blob: 651f8706df59baf0052cdb66e7019173a0360c59 [file] [log] [blame]
Boris Brezillon894380f2018-08-16 17:30:09 +02001/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * Copyright 2017 - Free Electrons
4 *
5 * Authors:
6 * Boris Brezillon <boris.brezillon@free-electrons.com>
7 * Peter Pan <peterpandong@micron.com>
8 */
9
10#ifndef __LINUX_MTD_NAND_H
11#define __LINUX_MTD_NAND_H
12
13#include <linux/mtd/mtd.h>
14
15/**
16 * struct nand_memory_organization - Memory organization structure
17 * @bits_per_cell: number of bits per NAND cell
18 * @pagesize: page size
19 * @oobsize: OOB area size
20 * @pages_per_eraseblock: number of pages per eraseblock
21 * @eraseblocks_per_lun: number of eraseblocks per LUN (Logical Unit Number)
Mikhail Kshevetskiy2a1e78b2023-01-10 12:58:40 +010022 * @max_bad_eraseblocks_per_lun: maximum number of eraseblocks per LUN
Boris Brezillon894380f2018-08-16 17:30:09 +020023 * @planes_per_lun: number of planes per LUN
24 * @luns_per_target: number of LUN per target (target is a synonym for die)
25 * @ntargets: total number of targets exposed by the NAND device
26 */
27struct nand_memory_organization {
28 unsigned int bits_per_cell;
29 unsigned int pagesize;
30 unsigned int oobsize;
31 unsigned int pages_per_eraseblock;
32 unsigned int eraseblocks_per_lun;
Mikhail Kshevetskiy2a1e78b2023-01-10 12:58:40 +010033 unsigned int max_bad_eraseblocks_per_lun;
Boris Brezillon894380f2018-08-16 17:30:09 +020034 unsigned int planes_per_lun;
35 unsigned int luns_per_target;
36 unsigned int ntargets;
37};
38
Mikhail Kshevetskiy2a1e78b2023-01-10 12:58:40 +010039#define NAND_MEMORG(bpc, ps, os, ppe, epl, mbb, ppl, lpt, nt) \
Boris Brezillon894380f2018-08-16 17:30:09 +020040 { \
41 .bits_per_cell = (bpc), \
42 .pagesize = (ps), \
43 .oobsize = (os), \
44 .pages_per_eraseblock = (ppe), \
45 .eraseblocks_per_lun = (epl), \
Mikhail Kshevetskiy2a1e78b2023-01-10 12:58:40 +010046 .max_bad_eraseblocks_per_lun = (mbb), \
Boris Brezillon894380f2018-08-16 17:30:09 +020047 .planes_per_lun = (ppl), \
48 .luns_per_target = (lpt), \
49 .ntargets = (nt), \
50 }
51
52/**
53 * struct nand_row_converter - Information needed to convert an absolute offset
54 * into a row address
55 * @lun_addr_shift: position of the LUN identifier in the row address
56 * @eraseblock_addr_shift: position of the eraseblock identifier in the row
57 * address
58 */
59struct nand_row_converter {
60 unsigned int lun_addr_shift;
61 unsigned int eraseblock_addr_shift;
62};
63
64/**
65 * struct nand_pos - NAND position object
66 * @target: the NAND target/die
67 * @lun: the LUN identifier
68 * @plane: the plane within the LUN
69 * @eraseblock: the eraseblock within the LUN
70 * @page: the page within the LUN
71 *
72 * These information are usually used by specific sub-layers to select the
73 * appropriate target/die and generate a row address to pass to the device.
