Stefano Babic | ec65c59 | 2010-06-29 11:47:48 +0200 | [diff] [blame] | 1 | /* |
| 2 | * Porting to u-boot: |
| 3 | * |
| 4 | * (C) Copyright 2010 |
| 5 | * Stefano Babic, DENX Software Engineering, sbabic@denx.de. |
| 6 | * |
| 7 | * Lattice ispVME Embedded code to load Lattice's FPGA: |
| 8 | * |
| 9 | * Copyright 2009 Lattice Semiconductor Corp. |
| 10 | * |
| 11 | * ispVME Embedded allows programming of Lattice's suite of FPGA |
| 12 | * devices on embedded systems through the JTAG port. The software |
| 13 | * is distributed in source code form and is open to re - distribution |
| 14 | * and modification where applicable. |
| 15 | * |
| 16 | * Revision History of ivm_core.c module: |
| 17 | * 4/25/06 ht Change some variables from unsigned short or int |
| 18 | * to long int to make the code compiler independent. |
| 19 | * 5/24/06 ht Support using RESET (TRST) pin as a special purpose |
| 20 | * control pin such as triggering the loading of known |
| 21 | * state exit. |
| 22 | * 3/6/07 ht added functions to support output to terminals |
| 23 | * |
| 24 | * 09/11/07 NN Type cast mismatch variables |
| 25 | * Moved the sclock() function to hardware.c |
| 26 | * 08/28/08 NN Added Calculate checksum support. |
| 27 | * 4/1/09 Nguyen replaced the recursive function call codes on |
| 28 | * the ispVMLCOUNT function |
| 29 | * See file CREDITS for list of people who contributed to this |
| 30 | * project. |
| 31 | * |
| 32 | * This program is free software; you can redistribute it and/or |
| 33 | * modify it under the terms of the GNU General Public License as |
| 34 | * published by the Free Software Foundation; either version 2 of |
| 35 | * the License, or (at your option) any later version. |
| 36 | * |
| 37 | * This program is distributed in the hope that it will be useful, |
| 38 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 39 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 40 | * GNU General Public License for more details. |
| 41 | * |
| 42 | * You should have received a copy of the GNU General Public License |
| 43 | * along with this program; if not, write to the Free Software |
| 44 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, |
| 45 | * MA 02111-1307 USA |
| 46 | */ |
| 47 | |
| 48 | #include <common.h> |
| 49 | #include <linux/string.h> |
| 50 | #include <malloc.h> |
| 51 | #include <lattice.h> |
| 52 | |
| 53 | #define vme_out_char(c) printf("%c", c) |
| 54 | #define vme_out_hex(c) printf("%x", c) |
| 55 | #define vme_out_string(s) printf("%s", s) |
| 56 | |
| 57 | /* |
| 58 | * |
| 59 | * Global variables used to specify the flow control and data type. |
| 60 | * |
| 61 | * g_usFlowControl: flow control register. Each bit in the |
| 62 | * register can potentially change the |
| 63 | * personality of the embedded engine. |
| 64 | * g_usDataType: holds the data type of the current row. |
| 65 | * |
| 66 | */ |
| 67 | |
| 68 | static unsigned short g_usFlowControl; |
| 69 | unsigned short g_usDataType; |
| 70 | |
| 71 | /* |
| 72 | * |
| 73 | * Global variables used to specify the ENDDR and ENDIR. |
| 74 | * |
| 75 | * g_ucEndDR: the state that the device goes to after SDR. |
| 76 | * g_ucEndIR: the state that the device goes to after SIR. |
| 77 | * |
| 78 | */ |
| 79 | |
| 80 | unsigned char g_ucEndDR = DRPAUSE; |
| 81 | unsigned char g_ucEndIR = IRPAUSE; |
| 82 | |
| 83 | /* |
| 84 | * |
| 85 | * Global variables used to support header/trailer. |
| 86 | * |
| 87 | * g_usHeadDR: the number of lead devices in bypass. |
| 88 | * g_usHeadIR: the sum of IR length of lead devices. |
| 89 | * g_usTailDR: the number of tail devices in bypass. |
| 90 | * g_usTailIR: the sum of IR length of tail devices. |
| 91 | * |
| 92 | */ |
| 93 | |
| 94 | static unsigned short g_usHeadDR; |
| 95 | static unsigned short g_usHeadIR; |
| 96 | static unsigned short g_usTailDR; |
| 97 | static unsigned short g_usTailIR; |
| 98 | |
| 99 | /* |
| 100 | * |
| 101 | * Global variable to store the number of bits of data or instruction |
| 102 | * to be shifted into or out from the device. |
| 103 | * |
| 104 | */ |
| 105 | |
| 106 | static unsigned short g_usiDataSize; |
| 107 | |
| 108 | /* |
| 109 | * |
| 110 | * Stores the frequency. Default to 1 MHz. |
| 111 | * |
| 112 | */ |
| 113 | |
| 114 | static int g_iFrequency = 1000; |
| 115 | |
| 116 | /* |
| 117 | * |
| 118 | * Stores the maximum amount of ram needed to hold a row of data. |
| 119 | * |
| 120 | */ |
| 121 | |
| 122 | static unsigned short g_usMaxSize; |
| 123 | |
| 124 | /* |
| 125 | * |
| 126 | * Stores the LSH or RSH value. |
| 127 | * |
| 128 | */ |
| 129 | |
| 130 | static unsigned short g_usShiftValue; |
| 131 | |
| 132 | /* |
| 133 | * |
| 134 | * Stores the current repeat loop value. |
| 135 | * |
| 136 | */ |
| 137 | |
| 138 | static unsigned short g_usRepeatLoops; |
| 139 | |
| 140 | /* |
| 141 | * |
| 142 | * Stores the current vendor. |
| 143 | * |
| 144 | */ |
| 145 | |
| 146 | static signed char g_cVendor = LATTICE; |
| 147 | |
| 148 | /* |
| 149 | * |
| 150 | * Stores the VME file CRC. |
| 151 | * |
| 152 | */ |
| 153 | |
| 154 | unsigned short g_usCalculatedCRC; |
| 155 | |
| 156 | /* |
| 157 | * |
| 158 | * Stores the Device Checksum. |
| 159 | * |
| 160 | */ |
| 161 | /* 08/28/08 NN Added Calculate checksum support. */ |
| 162 | unsigned long g_usChecksum; |
| 163 | static unsigned int g_uiChecksumIndex; |
| 164 | |
| 165 | /* |
| 166 | * |
| 167 | * Stores the current state of the JTAG state machine. |
| 168 | * |
| 169 | */ |
| 170 | |
| 171 | static signed char g_cCurrentJTAGState; |
| 172 | |
| 173 | /* |
| 174 | * |
| 175 | * Global variables used to support looping. |
| 176 | * |
| 177 | * g_pucHeapMemory: holds the entire repeat loop. |
| 178 | * g_iHeapCounter: points to the current byte in the repeat loop. |
| 179 | * g_iHEAPSize: the current size of the repeat in bytes. |
| 180 | * |
| 181 | */ |
| 182 | |
| 183 | unsigned char *g_pucHeapMemory; |
| 184 | unsigned short g_iHeapCounter; |
| 185 | unsigned short g_iHEAPSize; |
| 186 | static unsigned short previous_size; |
| 187 | |
| 188 | /* |
| 189 | * |
| 190 | * Global variables used to support intelligent programming. |
| 191 | * |
| 192 | * g_usIntelDataIndex: points to the current byte of the |
| 193 | * intelligent buffer. |
| 194 | * g_usIntelBufferSize: holds the size of the intelligent |
| 195 | * buffer. |
| 196 | * |
| 197 | */ |
| 198 | |
| 199 | unsigned short g_usIntelDataIndex; |
| 200 | unsigned short g_usIntelBufferSize; |
| 201 | |
| 202 | /* |
| 203 | * |
| 204 | * Supported VME versions. |
| 205 | * |
| 206 | */ |
| 207 | |
| 208 | const char *const g_szSupportedVersions[] = { |
| 209 | "__VME2.0", "__VME3.0", "____12.0", "____12.1", 0}; |
| 210 | |
| 211 | /* |
| 212 | * |
| 213 | * Holds the maximum size of each respective buffer. These variables are used |
| 214 | * to write the HEX files when converting VME to HEX. |
| 215 | * |
| 216 | */ |
| 217 | |
| 218 | static unsigned short g_usTDOSize; |
| 219 | static unsigned short g_usMASKSize; |
| 220 | static unsigned short g_usTDISize; |
| 221 | static unsigned short g_usDMASKSize; |
| 222 | static unsigned short g_usLCOUNTSize; |
| 223 | static unsigned short g_usHDRSize; |
| 224 | static unsigned short g_usTDRSize; |
| 225 | static unsigned short g_usHIRSize; |
| 226 | static unsigned short g_usTIRSize; |
| 227 | static unsigned short g_usHeapSize; |
| 228 | |
| 229 | /* |
| 230 | * |
| 231 | * Global variables used to store data. |
| 232 | * |
| 233 | * g_pucOutMaskData: local RAM to hold one row of MASK data. |
| 234 | * g_pucInData: local RAM to hold one row of TDI data. |
| 235 | * g_pucOutData: local RAM to hold one row of TDO data. |
| 236 | * g_pucHIRData: local RAM to hold the current SIR header. |
| 237 | * g_pucTIRData: local RAM to hold the current SIR trailer. |
| 238 | * g_pucHDRData: local RAM to hold the current SDR header. |
| 239 | * g_pucTDRData: local RAM to hold the current SDR trailer. |
| 240 | * g_pucIntelBuffer: local RAM to hold the current intelligent buffer |
| 241 | * g_pucOutDMaskData: local RAM to hold one row of DMASK data. |
