bytes, retry", |
| 172 | err, len, pnum, offset, read); |
| 173 | yield(); |
| 174 | goto retry; |
| 175 | } |
| 176 | |
| 177 | ubi_err("error %d while reading %d bytes from PEB %d:%d, " |
| 178 | "read %zd bytes", err, len, pnum, offset, read); |
| 179 | ubi_dbg_dump_stack(); |
| 180 | |
| 181 | /* |
| 182 | * The driver should never return -EBADMSG if it failed to read |
| 183 | * all the requested data. But some buggy drivers might do |
| 184 | * this, so we change it to -EIO. |
| 185 | */ |
| 186 | if (read != len && err == -EBADMSG) { |
| 187 | ubi_assert(0); |
| 188 | printk("%s[%d] not here\n", __func__, __LINE__); |
Wolfgang Denk | 55334c7 | 2008-12-16 01:02:17 +0100 | [diff] [blame] | 189 | /* err = -EIO; */ |
Kyungmin Park | a598345 | 2008-11-19 16:26:54 +0100 | [diff] [blame] | 190 | } |
| 191 | } else { |
| 192 | ubi_assert(len == read); |
| 193 | |
| 194 | if (ubi_dbg_is_bitflip()) { |
| 195 | dbg_msg("bit-flip (emulated)"); |
| 196 | err = UBI_IO_BITFLIPS; |
| 197 | } |
| 198 | } |
| 199 | |
| 200 | return err; |
| 201 | } |
| 202 | |
| 203 | /** |
| 204 | * ubi_io_write - write data to a physical eraseblock. |
| 205 | * @ubi: UBI device description object |
| 206 | * @buf: buffer with the data to write |
| 207 | * @pnum: physical eraseblock number to write to |
| 208 | * @offset: offset within the physical eraseblock where to write |
| 209 | * @len: how many bytes to write |
| 210 | * |
| 211 | * This function writes @len bytes of data from buffer @buf to offset @offset |
| 212 | * of physical eraseblock @pnum. If all the data were successfully written, |
| 213 | * zero is returned. If an error occurred, this function returns a negative |
| 214 | * error code. If %-EIO is returned, the physical eraseblock most probably went |
| 215 | * bad. |
| 216 | * |
| 217 | * Note, in case of an error, it is possible that something was still written |
| 218 | * to the flash media, but may be some garbage. |
| 219 | */ |
| 220 | int ubi_io_write(struct ubi_device *ubi, const void *buf, int pnum, int offset, |
| 221 | int len) |
| 222 | { |
| 223 | int err; |
| 224 | size_t written; |
| 225 | loff_t addr; |
| 226 | |
| 227 | dbg_io("write %d bytes to PEB %d:%d", len, pnum, offset); |
| 228 | |
| 229 | ubi_assert(pnum >= 0 && pnum < ubi->peb_count); |
| 230 | ubi_assert(offset >= 0 && offset + len <= ubi->peb_size); |
| 231 | ubi_assert(offset % ubi->hdrs_min_io_size == 0); |
| 232 | ubi_assert(len > 0 && len % ubi->hdrs_min_io_size == 0); |
| 233 | |
| 234 | if (ubi->ro_mode) { |
| 235 | ubi_err("read-only mode"); |
| 236 | return -EROFS; |
| 237 | } |
| 238 | |
| 239 | /* The below has to be compiled out if paranoid checks are disabled */ |
| 240 | |
| 241 | err = paranoid_check_not_bad(ubi, pnum); |
| 242 | if (err) |
| 243 | return err > 0 ? -EINVAL : err; |
| 244 | |
| 245 | /* The area we are writing to has to contain all 0xFF bytes */ |
| 246 | err = paranoid_check_all_ff(ubi, pnum, offset, len); |
| 247 | if (err) |
| 248 | return err > 0 ? -EINVAL : err; |
| 249 | |
| 250 | if (offset >= ubi->leb_start) { |
| 251 | /* |
| 252 | * We write to the data area of the physical eraseblock. Make |
| 253 | * sure it has valid EC and VID headers. |
| 254 | */ |
| 255 | err = paranoid_check_peb_ec_hdr(ubi, pnum); |
| 256 | if (err) |
| 257 | return err > 0 ? -EINVAL : err; |
| 258 | err = paranoid_check_peb_vid_hdr(ubi, pnum); |
| 259 | if (err) |
| 260 | return err > 0 ? -EINVAL : err; |
| 261 | } |
| 262 | |
| 263 | if (ubi_dbg_is_write_failure()) { |
| 264 | dbg_err("cannot write %d bytes to PEB %d:%d " |
| 265 | "(emulated)", len, pnum, offset); |
| 266 | ubi_dbg_dump_stack(); |
| 267 | return -EIO; |
| 268 | } |
| 269 | |
| 270 | addr = (loff_t)pnum * ubi->peb_size + offset; |
Sergey Lapin | 3a38a55 | 2013-01-14 03:46:50 +0000 | [diff] [blame] | 271 | err = mtd_write(ubi->mtd, addr, len, &written, buf); |
Kyungmin Park | a598345 | 2008-11-19 16:26:54 +0100 | [diff] [blame] | 272 | if (err) { |
| 273 | ubi_err("error %d while writing %d bytes to PEB %d:%d, written" |
| 274 | " %zd bytes", err, len, pnum, offset, written); |
| 275 | ubi_dbg_dump_stack(); |
| 276 | } else |
| 277 | ubi_assert(written == len); |
| 278 | |
| 279 | return err; |
| 280 | } |
| 281 | |
| 282 | /** |
| 283 | * erase_callback - MTD erasure call-back. |
| 284 | * @ei: MTD erase information object. |
| 285 | * |
| 286 | * Note, even though MTD erase interface is asynchronous, all the current |
| 287 | * implementations are synchronous anyway. |
| 288 | */ |
| 289 | static void erase_callback(struct erase_info *ei) |
| 290 | { |
| 291 | wake_up_interruptible((wait_queue_head_t *)ei->priv); |
| 292 | } |
| 293 | |
| 294 | /** |
| 295 | * do_sync_erase - synchronously erase a physical eraseblock. |
| 296 | * @ubi: UBI device description object |
| 297 | * @pnum: the physical eraseblock number to erase |
| 298 | * |
| 299 | * This function synchronously erases physical eraseblock @pnum and returns |
| 300 | * zero in case of success and a negative error code in case of failure. If |
| 301 | * %-EIO is returned, the physical eraseblock most probably went bad. |
| 302 | */ |