74 */
75struct nand_pos {
76 unsigned int target;
77 unsigned int lun;
78 unsigned int plane;
79 unsigned int eraseblock;
80 unsigned int page;
81};
82
83/**
84 * struct nand_page_io_req - NAND I/O request object
85 * @pos: the position this I/O request is targeting
86 * @dataoffs: the offset within the page
87 * @datalen: number of data bytes to read from/write to this page
88 * @databuf: buffer to store data in or get data from
89 * @ooboffs: the OOB offset within the page
90 * @ooblen: the number of OOB bytes to read from/write to this page
91 * @oobbuf: buffer to store OOB data in or get OOB data from
Boris Brezillonfe0a20d2018-08-16 17:30:10 +020092 * @mode: one of the %MTD_OPS_XXX mode
Boris Brezillon894380f2018-08-16 17:30:09 +020093 *
94 * This object is used to pass per-page I/O requests to NAND sub-layers. This
95 * way all useful information are already formatted in a useful way and
96 * specific NAND layers can focus on translating these information into
97 * specific commands/operations.
98 */
99struct nand_page_io_req {
100 struct nand_pos pos;
101 unsigned int dataoffs;
102 unsigned int datalen;
103 union {
104 const void *out;
105 void *in;
106 } databuf;
107 unsigned int ooboffs;
108 unsigned int ooblen;
109 union {
110 const void *out;
111 void *in;
112 } oobbuf;
Boris Brezillonfe0a20d2018-08-16 17:30:10 +0200113 int mode;
Boris Brezillon894380f2018-08-16 17:30:09 +0200114};
115
116/**
117 * struct nand_ecc_req - NAND ECC requirements
118 * @strength: ECC strength
119 * @step_size: ECC step/block size
120 */
121struct nand_ecc_req {
122 unsigned int strength;
123 unsigned int step_size;
124};
125
126#define NAND_ECCREQ(str, stp) { .strength = (str), .step_size = (stp) }
127
128/**
129 * struct nand_bbt - bad block table object
130 * @cache: in memory BBT cache
131 */
132struct nand_bbt {
133 unsigned long *cache;
134};
135
136struct nand_device;
137
138/**
139 * struct nand_ops - NAND operations
140 * @erase: erase a specific block. No need to check if the block is bad before
141 * erasing, this has been taken care of by the generic NAND layer
142 * @markbad: mark a specific block bad. No need to check if the block is
143 * already marked bad, this has been taken care of by the generic
144 * NAND layer. This method should just write the BBM (Bad Block
145 * Marker) so that future call to struct_nand_ops->isbad() return
146 * true
147 * @isbad: check whether a block is bad or not. This method should just read
148 * the BBM and return whether the block is bad or not based on what it
149 * reads
150 *
151 * These are all low level operations that should be implemented by specialized
152 * NAND layers (SPI NAND, raw NAND, ...).
153 */
154struct nand_ops {
155 int (*erase)(struct nand_device *nand, const struct nand_pos *pos);
156 int (*markbad)(struct nand_device *nand, const struct nand_pos *pos);
157 bool (*isbad)(struct nand_device *nand, const struct nand_pos *pos);
158};
159
160/**
161 * struct nand_device - NAND device
162 * @mtd: MTD instance attached to the NAND device
163 * @memorg: memory layout
164 * @eccreq: ECC requirements
165 * @rowconv: position to row address converter
166 * @bbt: bad block table info
167 * @ops: NAND operations attached to the NAND device
168 *
169 * Generic NAND object. Specialized NAND layers (raw NAND, SPI NAND, OneNAND)
170 * should declare their own NAND object embedding a nand_device struct (that's
171 * how inheritance is done).
172 * struct_nand_device->memorg and struct_nand_device->eccreq should be filled
173 * at device detection time to reflect the NAND device
174 * capabilities/requirements. Once this is done nanddev_init() can be called.
175 * It will take care of converting NAND information into MTD ones, which means
176 * the specialized NAND layers should never manually tweak
177 * struct_nand_device->mtd except for the ->_read/write() hooks.
178 */
179struct nand_device {
180 struct mtd_info *mtd;
181 struct nand_memory_organization memorg;
182 struct nand_ecc_req eccreq;
183 struct nand_row_converter rowconv;
184 struct nand_bbt bbt;
185 const struct nand_ops *ops;
186};
187
188/**
189 * struct nand_io_iter - NAND I/O iterator
190 * @req: current I/O request
191 * @oobbytes_per_page: maximum number of OOB bytes per page
192 * @dataleft: remaining number of data bytes to read/write
193 * @oobleft: remaining number of OOB bytes to read/write
194 *
195 * Can be used by specialized NAND layers to iterate over all pages covered
196 * by an MTD I/O request, which should greatly simplifies the boiler-plate
197 * code needed to read/write data from/to a NAND device.