| 242 | * |
| 243 | */ |
| 244 | |
| 245 | unsigned char *g_pucOutMaskData = NULL, |
| 246 | *g_pucInData = NULL, |
| 247 | *g_pucOutData = NULL, |
| 248 | *g_pucHIRData = NULL, |
| 249 | *g_pucTIRData = NULL, |
| 250 | *g_pucHDRData = NULL, |
| 251 | *g_pucTDRData = NULL, |
| 252 | *g_pucIntelBuffer = NULL, |
| 253 | *g_pucOutDMaskData = NULL; |
| 254 | |
| 255 | /* |
| 256 | * |
| 257 | * JTAG state machine transition table. |
| 258 | * |
| 259 | */ |
| 260 | |
| 261 | struct { |
| 262 | unsigned char CurState; /* From this state */ |
| 263 | unsigned char NextState; /* Step to this state */ |
| 264 | unsigned char Pattern; /* The tragetory of TMS */ |
| 265 | unsigned char Pulses; /* The number of steps */ |
| 266 | } g_JTAGTransistions[25] = { |
| 267 | { RESET, RESET, 0xFC, 6 }, /* Transitions from RESET */ |
| 268 | { RESET, IDLE, 0x00, 1 }, |
| 269 | { RESET, DRPAUSE, 0x50, 5 }, |
| 270 | { RESET, IRPAUSE, 0x68, 6 }, |
| 271 | { IDLE, RESET, 0xE0, 3 }, /* Transitions from IDLE */ |
| 272 | { IDLE, DRPAUSE, 0xA0, 4 }, |
| 273 | { IDLE, IRPAUSE, 0xD0, 5 }, |
| 274 | { DRPAUSE, RESET, 0xF8, 5 }, /* Transitions from DRPAUSE */ |
| 275 | { DRPAUSE, IDLE, 0xC0, 3 }, |
| 276 | { DRPAUSE, IRPAUSE, 0xF4, 7 }, |
| 277 | { DRPAUSE, DRPAUSE, 0xE8, 6 },/* 06/14/06 Support POLL STATUS LOOP*/ |
| 278 | { IRPAUSE, RESET, 0xF8, 5 }, /* Transitions from IRPAUSE */ |
| 279 | { IRPAUSE, IDLE, 0xC0, 3 }, |
| 280 | { IRPAUSE, DRPAUSE, 0xE8, 6 }, |
| 281 | { DRPAUSE, SHIFTDR, 0x80, 2 }, /* Extra transitions using SHIFTDR */ |
| 282 | { IRPAUSE, SHIFTDR, 0xE0, 5 }, |
| 283 | { SHIFTDR, DRPAUSE, 0x80, 2 }, |
| 284 | { SHIFTDR, IDLE, 0xC0, 3 }, |
| 285 | { IRPAUSE, SHIFTIR, 0x80, 2 },/* Extra transitions using SHIFTIR */ |
| 286 | { SHIFTIR, IRPAUSE, 0x80, 2 }, |
| 287 | { SHIFTIR, IDLE, 0xC0, 3 }, |
| 288 | { DRPAUSE, DRCAPTURE, 0xE0, 4 }, /* 11/15/05 Support DRCAPTURE*/ |
| 289 | { DRCAPTURE, DRPAUSE, 0x80, 2 }, |
| 290 | { IDLE, DRCAPTURE, 0x80, 2 }, |
| 291 | { IRPAUSE, DRCAPTURE, 0xE0, 4 } |
| 292 | }; |
| 293 | |
| 294 | /* |
| 295 | * |
| 296 | * List to hold all LVDS pairs. |
| 297 | * |
| 298 | */ |
| 299 | |
| 300 | LVDSPair *g_pLVDSList; |
| 301 | unsigned short g_usLVDSPairCount; |
| 302 | |
| 303 | /* |
| 304 | * |
| 305 | * Function prototypes. |
| 306 | * |
| 307 | */ |
| 308 | |
| 309 | static signed char ispVMDataCode(void); |
| 310 | static long int ispVMDataSize(void); |
| 311 | static void ispVMData(unsigned char *Data); |
| 312 | static signed char ispVMShift(signed char Code); |
| 313 | static signed char ispVMAmble(signed char Code); |
| 314 | static signed char ispVMLoop(unsigned short a_usLoopCount); |
| 315 | static signed char ispVMBitShift(signed char mode, unsigned short bits); |
| 316 | static void ispVMComment(unsigned short a_usCommentSize); |
| 317 | static void ispVMHeader(unsigned short a_usHeaderSize); |
| 318 | static signed char ispVMLCOUNT(unsigned short a_usCountSize); |
| 319 | static void ispVMClocks(unsigned short Clocks); |
| 320 | static void ispVMBypass(signed char ScanType, unsigned short Bits); |
| 321 | static void ispVMStateMachine(signed char NextState); |
| 322 | static signed char ispVMSend(unsigned short int); |
| 323 | static signed char ispVMRead(unsigned short int); |
| 324 | static signed char ispVMReadandSave(unsigned short int); |
| 325 | static signed char ispVMProcessLVDS(unsigned short a_usLVDSCount); |
| 326 | static void ispVMMemManager(signed char types, unsigned short size); |
| 327 | |
| 328 | /* |
| 329 | * |
| 330 | * External variables and functions in hardware.c module |
| 331 | * |
| 332 | */ |
| 333 | static signed char g_cCurrentJTAGState; |
| 334 | |
| 335 | #ifdef DEBUG |
| 336 | |
| 337 | /* |
| 338 | * |
| 339 | * GetState |
| 340 | * |
| 341 | * Returns the state as a string based on the opcode. Only used |
| 342 | * for debugging purposes. |
| 343 | * |
| 344 | */ |
| 345 | |
| 346 | const char *GetState(unsigned char a_ucState) |
| 347 | { |
| 348 | switch (a_ucState) { |
| 349 | case RESET: |
| 350 | return "RESET"; |
| 351 | case IDLE: |
| 352 | return "IDLE"; |
| 353 | case IRPAUSE: |
| 354 | return "IRPAUSE"; |
| 355 | case DRPAUSE: |
| 356 | return "DRPAUSE"; |
| 357 | case SHIFTIR: |
| 358 | return "SHIFTIR"; |
| 359 | case SHIFTDR: |
| 360 | return "SHIFTDR"; |
| 361 | case DRCAPTURE:/* 11/15/05 support DRCAPTURE*/ |
| 362 | return "DRCAPTURE"; |
| 363 | default: |
| 364 | break; |
| 365 | } |
| 366 | |
| 367 | return 0; |
| 368 | } |
| 369 | |
| 370 | /* |
| 371 | * |
| 372 | * PrintData |
| 373 | * |
| 374 | * Prints the data. Only used for debugging purposes. |
| 375 | * |
| 376 | */ |
| 377 | |
| 378 | void PrintData(unsigned short a_iDataSize, unsigned char *a_pucData) |
| 379 | { |
| 380 | /* 09/11/07 NN added local variables initialization */ |
| 381 | unsigned short usByteSize = 0; |
| 382 | unsigned short usBitIndex = 0; |
| 383 | signed short usByteIndex = 0; |
| 384 | unsigned char ucByte = 0; |
| 385 | unsigned char ucFlipByte = 0; |
| 386 | |
| 387 | if (a_iDataSize % 8) { |
| 388 | /* 09/11/07 NN Type cast mismatch variables */ |
| 389 | usByteSize = (unsigned short)(a_iDataSize / 8 + 1); |
| 390 | } else { |
| 391 | /* 09/11/07 NN Type cast mismatch variables */ |
| 392 | usByteSize = (unsigned short)(a_iDataSize / 8); |
| 393 | } |
| 394 | puts("("); |
| 395 | /* 09/11/07 NN Type cast mismatch variables */ |
| 396 | for (usByteIndex = (signed short)(usByteSize - 1); |
| 397 | usByteIndex >= 0; usByteIndex--) { |
| 398 | ucByte = a_pucData[usByteIndex]; |
| 399 | ucFlipByte = 0x00; |
| 400 | |
| 401 | /* |
| 402 | * |
| 403 | * Flip each byte. |
| 404 | * |
| 405 | */ |
| 406 | |
| 407 | for (usBitIndex = 0; usBitIndex < 8; usBitIndex++) { |
| 408 | ucFlipByte <<= 1; |
| 409 | if (ucByte & 0x1) { |
| 410 | ucFlipByte |= 0x1; |
| 411 | } |
| 412 | |
| 413 | ucByte >>= 1; |
| 414 | } |
| 415 | |
| 416 | /* |
| 417 | * |
| 418 | * Print the flipped byte. |
| 419 | * |
| 420 | */ |
| 421 | |
| 422 | printf("%.02X", ucFlipByte); |
| 423 | if ((usByteSize - usByteIndex) % 40 == 39) { |
| 424 | puts("\n\t\t"); |
| 425 | } |
| 426 | if (usByteIndex < 0) |
| 427 | break; |
| 428 | } |
| 429 | puts(")"); |
| 430 | } |
| 431 | #endif /* DEBUG */ |
| 432 | |
| 433 | void ispVMMemManager(signed char cTarget, unsigned short usSize) |
| 434 | { |
| 435 | switch (cTarget) { |
| 436 | case XTDI: |
| 437 | case TDI: |
| 438 | if (g_pucInData != NULL) { |
| 439 | if (previous_size == usSize) {/*memory exist*/ |
| 440 | break; |
| 441 | } else { |
| 442 | free(g_pucInData); |
| 443 | g_pucInData = NULL; |
| 444 | } |
| 445 | } |
| 446 | g_pucInData = (unsigned char *) malloc(usSize / 8 + 2); |
| 447 | previous_size = usSize; |
| 448 | case XTDO: |
| 449 | case TDO: |
| 450 | if (g_pucOutData != NULL) { |
| 451 | if (previous_size == usSize) { /*already exist*/ |
| 452 | break; |
| 453 | } else { |
| 454 | free(g_pucOutData); |
| 455 | g_pucOutData = NULL; |
| 456 | } |
| 457 | } |
| 458 | g_pucOutData = (unsigned char *) malloc(usSize / 8 + 2); |
| 459 | previous_size = usSize; |
| 460 | break; |
| 461 | case MASK: |
| 462 | if (g_pucOutMaskData != NULL) { |
| 463 | if (previous_size == usSize) {/*already allocated*/ |
| 464 | break; |
| 465 | } else { |
| 466 | free(g_pucOutMaskData); |
| 467 | g_pucOutMaskData = NULL; |
| 468 | } |
| 469 | } |
| 470 | g_pucOutMaskData = (unsigned char *) malloc(usSize / 8 + 2); |
| 471 | previous_size = usSize; |
| 472 | break; |
| 473 | case HIR: |
| 474 | if (g_pucHIRData != NULL) { |
| 475 | free(g_pucHIRData); |
| 476 | g_pucHIRData = NULL; |
| 477 | } |
| 478 | g_pucHIRData = (unsigned char *) malloc(usSize / 8 + 2); |
| 479 | break; |
| 480 | case TIR: |
| 481 | if (g_pucTIRData != NULL) { |
| 482 | free(g_pucTIRData); |
| 483 | g_pucTIRData = NULL; |
| 484 | } |
| 485 | g_pucTIRData = (unsigned char *) malloc(usSize / 8 + 2); |
| 486 | break; |
| 487 | case HDR: |
| 488 | if (g_pucHDRData != NULL) { |
| 489 | free(g_pucHDRData); |
| 490 | g_pucHDRData = NULL; |
| 491 | } |
| 492 | g_pucHDRData = (unsigned char *) malloc(usSize / 8 + 2); |
| 493 | break; |
| 494 | case TDR: |