| 303 | static int do_sync_erase(struct ubi_device *ubi, int pnum) |
| 304 | { |
| 305 | int err, retries = 0; |
| 306 | struct erase_info ei; |
| 307 | wait_queue_head_t wq; |
| 308 | |
| 309 | dbg_io("erase PEB %d", pnum); |
| 310 | |
| 311 | retry: |
| 312 | init_waitqueue_head(&wq); |
| 313 | memset(&ei, 0, sizeof(struct erase_info)); |
| 314 | |
| 315 | ei.mtd = ubi->mtd; |
| 316 | ei.addr = (loff_t)pnum * ubi->peb_size; |
| 317 | ei.len = ubi->peb_size; |
| 318 | ei.callback = erase_callback; |
| 319 | ei.priv = (unsigned long)&wq; |
| 320 | |
Sergey Lapin | 3a38a55 | 2013-01-14 03:46:50 +0000 | [diff] [blame] | 321 | err = mtd_erase(ubi->mtd, &ei); |
Kyungmin Park | a598345 | 2008-11-19 16:26:54 +0100 | [diff] [blame] | 322 | if (err) { |
| 323 | if (retries++ < UBI_IO_RETRIES) { |
| 324 | dbg_io("error %d while erasing PEB %d, retry", |
| 325 | err, pnum); |
| 326 | yield(); |
| 327 | goto retry; |
| 328 | } |
| 329 | ubi_err("cannot erase PEB %d, error %d", pnum, err); |
| 330 | ubi_dbg_dump_stack(); |
| 331 | return err; |
| 332 | } |
| 333 | |
| 334 | err = wait_event_interruptible(wq, ei.state == MTD_ERASE_DONE || |
| 335 | ei.state == MTD_ERASE_FAILED); |
| 336 | if (err) { |
| 337 | ubi_err("interrupted PEB %d erasure", pnum); |
| 338 | return -EINTR; |
| 339 | } |
| 340 | |
| 341 | if (ei.state == MTD_ERASE_FAILED) { |
| 342 | if (retries++ < UBI_IO_RETRIES) { |
| 343 | dbg_io("error while erasing PEB %d, retry", pnum); |
| 344 | yield(); |
| 345 | goto retry; |
| 346 | } |
| 347 | ubi_err("cannot erase PEB %d", pnum); |
| 348 | ubi_dbg_dump_stack(); |
| 349 | return -EIO; |
| 350 | } |
| 351 | |
| 352 | err = paranoid_check_all_ff(ubi, pnum, 0, ubi->peb_size); |
| 353 | if (err) |
| 354 | return err > 0 ? -EINVAL : err; |
| 355 | |
| 356 | if (ubi_dbg_is_erase_failure() && !err) { |
| 357 | dbg_err("cannot erase PEB %d (emulated)", pnum); |
| 358 | return -EIO; |
| 359 | } |
| 360 | |
| 361 | return 0; |
| 362 | } |
| 363 | |
| 364 | /** |
| 365 | * check_pattern - check if buffer contains only a certain byte pattern. |
| 366 | * @buf: buffer to check |
| 367 | * @patt: the pattern to check |
| 368 | * @size: buffer size in bytes |
| 369 | * |
| 370 | * This function returns %1 in there are only @patt bytes in @buf, and %0 if |
| 371 | * something else was also found. |
| 372 | */ |
| 373 | static int check_pattern(const void *buf, uint8_t patt, int size) |
| 374 | { |
| 375 | int i; |
| 376 | |
| 377 | for (i = 0; i < size; i++) |
| 378 | if (((const uint8_t *)buf)[i] != patt) |
| 379 | return 0; |
| 380 | return 1; |
| 381 | } |
| 382 | |
| 383 | /* Patterns to write to a physical eraseblock when torturing it */ |
| 384 | static uint8_t patterns[] = {0xa5, 0x5a, 0x0}; |
| 385 | |
| 386 | /** |
| 387 | * torture_peb - test a supposedly bad physical eraseblock. |
| 388 | * @ubi: UBI device description object |
| 389 | * @pnum: the physical eraseblock number to test |
| 390 | * |
| 391 | * This function returns %-EIO if the physical eraseblock did not pass the |
| 392 | * test, a positive number of erase operations done if the test was |
| 393 | * successfully passed, and other negative error codes in case of other errors. |
| 394 | */ |
| 395 | static int torture_peb(struct ubi_device *ubi, int pnum) |
| 396 | { |
| 397 | int err, i, patt_count; |
| 398 | |
| 399 | patt_count = ARRAY_SIZE(patterns); |
| 400 | ubi_assert(patt_count > 0); |
| 401 | |
| 402 | mutex_lock(&ubi->buf_mutex); |
| 403 | for (i = 0; i < patt_count; i++) { |
| 404 | err = do_sync_erase(ubi, pnum); |
| 405 | if (err) |
| 406 | goto out; |
| 407 | |
| 408 | /* Make sure the PEB contains only 0xFF bytes */ |
| 409 | err = ubi_io_read(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size); |
| 410 | if (err) |
| 411 | goto out; |
| 412 | |
| 413 | err = check_pattern(ubi->peb_buf1, 0xFF, ubi->peb_size); |
| 414 | if (err == 0) { |
| 415 | ubi_err("erased PEB %d, but a non-0xFF byte found", |
| 416 | pnum); |
| 417 | err = -EIO; |
| 418 | goto out; |
| 419 | } |
| 420 | |
| 421 | /* Write a pattern and check it */ |
| 422 | memset(ubi->peb_buf1, patterns[i], ubi->peb_size); |
| 423 | err = ubi_io_write(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size); |
| 424 | if (err) |
| 425 | goto out; |
| 426 | |
| 427 | memset(ubi->peb_buf1, ~patterns[i], ubi->peb_size); |
| 428 | err = ubi_io_read(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size); |
| 429 | if (err) |
| 430 | goto out; |
| 431 | |
| 432 | err = check_pattern(ubi->peb_buf1, patterns[i], ubi->peb_size); |
| 433 | if (err == 0) { |
| 434 | ubi_err("pattern %x checking failed for PEB %d", |
| 435 | patterns[i], pnum); |
| 436 | err = -EIO; |
| 437 | goto out; |
| 438 | } |
| 439 | } |
| 440 | |
| 441 | err = patt_count; |
| 442 | |
| 443 | out: |
| 444 | mutex_unlock(&ubi->buf_mutex); |
| 445 | if (err == UBI_IO_BITFLIPS || err == -EBADMSG) { |
| 446 | /* |
| 447 | * If a bit-flip or data integrity error was detected, the test |
| 448 | * has not passed because it happened on a freshly erased |
| 449 | * physical eraseblock which means something is wrong with it. |
| 450 | */ |
