blob: 9764e12126750ff75ffc708dbac453a00a52f31b [file] [log] [blame]
Ilya Yanoke93a4a52009-07-21 19:32:21 +04001/*
2 * (C) Copyright 2009 Ilya Yanok, Emcraft Systems Ltd <yanok@emcraft.com>
3 * (C) Copyright 2008,2009 Eric Jarrige <eric.jarrige@armadeus.org>
4 * (C) Copyright 2008 Armadeus Systems nc
5 * (C) Copyright 2007 Pengutronix, Sascha Hauer <s.hauer@pengutronix.de>
6 * (C) Copyright 2007 Pengutronix, Juergen Beisert <j.beisert@pengutronix.de>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License as
10 * published by the Free Software Foundation; either version 2 of
11 * the License, or (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
21 * MA 02111-1307 USA
22 */
23
24#include <common.h>
25#include <malloc.h>
26#include <net.h>
27#include <miiphy.h>
28#include "fec_mxc.h"
29
30#include <asm/arch/clock.h>
31#include <asm/arch/imx-regs.h>
32#include <asm/io.h>
33#include <asm/errno.h>
34
35DECLARE_GLOBAL_DATA_PTR;
36
37#ifndef CONFIG_MII
38#error "CONFIG_MII has to be defined!"
39#endif
40
41#undef DEBUG
42
43struct nbuf {
44 uint8_t data[1500]; /**< actual data */
45 int length; /**< actual length */
46 int used; /**< buffer in use or not */
47 uint8_t head[16]; /**< MAC header(6 + 6 + 2) + 2(aligned) */
48};
49
50struct fec_priv gfec = {
51 .eth = (struct ethernet_regs *)IMX_FEC_BASE,
52 .xcv_type = MII100,
53 .rbd_base = NULL,
54 .rbd_index = 0,
55 .tbd_base = NULL,
56 .tbd_index = 0,
57 .bd = NULL,
58};
59
60/*
61 * MII-interface related functions
62 */
63static int fec_miiphy_read(char *dev, uint8_t phyAddr, uint8_t regAddr,
64 uint16_t *retVal)
65{
66 struct eth_device *edev = eth_get_dev_by_name(dev);
67 struct fec_priv *fec = (struct fec_priv *)edev->priv;
68
69 uint32_t reg; /* convenient holder for the PHY register */
70 uint32_t phy; /* convenient holder for the PHY */
71 uint32_t start;
72
73 /*
74 * reading from any PHY's register is done by properly
75 * programming the FEC's MII data register.
76 */
77 writel(FEC_IEVENT_MII, &fec->eth->ievent);
78 reg = regAddr << FEC_MII_DATA_RA_SHIFT;
79 phy = phyAddr << FEC_MII_DATA_PA_SHIFT;
80
81 writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_RD | FEC_MII_DATA_TA |
82 phy | reg, &fec->eth->mii_data);
83
84 /*
85 * wait for the related interrupt
86 */
87 start = get_timer_masked();
88 while (!(readl(&fec->eth->ievent) & FEC_IEVENT_MII)) {
89 if (get_timer(start) > (CONFIG_SYS_HZ / 1000)) {
90 printf("Read MDIO failed...\n");
91 return -1;
92 }
93 }
94
95 /*
96 * clear mii interrupt bit
97 */
98 writel(FEC_IEVENT_MII, &fec->eth->ievent);
99
100 /*
101 * it's now safe to read the PHY's register
102 */
103 *retVal = readl(&fec->eth->mii_data);
104 debug("fec_miiphy_read: phy: %02x reg:%02x val:%#x\n", phyAddr,
105 regAddr, *retVal);
106 return 0;
107}
108
109static int fec_miiphy_write(char *dev, uint8_t phyAddr, uint8_t regAddr,
110 uint16_t data)
111{
112 struct eth_device *edev = eth_get_dev_by_name(dev);
113 struct fec_priv *fec = (struct fec_priv *)edev->priv;
114