| 495 | if (g_pucTDRData != NULL) { |
| 496 | free(g_pucTDRData); |
| 497 | g_pucTDRData = NULL; |
| 498 | } |
| 499 | g_pucTDRData = (unsigned char *) malloc(usSize / 8 + 2); |
| 500 | break; |
| 501 | case HEAP: |
| 502 | if (g_pucHeapMemory != NULL) { |
| 503 | free(g_pucHeapMemory); |
| 504 | g_pucHeapMemory = NULL; |
| 505 | } |
| 506 | g_pucHeapMemory = (unsigned char *) malloc(usSize + 2); |
| 507 | break; |
| 508 | case DMASK: |
| 509 | if (g_pucOutDMaskData != NULL) { |
| 510 | if (previous_size == usSize) { /*already allocated*/ |
| 511 | break; |
| 512 | } else { |
| 513 | free(g_pucOutDMaskData); |
| 514 | g_pucOutDMaskData = NULL; |
| 515 | } |
| 516 | } |
| 517 | g_pucOutDMaskData = (unsigned char *) malloc(usSize / 8 + 2); |
| 518 | previous_size = usSize; |
| 519 | break; |
| 520 | case LHEAP: |
| 521 | if (g_pucIntelBuffer != NULL) { |
| 522 | free(g_pucIntelBuffer); |
| 523 | g_pucIntelBuffer = NULL; |
| 524 | } |
| 525 | g_pucIntelBuffer = (unsigned char *) malloc(usSize + 2); |
| 526 | break; |
| 527 | case LVDS: |
| 528 | if (g_pLVDSList != NULL) { |
| 529 | free(g_pLVDSList); |
| 530 | g_pLVDSList = NULL; |
| 531 | } |
| 532 | g_pLVDSList = (LVDSPair *) malloc(usSize * sizeof(LVDSPair)); |
| 533 | if (g_pLVDSList) |
| 534 | memset(g_pLVDSList, 0, usSize * sizeof(LVDSPair)); |
| 535 | break; |
| 536 | default: |
| 537 | return; |
| 538 | } |
| 539 | } |
| 540 | |
| 541 | void ispVMFreeMem(void) |
| 542 | { |
| 543 | if (g_pucHeapMemory != NULL) { |
| 544 | free(g_pucHeapMemory); |
| 545 | g_pucHeapMemory = NULL; |
| 546 | } |
| 547 | |
| 548 | if (g_pucOutMaskData != NULL) { |
| 549 | free(g_pucOutMaskData); |
| 550 | g_pucOutMaskData = NULL; |
| 551 | } |
| 552 | |
| 553 | if (g_pucInData != NULL) { |
| 554 | free(g_pucInData); |
| 555 | g_pucInData = NULL; |
| 556 | } |
| 557 | |
| 558 | if (g_pucOutData != NULL) { |
| 559 | free(g_pucOutData); |
| 560 | g_pucOutData = NULL; |
| 561 | } |
| 562 | |
| 563 | if (g_pucHIRData != NULL) { |
| 564 | free(g_pucHIRData); |
| 565 | g_pucHIRData = NULL; |
| 566 | } |
| 567 | |
| 568 | if (g_pucTIRData != NULL) { |
| 569 | free(g_pucTIRData); |
| 570 | g_pucTIRData = NULL; |
| 571 | } |
| 572 | |
| 573 | if (g_pucHDRData != NULL) { |
| 574 | free(g_pucHDRData); |
| 575 | g_pucHDRData = NULL; |
| 576 | } |
| 577 | |
| 578 | if (g_pucTDRData != NULL) { |
| 579 | free(g_pucTDRData); |
| 580 | g_pucTDRData = NULL; |
| 581 | } |
| 582 | |
| 583 | if (g_pucOutDMaskData != NULL) { |
| 584 | free(g_pucOutDMaskData); |
| 585 | g_pucOutDMaskData = NULL; |
| 586 | } |
| 587 | |
| 588 | if (g_pucIntelBuffer != NULL) { |
| 589 | free(g_pucIntelBuffer); |
| 590 | g_pucIntelBuffer = NULL; |
| 591 | } |
| 592 | |
| 593 | if (g_pLVDSList != NULL) { |
| 594 | free(g_pLVDSList); |
| 595 | g_pLVDSList = NULL; |
| 596 | } |
| 597 | } |
| 598 | |
| 599 | |
| 600 | /* |
| 601 | * |
| 602 | * ispVMDataSize |
| 603 | * |
| 604 | * Returns a VME-encoded number, usually used to indicate the |
| 605 | * bit length of an SIR/SDR command. |
| 606 | * |
| 607 | */ |
| 608 | |
| 609 | long int ispVMDataSize() |
| 610 | { |
| 611 | /* 09/11/07 NN added local variables initialization */ |
| 612 | long int iSize = 0; |
| 613 | signed char cCurrentByte = 0; |
| 614 | signed char cIndex = 0; |
| 615 | cIndex = 0; |
| 616 | while ((cCurrentByte = GetByte()) & 0x80) { |
| 617 | iSize |= ((long int) (cCurrentByte & 0x7F)) << cIndex; |
| 618 | cIndex += 7; |
| 619 | } |
| 620 | iSize |= ((long int) (cCurrentByte & 0x7F)) << cIndex; |
| 621 | return iSize; |
| 622 | } |
| 623 | |
| 624 | /* |
| 625 | * |
| 626 | * ispVMCode |
| 627 | * |
| 628 | * This is the heart of the embedded engine. All the high-level opcodes |
| 629 | * are extracted here. Once they have been identified, then it |
| 630 | * will call other functions to handle the processing. |
| 631 | * |
| 632 | */ |
| 633 | |
| 634 | signed char ispVMCode() |
| 635 | { |
| 636 | /* 09/11/07 NN added local variables initialization */ |
| 637 | unsigned short iRepeatSize = 0; |
| 638 | signed char cOpcode = 0; |
| 639 | signed char cRetCode = 0; |
| 640 | unsigned char ucState = 0; |
| 641 | unsigned short usDelay = 0; |
| 642 | unsigned short usToggle = 0; |
| 643 | unsigned char usByte = 0; |
| 644 | |
| 645 | /* |
| 646 | * |
| 647 | * Check the compression flag only if this is the first time |
| 648 | * this function is entered. Do not check the compression flag if |
| 649 | * it is being called recursively from other functions within |
| 650 | * the embedded engine. |
| 651 | * |
| 652 | */ |
| 653 | |
| 654 | if (!(g_usDataType & LHEAP_IN) && !(g_usDataType & HEAP_IN)) { |
| 655 | usByte = GetByte(); |
| 656 | if (usByte == 0xf1) { |
| 657 | g_usDataType |= COMPRESS; |
| 658 | } else if (usByte == 0xf2) { |
| 659 | g_usDataType &= ~COMPRESS; |
| 660 | } else { |
| 661 | return VME_INVALID_FILE; |
| 662 | } |
| 663 | } |
| 664 | |
| 665 | /* |
| 666 | * |
| 667 | * Begin looping through all the VME opcodes. |
| 668 | * |
| 669 | */ |
| 670 | |
| 671 | while ((cOpcode = GetByte()) >= 0) { |
| 672 | |
| 673 | switch (cOpcode) { |
| 674 | case STATE: |
| 675 | |
| 676 | /* |
| 677 | * Step the JTAG state machine. |
| 678 | */ |
| 679 | |
| 680 | ucState = GetByte(); |
| 681 | |
| 682 | /* |
| 683 | * Step the JTAG state machine to DRCAPTURE |
| 684 | * to support Looping. |
| 685 | */ |
| 686 | |
| 687 | if ((g_usDataType & LHEAP_IN) && |
| 688 | (ucState == DRPAUSE) && |
| 689 | (g_cCurrentJTAGState == ucState)) { |
| 690 | ispVMStateMachine(DRCAPTURE); |
| 691 | } |
| 692 | |
| 693 | ispVMStateMachine(ucState); |
| 694 | |
| 695 | #ifdef DEBUG |
| 696 | if (g_usDataType & LHEAP_IN) { |
| 697 | debug("LDELAY %s ", GetState(ucState)); |
| 698 | } else { |
| 699 | debug("STATE %s;\n", GetState(ucState)); |
| 700 | } |
| 701 | #endif /* DEBUG */ |
| 702 | break; |
| 703 | case SIR: |
| 704 | case SDR: |
| 705 | case XSDR: |
| 706 | |
| 707 | #ifdef DEBUG |
| 708 | switch (cOpcode) { |
| 709 | case SIR: |
| 710 | puts("SIR "); |
| 711 | break; |
| 712 | case SDR: |
| 713 | case XSDR: |
| 714 | if (g_usDataType & LHEAP_IN) { |
| 715 | puts("LSDR "); |
| 716 | } else { |
| 717 | puts("SDR "); |
| 718 | } |
| 719 | break; |
| 720 | } |
| 721 | #endif /* DEBUG */ |
| 722 | /* |
| 723 | * |
| 724 | * Shift in data into the device. |
| 725 | * |
| 726 | */ |
| 727 | |
| 728 | cRetCode = ispVMShift(cOpcode); |
| 729 | if (cRetCode != 0) { |
| 730 | return cRetCode; |
| 731 | } |
| 732 | break; |
| 733 | case WAIT: |
| 734 | |
| 735 | /* |
| 736 | * |
| 737 | * Observe delay. |
| 738 | * |
| 739 | */ |
| 740 | |
| 741 | /* 09/11/07 NN Type cast mismatch variables */ |
| 742 | usDelay = (unsigned short) ispVMDataSize(); |
| 743 | ispVMDelay(usDelay); |
| 744 | |
| 745 | #ifdef DEBUG |
| 746 | if (usDelay & 0x8000) { |
| 747 | |
| 748 | /* |
| 749 | * Since MSB is set, the delay time must be |
| 750 | * decoded to millisecond. The SVF2VME encodes |
| 751 | * the MSB to represent millisecond. |
| 752 | */ |
| 753 | |
| 754 | usDelay &= ~0x8000; |
| 755 | if (g_usDataType & LHEAP_IN) { |
| 756 | printf("%.2E SEC;\n", |
| 757 | (float) usDelay / 1000); |
| 758 | } else { |
| 759 | printf("RUNTEST %.2E SEC;\n", |
| 760 | (float) usDelay / 1000); |
| 761 | } |
| 762 | } else { |
| 763 | /* |
| 764 | * Since MSB is not set, the delay time |
| 765 | * is given as microseconds. |
| 766 | */ |
| 767 | |
| 768 | if (g_usDataType & LHEAP_IN) { |
| 769 | printf("%.2E SEC;\n", |
| 770 | (float) usDelay / 1000000); |
| 771 | } else { |
| 772 | printf("RUNTEST %.2E SEC;\n", |
| 773 | (float) usDelay / 1000000); |
| 774 | } |
| 775 | } |
| 776 | #endif /* DEBUG */ |
| 777 | break; |
| 778 | case TCK: |
| 779 | |
| 780 | /* |
| 781 | * Issue clock toggles. |
| 782 | */ |
| 783 | |
| 784 | /* 09/11/07 NN Type cast mismatch variables */ |
| 785 | usToggle = (unsigned short) ispVMDataSize(); |
| 786 | ispVMClocks(usToggle); |
| 787 | |
| 788 | #ifdef DEBUG |
| 789 | printf("RUNTEST %d TCK;\n", usToggle); |
| 790 | #endif /* DEBUG */ |
| 791 | break; |
| 792 | case ENDDR: |
| 793 | |
| 794 | /* |
| 795 | * |
| 796 | * Set the ENDDR. |