| 451 | ubi_err("read problems on freshly erased PEB %d, must be bad", |
| 452 | pnum); |
| 453 | err = -EIO; |
| 454 | } |
| 455 | return err; |
| 456 | } |
| 457 | |
| 458 | /** |
| 459 | * ubi_io_sync_erase - synchronously erase a physical eraseblock. |
| 460 | * @ubi: UBI device description object |
| 461 | * @pnum: physical eraseblock number to erase |
| 462 | * @torture: if this physical eraseblock has to be tortured |
| 463 | * |
| 464 | * This function synchronously erases physical eraseblock @pnum. If @torture |
| 465 | * flag is not zero, the physical eraseblock is checked by means of writing |
| 466 | * different patterns to it and reading them back. If the torturing is enabled, |
| 467 | * the physical eraseblock is erased more then once. |
| 468 | * |
| 469 | * This function returns the number of erasures made in case of success, %-EIO |
| 470 | * if the erasure failed or the torturing test failed, and other negative error |
| 471 | * codes in case of other errors. Note, %-EIO means that the physical |
| 472 | * eraseblock is bad. |
| 473 | */ |
| 474 | int ubi_io_sync_erase(struct ubi_device *ubi, int pnum, int torture) |
| 475 | { |
| 476 | int err, ret = 0; |
| 477 | |
| 478 | ubi_assert(pnum >= 0 && pnum < ubi->peb_count); |
| 479 | |
| 480 | err = paranoid_check_not_bad(ubi, pnum); |
| 481 | if (err != 0) |
| 482 | return err > 0 ? -EINVAL : err; |
| 483 | |
| 484 | if (ubi->ro_mode) { |
| 485 | ubi_err("read-only mode"); |
| 486 | return -EROFS; |
| 487 | } |
| 488 | |
| 489 | if (torture) { |
| 490 | ret = torture_peb(ubi, pnum); |
| 491 | if (ret < 0) |
| 492 | return ret; |
| 493 | } |
| 494 | |
| 495 | err = do_sync_erase(ubi, pnum); |
| 496 | if (err) |
| 497 | return err; |
| 498 | |
| 499 | return ret + 1; |
| 500 | } |
| 501 | |
| 502 | /** |
| 503 | * ubi_io_is_bad - check if a physical eraseblock is bad. |
| 504 | * @ubi: UBI device description object |
| 505 | * @pnum: the physical eraseblock number to check |
| 506 | * |
| 507 | * This function returns a positive number if the physical eraseblock is bad, |
| 508 | * zero if not, and a negative error code if an error occurred. |
| 509 | */ |
| 510 | int ubi_io_is_bad(const struct ubi_device *ubi, int pnum) |
| 511 | { |
| 512 | struct mtd_info *mtd = ubi->mtd; |
| 513 | |
| 514 | ubi_assert(pnum >= 0 && pnum < ubi->peb_count); |
| 515 | |
| 516 | if (ubi->bad_allowed) { |
| 517 | int ret; |
| 518 | |
Sergey Lapin | 3a38a55 | 2013-01-14 03:46:50 +0000 | [diff] [blame] | 519 | ret = mtd_block_isbad(mtd, (loff_t)pnum * ubi->peb_size); |
Kyungmin Park | a598345 | 2008-11-19 16:26:54 +0100 | [diff] [blame] | 520 | if (ret < 0) |
| 521 | ubi_err("error %d while checking if PEB %d is bad", |
| 522 | ret, pnum); |
| 523 | else if (ret) |
| 524 | dbg_io("PEB %d is bad", pnum); |
| 525 | return ret; |
| 526 | } |
| 527 | |
| 528 | return 0; |
| 529 | } |
| 530 | |
| 531 | /** |
| 532 | * ubi_io_mark_bad - mark a physical eraseblock as bad. |
| 533 | * @ubi: UBI device description object |
| 534 | * @pnum: the physical eraseblock number to mark |
| 535 | * |
| 536 | * This function returns zero in case of success and a negative error code in |
| 537 | * case of failure. |
| 538 | */ |
| 539 | int ubi_io_mark_bad(const struct ubi_device *ubi, int pnum) |
| 540 | { |
| 541 | int err; |
| 542 | struct mtd_info *mtd = ubi->mtd; |
| 543 | |
| 544 | ubi_assert(pnum >= 0 && pnum < ubi->peb_count); |
| 545 | |
| 546 | if (ubi->ro_mode) { |
| 547 | ubi_err("read-only mode"); |
| 548 | return -EROFS; |
| 549 | } |
| 550 | |
| 551 | if (!ubi->bad_allowed) |
| 552 | return 0; |
| 553 | |
Sergey Lapin | 3a38a55 | 2013-01-14 03:46:50 +0000 | [diff] [blame] | 554 | err = mtd_block_markbad(mtd, (loff_t)pnum * ubi->peb_size); |
Kyungmin Park | a598345 | 2008-11-19 16:26:54 +0100 | [diff] [blame] | 555 | if (err) |
| 556 | ubi_err("cannot mark PEB %d bad, error %d", pnum, err); |
| 557 | return err; |
| 558 | } |
| 559 | |
| 560 | /** |
| 561 | * validate_ec_hdr - validate an erase counter header. |
| 562 | * @ubi: UBI device description object |
| 563 | * @ec_hdr: the erase counter header to check |
| 564 | * |
| 565 | * This function returns zero if the erase counter header is OK, and %1 if |
| 566 | * not. |
| 567 | */ |
| 568 | static int validate_ec_hdr(const struct ubi_device *ubi, |
| 569 | const struct ubi_ec_hdr *ec_hdr) |
| 570 | { |
| 571 | long long ec; |
| 572 | int vid_hdr_offset, leb_start; |
| 573 | |
| 574 | ec = be64_to_cpu(ec_hdr->ec); |
| 575 | vid_hdr_offset = be32_to_cpu(ec_hdr->vid_hdr_offset); |
| 576 | leb_start = be32_to_cpu(ec_hdr->data_offset); |
| 577 | |
| 578 | if (ec_hdr->version != UBI_VERSION) { |
| 579 | ubi_err("node with incompatible UBI version found: " |
| 580 | "this UBI version is %d, image version is %d", |
| 581 | UBI_VERSION, (int)ec_hdr->version); |
| 582 | goto bad; |
| 583 | } |
| 584 | |
| 585 | if (vid_hdr_offset != ubi->vid_hdr_offset) { |
| 586 | ubi_err("bad VID header offset %d, expected %d", |
| 587 | vid_hdr_offset, ubi->vid_hdr_offset); |
| 588 | goto bad; |
| 589 | } |
| 590 | |
| 591 | if (leb_start != ubi->leb_start) { |
| 592 | ubi_err("bad data offset %d, expected %d", |