198 */
199struct nand_io_iter {
200 struct nand_page_io_req req;
201 unsigned int oobbytes_per_page;
202 unsigned int dataleft;
203 unsigned int oobleft;
204};
205
206/**
207 * mtd_to_nanddev() - Get the NAND device attached to the MTD instance
208 * @mtd: MTD instance
209 *
210 * Return: the NAND device embedding @mtd.
211 */
212static inline struct nand_device *mtd_to_nanddev(struct mtd_info *mtd)
213{
214 return mtd->priv;
215}
216
217/**
218 * nanddev_to_mtd() - Get the MTD device attached to a NAND device
219 * @nand: NAND device
220 *
221 * Return: the MTD device embedded in @nand.
222 */
223static inline struct mtd_info *nanddev_to_mtd(struct nand_device *nand)
224{
225 return nand->mtd;
226}
227
228/*
229 * nanddev_bits_per_cell() - Get the number of bits per cell
230 * @nand: NAND device
231 *
232 * Return: the number of bits per cell.
233 */
234static inline unsigned int nanddev_bits_per_cell(const struct nand_device *nand)
235{
236 return nand->memorg.bits_per_cell;
237}
238
239/**
240 * nanddev_page_size() - Get NAND page size
241 * @nand: NAND device
242 *
243 * Return: the page size.
244 */
245static inline size_t nanddev_page_size(const struct nand_device *nand)
246{
247 return nand->memorg.pagesize;
248}
249
250/**
251 * nanddev_per_page_oobsize() - Get NAND OOB size
252 * @nand: NAND device
253 *
254 * Return: the OOB size.
255 */
256static inline unsigned int
257nanddev_per_page_oobsize(const struct nand_device *nand)
258{
259 return nand->memorg.oobsize;
260}
261
262/**
263 * nanddev_pages_per_eraseblock() - Get the number of pages per eraseblock
264 * @nand: NAND device
265 *
266 * Return: the number of pages per eraseblock.
267 */
268static inline unsigned int
269nanddev_pages_per_eraseblock(const struct nand_device *nand)
270{
271 return nand->memorg.pages_per_eraseblock;
272}
273
274/**
275 * nanddev_per_page_oobsize() - Get NAND erase block size
276 * @nand: NAND device
277 *
278 * Return: the eraseblock size.
279 */
280static inline size_t nanddev_eraseblock_size(const struct nand_device *nand)
281{
282 return nand->memorg.pagesize * nand->memorg.pages_per_eraseblock;
283}
284
285/**
286 * nanddev_eraseblocks_per_lun() - Get the number of eraseblocks per LUN
287 * @nand: NAND device
288 *
289 * Return: the number of eraseblocks per LUN.
290 */
291static inline unsigned int
292nanddev_eraseblocks_per_lun(const struct nand_device *nand)
293{
294 return nand->memorg.eraseblocks_per_lun;
295}
296
297/**
298 * nanddev_target_size() - Get the total size provided by a single target/die
299 * @nand: NAND device
300 *
301 * Return: the total size exposed by a single target/die in bytes.
302 */
303static inline u64 nanddev_target_size(const struct nand_device *nand)
304{
305 return (u64)nand->memorg.luns_per_target *
306 nand->memorg.eraseblocks_per_lun *
307 nand->memorg.pages_per_eraseblock *
308 nand->memorg.pagesize;
309}
310
311/**
312 * nanddev_ntarget() - Get the total of targets
313 * @nand: NAND device
314 *
315 * Return: the number of targets/dies exposed by @nand.