| 797 | * |
| 798 | */ |
| 799 | |
| 800 | g_ucEndDR = GetByte(); |
| 801 | |
| 802 | #ifdef DEBUG |
| 803 | printf("ENDDR %s;\n", GetState(g_ucEndDR)); |
| 804 | #endif /* DEBUG */ |
| 805 | break; |
| 806 | case ENDIR: |
| 807 | |
| 808 | /* |
| 809 | * |
| 810 | * Set the ENDIR. |
| 811 | * |
| 812 | */ |
| 813 | |
| 814 | g_ucEndIR = GetByte(); |
| 815 | |
| 816 | #ifdef DEBUG |
| 817 | printf("ENDIR %s;\n", GetState(g_ucEndIR)); |
| 818 | #endif /* DEBUG */ |
| 819 | break; |
| 820 | case HIR: |
| 821 | case TIR: |
| 822 | case HDR: |
| 823 | case TDR: |
| 824 | |
| 825 | #ifdef DEBUG |
| 826 | switch (cOpcode) { |
| 827 | case HIR: |
| 828 | puts("HIR "); |
| 829 | break; |
| 830 | case TIR: |
| 831 | puts("TIR "); |
| 832 | break; |
| 833 | case HDR: |
| 834 | puts("HDR "); |
| 835 | break; |
| 836 | case TDR: |
| 837 | puts("TDR "); |
| 838 | break; |
| 839 | } |
| 840 | #endif /* DEBUG */ |
| 841 | /* |
| 842 | * Set the header/trailer of the device in order |
| 843 | * to bypass |
| 844 | * successfully. |
| 845 | */ |
| 846 | |
| 847 | cRetCode = ispVMAmble(cOpcode); |
| 848 | if (cRetCode != 0) { |
| 849 | return cRetCode; |
| 850 | } |
| 851 | |
| 852 | #ifdef DEBUG |
| 853 | puts(";\n"); |
| 854 | #endif /* DEBUG */ |
| 855 | break; |
| 856 | case MEM: |
| 857 | |
| 858 | /* |
| 859 | * The maximum RAM required to support |
| 860 | * processing one row of the VME file. |
| 861 | */ |
| 862 | |
| 863 | /* 09/11/07 NN Type cast mismatch variables */ |
| 864 | g_usMaxSize = (unsigned short) ispVMDataSize(); |
| 865 | |
| 866 | #ifdef DEBUG |
| 867 | printf("// MEMSIZE %d\n", g_usMaxSize); |
| 868 | #endif /* DEBUG */ |
| 869 | break; |
| 870 | case VENDOR: |
| 871 | |
| 872 | /* |
| 873 | * |
| 874 | * Set the VENDOR type. |
| 875 | * |
| 876 | */ |
| 877 | |
| 878 | cOpcode = GetByte(); |
| 879 | switch (cOpcode) { |
| 880 | case LATTICE: |
| 881 | #ifdef DEBUG |
| 882 | puts("// VENDOR LATTICE\n"); |
| 883 | #endif /* DEBUG */ |
| 884 | g_cVendor = LATTICE; |
| 885 | break; |
| 886 | case ALTERA: |
| 887 | #ifdef DEBUG |
| 888 | puts("// VENDOR ALTERA\n"); |
| 889 | #endif /* DEBUG */ |
| 890 | g_cVendor = ALTERA; |
| 891 | break; |
| 892 | case XILINX: |
| 893 | #ifdef DEBUG |
| 894 | puts("// VENDOR XILINX\n"); |
| 895 | #endif /* DEBUG */ |
| 896 | g_cVendor = XILINX; |
| 897 | break; |
| 898 | default: |
| 899 | break; |
| 900 | } |
| 901 | break; |
| 902 | case SETFLOW: |
| 903 | |
| 904 | /* |
| 905 | * Set the flow control. Flow control determines |
| 906 | * the personality of the embedded engine. |
| 907 | */ |
| 908 | |
| 909 | /* 09/11/07 NN Type cast mismatch variables */ |
| 910 | g_usFlowControl |= (unsigned short) ispVMDataSize(); |
| 911 | break; |
| 912 | case RESETFLOW: |
| 913 | |
| 914 | /* |
| 915 | * |
| 916 | * Unset the flow control. |
| 917 | * |
| 918 | */ |
| 919 | |
| 920 | /* 09/11/07 NN Type cast mismatch variables */ |
| 921 | g_usFlowControl &= (unsigned short) ~(ispVMDataSize()); |
| 922 | break; |
| 923 | case HEAP: |
| 924 | |
| 925 | /* |
| 926 | * |
| 927 | * Allocate heap size to store loops. |
| 928 | * |
| 929 | */ |
| 930 | |
| 931 | cRetCode = GetByte(); |
| 932 | if (cRetCode != SECUREHEAP) { |
| 933 | return VME_INVALID_FILE; |
| 934 | } |
| 935 | /* 09/11/07 NN Type cast mismatch variables */ |
| 936 | g_iHEAPSize = (unsigned short) ispVMDataSize(); |
| 937 | |
| 938 | /* |
| 939 | * Store the maximum size of the HEAP buffer. |
| 940 | * Used to convert VME to HEX. |
| 941 | */ |
| 942 | |
| 943 | if (g_iHEAPSize > g_usHeapSize) { |
| 944 | g_usHeapSize = g_iHEAPSize; |
| 945 | } |
| 946 | |
| 947 | ispVMMemManager(HEAP, (unsigned short) g_iHEAPSize); |
| 948 | break; |
| 949 | case REPEAT: |
| 950 | |
| 951 | /* |
| 952 | * |
| 953 | * Execute loops. |
| 954 | * |
| 955 | */ |
| 956 | |
| 957 | g_usRepeatLoops = 0; |
| 958 | |
| 959 | /* 09/11/07 NN Type cast mismatch variables */ |
| 960 | iRepeatSize = (unsigned short) ispVMDataSize(); |
| 961 | |
| 962 | cRetCode = ispVMLoop((unsigned short) iRepeatSize); |
| 963 | if (cRetCode != 0) { |
| 964 | return cRetCode; |
| 965 | } |
| 966 | break; |
| 967 | case ENDLOOP: |
| 968 | |
| 969 | /* |
| 970 | * |
| 971 | * Exit point from processing loops. |
| 972 | * |
| 973 | */ |
| 974 | |
| 975 | return cRetCode; |
| 976 | case ENDVME: |
| 977 | |
| 978 | /* |
| 979 | * The only valid exit point that indicates |
| 980 | * end of programming. |
| 981 | */ |
| 982 | |
| 983 | return cRetCode; |
| 984 | case SHR: |
| 985 | |
| 986 | /* |
| 987 | * |
| 988 | * Right-shift address. |
| 989 | * |
| 990 | */ |
| 991 | |
| 992 | g_usFlowControl |= SHIFTRIGHT; |
| 993 | |
| 994 | /* 09/11/07 NN Type cast mismatch variables */ |
| 995 | g_usShiftValue = (unsigned short) (g_usRepeatLoops * |
| 996 | (unsigned short)GetByte()); |
| 997 | break; |
| 998 | case SHL: |
| 999 | |
| 1000 | /* |
| 1001 | * Left-shift address. |
| 1002 | */ |
| 1003 | |
| 1004 | g_usFlowControl |= SHIFTLEFT; |
| 1005 | |
| 1006 | /* 09/11/07 NN Type cast mismatch variables */ |
| 1007 | g_usShiftValue = (unsigned short) (g_usRepeatLoops * |
| 1008 | (unsigned short)GetByte()); |
| 1009 | break; |
| 1010 | case FREQUENCY: |
| 1011 | |
| 1012 | /* |
| 1013 | * |
| 1014 | * Set the frequency. |
| 1015 | * |
| 1016 | */ |
| 1017 | |
| 1018 | /* 09/11/07 NN Type cast mismatch variables */ |
| 1019 | g_iFrequency = (int) (ispVMDataSize() / 1000); |
| 1020 | if (g_iFrequency == 1) |
| 1021 | g_iFrequency = 1000; |
| 1022 | |
| 1023 | #ifdef DEBUG |
| 1024 | printf("FREQUENCY %.2E HZ;\n", |
| 1025 | (float) g_iFrequency * 1000); |
| 1026 | #endif /* DEBUG */ |
| 1027 | break; |
| 1028 | case LCOUNT: |
| 1029 | |
| 1030 | /* |
| 1031 | * |
| 1032 | * Process LCOUNT command. |
| 1033 | * |
| 1034 | */ |
| 1035 | |
| 1036 | cRetCode = ispVMLCOUNT((unsigned short)ispVMDataSize()); |
| 1037 | if (cRetCode != 0) { |
| 1038 | return cRetCode; |
| 1039 | } |
| 1040 | break; |
| 1041 | case VUES: |
| 1042 | |
| 1043 | /* |
| 1044 | * |
| 1045 | * Set the flow control to verify USERCODE. |
| 1046 | * |
| 1047 | */ |
| 1048 | |
| 1049 | g_usFlowControl |= VERIFYUES; |
| 1050 | break; |
| 1051 | case COMMENT: |
| 1052 | |
| 1053 | /* |
| 1054 | * |
| 1055 | * Display comment. |
| 1056 | * |
| 1057 | */ |
| 1058 | |
| 1059 | ispVMComment((unsigned short) ispVMDataSize()); |
| 1060 | break; |
| 1061 | case LVDS: |
| 1062 | |
| 1063 | /* |
| 1064 | * |
| 1065 | * Process LVDS command. |
| 1066 | * |
| 1067 | */ |
| 1068 | |
| 1069 | ispVMProcessLVDS((unsigned short) ispVMDataSize()); |
| 1070 | break; |
| 1071 | case HEADER: |
| 1072 | |
| 1073 | /* |
| 1074 | * |
| 1075 | * Discard header. |
| 1076 | * |
| 1077 | */ |
| 1078 | |
| 1079 | ispVMHeader((unsigned short) ispVMDataSize()); |
| 1080 | break; |
| 1081 | /* 03/14/06 Support Toggle ispENABLE signal*/ |
| 1082 | case ispEN: |
| 1083 | ucState = GetByte(); |
| 1084 | if ((ucState == ON) || (ucState == 0x01)) |
| 1085 | writePort(g_ucPinENABLE, 0x01); |
| 1086 | else |
| 1087 | writePort(g_ucPinENABLE, 0x00); |
| 1088 | ispVMDelay(1); |
| 1089 | break; |
| 1090 | /* 05/24/06 support Toggle TRST pin*/ |
| 1091 | case TRST: |
| 1092 | ucState = GetByte(); |
| 1093 | if (ucState == 0x01) |
| 1094 | writePort(g_ucPinTRST, 0x01); |
| 1095 | else |
| 1096 | writePort(g_ucPinTRST, 0x00); |
| 1097 | ispVMDelay(1); |
| 1098 | break; |
| 1099 | default: |
| 1100 | |
| 1101 | /* |
| 1102 | * |
| 1103 | * Invalid opcode encountered. |
| 1104 | * |
| 1105 | */ |
| 1106 | |
| 1107 | #ifdef DEBUG |
| 1108 | printf("\nINVALID OPCODE: 0x%.2X\n", cOpcode); |
| 1109 | #endif /* DEBUG */ |
| 1110 | |
| 1111 | return VME_INVALID_FILE; |
| 1112 | } |
| 1113 | } |
| 1114 | |
| 1115 | /* |
| 1116 | * |
| 1117 | * Invalid exit point. Processing the token 'ENDVME' is the only |
| 1118 | * valid way to exit the embedded engine. |
| 1119 | * |
| 1120 | */ |
| 1121 | |
| 1122 | return VME_INVALID_FILE; |
| 1123 | } |
| 1124 | |
| 1125 | /* |
| 1126 | * |
| 1127 | * ispVMDataCode |
| 1128 | * |
| 1129 | * Processes the TDI/TDO/MASK/DMASK etc of an SIR/SDR command. |
| 1130 | * |
| 1131 | */ |