| 593 | leb_start, ubi->leb_start); |
| 594 | goto bad; |
| 595 | } |
| 596 | |
| 597 | if (ec < 0 || ec > UBI_MAX_ERASECOUNTER) { |
| 598 | ubi_err("bad erase counter %lld", ec); |
| 599 | goto bad; |
| 600 | } |
| 601 | |
| 602 | return 0; |
| 603 | |
| 604 | bad: |
| 605 | ubi_err("bad EC header"); |
| 606 | ubi_dbg_dump_ec_hdr(ec_hdr); |
| 607 | ubi_dbg_dump_stack(); |
| 608 | return 1; |
| 609 | } |
| 610 | |
| 611 | /** |
| 612 | * ubi_io_read_ec_hdr - read and check an erase counter header. |
| 613 | * @ubi: UBI device description object |
| 614 | * @pnum: physical eraseblock to read from |
| 615 | * @ec_hdr: a &struct ubi_ec_hdr object where to store the read erase counter |
| 616 | * header |
| 617 | * @verbose: be verbose if the header is corrupted or was not found |
| 618 | * |
| 619 | * This function reads erase counter header from physical eraseblock @pnum and |
| 620 | * stores it in @ec_hdr. This function also checks CRC checksum of the read |
| 621 | * erase counter header. The following codes may be returned: |
| 622 | * |
| 623 | * o %0 if the CRC checksum is correct and the header was successfully read; |
| 624 | * o %UBI_IO_BITFLIPS if the CRC is correct, but bit-flips were detected |
| 625 | * and corrected by the flash driver; this is harmless but may indicate that |
| 626 | * this eraseblock may become bad soon (but may be not); |
| 627 | * o %UBI_IO_BAD_EC_HDR if the erase counter header is corrupted (a CRC error); |
| 628 | * o %UBI_IO_PEB_EMPTY if the physical eraseblock is empty; |
| 629 | * o a negative error code in case of failure. |
| 630 | */ |
| 631 | int ubi_io_read_ec_hdr(struct ubi_device *ubi, int pnum, |
| 632 | struct ubi_ec_hdr *ec_hdr, int verbose) |
| 633 | { |
| 634 | int err, read_err = 0; |
| 635 | uint32_t crc, magic, hdr_crc; |
| 636 | |
| 637 | dbg_io("read EC header from PEB %d", pnum); |
| 638 | ubi_assert(pnum >= 0 && pnum < ubi->peb_count); |
| 639 | if (UBI_IO_DEBUG) |
| 640 | verbose = 1; |
| 641 | |
| 642 | err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE); |
| 643 | if (err) { |
| 644 | if (err != UBI_IO_BITFLIPS && err != -EBADMSG) |
| 645 | return err; |
| 646 | |
| 647 | /* |
| 648 | * We read all the data, but either a correctable bit-flip |
| 649 | * occurred, or MTD reported about some data integrity error, |
| 650 | * like an ECC error in case of NAND. The former is harmless, |
| 651 | * the later may mean that the read data is corrupted. But we |
| 652 | * have a CRC check-sum and we will detect this. If the EC |
| 653 | * header is still OK, we just report this as there was a |
| 654 | * bit-flip. |
| 655 | */ |
| 656 | read_err = err; |
| 657 | } |
| 658 | |
| 659 | magic = be32_to_cpu(ec_hdr->magic); |
| 660 | if (magic != UBI_EC_HDR_MAGIC) { |
| 661 | /* |
| 662 | * The magic field is wrong. Let's check if we have read all |
| 663 | * 0xFF. If yes, this physical eraseblock is assumed to be |
| 664 | * empty. |
| 665 | * |
| 666 | * But if there was a read error, we do not test it for all |
| 667 | * 0xFFs. Even if it does contain all 0xFFs, this error |
| 668 | * indicates that something is still wrong with this physical |
| 669 | * eraseblock and we anyway cannot treat it as empty. |
| 670 | */ |
| 671 | if (read_err != -EBADMSG && |
| 672 | check_pattern(ec_hdr, 0xFF, UBI_EC_HDR_SIZE)) { |
| 673 | /* The physical eraseblock is supposedly empty */ |
| 674 | |
| 675 | /* |
| 676 | * The below is just a paranoid check, it has to be |
| 677 | * compiled out if paranoid checks are disabled. |
| 678 | */ |
| 679 | err = paranoid_check_all_ff(ubi, pnum, 0, |
| 680 | ubi->peb_size); |
| 681 | if (err) |
| 682 | return err > 0 ? UBI_IO_BAD_EC_HDR : err; |
| 683 | |
| 684 | if (verbose) |
| 685 | ubi_warn("no EC header found at PEB %d, " |
| 686 | "only 0xFF bytes", pnum); |
| 687 | return UBI_IO_PEB_EMPTY; |
| 688 | } |
| 689 | |
| 690 | /* |
| 691 | * This is not a valid erase counter header, and these are not |
| 692 | * 0xFF bytes. Report that the header is corrupted. |
| 693 | */ |
| 694 | if (verbose) { |
| 695 | ubi_warn("bad magic number at PEB %d: %08x instead of " |
| 696 | "%08x", pnum, magic, UBI_EC_HDR_MAGIC); |
| 697 | ubi_dbg_dump_ec_hdr(ec_hdr); |
| 698 | } |
| 699 | return UBI_IO_BAD_EC_HDR; |
| 700 | } |
| 701 | |
| 702 | crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC); |
| 703 | hdr_crc = be32_to_cpu(ec_hdr->hdr_crc); |
| 704 | |
| 705 | if (hdr_crc != crc) { |
| 706 | if (verbose) { |
| 707 | ubi_warn("bad EC header CRC at PEB %d, calculated %#08x," |
| 708 | " read %#08x", pnum, crc, hdr_crc); |
| 709 | ubi_dbg_dump_ec_hdr(ec_hdr); |
| 710 | } |
| 711 | return UBI_IO_BAD_EC_HDR; |
| 712 | } |
| 713 | |
| 714 | /* And of course validate what has just been read from the media */ |
| 715 | err = validate_ec_hdr(ubi, ec_hdr); |
| 716 | if (err) { |
| 717 | ubi_err("validation failed for PEB %d", pnum); |
| 718 | return -EINVAL; |
| 719 | } |
| 720 | |
| 721 | return read_err ? UBI_IO_BITFLIPS : 0; |
| 722 | } |
| 723 | |
| 724 | /** |
| 725 | * ubi_io_write_ec_hdr - write an erase counter header. |
| 726 | * @ubi: UBI device description object |