316 */
317static inline unsigned int nanddev_ntargets(const struct nand_device *nand)
318{
319 return nand->memorg.ntargets;
320}
321
322/**
323 * nanddev_neraseblocks() - Get the total number of erasablocks
324 * @nand: NAND device
325 *
326 * Return: the total number of eraseblocks exposed by @nand.
327 */
328static inline unsigned int nanddev_neraseblocks(const struct nand_device *nand)
329{
330 return (u64)nand->memorg.luns_per_target *
331 nand->memorg.eraseblocks_per_lun *
332 nand->memorg.pages_per_eraseblock;
333}
334
335/**
336 * nanddev_size() - Get NAND size
337 * @nand: NAND device
338 *
339 * Return: the total size (in bytes) exposed by @nand.
340 */
341static inline u64 nanddev_size(const struct nand_device *nand)
342{
343 return nanddev_target_size(nand) * nanddev_ntargets(nand);
344}
345
346/**
347 * nanddev_get_memorg() - Extract memory organization info from a NAND device
348 * @nand: NAND device
349 *
350 * This can be used by the upper layer to fill the memorg info before calling
351 * nanddev_init().
352 *
353 * Return: the memorg object embedded in the NAND device.
354 */
355static inline struct nand_memory_organization *
356nanddev_get_memorg(struct nand_device *nand)
357{
358 return &nand->memorg;
359}
360
361int nanddev_init(struct nand_device *nand, const struct nand_ops *ops,
362 struct module *owner);
363void nanddev_cleanup(struct nand_device *nand);
364
365/**
366 * nanddev_register() - Register a NAND device
367 * @nand: NAND device
368 *
369 * Register a NAND device.
370 * This function is just a wrapper around mtd_device_register()
371 * registering the MTD device embedded in @nand.
372 *
373 * Return: 0 in case of success, a negative error code otherwise.
374 */
375static inline int nanddev_register(struct nand_device *nand)
376{
377 return mtd_device_register(nand->mtd, NULL, 0);
378}
379
380/**
381 * nanddev_unregister() - Unregister a NAND device
382 * @nand: NAND device
383 *
384 * Unregister a NAND device.
385 * This function is just a wrapper around mtd_device_unregister()
386 * unregistering the MTD device embedded in @nand.
387 *
388 * Return: 0 in case of success, a negative error code otherwise.
389 */
390static inline int nanddev_unregister(struct nand_device *nand)
391{
392 return mtd_device_unregister(nand->mtd);
393}
394
Simon Glass1b349e32020-12-19 10:40:00 -0700395#ifndef __UBOOT__
Boris Brezillon894380f2018-08-16 17:30:09 +0200396/**
397 * nanddev_set_of_node() - Attach a DT node to a NAND device
398 * @nand: NAND device
399 * @np: DT node
400 *
401 * Attach a DT node to a NAND device.
402 */
403static inline void nanddev_set_of_node(struct nand_device *nand,
404 const struct device_node *np)
405{
406 mtd_set_of_node(nand->mtd, np);
407}
408
409/**
410 * nanddev_get_of_node() - Retrieve the DT node attached to a NAND device
411 * @nand: NAND device
412 *
413 * Return: the DT node attached to @nand.
414 */
415static inline const struct device_node *nanddev_get_of_node(struct nand_device *nand)
416{
417 return mtd_get_of_node(nand->mtd);
418}
Simon Glass1b349e32020-12-19 10:40:00 -0700419#else
420/**
421 * nanddev_set_of_node() - Attach a DT node to a NAND device
422 * @nand: NAND device
423 * @node: ofnode
424 *
425 * Attach a DT node to a NAND device.
426 */
427static inline void nanddev_set_ofnode(struct nand_device *nand, ofnode node)
428{
429 mtd_set_ofnode(nand->mtd, node);
430}
431#endif /* __UBOOT__ */
Boris Brezillon894380f2018-08-16 17:30:09 +0200432
433/**
434 * nanddev_offs_to_pos() - Convert an absolute NAND offset into a NAND position
435 * @nand: NAND device
436 * @offs: absolute NAND offset (usually passed by the MTD layer)
437 * @pos: a NAND position object to fill in
438 *
439 * Converts @offs into a nand_pos representation.