115 uint32_t reg; /* convenient holder for the PHY register */
116 uint32_t phy; /* convenient holder for the PHY */
117 uint32_t start;
118
119 reg = regAddr << FEC_MII_DATA_RA_SHIFT;
120 phy = phyAddr << FEC_MII_DATA_PA_SHIFT;
121
122 writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_WR |
123 FEC_MII_DATA_TA | phy | reg | data, &fec->eth->mii_data);
124
125 /*
126 * wait for the MII interrupt
127 */
128 start = get_timer_masked();
129 while (!(readl(&fec->eth->ievent) & FEC_IEVENT_MII)) {
130 if (get_timer(start) > (CONFIG_SYS_HZ / 1000)) {
131 printf("Write MDIO failed...\n");
132 return -1;
133 }
134 }
135
136 /*
137 * clear MII interrupt bit
138 */
139 writel(FEC_IEVENT_MII, &fec->eth->ievent);
140 debug("fec_miiphy_write: phy: %02x reg:%02x val:%#x\n", phyAddr,
141 regAddr, data);
142
143 return 0;
144}
145
146static int miiphy_restart_aneg(struct eth_device *dev)
147{
148 /*
149 * Wake up from sleep if necessary
150 * Reset PHY, then delay 300ns
151 */
152 miiphy_write(dev->name, CONFIG_FEC_MXC_PHYADDR, PHY_MIPGSR, 0x00FF);
153 miiphy_write(dev->name, CONFIG_FEC_MXC_PHYADDR, PHY_BMCR,
154 PHY_BMCR_RESET);
155 udelay(1000);
156
157 /*
158 * Set the auto-negotiation advertisement register bits
159 */
javier Martince2519a2009-10-29 08:18:34 +0100160 miiphy_write(dev->name, CONFIG_FEC_MXC_PHYADDR, PHY_ANAR,
161 PHY_ANLPAR_TXFD | PHY_ANLPAR_TX | PHY_ANLPAR_10FD |
162 PHY_ANLPAR_10 | PHY_ANLPAR_PSB_802_3);
Ilya Yanoke93a4a52009-07-21 19:32:21 +0400163 miiphy_write(dev->name, CONFIG_FEC_MXC_PHYADDR, PHY_BMCR,
164 PHY_BMCR_AUTON | PHY_BMCR_RST_NEG);
165
166 return 0;
167}
168
169static int miiphy_wait_aneg(struct eth_device *dev)
170{
171 uint32_t start;
172 uint16_t status;
173
174 /*
175 * Wait for AN completion
176 */
177 start = get_timer_masked();
178 do {
179 if (get_timer(start) > (CONFIG_SYS_HZ * 5)) {
180 printf("%s: Autonegotiation timeout\n", dev->name);
181 return -1;
182 }
183
184 if (miiphy_read(dev->name, CONFIG_FEC_MXC_PHYADDR,
185 PHY_BMSR, &status)) {
186 printf("%s: Autonegotiation failed. status: 0x%04x\n",
187 dev->name, status);
188 return -1;
189 }
190 } while (!(status & PHY_BMSR_LS));
191
192 return 0;
193}
194static int fec_rx_task_enable(struct fec_priv *fec)
195{
196 writel(1 << 24, &fec->eth->r_des_active);
197 return 0;
198}
199
200static int fec_rx_task_disable(struct fec_priv *fec)
201{
202 return 0;
203}
204
205static int fec_tx_task_enable(struct fec_priv *fec)
206{
207 writel(1 << 24, &fec->eth->x_des_active);
208 return 0;
209}
210
211static int fec_tx_task_disable(struct fec_priv *fec)
212{
213 return 0;
214}
215
216/**
217 * Initialize receive task's buffer descriptors
218 * @param[in] fec all we know about the device yet
219 * @param[in] count receive buffer count to be allocated
220 * @param[in] size size of each receive buffer
221 * @return 0 on success
222 *
223 * For this task we need additional memory for the data buffers. And each
224 * data buffer requires some alignment. Thy must be aligned to a specific
225 * boundary each (DB_DATA_ALIGNMENT).