| 727 | * @pnum: physical eraseblock to write to |
| 728 | * @ec_hdr: the erase counter header to write |
| 729 | * |
| 730 | * This function writes erase counter header described by @ec_hdr to physical |
| 731 | * eraseblock @pnum. It also fills most fields of @ec_hdr before writing, so |
| 732 | * the caller do not have to fill them. Callers must only fill the @ec_hdr->ec |
| 733 | * field. |
| 734 | * |
| 735 | * This function returns zero in case of success and a negative error code in |
| 736 | * case of failure. If %-EIO is returned, the physical eraseblock most probably |
| 737 | * went bad. |
| 738 | */ |
| 739 | int ubi_io_write_ec_hdr(struct ubi_device *ubi, int pnum, |
| 740 | struct ubi_ec_hdr *ec_hdr) |
| 741 | { |
| 742 | int err; |
| 743 | uint32_t crc; |
| 744 | |
| 745 | dbg_io("write EC header to PEB %d", pnum); |
| 746 | ubi_assert(pnum >= 0 && pnum < ubi->peb_count); |
| 747 | |
| 748 | ec_hdr->magic = cpu_to_be32(UBI_EC_HDR_MAGIC); |
| 749 | ec_hdr->version = UBI_VERSION; |
| 750 | ec_hdr->vid_hdr_offset = cpu_to_be32(ubi->vid_hdr_offset); |
| 751 | ec_hdr->data_offset = cpu_to_be32(ubi->leb_start); |
| 752 | crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC); |
| 753 | ec_hdr->hdr_crc = cpu_to_be32(crc); |
| 754 | |
| 755 | err = paranoid_check_ec_hdr(ubi, pnum, ec_hdr); |
| 756 | if (err) |
| 757 | return -EINVAL; |
| 758 | |
| 759 | err = ubi_io_write(ubi, ec_hdr, pnum, 0, ubi->ec_hdr_alsize); |
| 760 | return err; |
| 761 | } |
| 762 | |
| 763 | /** |
| 764 | * validate_vid_hdr - validate a volume identifier header. |
| 765 | * @ubi: UBI device description object |
| 766 | * @vid_hdr: the volume identifier header to check |
| 767 | * |
| 768 | * This function checks that data stored in the volume identifier header |
| 769 | * @vid_hdr. Returns zero if the VID header is OK and %1 if not. |
| 770 | */ |
| 771 | static int validate_vid_hdr(const struct ubi_device *ubi, |
| 772 | const struct ubi_vid_hdr *vid_hdr) |
| 773 | { |
| 774 | int vol_type = vid_hdr->vol_type; |
| 775 | int copy_flag = vid_hdr->copy_flag; |
| 776 | int vol_id = be32_to_cpu(vid_hdr->vol_id); |
| 777 | int lnum = be32_to_cpu(vid_hdr->lnum); |
| 778 | int compat = vid_hdr->compat; |
| 779 | int data_size = be32_to_cpu(vid_hdr->data_size); |
| 780 | int used_ebs = be32_to_cpu(vid_hdr->used_ebs); |
| 781 | int data_pad = be32_to_cpu(vid_hdr->data_pad); |
| 782 | int data_crc = be32_to_cpu(vid_hdr->data_crc); |
| 783 | int usable_leb_size = ubi->leb_size - data_pad; |
| 784 | |
| 785 | if (copy_flag != 0 && copy_flag != 1) { |
| 786 | dbg_err("bad copy_flag"); |
| 787 | goto bad; |
| 788 | } |
| 789 | |
| 790 | if (vol_id < 0 || lnum < 0 || data_size < 0 || used_ebs < 0 || |
| 791 | data_pad < 0) { |
| 792 | dbg_err("negative values"); |
| 793 | goto bad; |
| 794 | } |
| 795 | |
| 796 | if (vol_id >= UBI_MAX_VOLUMES && vol_id < UBI_INTERNAL_VOL_START) { |
| 797 | dbg_err("bad vol_id"); |
| 798 | goto bad; |
| 799 | } |
| 800 | |
| 801 | if (vol_id < UBI_INTERNAL_VOL_START && compat != 0) { |
| 802 | dbg_err("bad compat"); |
| 803 | goto bad; |
| 804 | } |
| 805 | |
| 806 | if (vol_id >= UBI_INTERNAL_VOL_START && compat != UBI_COMPAT_DELETE && |
| 807 | compat != UBI_COMPAT_RO && compat != UBI_COMPAT_PRESERVE && |
| 808 | compat != UBI_COMPAT_REJECT) { |
| 809 | dbg_err("bad compat"); |
| 810 | goto bad; |
| 811 | } |
| 812 | |
| 813 | if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) { |
| 814 | dbg_err("bad vol_type"); |
| 815 | goto bad; |
| 816 | } |
| 817 | |
| 818 | if (data_pad >= ubi->leb_size / 2) { |
| 819 | dbg_err("bad data_pad"); |
| 820 | goto bad; |
| 821 | } |
| 822 | |
| 823 | if (vol_type == UBI_VID_STATIC) { |
| 824 | /* |
| 825 | * Although from high-level point of view static volumes may |
| 826 | * contain zero bytes of data, but no VID headers can contain |
| 827 | * zero at these fields, because they empty volumes do not have |
| 828 | * mapped logical eraseblocks. |
| 829 | */ |
| 830 | if (used_ebs == 0) { |
| 831 | dbg_err("zero used_ebs"); |
| 832 | goto bad; |
| 833 | } |
| 834 | if (data_size == 0) { |
| 835 | dbg_err("zero data_size"); |
| 836 | goto bad; |
| 837 | } |
| 838 | if (lnum < used_ebs - 1) { |
| 839 | if (data_size != usable_leb_size) { |
| 840 | dbg_err("bad data_size"); |
| 841 | goto bad; |
| 842 | } |
| 843 | } else if (lnum == used_ebs - 1) { |
| 844 | if (data_size == 0) { |
| 845 | dbg_err("bad data_size at last LEB"); |
| 846 | goto bad; |
| 847 | } |
| 848 | } else { |
| 849 | dbg_err("too high lnum"); |
| 850 | goto bad; |
| 851 | } |
| 852 | } else { |
| 853 | if (copy_flag == 0) { |
| 854 | if (data_crc != 0) { |
| 855 | dbg_err("non-zero data CRC"); |
| 856 | goto bad; |
| 857 | } |
| 858 | if (data_size != 0) { |
| 859 | dbg_err("non-zero data_size"); |
| 860 | goto bad; |
| 861 | } |
| 862 | } else { |
| 863 | if (data_size == 0) { |
| 864 | dbg_err("zero data_size of copy"); |
| 865 | goto bad; |
| 866 | } |
| 867 | } |
| 868 | if (used_ebs != 0) { |
| 869 | dbg_err("bad used_ebs"); |
| 870 | goto bad; |
| 871 | } |
| 872 | } |
| 873 | |
| 874 | return 0; |
| 875 | |
| 876 | bad: |