440 *
441 * Return: the offset within the NAND page pointed by @pos.
442 */
443static inline unsigned int nanddev_offs_to_pos(struct nand_device *nand,
444 loff_t offs,
445 struct nand_pos *pos)
446{
447 unsigned int pageoffs;
448 u64 tmp = offs;
449
450 pageoffs = do_div(tmp, nand->memorg.pagesize);
451 pos->page = do_div(tmp, nand->memorg.pages_per_eraseblock);
452 pos->eraseblock = do_div(tmp, nand->memorg.eraseblocks_per_lun);
453 pos->plane = pos->eraseblock % nand->memorg.planes_per_lun;
454 pos->lun = do_div(tmp, nand->memorg.luns_per_target);
455 pos->target = tmp;
456
457 return pageoffs;
458}
459
460/**
461 * nanddev_pos_cmp() - Compare two NAND positions
462 * @a: First NAND position
463 * @b: Second NAND position
464 *
465 * Compares two NAND positions.
466 *
467 * Return: -1 if @a < @b, 0 if @a == @b and 1 if @a > @b.
468 */
469static inline int nanddev_pos_cmp(const struct nand_pos *a,
470 const struct nand_pos *b)
471{
472 if (a->target != b->target)
473 return a->target < b->target ? -1 : 1;
474
475 if (a->lun != b->lun)
476 return a->lun < b->lun ? -1 : 1;
477
478 if (a->eraseblock != b->eraseblock)
479 return a->eraseblock < b->eraseblock ? -1 : 1;
480
481 if (a->page != b->page)
482 return a->page < b->page ? -1 : 1;
483
484 return 0;
485}
486
487/**
488 * nanddev_pos_to_offs() - Convert a NAND position into an absolute offset
489 * @nand: NAND device
490 * @pos: the NAND position to convert
491 *
492 * Converts @pos NAND position into an absolute offset.
493 *
494 * Return: the absolute offset. Note that @pos points to the beginning of a
495 * page, if one wants to point to a specific offset within this page
496 * the returned offset has to be adjusted manually.
497 */
498static inline loff_t nanddev_pos_to_offs(struct nand_device *nand,
499 const struct nand_pos *pos)
500{
501 unsigned int npages;
502
503 npages = pos->page +
504 ((pos->eraseblock +
505 (pos->lun +
506 (pos->target * nand->memorg.luns_per_target)) *
507 nand->memorg.eraseblocks_per_lun) *
508 nand->memorg.pages_per_eraseblock);
509
510 return (loff_t)npages * nand->memorg.pagesize;
511}
512
513/**
514 * nanddev_pos_to_row() - Extract a row address from a NAND position
515 * @nand: NAND device
516 * @pos: the position to convert
517 *
518 * Converts a NAND position into a row address that can then be passed to the
519 * device.
520 *
521 * Return: the row address extracted from @pos.
522 */
523static inline unsigned int nanddev_pos_to_row(struct nand_device *nand,
524 const struct nand_pos *pos)
525{
526 return (pos->lun << nand->rowconv.lun_addr_shift) |
527 (pos->eraseblock << nand->rowconv.eraseblock_addr_shift) |
528 pos->page;
529}
530
531/**
532 * nanddev_pos_next_target() - Move a position to the next target/die
533 * @nand: NAND device
534 * @pos: the position to update
535 *
536 * Updates @pos to point to the start of the next target/die. Useful when you
537 * want to iterate over all targets/dies of a NAND device.
538 */
539static inline void nanddev_pos_next_target(struct nand_device *nand,
540 struct nand_pos *pos)
541{
542 pos->page = 0;
543 pos->plane = 0;
544 pos->eraseblock = 0;
545 pos->lun = 0;
546 pos->target++;
547}
548
549/**
550 * nanddev_pos_next_lun() - Move a position to the next LUN
551 * @nand: NAND device
552 * @pos: the position to update
553 *
554 * Updates @pos to point to the start of the next LUN. Useful when you want to
555 * iterate over all LUNs of a NAND device.