| 1132 | |
| 1133 | signed char ispVMDataCode() |
| 1134 | { |
| 1135 | /* 09/11/07 NN added local variables initialization */ |
| 1136 | signed char cDataByte = 0; |
| 1137 | signed char siDataSource = 0; /*source of data from file by default*/ |
| 1138 | |
| 1139 | if (g_usDataType & HEAP_IN) { |
| 1140 | siDataSource = 1; /*the source of data from memory*/ |
| 1141 | } |
| 1142 | |
| 1143 | /* |
| 1144 | * |
| 1145 | * Clear the data type register. |
| 1146 | * |
| 1147 | **/ |
| 1148 | |
| 1149 | g_usDataType &= ~(MASK_DATA + TDI_DATA + |
| 1150 | TDO_DATA + DMASK_DATA + CMASK_DATA); |
| 1151 | |
| 1152 | /* |
| 1153 | * Iterate through SIR/SDR command and look for TDI, |
| 1154 | * TDO, MASK, etc. |
| 1155 | */ |
| 1156 | |
| 1157 | while ((cDataByte = GetByte()) >= 0) { |
| 1158 | ispVMMemManager(cDataByte, g_usMaxSize); |
| 1159 | switch (cDataByte) { |
| 1160 | case TDI: |
| 1161 | |
| 1162 | /* |
| 1163 | * Store the maximum size of the TDI buffer. |
| 1164 | * Used to convert VME to HEX. |
| 1165 | */ |
| 1166 | |
| 1167 | if (g_usiDataSize > g_usTDISize) { |
| 1168 | g_usTDISize = g_usiDataSize; |
| 1169 | } |
| 1170 | /* |
| 1171 | * Updated data type register to indicate that |
| 1172 | * TDI data is currently being used. Process the |
| 1173 | * data in the VME file into the TDI buffer. |
| 1174 | */ |
| 1175 | |
| 1176 | g_usDataType |= TDI_DATA; |
| 1177 | ispVMData(g_pucInData); |
| 1178 | break; |
| 1179 | case XTDO: |
| 1180 | |
| 1181 | /* |
| 1182 | * Store the maximum size of the TDO buffer. |
| 1183 | * Used to convert VME to HEX. |
| 1184 | */ |
| 1185 | |
| 1186 | if (g_usiDataSize > g_usTDOSize) { |
| 1187 | g_usTDOSize = g_usiDataSize; |
| 1188 | } |
| 1189 | |
| 1190 | /* |
| 1191 | * Updated data type register to indicate that |
| 1192 | * TDO data is currently being used. |
| 1193 | */ |
| 1194 | |
| 1195 | g_usDataType |= TDO_DATA; |
| 1196 | break; |
| 1197 | case TDO: |
| 1198 | |
| 1199 | /* |
| 1200 | * Store the maximum size of the TDO buffer. |
| 1201 | * Used to convert VME to HEX. |
| 1202 | */ |
| 1203 | |
| 1204 | if (g_usiDataSize > g_usTDOSize) { |
| 1205 | g_usTDOSize = g_usiDataSize; |
| 1206 | } |
| 1207 | |
| 1208 | /* |
| 1209 | * Updated data type register to indicate |
| 1210 | * that TDO data is currently being used. |
| 1211 | * Process the data in the VME file into the |
| 1212 | * TDO buffer. |
| 1213 | */ |
| 1214 | |
| 1215 | g_usDataType |= TDO_DATA; |
| 1216 | ispVMData(g_pucOutData); |
| 1217 | break; |
| 1218 | case MASK: |
| 1219 | |
| 1220 | /* |
| 1221 | * Store the maximum size of the MASK buffer. |
| 1222 | * Used to convert VME to HEX. |
| 1223 | */ |
| 1224 | |
| 1225 | if (g_usiDataSize > g_usMASKSize) { |
| 1226 | g_usMASKSize = g_usiDataSize; |
| 1227 | } |
| 1228 | |
| 1229 | /* |
| 1230 | * Updated data type register to indicate that |
| 1231 | * MASK data is currently being used. Process |
| 1232 | * the data in the VME file into the MASK buffer |
| 1233 | */ |
| 1234 | |
| 1235 | g_usDataType |= MASK_DATA; |
| 1236 | ispVMData(g_pucOutMaskData); |
| 1237 | break; |
| 1238 | case DMASK: |
| 1239 | |
| 1240 | /* |
| 1241 | * Store the maximum size of the DMASK buffer. |
| 1242 | * Used to convert VME to HEX. |
| 1243 | */ |
| 1244 | |
| 1245 | if (g_usiDataSize > g_usDMASKSize) { |
| 1246 | g_usDMASKSize = g_usiDataSize; |
| 1247 | } |
| 1248 | |
| 1249 | /* |
| 1250 | * Updated data type register to indicate that |
| 1251 | * DMASK data is currently being used. Process |
| 1252 | * the data in the VME file into the DMASK |
| 1253 | * buffer. |
| 1254 | */ |
| 1255 | |
| 1256 | g_usDataType |= DMASK_DATA; |
| 1257 | ispVMData(g_pucOutDMaskData); |
| 1258 | break; |
| 1259 | case CMASK: |
| 1260 | |
| 1261 | /* |
| 1262 | * Updated data type register to indicate that |
| 1263 | * MASK data is currently being used. Process |
| 1264 | * the data in the VME file into the MASK buffer |
| 1265 | */ |
| 1266 | |
| 1267 | g_usDataType |= CMASK_DATA; |
| 1268 | ispVMData(g_pucOutMaskData); |
| 1269 | break; |
| 1270 | case CONTINUE: |
| 1271 | return 0; |
| 1272 | default: |
| 1273 | /* |
| 1274 | * Encountered invalid opcode. |
| 1275 | */ |
| 1276 | return VME_INVALID_FILE; |
| 1277 | } |
| 1278 | |
| 1279 | switch (cDataByte) { |
| 1280 | case TDI: |
| 1281 | |
| 1282 | /* |
| 1283 | * Left bit shift. Used when performing |
| 1284 | * algorithm looping. |
| 1285 | */ |
| 1286 | |
| 1287 | if (g_usFlowControl & SHIFTLEFT) { |
| 1288 | ispVMBitShift(SHL, g_usShiftValue); |
| 1289 | g_usFlowControl &= ~SHIFTLEFT; |
| 1290 | } |
| 1291 | |
| 1292 | /* |
| 1293 | * Right bit shift. Used when performing |
| 1294 | * algorithm looping. |
| 1295 | */ |
| 1296 | |
| 1297 | if (g_usFlowControl & SHIFTRIGHT) { |
| 1298 | ispVMBitShift(SHR, g_usShiftValue); |
| 1299 | g_usFlowControl &= ~SHIFTRIGHT; |
| 1300 | } |
| 1301 | default: |
| 1302 | break; |
| 1303 | } |
| 1304 | |
| 1305 | if (siDataSource) { |
| 1306 | g_usDataType |= HEAP_IN; /*restore from memory*/ |
| 1307 | } |
| 1308 | } |
| 1309 | |
| 1310 | if (siDataSource) { /*fetch data from heap memory upon return*/ |
| 1311 | g_usDataType |= HEAP_IN; |
| 1312 | } |
| 1313 | |
| 1314 | if (cDataByte < 0) { |
| 1315 | |
| 1316 | /* |
| 1317 | * Encountered invalid opcode. |
| 1318 | */ |
| 1319 | |
| 1320 | return VME_INVALID_FILE; |
| 1321 | } else { |
| 1322 | return 0; |
| 1323 | } |
| 1324 | } |
| 1325 | |
| 1326 | /* |
| 1327 | * |
| 1328 | * ispVMData |
| 1329 | * Extract one row of data operand from the current data type opcode. Perform |
| 1330 | * the decompression if necessary. Extra RAM is not required for the |
| 1331 | * decompression process. The decompression scheme employed in this module |
| 1332 | * is on row by row basis. The format of the data stream: |
| 1333 | * [compression code][compressed data stream] |
| 1334 | * 0x00 --No compression |
| 1335 | * 0x01 --Compress by 0x00. |
| 1336 | * Example: |
| 1337 | * Original stream: 0x000000000000000000000001 |
| 1338 | * Compressed stream: 0x01000901 |
| 1339 | * Detail: 0x01 is the code, 0x00 is the key, |
| 1340 | * 0x09 is the count of 0x00 bytes, |
| 1341 | * 0x01 is the uncompressed byte. |
| 1342 | * 0x02 --Compress by 0xFF. |
| 1343 | * Example: |
| 1344 | * Original stream: 0xFFFFFFFFFFFFFFFFFFFFFF01 |
| 1345 | * Compressed stream: 0x02FF0901 |
| 1346 | * Detail: 0x02 is the code, 0xFF is the key, |
| 1347 | * 0x09 is the count of 0xFF bytes, |
| 1348 | * 0x01 is the uncompressed byte. |
| 1349 | * 0x03 |
| 1350 | * : : |
| 1351 | * 0xFE -- Compress by nibble blocks. |
| 1352 | * Example: |
| 1353 | * Original stream: 0x84210842108421084210 |
| 1354 | * Compressed stream: 0x0584210 |
| 1355 | * Detail: 0x05 is the code, means 5 nibbles block. |
| 1356 | * 0x84210 is the 5 nibble blocks. |
| 1357 | * The whole row is 80 bits given by g_usiDataSize. |
| 1358 | * The number of times the block repeat itself |
| 1359 | * is found by g_usiDataSize/(4*0x05) which is 4. |
| 1360 | * 0xFF -- Compress by the most frequently happen byte. |
| 1361 | * Example: |
| 1362 | * Original stream: 0x04020401030904040404 |
| 1363 | * Compressed stream: 0xFF04(0,1,0x02,0,1,0x01,1,0x03,1,0x09,0,0,0) |
| 1364 | * or: 0xFF044090181C240 |
| 1365 | * Detail: 0xFF is the code, 0x04 is the key. |
| 1366 | * a bit of 0 represent the key shall be put into |
| 1367 | * the current bit position and a bit of 1 |
| 1368 | * represent copying the next of 8 bits of data |
| 1369 | * in. |
| 1370 | * |
| 1371 | */ |
| 1372 | |
| 1373 | void ispVMData(unsigned char *ByteData) |
| 1374 | { |
| 1375 | /* 09/11/07 NN added local variables initialization */ |
| 1376 | unsigned short size = 0; |
| 1377 | unsigned short i, j, m, getData = 0; |
| 1378 | unsigned char cDataByte = 0; |
| 1379 | unsigned char compress = 0; |
| 1380 | unsigned short FFcount = 0; |
| 1381 | unsigned char compr_char = 0xFF; |
| 1382 | unsigned short index = 0; |
| 1383 | signed char compression = 0; |
| 1384 | |
| 1385 | /*convert number in bits to bytes*/ |
| 1386 | if (g_usiDataSize % 8 > 0) { |
| 1387 | /* 09/11/07 NN Type cast mismatch variables */ |