| 877 | ubi_err("bad VID header"); |
| 878 | ubi_dbg_dump_vid_hdr(vid_hdr); |
| 879 | ubi_dbg_dump_stack(); |
| 880 | return 1; |
| 881 | } |
| 882 | |
| 883 | /** |
| 884 | * ubi_io_read_vid_hdr - read and check a volume identifier header. |
| 885 | * @ubi: UBI device description object |
| 886 | * @pnum: physical eraseblock number to read from |
| 887 | * @vid_hdr: &struct ubi_vid_hdr object where to store the read volume |
| 888 | * identifier header |
| 889 | * @verbose: be verbose if the header is corrupted or wasn't found |
| 890 | * |
| 891 | * This function reads the volume identifier header from physical eraseblock |
| 892 | * @pnum and stores it in @vid_hdr. It also checks CRC checksum of the read |
| 893 | * volume identifier header. The following codes may be returned: |
| 894 | * |
| 895 | * o %0 if the CRC checksum is correct and the header was successfully read; |
| 896 | * o %UBI_IO_BITFLIPS if the CRC is correct, but bit-flips were detected |
| 897 | * and corrected by the flash driver; this is harmless but may indicate that |
| 898 | * this eraseblock may become bad soon; |
| 899 | * o %UBI_IO_BAD_VID_HRD if the volume identifier header is corrupted (a CRC |
| 900 | * error detected); |
| 901 | * o %UBI_IO_PEB_FREE if the physical eraseblock is free (i.e., there is no VID |
| 902 | * header there); |
| 903 | * o a negative error code in case of failure. |
| 904 | */ |
| 905 | int ubi_io_read_vid_hdr(struct ubi_device *ubi, int pnum, |
| 906 | struct ubi_vid_hdr *vid_hdr, int verbose) |
| 907 | { |
| 908 | int err, read_err = 0; |
| 909 | uint32_t crc, magic, hdr_crc; |
| 910 | void *p; |
| 911 | |
| 912 | dbg_io("read VID header from PEB %d", pnum); |
| 913 | ubi_assert(pnum >= 0 && pnum < ubi->peb_count); |
| 914 | if (UBI_IO_DEBUG) |
| 915 | verbose = 1; |
| 916 | |
| 917 | p = (char *)vid_hdr - ubi->vid_hdr_shift; |
| 918 | err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset, |
| 919 | ubi->vid_hdr_alsize); |
| 920 | if (err) { |
| 921 | if (err != UBI_IO_BITFLIPS && err != -EBADMSG) |
| 922 | return err; |
| 923 | |
| 924 | /* |
| 925 | * We read all the data, but either a correctable bit-flip |
| 926 | * occurred, or MTD reported about some data integrity error, |
| 927 | * like an ECC error in case of NAND. The former is harmless, |
| 928 | * the later may mean the read data is corrupted. But we have a |
| 929 | * CRC check-sum and we will identify this. If the VID header is |
| 930 | * still OK, we just report this as there was a bit-flip. |
| 931 | */ |
| 932 | read_err = err; |
| 933 | } |
| 934 | |
| 935 | magic = be32_to_cpu(vid_hdr->magic); |
| 936 | if (magic != UBI_VID_HDR_MAGIC) { |
| 937 | /* |
| 938 | * If we have read all 0xFF bytes, the VID header probably does |
| 939 | * not exist and the physical eraseblock is assumed to be free. |
| 940 | * |
| 941 | * But if there was a read error, we do not test the data for |
| 942 | * 0xFFs. Even if it does contain all 0xFFs, this error |
| 943 | * indicates that something is still wrong with this physical |
| 944 | * eraseblock and it cannot be regarded as free. |
| 945 | */ |
| 946 | if (read_err != -EBADMSG && |
| 947 | check_pattern(vid_hdr, 0xFF, UBI_VID_HDR_SIZE)) { |
| 948 | /* The physical eraseblock is supposedly free */ |
| 949 | |
| 950 | /* |
| 951 | * The below is just a paranoid check, it has to be |
| 952 | * compiled out if paranoid checks are disabled. |
| 953 | */ |
| 954 | err = paranoid_check_all_ff(ubi, pnum, ubi->leb_start, |
| 955 | ubi->leb_size); |
| 956 | if (err) |
| 957 | return err > 0 ? UBI_IO_BAD_VID_HDR : err; |
| 958 | |
| 959 | if (verbose) |
| 960 | ubi_warn("no VID header found at PEB %d, " |
| 961 | "only 0xFF bytes", pnum); |
| 962 | return UBI_IO_PEB_FREE; |
| 963 | } |
| 964 | |
| 965 | /* |
| 966 | * This is not a valid VID header, and these are not 0xFF |
| 967 | * bytes. Report that the header is corrupted. |
| 968 | */ |
| 969 | if (verbose) { |
| 970 | ubi_warn("bad magic number at PEB %d: %08x instead of " |
| 971 | "%08x", pnum, magic, UBI_VID_HDR_MAGIC); |
| 972 | ubi_dbg_dump_vid_hdr(vid_hdr); |
| 973 | } |
| 974 | return UBI_IO_BAD_VID_HDR; |
| 975 | } |
| 976 | |
| 977 | crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC); |
| 978 | hdr_crc = be32_to_cpu(vid_hdr->hdr_crc); |
| 979 | |
| 980 | if (hdr_crc != crc) { |
| 981 | if (verbose) { |
| 982 | ubi_warn("bad CRC at PEB %d, calculated %#08x, " |
| 983 | "read %#08x", pnum, crc, hdr_crc); |
| 984 | ubi_dbg_dump_vid_hdr(vid_hdr); |
| 985 | } |
| 986 | return UBI_IO_BAD_VID_HDR; |
| 987 | } |
| 988 | |
| 989 | /* Validate the VID header that we have just read */ |
| 990 | err = validate_vid_hdr(ubi, vid_hdr); |
| 991 | if (err) { |
| 992 | ubi_err("validation failed for PEB %d", pnum); |
| 993 | return -EINVAL; |
| 994 | } |
| 995 | |
| 996 | return read_err ? UBI_IO_BITFLIPS : 0; |
| 997 | } |
| 998 | |
| 999 | /** |
| 1000 | * ubi_io_write_vid_hdr - write a volume identifier header. |
| 1001 | * @ubi: UBI device description object |
| 1002 | * @pnum: the physical eraseblock number to write to |
| 1003 | * @vid_hdr: the volume identifier header to write |
| 1004 | * |