226 */
227static int fec_rbd_init(struct fec_priv *fec, int count, int size)
228{
229 int ix;
230 uint32_t p = 0;
231
232 /* reserve data memory and consider alignment */
233 fec->rdb_ptr = malloc(size * count + DB_DATA_ALIGNMENT);
234 p = (uint32_t)fec->rdb_ptr;
235 if (!p) {
236 puts("fec_imx27: not enough malloc memory!\n");
237 return -ENOMEM;
238 }
239 memset((void *)p, 0, size * count + DB_DATA_ALIGNMENT);
240 p += DB_DATA_ALIGNMENT-1;
241 p &= ~(DB_DATA_ALIGNMENT-1);
242
243 for (ix = 0; ix < count; ix++) {
244 writel(p, &fec->rbd_base[ix].data_pointer);
245 p += size;
246 writew(FEC_RBD_EMPTY, &fec->rbd_base[ix].status);
247 writew(0, &fec->rbd_base[ix].data_length);
248 }
249 /*
250 * mark the last RBD to close the ring
251 */
252 writew(FEC_RBD_WRAP | FEC_RBD_EMPTY, &fec->rbd_base[ix - 1].status);
253 fec->rbd_index = 0;
254
255 return 0;
256}
257
258/**
259 * Initialize transmit task's buffer descriptors
260 * @param[in] fec all we know about the device yet
261 *
262 * Transmit buffers are created externally. We only have to init the BDs here.\n
263 * Note: There is a race condition in the hardware. When only one BD is in
264 * use it must be marked with the WRAP bit to use it for every transmitt.
265 * This bit in combination with the READY bit results into double transmit
266 * of each data buffer. It seems the state machine checks READY earlier then
267 * resetting it after the first transfer.
268 * Using two BDs solves this issue.
269 */
270static void fec_tbd_init(struct fec_priv *fec)
271{
272 writew(0x0000, &fec->tbd_base[0].status);
273 writew(FEC_TBD_WRAP, &fec->tbd_base[1].status);
274 fec->tbd_index = 0;
275}
276
277/**
278 * Mark the given read buffer descriptor as free
279 * @param[in] last 1 if this is the last buffer descriptor in the chain, else 0
280 * @param[in] pRbd buffer descriptor to mark free again
281 */
282static void fec_rbd_clean(int last, struct fec_bd *pRbd)
283{
284 /*
285 * Reset buffer descriptor as empty
286 */
287 if (last)
288 writew(FEC_RBD_WRAP | FEC_RBD_EMPTY, &pRbd->status);
289 else
290 writew(FEC_RBD_EMPTY, &pRbd->status);
291 /*
292 * no data in it
293 */
294 writew(0, &pRbd->data_length);
295}
296
297static int fec_get_hwaddr(struct eth_device *dev, unsigned char *mac)
298{
299 struct iim_regs *iim = (struct iim_regs *)IMX_IIM_BASE;
300 int i;
301
302 for (i = 0; i < 6; i++)
303 mac[6-1-i] = readl(&iim->iim_bank_area0[IIM0_MAC + i]);
304
305 return is_valid_ether_addr(mac);
306}
307
308static int fec_set_hwaddr(struct eth_device *dev, unsigned char *mac)
309{
310 struct fec_priv *fec = (struct fec_priv *)dev->priv;
311
312 writel(0, &fec->eth->iaddr1);