556 */
557static inline void nanddev_pos_next_lun(struct nand_device *nand,
558 struct nand_pos *pos)
559{
560 if (pos->lun >= nand->memorg.luns_per_target - 1)
561 return nanddev_pos_next_target(nand, pos);
562
563 pos->lun++;
564 pos->page = 0;
565 pos->plane = 0;
566 pos->eraseblock = 0;
567}
568
569/**
570 * nanddev_pos_next_eraseblock() - Move a position to the next eraseblock
571 * @nand: NAND device
572 * @pos: the position to update
573 *
574 * Updates @pos to point to the start of the next eraseblock. Useful when you
575 * want to iterate over all eraseblocks of a NAND device.
576 */
577static inline void nanddev_pos_next_eraseblock(struct nand_device *nand,
578 struct nand_pos *pos)
579{
580 if (pos->eraseblock >= nand->memorg.eraseblocks_per_lun - 1)
581 return nanddev_pos_next_lun(nand, pos);
582
583 pos->eraseblock++;
584 pos->page = 0;
585 pos->plane = pos->eraseblock % nand->memorg.planes_per_lun;
586}
587
588/**
589 * nanddev_pos_next_eraseblock() - Move a position to the next page
590 * @nand: NAND device
591 * @pos: the position to update
592 *
593 * Updates @pos to point to the start of the next page. Useful when you want to
594 * iterate over all pages of a NAND device.
595 */
596static inline void nanddev_pos_next_page(struct nand_device *nand,
597 struct nand_pos *pos)
598{
599 if (pos->page >= nand->memorg.pages_per_eraseblock - 1)
600 return nanddev_pos_next_eraseblock(nand, pos);
601
602 pos->page++;
603}
604
605/**
606 * nand_io_iter_init - Initialize a NAND I/O iterator
607 * @nand: NAND device
608 * @offs: absolute offset
609 * @req: MTD request
610 * @iter: NAND I/O iterator
611 *
612 * Initializes a NAND iterator based on the information passed by the MTD
613 * layer.
614 */
615static inline void nanddev_io_iter_init(struct nand_device *nand,
616 loff_t offs, struct mtd_oob_ops *req,
617 struct nand_io_iter *iter)
618{
619 struct mtd_info *mtd = nanddev_to_mtd(nand);
620
Boris Brezillonfe0a20d2018-08-16 17:30:10 +0200621 iter->req.mode = req->mode;
Boris Brezillon894380f2018-08-16 17:30:09 +0200622 iter->req.dataoffs = nanddev_offs_to_pos(nand, offs, &iter->req.pos);
623 iter->req.ooboffs = req->ooboffs;
624 iter->oobbytes_per_page = mtd_oobavail(mtd, req);
625 iter->dataleft = req->len;
626 iter->oobleft = req->ooblen;
627 iter->req.databuf.in = req->datbuf;
628 iter->req.datalen = min_t(unsigned int,
629 nand->memorg.pagesize - iter->req.dataoffs,
630 iter->dataleft);
631 iter->req.oobbuf.in = req->oobbuf;
632 iter->req.ooblen = min_t(unsigned int,
633 iter->oobbytes_per_page - iter->req.ooboffs,
634 iter->oobleft);
635}
636
637/**
638 * nand_io_iter_next_page - Move to the next page
639 * @nand: NAND device
640 * @iter: NAND I/O iterator
641 *
642 * Updates the @iter to point to the next page.