| 1005 | * This function writes the volume identifier header described by @vid_hdr to |
| 1006 | * physical eraseblock @pnum. This function automatically fills the |
| 1007 | * @vid_hdr->magic and the @vid_hdr->version fields, as well as calculates |
| 1008 | * header CRC checksum and stores it at vid_hdr->hdr_crc. |
| 1009 | * |
| 1010 | * This function returns zero in case of success and a negative error code in |
| 1011 | * case of failure. If %-EIO is returned, the physical eraseblock probably went |
| 1012 | * bad. |
| 1013 | */ |
| 1014 | int ubi_io_write_vid_hdr(struct ubi_device *ubi, int pnum, |
| 1015 | struct ubi_vid_hdr *vid_hdr) |
| 1016 | { |
| 1017 | int err; |
| 1018 | uint32_t crc; |
| 1019 | void *p; |
| 1020 | |
| 1021 | dbg_io("write VID header to PEB %d", pnum); |
| 1022 | ubi_assert(pnum >= 0 && pnum < ubi->peb_count); |
| 1023 | |
| 1024 | err = paranoid_check_peb_ec_hdr(ubi, pnum); |
| 1025 | if (err) |
| 1026 | return err > 0 ? -EINVAL: err; |
| 1027 | |
| 1028 | vid_hdr->magic = cpu_to_be32(UBI_VID_HDR_MAGIC); |
| 1029 | vid_hdr->version = UBI_VERSION; |
| 1030 | crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC); |
| 1031 | vid_hdr->hdr_crc = cpu_to_be32(crc); |
| 1032 | |
| 1033 | err = paranoid_check_vid_hdr(ubi, pnum, vid_hdr); |
| 1034 | if (err) |
| 1035 | return -EINVAL; |
| 1036 | |
| 1037 | p = (char *)vid_hdr - ubi->vid_hdr_shift; |
| 1038 | err = ubi_io_write(ubi, p, pnum, ubi->vid_hdr_aloffset, |
| 1039 | ubi->vid_hdr_alsize); |
| 1040 | return err; |
| 1041 | } |
| 1042 | |
| 1043 | #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID |
| 1044 | |
| 1045 | /** |
| 1046 | * paranoid_check_not_bad - ensure that a physical eraseblock is not bad. |
| 1047 | * @ubi: UBI device description object |
| 1048 | * @pnum: physical eraseblock number to check |
| 1049 | * |
| 1050 | * This function returns zero if the physical eraseblock is good, a positive |
| 1051 | * number if it is bad and a negative error code if an error occurred. |
| 1052 | */ |
| 1053 | static int paranoid_check_not_bad(const struct ubi_device *ubi, int pnum) |
| 1054 | { |
| 1055 | int err; |
| 1056 | |
| 1057 | err = ubi_io_is_bad(ubi, pnum); |
| 1058 | if (!err) |
| 1059 | return err; |
| 1060 | |
| 1061 | ubi_err("paranoid check failed for PEB %d", pnum); |
| 1062 | ubi_dbg_dump_stack(); |
| 1063 | return err; |
| 1064 | } |
| 1065 | |
| 1066 | /** |
| 1067 | * paranoid_check_ec_hdr - check if an erase counter header is all right. |
| 1068 | * @ubi: UBI device description object |
| 1069 | * @pnum: physical eraseblock number the erase counter header belongs to |
| 1070 | * @ec_hdr: the erase counter header to check |
| 1071 | * |
| 1072 | * This function returns zero if the erase counter header contains valid |
| 1073 | * values, and %1 if not. |
| 1074 | */ |
| 1075 | static int paranoid_check_ec_hdr(const struct ubi_device *ubi, int pnum, |
| 1076 | const struct ubi_ec_hdr *ec_hdr) |
| 1077 | { |
| 1078 | int err; |
| 1079 | uint32_t magic; |
| 1080 | |
| 1081 | magic = be32_to_cpu(ec_hdr->magic); |
| 1082 | if (magic != UBI_EC_HDR_MAGIC) { |
| 1083 | ubi_err("bad magic %#08x, must be %#08x", |
| 1084 | magic, UBI_EC_HDR_MAGIC); |
| 1085 | goto fail; |
| 1086 | } |
| 1087 | |
| 1088 | err = validate_ec_hdr(ubi, ec_hdr); |
| 1089 | if (err) { |
| 1090 | ubi_err("paranoid check failed for PEB %d", pnum); |
| 1091 | goto fail; |
| 1092 | } |
| 1093 | |
| 1094 | return 0; |
| 1095 | |
| 1096 | fail: |
| 1097 | ubi_dbg_dump_ec_hdr(ec_hdr); |
| 1098 | ubi_dbg_dump_stack(); |
| 1099 | return 1; |
| 1100 | } |
| 1101 | |
| 1102 | /** |
| 1103 | * paranoid_check_peb_ec_hdr - check that the erase counter header of a |
| 1104 | * physical eraseblock is in-place and is all right. |
| 1105 | * @ubi: UBI device description object |
| 1106 | * @pnum: the physical eraseblock number to check |
| 1107 | * |
| 1108 | * This function returns zero if the erase counter header is all right, %1 if |
| 1109 | * not, and a negative error code if an error occurred. |
| 1110 | */ |
| 1111 | static int paranoid_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum) |
| 1112 | { |
| 1113 | int err; |
| 1114 | uint32_t crc, hdr_crc; |
| 1115 | struct ubi_ec_hdr *ec_hdr; |
| 1116 | |
| 1117 | ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS); |
| 1118 | if (!ec_hdr) |
| 1119 | return -ENOMEM; |
| 1120 | |
| 1121 | err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE); |
| 1122 | if (err && err != UBI_IO_BITFLIPS && err != -EBADMSG) |
| 1123 | goto exit; |
| 1124 | |
| 1125 | crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC); |
| 1126 | hdr_crc = be32_to_cpu(ec_hdr->hdr_crc); |
| 1127 | if (hdr_crc != crc) { |
| 1128 | ubi_err("bad CRC, calculated %#08x, read %#08x", crc, hdr_crc); |
| 1129 | ubi_err("paranoid check failed for PEB %d", pnum); |
| 1130 | ubi_dbg_dump_ec_hdr(ec_hdr); |
| 1131 | ubi_dbg_dump_stack(); |
| 1132 | err = 1; |
| 1133 | goto exit; |
| 1134 | } |
| 1135 | |
| 1136 | err = paranoid_check_ec_hdr(ubi, pnum, ec_hdr); |
| 1137 | |
| 1138 | exit: |
| 1139 | kfree(ec_hdr); |
| 1140 | return err; |
| 1141 | } |
| 1142 | |
| 1143 | /** |