313 writel(0, &fec->eth->iaddr2);
314 writel(0, &fec->eth->gaddr1);
315 writel(0, &fec->eth->gaddr2);
316
317 /*
318 * Set physical address
319 */
320 writel((mac[0] << 24) + (mac[1] << 16) + (mac[2] << 8) + mac[3],
321 &fec->eth->paddr1);
322 writel((mac[4] << 24) + (mac[5] << 16) + 0x8808, &fec->eth->paddr2);
323
324 return 0;
325}
326
327/**
328 * Start the FEC engine
329 * @param[in] dev Our device to handle
330 */
331static int fec_open(struct eth_device *edev)
332{
333 struct fec_priv *fec = (struct fec_priv *)edev->priv;
334
335 debug("fec_open: fec_open(dev)\n");
336 /* full-duplex, heartbeat disabled */
337 writel(1 << 2, &fec->eth->x_cntrl);
338 fec->rbd_index = 0;
339
340 /*
341 * Enable FEC-Lite controller
342 */
343 writel(FEC_ECNTRL_ETHER_EN, &fec->eth->ecntrl);
344
345 miiphy_wait_aneg(edev);
javier Martince2519a2009-10-29 08:18:34 +0100346 miiphy_speed(edev->name, CONFIG_FEC_MXC_PHYADDR);
347 miiphy_duplex(edev->name, CONFIG_FEC_MXC_PHYADDR);
Ilya Yanoke93a4a52009-07-21 19:32:21 +0400348
349 /*
350 * Enable SmartDMA receive task
351 */
352 fec_rx_task_enable(fec);
353
354 udelay(100000);
355 return 0;
356}
357
358static int fec_init(struct eth_device *dev, bd_t* bd)
359{
360 uint32_t base;
361 struct fec_priv *fec = (struct fec_priv *)dev->priv;
362
363 /*
364 * reserve memory for both buffer descriptor chains at once
365 * Datasheet forces the startaddress of each chain is 16 byte
366 * aligned
367 */
368 fec->base_ptr = malloc((2 + FEC_RBD_NUM) *
369 sizeof(struct fec_bd) + DB_ALIGNMENT);
370 base = (uint32_t)fec->base_ptr;
371 if (!base) {
372 puts("fec_imx27: not enough malloc memory!\n");
373 return -ENOMEM;
374 }
375 memset((void *)base, 0, (2 + FEC_RBD_NUM) *
376 sizeof(struct fec_bd) + DB_ALIGNMENT);
377 base += (DB_ALIGNMENT-1);
378 base &= ~(DB_ALIGNMENT-1);
379
380 fec->rbd_base = (struct fec_bd *)base;
381
382 base += FEC_RBD_NUM * sizeof(struct fec_bd);
383
384 fec->tbd_base = (struct fec_bd *)base;
385
386 /*
387 * Set interrupt mask register
388 */
389 writel(0x00000000, &fec->eth->imask);
390
391 /*
392 * Clear FEC-Lite interrupt event register(IEVENT)
393 */
394 writel(0xffffffff, &fec->eth->ievent);
395
396
397 /*
398 * Set FEC-Lite receive control register(R_CNTRL):
399 */
400 if (fec->xcv_type == SEVENWIRE) {
401 /*
402 * Frame length=1518; 7-wire mode
403 */
404 writel(0x05ee0020, &fec->eth->r_cntrl); /* FIXME 0x05ee0000 */
405 } else {
406 /*
407 * Frame length=1518; MII mode;
408 */
409 writel(0x05ee0024, &fec->eth->r_cntrl); /* FIXME 0x05ee0004 */
410 /*
411 * Set MII_SPEED = (1/(mii_speed * 2)) * System Clock
412 * and do not drop the Preamble.