| 1388 | size = (unsigned short)(g_usiDataSize / 8 + 1); |
| 1389 | } else { |
| 1390 | /* 09/11/07 NN Type cast mismatch variables */ |
| 1391 | size = (unsigned short)(g_usiDataSize / 8); |
| 1392 | } |
| 1393 | |
| 1394 | /* |
| 1395 | * If there is compression, then check if compress by key |
| 1396 | * of 0x00 or 0xFF or by other keys or by nibble blocks |
| 1397 | */ |
| 1398 | |
| 1399 | if (g_usDataType & COMPRESS) { |
| 1400 | compression = 1; |
| 1401 | compress = GetByte(); |
| 1402 | if ((compress == VAR) && (g_usDataType & HEAP_IN)) { |
| 1403 | getData = 1; |
| 1404 | g_usDataType &= ~(HEAP_IN); |
| 1405 | compress = GetByte(); |
| 1406 | } |
| 1407 | |
| 1408 | switch (compress) { |
| 1409 | case 0x00: |
| 1410 | /* No compression */ |
| 1411 | compression = 0; |
| 1412 | break; |
| 1413 | case 0x01: |
| 1414 | /* Compress by byte 0x00 */ |
| 1415 | compr_char = 0x00; |
| 1416 | break; |
| 1417 | case 0x02: |
| 1418 | /* Compress by byte 0xFF */ |
| 1419 | compr_char = 0xFF; |
| 1420 | break; |
| 1421 | case 0xFF: |
| 1422 | /* Huffman encoding */ |
| 1423 | compr_char = GetByte(); |
| 1424 | i = 8; |
| 1425 | for (index = 0; index < size; index++) { |
| 1426 | ByteData[index] = 0x00; |
| 1427 | if (i > 7) { |
| 1428 | cDataByte = GetByte(); |
| 1429 | i = 0; |
| 1430 | } |
| 1431 | if ((cDataByte << i++) & 0x80) |
| 1432 | m = 8; |
| 1433 | else { |
| 1434 | ByteData[index] = compr_char; |
| 1435 | m = 0; |
| 1436 | } |
| 1437 | |
| 1438 | for (j = 0; j < m; j++) { |
| 1439 | if (i > 7) { |
| 1440 | cDataByte = GetByte(); |
| 1441 | i = 0; |
| 1442 | } |
| 1443 | ByteData[index] |= |
| 1444 | ((cDataByte << i++) & 0x80) >> j; |
| 1445 | } |
| 1446 | } |
| 1447 | size = 0; |
| 1448 | break; |
| 1449 | default: |
| 1450 | for (index = 0; index < size; index++) |
| 1451 | ByteData[index] = 0x00; |
| 1452 | for (index = 0; index < compress; index++) { |
| 1453 | if (index % 2 == 0) |
| 1454 | cDataByte = GetByte(); |
| 1455 | for (i = 0; i < size * 2 / compress; i++) { |
| 1456 | j = (unsigned short)(index + |
| 1457 | (i * (unsigned short)compress)); |
| 1458 | /*clear the nibble to zero first*/ |
| 1459 | if (j%2) { |
| 1460 | if (index % 2) |
| 1461 | ByteData[j/2] |= |
| 1462 | cDataByte & 0xF; |
| 1463 | else |
| 1464 | ByteData[j/2] |= |
| 1465 | cDataByte >> 4; |
| 1466 | } else { |
| 1467 | if (index % 2) |
| 1468 | ByteData[j/2] |= |
| 1469 | cDataByte << 4; |
| 1470 | else |
| 1471 | ByteData[j/2] |= |
| 1472 | cDataByte & 0xF0; |
| 1473 | } |
| 1474 | } |
| 1475 | } |
| 1476 | size = 0; |
| 1477 | break; |
| 1478 | } |
| 1479 | } |
| 1480 | |
| 1481 | FFcount = 0; |
| 1482 | |
| 1483 | /* Decompress by byte 0x00 or 0xFF */ |
| 1484 | for (index = 0; index < size; index++) { |
| 1485 | if (FFcount <= 0) { |
| 1486 | cDataByte = GetByte(); |
| 1487 | if ((cDataByte == VAR) && (g_usDataType&HEAP_IN) && |
| 1488 | !getData && !(g_usDataType&COMPRESS)) { |
| 1489 | getData = 1; |
| 1490 | g_usDataType &= ~(HEAP_IN); |
| 1491 | cDataByte = GetByte(); |
| 1492 | } |
| 1493 | ByteData[index] = cDataByte; |
| 1494 | if ((compression) && (cDataByte == compr_char)) |
| 1495 | /* 09/11/07 NN Type cast mismatch variables */ |
| 1496 | FFcount = (unsigned short) ispVMDataSize(); |
| 1497 | /*The number of 0xFF or 0x00 bytes*/ |
| 1498 | } else { |
| 1499 | FFcount--; /*Use up the 0xFF chain first*/ |
| 1500 | ByteData[index] = compr_char; |
| 1501 | } |
| 1502 | } |
| 1503 | |
| 1504 | if (getData) { |
| 1505 | g_usDataType |= HEAP_IN; |
| 1506 | getData = 0; |
| 1507 | } |
| 1508 | } |
| 1509 | |
| 1510 | /* |
| 1511 | * |
| 1512 | * ispVMShift |
| 1513 | * |
| 1514 | * Processes the SDR/XSDR/SIR commands. |
| 1515 | * |
| 1516 | */ |
| 1517 | |
| 1518 | signed char ispVMShift(signed char a_cCode) |
| 1519 | { |
| 1520 | /* 09/11/07 NN added local variables initialization */ |
| 1521 | unsigned short iDataIndex = 0; |
| 1522 | unsigned short iReadLoop = 0; |
| 1523 | signed char cRetCode = 0; |
| 1524 | |
| 1525 | cRetCode = 0; |
| 1526 | /* 09/11/07 NN Type cast mismatch variables */ |
| 1527 | g_usiDataSize = (unsigned short) ispVMDataSize(); |
| 1528 | |
| 1529 | /*clear the flags first*/ |
| 1530 | g_usDataType &= ~(SIR_DATA + EXPRESS + SDR_DATA); |
| 1531 | switch (a_cCode) { |
| 1532 | case SIR: |
| 1533 | g_usDataType |= SIR_DATA; |
| 1534 | /* |
| 1535 | * 1/15/04 If performing cascading, then go directly to SHIFTIR. |
| 1536 | * Else, go to IRPAUSE before going to SHIFTIR |
| 1537 | */ |
| 1538 | if (g_usFlowControl & CASCADE) { |
| 1539 | ispVMStateMachine(SHIFTIR); |
| 1540 | } else { |
| 1541 | ispVMStateMachine(IRPAUSE); |
| 1542 | ispVMStateMachine(SHIFTIR); |
| 1543 | if (g_usHeadIR > 0) { |
| 1544 | ispVMBypass(HIR, g_usHeadIR); |
| 1545 | sclock(); |
| 1546 | } |
| 1547 | } |
| 1548 | break; |
| 1549 | case XSDR: |
| 1550 | g_usDataType |= EXPRESS; /*mark simultaneous in and out*/ |
| 1551 | case SDR: |
| 1552 | g_usDataType |= SDR_DATA; |
| 1553 | /* |
| 1554 | * 1/15/04 If already in SHIFTDR, then do not move state or |
| 1555 | * shift in header. This would imply that the previously |
| 1556 | * shifted frame was a cascaded frame. |
| 1557 | */ |
| 1558 | if (g_cCurrentJTAGState != SHIFTDR) { |
| 1559 | /* |
| 1560 | * 1/15/04 If performing cascading, then go directly |
| 1561 | * to SHIFTDR. Else, go to DRPAUSE before going |
| 1562 | * to SHIFTDR |
| 1563 | */ |
| 1564 | if (g_usFlowControl & CASCADE) { |
| 1565 | if (g_cCurrentJTAGState == DRPAUSE) { |
| 1566 | ispVMStateMachine(SHIFTDR); |
| 1567 | /* |
| 1568 | * 1/15/04 If cascade flag has been seat |
| 1569 | * and the current state is DRPAUSE, |
| 1570 | * this implies that the first cascaded |
| 1571 | * frame is about to be shifted in. The |
| 1572 | * header must be shifted prior to |
| 1573 | * shifting the first cascaded frame. |
| 1574 | */ |
| 1575 | if (g_usHeadDR > 0) { |
| 1576 | ispVMBypass(HDR, g_usHeadDR); |
| 1577 | sclock(); |
| 1578 | } |
| 1579 | } else { |
| 1580 | ispVMStateMachine(SHIFTDR); |
| 1581 | } |
| 1582 | } else { |
| 1583 | ispVMStateMachine(DRPAUSE); |
| 1584 | ispVMStateMachine(SHIFTDR); |
| 1585 | if (g_usHeadDR > 0) { |
| 1586 | ispVMBypass(HDR, g_usHeadDR); |
| 1587 | sclock(); |
| 1588 | } |
| 1589 | } |
| 1590 | } |
| 1591 | break; |
| 1592 | default: |
| 1593 | return VME_INVALID_FILE; |
| 1594 | } |
| 1595 | |
| 1596 | cRetCode = ispVMDataCode(); |
| 1597 | |
| 1598 | if (cRetCode != 0) { |
| 1599 | return VME_INVALID_FILE; |
| 1600 | } |
| 1601 | |
| 1602 | #ifdef DEBUG |
| 1603 | printf("%d ", g_usiDataSize); |
| 1604 | |
| 1605 | if (g_usDataType & TDI_DATA) { |
| 1606 | puts("TDI "); |
| 1607 | PrintData(g_usiDataSize, g_pucInData); |
| 1608 | } |
| 1609 | |
| 1610 | if (g_usDataType & TDO_DATA) { |
| 1611 | puts("\n\t\tTDO "); |
| 1612 | PrintData(g_usiDataSize, g_pucOutData); |
| 1613 | } |
| 1614 | |
| 1615 | if (g_usDataType & MASK_DATA) { |
| 1616 | puts("\n\t\tMASK "); |
| 1617 | PrintData(g_usiDataSize, g_pucOutMaskData); |
| 1618 | } |
| 1619 | |
| 1620 | if (g_usDataType & DMASK_DATA) { |
| 1621 | puts("\n\t\tDMASK "); |
| 1622 | PrintData(g_usiDataSize, g_pucOutDMaskData); |
| 1623 | } |
| 1624 | |
| 1625 | puts(";\n"); |
| 1626 | #endif /* DEBUG */ |
| 1627 | |
| 1628 | if (g_usDataType & TDO_DATA || g_usDataType & DMASK_DATA) { |
| 1629 | if (g_usDataType & DMASK_DATA) { |
| 1630 | cRetCode = ispVMReadandSave(g_usiDataSize); |
| 1631 | if (!cRetCode) { |
| 1632 | if (g_usTailDR > 0) { |
| 1633 | sclock(); |
| 1634 | ispVMBypass(TDR, g_usTailDR); |
| 1635 | } |
| 1636 | ispVMStateMachine(DRPAUSE); |
| 1637 | ispVMStateMachine(SHIFTDR); |
| 1638 | if (g_usHeadDR > 0) { |
| 1639 | ispVMBypass(HDR, g_usHeadDR); |
| 1640 | sclock(); |
| 1641 | } |
| 1642 | for (iDataIndex = 0; |
| 1643 | iDataIndex < g_usiDataSize / 8 + 1; |
| 1644 | iDataIndex++) |
| 1645 | g_pucInData[iDataIndex] = |
| 1646 | g_pucOutData[iDataIndex]; |
| 1647 | g_usDataType &= ~(TDO_DATA + DMASK_DATA); |
| 1648 | cRetCode = ispVMSend(g_usiDataSize); |
| 1649 | } |
| 1650 | } else { |
| 1651 | cRetCode = ispVMRead(g_usiDataSize); |
| 1652 | if (cRetCode == -1 && g_cVendor == XILINX) { |