| 1144 | * paranoid_check_vid_hdr - check that a volume identifier header is all right. |
| 1145 | * @ubi: UBI device description object |
| 1146 | * @pnum: physical eraseblock number the volume identifier header belongs to |
| 1147 | * @vid_hdr: the volume identifier header to check |
| 1148 | * |
| 1149 | * This function returns zero if the volume identifier header is all right, and |
| 1150 | * %1 if not. |
| 1151 | */ |
| 1152 | static int paranoid_check_vid_hdr(const struct ubi_device *ubi, int pnum, |
| 1153 | const struct ubi_vid_hdr *vid_hdr) |
| 1154 | { |
| 1155 | int err; |
| 1156 | uint32_t magic; |
| 1157 | |
| 1158 | magic = be32_to_cpu(vid_hdr->magic); |
| 1159 | if (magic != UBI_VID_HDR_MAGIC) { |
| 1160 | ubi_err("bad VID header magic %#08x at PEB %d, must be %#08x", |
| 1161 | magic, pnum, UBI_VID_HDR_MAGIC); |
| 1162 | goto fail; |
| 1163 | } |
| 1164 | |
| 1165 | err = validate_vid_hdr(ubi, vid_hdr); |
| 1166 | if (err) { |
| 1167 | ubi_err("paranoid check failed for PEB %d", pnum); |
| 1168 | goto fail; |
| 1169 | } |
| 1170 | |
| 1171 | return err; |
| 1172 | |
| 1173 | fail: |
| 1174 | ubi_err("paranoid check failed for PEB %d", pnum); |
| 1175 | ubi_dbg_dump_vid_hdr(vid_hdr); |
| 1176 | ubi_dbg_dump_stack(); |
| 1177 | return 1; |
| 1178 | |
| 1179 | } |
| 1180 | |
| 1181 | /** |
| 1182 | * paranoid_check_peb_vid_hdr - check that the volume identifier header of a |
| 1183 | * physical eraseblock is in-place and is all right. |
| 1184 | * @ubi: UBI device description object |
| 1185 | * @pnum: the physical eraseblock number to check |
| 1186 | * |
| 1187 | * This function returns zero if the volume identifier header is all right, |
| 1188 | * %1 if not, and a negative error code if an error occurred. |
| 1189 | */ |
| 1190 | static int paranoid_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum) |
| 1191 | { |
| 1192 | int err; |
| 1193 | uint32_t crc, hdr_crc; |
| 1194 | struct ubi_vid_hdr *vid_hdr; |
| 1195 | void *p; |
| 1196 | |
| 1197 | vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS); |
| 1198 | if (!vid_hdr) |
| 1199 | return -ENOMEM; |
| 1200 | |
| 1201 | p = (char *)vid_hdr - ubi->vid_hdr_shift; |
| 1202 | err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset, |
| 1203 | ubi->vid_hdr_alsize); |
| 1204 | if (err && err != UBI_IO_BITFLIPS && err != -EBADMSG) |
| 1205 | goto exit; |
| 1206 | |
| 1207 | crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_EC_HDR_SIZE_CRC); |
| 1208 | hdr_crc = be32_to_cpu(vid_hdr->hdr_crc); |
| 1209 | if (hdr_crc != crc) { |
| 1210 | ubi_err("bad VID header CRC at PEB %d, calculated %#08x, " |
| 1211 | "read %#08x", pnum, crc, hdr_crc); |
| 1212 | ubi_err("paranoid check failed for PEB %d", pnum); |
| 1213 | ubi_dbg_dump_vid_hdr(vid_hdr); |
| 1214 | ubi_dbg_dump_stack(); |
| 1215 | err = 1; |
| 1216 | goto exit; |
| 1217 | } |
| 1218 | |
| 1219 | err = paranoid_check_vid_hdr(ubi, pnum, vid_hdr); |
| 1220 | |
| 1221 | exit: |
| 1222 | ubi_free_vid_hdr(ubi, vid_hdr); |
| 1223 | return err; |
| 1224 | } |
| 1225 | |
| 1226 | /** |
| 1227 | * paranoid_check_all_ff - check that a region of flash is empty. |
| 1228 | * @ubi: UBI device description object |
| 1229 | * @pnum: the physical eraseblock number to check |
| 1230 | * @offset: the starting offset within the physical eraseblock to check |
| 1231 | * @len: the length of the region to check |
| 1232 | * |
| 1233 | * This function returns zero if only 0xFF bytes are present at offset |
| 1234 | * @offset of the physical eraseblock @pnum, %1 if not, and a negative error |
| 1235 | * code if an error occurred. |
| 1236 | */ |
| 1237 | static int paranoid_check_all_ff(struct ubi_device *ubi, int pnum, int offset, |
| 1238 | int len) |
| 1239 | { |
| 1240 | size_t read; |
| 1241 | int err; |
| 1242 | loff_t addr = (loff_t)pnum * ubi->peb_size + offset; |
| 1243 | |
| 1244 | mutex_lock(&ubi->dbg_buf_mutex); |
Sergey Lapin | 3a38a55 | 2013-01-14 03:46:50 +0000 | [diff] [blame] | 1245 | err = mtd_read(ubi->mtd, addr, len, &read, ubi->dbg_peb_buf); |
Kyungmin Park | a598345 | 2008-11-19 16:26:54 +0100 | [diff] [blame] | 1246 | if (err && err != -EUCLEAN) { |
| 1247 | ubi_err("error %d while reading %d bytes from PEB %d:%d, " |
| 1248 | "read %zd bytes", err, len, pnum, offset, read); |
| 1249 | goto error; |
| 1250 | } |
| 1251 | |
| 1252 | err = check_pattern(ubi->dbg_peb_buf, 0xFF, len); |
| 1253 | if (err == 0) { |
| 1254 | ubi_err("flash region at PEB %d:%d, length %d does not " |
| 1255 | "contain all 0xFF bytes", pnum, offset, len); |
| 1256 | goto fail; |
| 1257 | } |
| 1258 | mutex_unlock(&ubi->dbg_buf_mutex); |
| 1259 | |
| 1260 | return 0; |
| 1261 | |
| 1262 | fail: |
| 1263 | ubi_err("paranoid check failed for PEB %d", pnum); |
| 1264 | dbg_msg("hex dump of the %d-%d region", offset, offset + len); |
| 1265 | print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, |
| 1266 | ubi->dbg_peb_buf, len, 1); |
| 1267 | err = 1; |
| 1268 | error: |
| 1269 | ubi_dbg_dump_stack(); |
| 1270 | mutex_unlock(&ubi->dbg_buf_mutex); |
| 1271 | return err; |
| 1272 | } |
| 1273 | |
| 1274 | #endif /* CONFIG_MTD_UBI_DEBUG_PARANOID */ |