413 */
414 writel((((imx_get_ahbclk() / 1000000) + 2) / 5) << 1,
415 &fec->eth->mii_speed);
416 debug("fec_init: mii_speed %#lx\n",
417 (((imx_get_ahbclk() / 1000000) + 2) / 5) << 1);
418 }
419 /*
420 * Set Opcode/Pause Duration Register
421 */
422 writel(0x00010020, &fec->eth->op_pause); /* FIXME 0xffff0020; */
423 writel(0x2, &fec->eth->x_wmrk);
424 /*
425 * Set multicast address filter
426 */
427 writel(0x00000000, &fec->eth->gaddr1);
428 writel(0x00000000, &fec->eth->gaddr2);
429
430
431 /* clear MIB RAM */
432 long *mib_ptr = (long *)(IMX_FEC_BASE + 0x200);
433 while (mib_ptr <= (long *)(IMX_FEC_BASE + 0x2FC))
434 *mib_ptr++ = 0;
435
436 /* FIFO receive start register */
437 writel(0x520, &fec->eth->r_fstart);
438
439 /* size and address of each buffer */
440 writel(FEC_MAX_PKT_SIZE, &fec->eth->emrbr);
441 writel((uint32_t)fec->tbd_base, &fec->eth->etdsr);
442 writel((uint32_t)fec->rbd_base, &fec->eth->erdsr);
443
444 /*
445 * Initialize RxBD/TxBD rings
446 */
447 if (fec_rbd_init(fec, FEC_RBD_NUM, FEC_MAX_PKT_SIZE) < 0) {
448 free(fec->base_ptr);
449 return -ENOMEM;
450 }
451 fec_tbd_init(fec);
452
453
454 if (fec->xcv_type != SEVENWIRE)
455 miiphy_restart_aneg(dev);
456
457 fec_open(dev);
458 return 0;
459}
460
461/**
462 * Halt the FEC engine
463 * @param[in] dev Our device to handle
464 */
465static void fec_halt(struct eth_device *dev)
466{
467 struct fec_priv *fec = &gfec;
468 int counter = 0xffff;
469
470 /*
471 * issue graceful stop command to the FEC transmitter if necessary
472 */
473 writel(FEC_ECNTRL_RESET | readl(&fec->eth->x_cntrl),
474 &fec->eth->x_cntrl);
475
476 debug("eth_halt: wait for stop regs\n");
477 /*
478 * wait for graceful stop to register
479 */
480 while ((counter--) && (!(readl(&fec->eth->ievent) & FEC_IEVENT_GRA)))
481 ; /* FIXME ensure time */
482
483 /*
484 * Disable SmartDMA tasks
485 */
486 fec_tx_task_disable(fec);
487 fec_rx_task_disable(fec);
488
489 /*
490 * Disable the Ethernet Controller
491 * Note: this will also reset the BD index counter!
492 */
493 writel(0, &fec->eth->ecntrl);
494 fec->rbd_index = 0;
495 fec->tbd_index = 0;
496 free(fec->rdb_ptr);
497 free(fec->base_ptr);
498 debug("eth_halt: done\n");
499}
500
501/**
502 * Transmit one frame
503 * @param[in] dev Our ethernet device to handle
504 * @param[in] packet Pointer to the data to be transmitted
505 * @param[in] length Data count in bytes
506 * @return 0 on success
507 */
508static int fec_send(struct eth_device *dev, volatile void* packet, int length)
509{
510 unsigned int status;
511
512 /*
513 * This routine transmits one frame. This routine only accepts
514 * 6-byte Ethernet addresses.
515 */
516 struct fec_priv *fec = (struct fec_priv *)dev->priv;
517
518 /*
519 * Check for valid length of data.