| 1653 | for (iReadLoop = 0; iReadLoop < 30; |
| 1654 | iReadLoop++) { |
| 1655 | cRetCode = ispVMRead(g_usiDataSize); |
| 1656 | if (!cRetCode) { |
| 1657 | break; |
| 1658 | } else { |
| 1659 | /* Always DRPAUSE */ |
| 1660 | ispVMStateMachine(DRPAUSE); |
| 1661 | /* |
| 1662 | * Bypass other devices |
| 1663 | * when appropriate |
| 1664 | */ |
| 1665 | ispVMBypass(TDR, g_usTailDR); |
| 1666 | ispVMStateMachine(g_ucEndDR); |
| 1667 | ispVMStateMachine(IDLE); |
| 1668 | ispVMDelay(1000); |
| 1669 | } |
| 1670 | } |
| 1671 | } |
| 1672 | } |
| 1673 | } else { /*TDI only*/ |
| 1674 | cRetCode = ispVMSend(g_usiDataSize); |
| 1675 | } |
| 1676 | |
| 1677 | /*transfer the input data to the output buffer for the next verify*/ |
| 1678 | if ((g_usDataType & EXPRESS) || (a_cCode == SDR)) { |
| 1679 | if (g_pucOutData) { |
| 1680 | for (iDataIndex = 0; iDataIndex < g_usiDataSize / 8 + 1; |
| 1681 | iDataIndex++) |
| 1682 | g_pucOutData[iDataIndex] = |
| 1683 | g_pucInData[iDataIndex]; |
| 1684 | } |
| 1685 | } |
| 1686 | |
| 1687 | switch (a_cCode) { |
| 1688 | case SIR: |
| 1689 | /* 1/15/04 If not performing cascading, then shift ENDIR */ |
| 1690 | if (!(g_usFlowControl & CASCADE)) { |
| 1691 | if (g_usTailIR > 0) { |
| 1692 | sclock(); |
| 1693 | ispVMBypass(TIR, g_usTailIR); |
| 1694 | } |
| 1695 | ispVMStateMachine(g_ucEndIR); |
| 1696 | } |
| 1697 | break; |
| 1698 | case XSDR: |
| 1699 | case SDR: |
| 1700 | /* 1/15/04 If not performing cascading, then shift ENDDR */ |
| 1701 | if (!(g_usFlowControl & CASCADE)) { |
| 1702 | if (g_usTailDR > 0) { |
| 1703 | sclock(); |
| 1704 | ispVMBypass(TDR, g_usTailDR); |
| 1705 | } |
| 1706 | ispVMStateMachine(g_ucEndDR); |
| 1707 | } |
| 1708 | break; |
| 1709 | default: |
| 1710 | break; |
| 1711 | } |
| 1712 | |
| 1713 | return cRetCode; |
| 1714 | } |
| 1715 | |
| 1716 | /* |
| 1717 | * |
| 1718 | * ispVMAmble |
| 1719 | * |
| 1720 | * This routine is to extract Header and Trailer parameter for SIR and |
| 1721 | * SDR operations. |
| 1722 | * |
| 1723 | * The Header and Trailer parameter are the pre-amble and post-amble bit |
| 1724 | * stream need to be shifted into TDI or out of TDO of the devices. Mostly |
| 1725 | * is for the purpose of bypassing the leading or trailing devices. ispVM |
| 1726 | * supports only shifting data into TDI to bypass the devices. |
| 1727 | * |
| 1728 | * For a single device, the header and trailer parameters are all set to 0 |
| 1729 | * as default by ispVM. If it is for multiple devices, the header and trailer |
| 1730 | * value will change as specified by the VME file. |
| 1731 | * |
| 1732 | */ |
| 1733 | |
| 1734 | signed char ispVMAmble(signed char Code) |
| 1735 | { |
| 1736 | signed char compress = 0; |
| 1737 | /* 09/11/07 NN Type cast mismatch variables */ |
| 1738 | g_usiDataSize = (unsigned short)ispVMDataSize(); |
| 1739 | |
| 1740 | #ifdef DEBUG |
| 1741 | printf("%d", g_usiDataSize); |
| 1742 | #endif /* DEBUG */ |
| 1743 | |
| 1744 | if (g_usiDataSize) { |
| 1745 | |
| 1746 | /* |
| 1747 | * Discard the TDI byte and set the compression bit in the data |
| 1748 | * type register to false if compression is set because TDI data |
| 1749 | * after HIR/HDR/TIR/TDR is not compressed. |
| 1750 | */ |
| 1751 | |
| 1752 | GetByte(); |
| 1753 | if (g_usDataType & COMPRESS) { |
| 1754 | g_usDataType &= ~(COMPRESS); |
| 1755 | compress = 1; |
| 1756 | } |
| 1757 | } |
| 1758 | |
| 1759 | switch (Code) { |
| 1760 | case HIR: |
| 1761 | |
| 1762 | /* |
| 1763 | * Store the maximum size of the HIR buffer. |
| 1764 | * Used to convert VME to HEX. |
| 1765 | */ |
| 1766 | |
| 1767 | if (g_usiDataSize > g_usHIRSize) { |
| 1768 | g_usHIRSize = g_usiDataSize; |
| 1769 | } |
| 1770 | |
| 1771 | /* |
| 1772 | * Assign the HIR value and allocate memory. |
| 1773 | */ |
| 1774 | |
| 1775 | g_usHeadIR = g_usiDataSize; |
| 1776 | if (g_usHeadIR) { |
| 1777 | ispVMMemManager(HIR, g_usHeadIR); |
| 1778 | ispVMData(g_pucHIRData); |
| 1779 | |
| 1780 | #ifdef DEBUG |
| 1781 | puts(" TDI "); |
| 1782 | PrintData(g_usHeadIR, g_pucHIRData); |
| 1783 | #endif /* DEBUG */ |
| 1784 | } |
| 1785 | break; |
| 1786 | case TIR: |
| 1787 | |
| 1788 | /* |
| 1789 | * Store the maximum size of the TIR buffer. |
| 1790 | * Used to convert VME to HEX. |
| 1791 | */ |
| 1792 | |
| 1793 | if (g_usiDataSize > g_usTIRSize) { |
| 1794 | g_usTIRSize = g_usiDataSize; |
| 1795 | } |
| 1796 | |
| 1797 | /* |
| 1798 | * Assign the TIR value and allocate memory. |
| 1799 | */ |
| 1800 | |
| 1801 | g_usTailIR = g_usiDataSize; |
| 1802 | if (g_usTailIR) { |
| 1803 | ispVMMemManager(TIR, g_usTailIR); |
| 1804 | ispVMData(g_pucTIRData); |
| 1805 | |
| 1806 | #ifdef DEBUG |
| 1807 | puts(" TDI "); |
| 1808 | PrintData(g_usTailIR, g_pucTIRData); |
| 1809 | #endif /* DEBUG */ |
| 1810 | } |
| 1811 | break; |
| 1812 | case HDR: |
| 1813 | |
| 1814 | /* |
| 1815 | * Store the maximum size of the HDR buffer. |
| 1816 | * Used to convert VME to HEX. |
| 1817 | */ |
| 1818 | |
| 1819 | if (g_usiDataSize > g_usHDRSize) { |
| 1820 | g_usHDRSize = g_usiDataSize; |
| 1821 | } |
| 1822 | |
| 1823 | /* |
| 1824 | * Assign the HDR value and allocate memory. |
| 1825 | * |
| 1826 | */ |
| 1827 | |
| 1828 | g_usHeadDR = g_usiDataSize; |
| 1829 | if (g_usHeadDR) { |
| 1830 | ispVMMemManager(HDR, g_usHeadDR); |
| 1831 | ispVMData(g_pucHDRData); |
| 1832 | |
| 1833 | #ifdef DEBUG |
| 1834 | puts(" TDI "); |
| 1835 | PrintData(g_usHeadDR, g_pucHDRData); |
| 1836 | #endif /* DEBUG */ |
| 1837 | } |
| 1838 | break; |
| 1839 | case TDR: |
| 1840 | |
| 1841 | /* |
| 1842 | * Store the maximum size of the TDR buffer. |
| 1843 | * Used to convert VME to HEX. |
| 1844 | */ |
| 1845 | |
| 1846 | if (g_usiDataSize > g_usTDRSize) { |
| 1847 | g_usTDRSize = g_usiDataSize; |
| 1848 | } |
| 1849 | |
| 1850 | /* |
| 1851 | * Assign the TDR value and allocate memory. |
| 1852 | * |
| 1853 | */ |
| 1854 | |
| 1855 | g_usTailDR = g_usiDataSize; |
| 1856 | if (g_usTailDR) { |
| 1857 | ispVMMemManager(TDR, g_usTailDR); |
| 1858 | ispVMData(g_pucTDRData); |
| 1859 | |
| 1860 | #ifdef DEBUG |
| 1861 | puts(" TDI "); |
| 1862 | PrintData(g_usTailDR, g_pucTDRData); |
| 1863 | #endif /* DEBUG */ |
| 1864 | } |
| 1865 | break; |
| 1866 | default: |
| 1867 | break; |
| 1868 | } |
| 1869 | |
| 1870 | /* |
| 1871 | * |
| 1872 | * Re-enable compression if it was previously set. |
| 1873 | * |
| 1874 | **/ |
| 1875 | |
| 1876 | if (compress) { |
| 1877 | g_usDataType |= COMPRESS; |
| 1878 | } |
| 1879 | |
| 1880 | if (g_usiDataSize) { |
| 1881 | Code = GetByte(); |
| 1882 | if (Code == CONTINUE) { |
| 1883 | return 0; |
| 1884 | } else { |
| 1885 | |
| 1886 | /* |
| 1887 | * Encountered invalid opcode. |
| 1888 | */ |
| 1889 | |
| 1890 | return VME_INVALID_FILE; |
| 1891 | } |
| 1892 | } |
| 1893 | |
| 1894 | return 0; |
| 1895 | } |
| 1896 | |
| 1897 | /* |
| 1898 | * |
| 1899 | * ispVMLoop |
| 1900 | * |
| 1901 | * Perform the function call upon by the REPEAT opcode. |
| 1902 | * Memory is to be allocated to store the entire loop from REPEAT to ENDLOOP. |
| 1903 | * After the loop is stored then execution begin. The REPEATLOOP flag is set |
| 1904 | * on the g_usFlowControl register to indicate the repeat loop is in session |
| 1905 | * and therefore fetch opcode from the memory instead of from the file. |
| 1906 | * |
| 1907 | */ |
| 1908 | |
| 1909 | signed char ispVMLoop(unsigned short a_usLoopCount) |
| 1910 | { |
| 1911 | /* 09/11/07 NN added local variables initialization */ |
| 1912 | signed char cRetCode = 0; |
| 1913 | unsigned short iHeapIndex = 0; |
| 1914 | unsigned short iLoopIndex = 0; |
| 1915 | |
| 1916 | g_usShiftValue = 0; |
| 1917 | for (iHeapIndex = 0; iHeapIndex < g_iHEAPSize; iHeapIndex++) { |
| 1918 | g_pucHeapMemory[iHeapIndex] = GetByte(); |
| 1919 | } |
| 1920 | |
| 1921 | if (g_pucHeapMemory[iHeapIndex - 1] != ENDLOOP) { |
| 1922 | return VME_INVALID_FILE; |
| 1923 | } |
| 1924 | |
| 1925 | g_usFlowControl |= REPEATLOOP; |
| 1926 | g_usDataType |= HEAP_IN; |
| 1927 | |
| 1928 | for (iLoopIndex = 0; iLoopIndex < a_usLoopCount; iLoopIndex++) { |
| 1929 | g_iHeapCounter = 0; |