643 */
644static inline void nanddev_io_iter_next_page(struct nand_device *nand,
645 struct nand_io_iter *iter)
646{
647 nanddev_pos_next_page(nand, &iter->req.pos);
648 iter->dataleft -= iter->req.datalen;
649 iter->req.databuf.in += iter->req.datalen;
650 iter->oobleft -= iter->req.ooblen;
651 iter->req.oobbuf.in += iter->req.ooblen;
652 iter->req.dataoffs = 0;
653 iter->req.ooboffs = 0;
654 iter->req.datalen = min_t(unsigned int, nand->memorg.pagesize,
655 iter->dataleft);
656 iter->req.ooblen = min_t(unsigned int, iter->oobbytes_per_page,
657 iter->oobleft);
658}
659
660/**
661 * nand_io_iter_end - Should end iteration or not
662 * @nand: NAND device
663 * @iter: NAND I/O iterator
664 *
665 * Check whether @iter has reached the end of the NAND portion it was asked to
666 * iterate on or not.
667 *
668 * Return: true if @iter has reached the end of the iteration request, false
669 * otherwise.
670 */
671static inline bool nanddev_io_iter_end(struct nand_device *nand,
672 const struct nand_io_iter *iter)
673{
674 if (iter->dataleft || iter->oobleft)
675 return false;
676
677 return true;
678}
679
680/**
681 * nand_io_for_each_page - Iterate over all NAND pages contained in an MTD I/O
682 * request
683 * @nand: NAND device
684 * @start: start address to read/write from
685 * @req: MTD I/O request
686 * @iter: NAND I/O iterator
687 *
688 * Should be used for iterate over pages that are contained in an MTD request.
689 */
690#define nanddev_io_for_each_page(nand, start, req, iter) \
691 for (nanddev_io_iter_init(nand, start, req, iter); \
692 !nanddev_io_iter_end(nand, iter); \
693 nanddev_io_iter_next_page(nand, iter))
694
695bool nanddev_isbad(struct nand_device *nand, const struct nand_pos *pos);
696bool nanddev_isreserved(struct nand_device *nand, const struct nand_pos *pos);
Boris Brezillon894380f2018-08-16 17:30:09 +0200697int nanddev_markbad(struct nand_device *nand, const struct nand_pos *pos);
698
699/* BBT related functions */
700enum nand_bbt_block_status {
701 NAND_BBT_BLOCK_STATUS_UNKNOWN,
702 NAND_BBT_BLOCK_GOOD,
703 NAND_BBT_BLOCK_WORN,
704 NAND_BBT_BLOCK_RESERVED,
705 NAND_BBT_BLOCK_FACTORY_BAD,
706 NAND_BBT_BLOCK_NUM_STATUS,
707};
708
709int nanddev_bbt_init(struct nand_device *nand);
710void nanddev_bbt_cleanup(struct nand_device *nand);
711int nanddev_bbt_update(struct nand_device *nand);
712int nanddev_bbt_get_block_status(const struct nand_device *nand,
713 unsigned int entry);
714int nanddev_bbt_set_block_status(struct nand_device *nand, unsigned int entry,
715 enum nand_bbt_block_status status);
716int nanddev_bbt_markbad(struct nand_device *nand, unsigned int block);
717
718/**
719 * nanddev_bbt_pos_to_entry() - Convert a NAND position into a BBT entry
720 * @nand: NAND device
721 * @pos: the NAND position we want to get BBT entry for
722 *
723 * Return the BBT entry used to store information about the eraseblock pointed
724 * by @pos.
725 *
726 * Return: the BBT entry storing information about eraseblock pointed by @pos.
727 */
728static inline unsigned int nanddev_bbt_pos_to_entry(struct nand_device *nand,
729 const struct nand_pos *pos)
730{
731 return pos->eraseblock +
732 ((pos->lun + (pos->target * nand->memorg.luns_per_target)) *
733 nand->memorg.eraseblocks_per_lun);
734}
735
736/**
737 * nanddev_bbt_is_initialized() - Check if the BBT has been initialized
738 * @nand: NAND device
739 *
740 * Return: true if the BBT has been initialized, false otherwise.
741 */
742static inline bool nanddev_bbt_is_initialized(struct nand_device *nand)
743{
744 return !!nand->bbt.cache;
745}
746
747/* MTD -> NAND helper functions. */
748int nanddev_mtd_erase(struct mtd_info *mtd, struct erase_info *einfo);
749
750#endif /* __LINUX_MTD_NAND_H */