520 */
521 if ((length > 1500) || (length <= 0)) {
522 printf("Payload (%d) to large!\n", length);
523 return -1;
524 }
525
526 /*
527 * Setup the transmit buffer
528 * Note: We are always using the first buffer for transmission,
529 * the second will be empty and only used to stop the DMA engine
530 */
531 writew(length, &fec->tbd_base[fec->tbd_index].data_length);
532 writel((uint32_t)packet, &fec->tbd_base[fec->tbd_index].data_pointer);
533 /*
534 * update BD's status now
535 * This block:
536 * - is always the last in a chain (means no chain)
537 * - should transmitt the CRC
538 * - might be the last BD in the list, so the address counter should
539 * wrap (-> keep the WRAP flag)
540 */
541 status = readw(&fec->tbd_base[fec->tbd_index].status) & FEC_TBD_WRAP;
542 status |= FEC_TBD_LAST | FEC_TBD_TC | FEC_TBD_READY;
543 writew(status, &fec->tbd_base[fec->tbd_index].status);
544
545 /*
546 * Enable SmartDMA transmit task
547 */
548 fec_tx_task_enable(fec);
549
550 /*
551 * wait until frame is sent .
552 */
553 while (readw(&fec->tbd_base[fec->tbd_index].status) & FEC_TBD_READY) {
554 /* FIXME: Timeout */
555 }
556 debug("fec_send: status 0x%x index %d\n",
557 readw(&fec->tbd_base[fec->tbd_index].status),
558 fec->tbd_index);
559 /* for next transmission use the other buffer */
560 if (fec->tbd_index)
561 fec->tbd_index = 0;
562 else
563 fec->tbd_index = 1;
564
565 return 0;
566}
567
568/**
569 * Pull one frame from the card
570 * @param[in] dev Our ethernet device to handle
571 * @return Length of packet read
572 */
573static int fec_recv(struct eth_device *dev)
574{
575 struct fec_priv *fec = (struct fec_priv *)dev->priv;
576 struct fec_bd *rbd = &fec->rbd_base[fec->rbd_index];
577 unsigned long ievent;
578 int frame_length, len = 0;
579 struct nbuf *frame;
580 uint16_t bd_status;
581 uchar buff[FEC_MAX_PKT_SIZE];
582
583 /*
584 * Check if any critical events have happened
585 */
586 ievent = readl(&fec->eth->ievent);
587 writel(ievent, &fec->eth->ievent);
588 debug("fec_recv: ievent 0x%x\n", ievent);
589 if (ievent & FEC_IEVENT_BABR) {
590 fec_halt(dev);
591 fec_init(dev, fec->bd);
592 printf("some error: 0x%08lx\n", ievent);
593 return 0;
594 }
595 if (ievent & FEC_IEVENT_HBERR) {
596 /* Heartbeat error */
597 writel(0x00000001 | readl(&fec->eth->x_cntrl),
598 &fec->eth->x_cntrl);
599 }
600 if (ievent & FEC_IEVENT_GRA) {
601 /* Graceful stop complete */
602 if (readl(&fec->eth->x_cntrl) & 0x00000001) {
603 fec_halt(dev);
604 writel(~0x00000001 & readl(&fec->eth->x_cntrl),
605 &fec->eth->x_cntrl);
606 fec_init(dev, fec->bd);
607 }
608 }
609
610 /*
611 * ensure reading the right buffer status
612 */
613 bd_status = readw(&rbd->status);
614 debug("fec_recv: status 0x%x\n", bd_status);
615
616 if (!(bd_status & FEC_RBD_EMPTY)) {
617 if ((bd_status & FEC_RBD_LAST) && !(bd_status & FEC_RBD_ERR) &&
618 ((readw(&rbd->data_length) - 4) > 14)) {
619 /*
620 * Get buffer address and size
621 */
622 frame = (struct nbuf *)readl(&rbd->data_pointer);
623 frame_length = readw(&rbd->data_length) - 4;
624 /*
625 * Fill the buffer and pass it to upper layers
