blob: 9dddf88b5a1cf03b5951be413416a8dba12f3c6c [file] [log] [blame]
Tom Rini10e47792018-05-06 17:58:06 -04001/* SPDX-License-Identifier: GPL-2.0 */
Simon Glassa9a44262015-04-29 22:25:59 -06002/*
3 * Copyright (c) 2015 Google, Inc
4 *
Simon Glassa9a44262015-04-29 22:25:59 -06005 * Taken from coreboot file of the same name
6 */
7
8#ifndef _X86_MP_H_
9#define _X86_MP_H_
10
11#include <asm/atomic.h>
Simon Glass274e0b02020-05-10 11:39:56 -060012#include <asm/cache.h>
Simon Glassa9a44262015-04-29 22:25:59 -060013
14typedef int (*mp_callback_t)(struct udevice *cpu, void *arg);
15
16/*
17 * A mp_flight_record details a sequence of calls for the APs to perform
18 * along with the BSP to coordinate sequencing. Each flight record either
19 * provides a barrier for each AP before calling the callback or the APs
20 * are allowed to perform the callback without waiting. Regardless, each
21 * record has the cpus_entered field incremented for each record. When
22 * the BSP observes that the cpus_entered matches the number of APs
23 * the bsp_call is called with bsp_arg and upon returning releases the
24 * barrier allowing the APs to make further progress.
25 *
26 * Note that ap_call() and bsp_call() can be NULL. In the NULL case the
27 * callback will just not be called.
28 */
29struct mp_flight_record {
30 atomic_t barrier;
31 atomic_t cpus_entered;
32 mp_callback_t ap_call;
33 void *ap_arg;
34 mp_callback_t bsp_call;
35 void *bsp_arg;
36} __attribute__((aligned(ARCH_DMA_MINALIGN)));
37
38#define MP_FLIGHT_RECORD(barrier_, ap_func_, ap_arg_, bsp_func_, bsp_arg_) \
39 { \
40 .barrier = ATOMIC_INIT(barrier_), \
41 .cpus_entered = ATOMIC_INIT(0), \
42 .ap_call = ap_func_, \
43 .ap_arg = ap_arg_, \
44 .bsp_call = bsp_func_, \
45 .bsp_arg = bsp_arg_, \
46 }
47
48#define MP_FR_BLOCK_APS(ap_func, ap_arg, bsp_func, bsp_arg) \
49 MP_FLIGHT_RECORD(0, ap_func, ap_arg, bsp_func, bsp_arg)
50
51#define MP_FR_NOBLOCK_APS(ap_func, ap_arg, bsp_func, bsp_arg) \
52 MP_FLIGHT_RECORD(1, ap_func, ap_arg, bsp_func, bsp_arg)
53
54/*
55 * The mp_params structure provides the arguments to the mp subsystem
56 * for bringing up APs.
57 *
58 * At present this is overkill for U-Boot, but it may make it easier to add
59 * SMM support.
60 */
61struct mp_params {
Simon Glassa9a44262015-04-29 22:25:59 -060062 int parallel_microcode_load;
63 const void *microcode_pointer;
64 /* Flight plan for APs and BSP */
65 struct mp_flight_record *flight_plan;
66 int num_records;
67};
68
69/*
70 * mp_init() will set up the SIPI vector and bring up the APs according to
71 * mp_params. Each flight record will be executed according to the plan. Note
72 * that the MP infrastructure uses SMM default area without saving it. It's
73 * up to the chipset or mainboard to either e820 reserve this area or save this
74 * region prior to calling mp_init() and restoring it after mp_init returns.
75 *
76 * At the time mp_init() is called the MTRR MSRs are mirrored into APs then
77 * caching is enabled before running the flight plan.
78 *
79 * The MP init has the following properties:
80 * 1. APs are brought up in parallel.
81 * 2. The ordering of cpu number and APIC ids is not deterministic.
82 * Therefore, one cannot rely on this property or the order of devices in
83 * the device tree unless the chipset or mainboard know the APIC ids
84 * a priori.
85 *
86 * mp_init() returns < 0 on error, 0 on success.
87 */
88int mp_init(struct mp_params *params);
89
90/* Probes the CPU device */
91int mp_init_cpu(struct udevice *cpu, void *unused);
92
Simon Glass16a624b2017-01-16 07:03:57 -070093/* Set up additional CPUs */
94int x86_mp_init(void);
95
Simon Glassa9a44262015-04-29 22:25:59 -060096#endif /* _X86_MP_H_ */