626 */
627 memcpy(buff, frame->data, frame_length);
628 NetReceive(buff, frame_length);
629 len = frame_length;
630 } else {
631 if (bd_status & FEC_RBD_ERR)
632 printf("error frame: 0x%08lx 0x%08x\n",
633 (ulong)rbd->data_pointer,
634 bd_status);
635 }
636 /*
637 * free the current buffer, restart the engine
638 * and move forward to the next buffer
639 */
640 fec_rbd_clean(fec->rbd_index == (FEC_RBD_NUM - 1) ? 1 : 0, rbd);
641 fec_rx_task_enable(fec);
642 fec->rbd_index = (fec->rbd_index + 1) % FEC_RBD_NUM;
643 }
644 debug("fec_recv: stop\n");
645
646 return len;
647}
648
649static int fec_probe(bd_t *bd)
650{
651 struct pll_regs *pll = (struct pll_regs *)IMX_PLL_BASE;
652 struct eth_device *edev;
653 struct fec_priv *fec = &gfec;
654 unsigned char ethaddr_str[20];
655 unsigned char ethaddr[6];
656 char *tmp = getenv("ethaddr");
657 char *end;
658
659 /* enable FEC clock */
660 writel(readl(&pll->pccr1) | PCCR1_HCLK_FEC, &pll->pccr1);
661 writel(readl(&pll->pccr0) | PCCR0_FEC_EN, &pll->pccr0);
662
663 /* create and fill edev struct */
664 edev = (struct eth_device *)malloc(sizeof(struct eth_device));
665 if (!edev) {
666 puts("fec_imx27: not enough malloc memory!\n");
667 return -ENOMEM;
668 }
669 edev->priv = fec;
670 edev->init = fec_init;
671 edev->send = fec_send;
672 edev->recv = fec_recv;
673 edev->halt = fec_halt;
674
675 fec->eth = (struct ethernet_regs *)IMX_FEC_BASE;
676 fec->bd = bd;
677
678 fec->xcv_type = MII100;
679
680 /* Reset chip. */
681 writel(FEC_ECNTRL_RESET, &fec->eth->ecntrl);
682 while (readl(&fec->eth->ecntrl) & 1)
683 udelay(10);
684
685 /*
686 * Set interrupt mask register
687 */
688 writel(0x00000000, &fec->eth->imask);
689
690 /*
691 * Clear FEC-Lite interrupt event register(IEVENT)
692 */
693 writel(0xffffffff, &fec->eth->ievent);
694
695 /*
696 * Set FEC-Lite receive control register(R_CNTRL):
697 */
698 /*
699 * Frame length=1518; MII mode;
700 */
701 writel(0x05ee0024, &fec->eth->r_cntrl); /* FIXME 0x05ee0004 */
702 /*
703 * Set MII_SPEED = (1/(mii_speed * 2)) * System Clock
704 * and do not drop the Preamble.
705 */
706 writel((((imx_get_ahbclk() / 1000000) + 2) / 5) << 1,
707 &fec->eth->mii_speed);
708 debug("fec_init: mii_speed %#lx\n",
709 (((imx_get_ahbclk() / 1000000) + 2) / 5) << 1);
710
711 sprintf(edev->name, "FEC_MXC");
712
713 miiphy_register(edev->name, fec_miiphy_read, fec_miiphy_write);
714
715 eth_register(edev);
716
717 if ((NULL != tmp) && (12 <= strlen(tmp))) {
718 int i;
719 /* convert MAC from string to int */
720 for (i = 0; i < 6; i++) {
721 ethaddr[i] = tmp ? simple_strtoul(tmp, &end, 16) : 0;
722 if (tmp)
723 tmp = (*end) ? end + 1 : end;
724 }
725 } else if (fec_get_hwaddr(edev, ethaddr) == 0) {
726 printf("got MAC address from EEPROM: %pM\n", ethaddr);
727 setenv("ethaddr", (char *)ethaddr_str);
728 }
729 memcpy(edev->enetaddr, ethaddr, 6);
730 fec_set_hwaddr(edev, ethaddr);
731
732 return 0;
733}
734
735int fecmxc_initialize(bd_t *bd)
736{
737 int lout = 1;
738
739 debug("eth_init: fec_probe(bd)\n");
740 lout = fec_probe(bd);
741
742 return lout;
743}