| 1930 | cRetCode = ispVMCode(); |
| 1931 | g_usRepeatLoops++; |
| 1932 | if (cRetCode < 0) { |
| 1933 | break; |
| 1934 | } |
| 1935 | } |
| 1936 | |
| 1937 | g_usDataType &= ~(HEAP_IN); |
| 1938 | g_usFlowControl &= ~(REPEATLOOP); |
| 1939 | return cRetCode; |
| 1940 | } |
| 1941 | |
| 1942 | /* |
| 1943 | * |
| 1944 | * ispVMBitShift |
| 1945 | * |
| 1946 | * Shift the TDI stream left or right by the number of bits. The data in |
| 1947 | * *g_pucInData is of the VME format, so the actual shifting is the reverse of |
| 1948 | * IEEE 1532 or SVF format. |
| 1949 | * |
| 1950 | */ |
| 1951 | |
| 1952 | signed char ispVMBitShift(signed char mode, unsigned short bits) |
| 1953 | { |
| 1954 | /* 09/11/07 NN added local variables initialization */ |
| 1955 | unsigned short i = 0; |
| 1956 | unsigned short size = 0; |
| 1957 | unsigned short tmpbits = 0; |
| 1958 | |
| 1959 | if (g_usiDataSize % 8 > 0) { |
| 1960 | /* 09/11/07 NN Type cast mismatch variables */ |
| 1961 | size = (unsigned short)(g_usiDataSize / 8 + 1); |
| 1962 | } else { |
| 1963 | /* 09/11/07 NN Type cast mismatch variables */ |
| 1964 | size = (unsigned short)(g_usiDataSize / 8); |
| 1965 | } |
| 1966 | |
| 1967 | switch (mode) { |
| 1968 | case SHR: |
| 1969 | for (i = 0; i < size; i++) { |
| 1970 | if (g_pucInData[i] != 0) { |
| 1971 | tmpbits = bits; |
| 1972 | while (tmpbits > 0) { |
| 1973 | g_pucInData[i] <<= 1; |
| 1974 | if (g_pucInData[i] == 0) { |
| 1975 | i--; |
| 1976 | g_pucInData[i] = 1; |
| 1977 | } |
| 1978 | tmpbits--; |
| 1979 | } |
| 1980 | } |
| 1981 | } |
| 1982 | break; |
| 1983 | case SHL: |
| 1984 | for (i = 0; i < size; i++) { |
| 1985 | if (g_pucInData[i] != 0) { |
| 1986 | tmpbits = bits; |
| 1987 | while (tmpbits > 0) { |
| 1988 | g_pucInData[i] >>= 1; |
| 1989 | if (g_pucInData[i] == 0) { |
| 1990 | i--; |
| 1991 | g_pucInData[i] = 8; |
| 1992 | } |
| 1993 | tmpbits--; |
| 1994 | } |
| 1995 | } |
| 1996 | } |
| 1997 | break; |
| 1998 | default: |
| 1999 | return VME_INVALID_FILE; |
| 2000 | } |
| 2001 | |
| 2002 | return 0; |
| 2003 | } |
| 2004 | |
| 2005 | /* |
| 2006 | * |
| 2007 | * ispVMComment |
| 2008 | * |
| 2009 | * Displays the SVF comments. |
| 2010 | * |
| 2011 | */ |
| 2012 | |
| 2013 | void ispVMComment(unsigned short a_usCommentSize) |
| 2014 | { |
| 2015 | char cCurByte = 0; |
| 2016 | for (; a_usCommentSize > 0; a_usCommentSize--) { |
| 2017 | /* |
| 2018 | * |
| 2019 | * Print character to the terminal. |
| 2020 | * |
| 2021 | **/ |
| 2022 | cCurByte = GetByte(); |
| 2023 | vme_out_char(cCurByte); |
| 2024 | } |
| 2025 | cCurByte = '\n'; |
| 2026 | vme_out_char(cCurByte); |
| 2027 | } |
| 2028 | |
| 2029 | /* |
| 2030 | * |
| 2031 | * ispVMHeader |
| 2032 | * |
| 2033 | * Iterate the length of the header and discard it. |
| 2034 | * |
| 2035 | */ |
| 2036 | |
| 2037 | void ispVMHeader(unsigned short a_usHeaderSize) |
| 2038 | { |
| 2039 | for (; a_usHeaderSize > 0; a_usHeaderSize--) { |
| 2040 | GetByte(); |
| 2041 | } |
| 2042 | } |
| 2043 | |
| 2044 | /* |
| 2045 | * |
| 2046 | * ispVMCalculateCRC32 |
| 2047 | * |
| 2048 | * Calculate the 32-bit CRC. |
| 2049 | * |
| 2050 | */ |
| 2051 | |
| 2052 | void ispVMCalculateCRC32(unsigned char a_ucData) |
| 2053 | { |
| 2054 | /* 09/11/07 NN added local variables initialization */ |
| 2055 | unsigned char ucIndex = 0; |
| 2056 | unsigned char ucFlipData = 0; |
| 2057 | unsigned short usCRCTableEntry = 0; |
| 2058 | unsigned int crc_table[16] = { |
| 2059 | 0x0000, 0xCC01, 0xD801, |
| 2060 | 0x1400, 0xF001, 0x3C00, |
| 2061 | 0x2800, 0xE401, 0xA001, |
| 2062 | 0x6C00, 0x7800, 0xB401, |
| 2063 | 0x5000, 0x9C01, 0x8801, |
| 2064 | 0x4400 |
| 2065 | }; |
| 2066 | |
| 2067 | for (ucIndex = 0; ucIndex < 8; ucIndex++) { |
| 2068 | ucFlipData <<= 1; |
| 2069 | if (a_ucData & 0x01) { |
| 2070 | ucFlipData |= 0x01; |
| 2071 | } |
| 2072 | a_ucData >>= 1; |
| 2073 | } |
| 2074 | |
| 2075 | /* 09/11/07 NN Type cast mismatch variables */ |
| 2076 | usCRCTableEntry = (unsigned short)(crc_table[g_usCalculatedCRC & 0xF]); |
| 2077 | g_usCalculatedCRC = (unsigned short)((g_usCalculatedCRC >> 4) & 0x0FFF); |
| 2078 | g_usCalculatedCRC = (unsigned short)(g_usCalculatedCRC ^ |
| 2079 | usCRCTableEntry ^ crc_table[ucFlipData & 0xF]); |
| 2080 | usCRCTableEntry = (unsigned short)(crc_table[g_usCalculatedCRC & 0xF]); |
| 2081 | g_usCalculatedCRC = (unsigned short)((g_usCalculatedCRC >> 4) & 0x0FFF); |
| 2082 | g_usCalculatedCRC = (unsigned short)(g_usCalculatedCRC ^ |
| 2083 | usCRCTableEntry ^ crc_table[(ucFlipData >> 4) & 0xF]); |
| 2084 | } |
| 2085 | |
| 2086 | /* |
| 2087 | * |
| 2088 | * ispVMLCOUNT |
| 2089 | * |
| 2090 | * Process the intelligent programming loops. |
| 2091 | * |
| 2092 | */ |
| 2093 | |
| 2094 | signed char ispVMLCOUNT(unsigned short a_usCountSize) |
| 2095 | { |
| 2096 | unsigned short usContinue = 1; |
| 2097 | unsigned short usIntelBufferIndex = 0; |
| 2098 | unsigned short usCountIndex = 0; |
| 2099 | signed char cRetCode = 0; |
| 2100 | signed char cRepeatHeap = 0; |
| 2101 | signed char cOpcode = 0; |
| 2102 | unsigned char ucState = 0; |
| 2103 | unsigned short usDelay = 0; |
| 2104 | unsigned short usToggle = 0; |
| 2105 | unsigned char usByte = 0; |
| 2106 | |
| 2107 | g_usIntelBufferSize = (unsigned short)ispVMDataSize(); |
| 2108 | |
| 2109 | /* |
| 2110 | * Allocate memory for intel buffer. |
| 2111 | * |
| 2112 | */ |
| 2113 | |
| 2114 | ispVMMemManager(LHEAP, g_usIntelBufferSize); |
| 2115 | |
| 2116 | /* |
| 2117 | * Store the maximum size of the intelligent buffer. |
| 2118 | * Used to convert VME to HEX. |
| 2119 | */ |
| 2120 | |
| 2121 | if (g_usIntelBufferSize > g_usLCOUNTSize) { |
| 2122 | g_usLCOUNTSize = g_usIntelBufferSize; |
| 2123 | } |
| 2124 | |
| 2125 | /* |
| 2126 | * Copy intel data to the buffer. |
| 2127 | */ |
| 2128 | |
| 2129 | for (usIntelBufferIndex = 0; usIntelBufferIndex < g_usIntelBufferSize; |
| 2130 | usIntelBufferIndex++) { |
| 2131 | g_pucIntelBuffer[usIntelBufferIndex] = GetByte(); |
| 2132 | } |
| 2133 | |
| 2134 | /* |
| 2135 | * Set the data type register to get data from the intelligent |
| 2136 | * data buffer. |
| 2137 | */ |
| 2138 | |
| 2139 | g_usDataType |= LHEAP_IN; |
| 2140 | |
| 2141 | /* |
| 2142 | * |
| 2143 | * If the HEAP_IN flag is set, temporarily unset the flag so data will be |
| 2144 | * retrieved from the status buffer. |
| 2145 | * |
| 2146 | **/ |
| 2147 | |
| 2148 | if (g_usDataType & HEAP_IN) { |
| 2149 | g_usDataType &= ~HEAP_IN; |
| 2150 | cRepeatHeap = 1; |
| 2151 | } |
| 2152 | |
| 2153 | #ifdef DEBUG |
| 2154 | printf("LCOUNT %d;\n", a_usCountSize); |
| 2155 | #endif /* DEBUG */ |
| 2156 | |
| 2157 | /* |
| 2158 | * Iterate through the intelligent programming command. |
| 2159 | */ |
| 2160 | |
| 2161 | for (usCountIndex = 0; usCountIndex < a_usCountSize; usCountIndex++) { |
| 2162 | |
| 2163 | /* |
| 2164 | * |
| 2165 | * Initialize the intel data index to 0 before each iteration. |
| 2166 | * |
| 2167 | **/ |
| 2168 | |
| 2169 | g_usIntelDataIndex = 0; |
| 2170 | cOpcode = 0; |
| 2171 | ucState = 0; |
| 2172 | usDelay = 0; |
| 2173 | usToggle = 0; |
| 2174 | usByte = 0; |
| 2175 | usContinue = 1; |
| 2176 | |
| 2177 | /* |
| 2178 | * |
| 2179 | * Begin looping through all the VME opcodes. |
| 2180 | * |
| 2181 | */ |
| 2182 | /* |
| 2183 | * 4/1/09 Nguyen replaced the recursive function call codes on |
| 2184 | * the ispVMLCOUNT function |
| 2185 | * |
| 2186 | */ |
| 2187 | while (usContinue) { |
| 2188 | cOpcode = GetByte(); |
| 2189 | switch (cOpcode) { |
| 2190 | case HIR: |
| 2191 | case TIR: |
| 2192 | case HDR: |
| 2193 | case TDR: |
| 2194 | /* |
| 2195 | * Set the header/trailer of the device in order |
| 2196 | * to bypass successfully. |
| 2197 | */ |
| 2198 | |
| 2199 | ispVMAmble(cOpcode); |
| 2200 | break; |
| 2201 | case STATE: |
| 2202 | |
| 2203 | /* |
| 2204 | * Step the JTAG state machine. |
| 2205 | */ |
| 2206 | |
| 2207 | ucState = GetByte(); |
| 2208 | /* |
| 2209 | * Step the JTAG state machine to DRCAPTURE |
| 2210 | * to support Looping. |
| 2211 | */ |
| 2212 | |
| 2213 | if ((g_usDataType & LHEAP_IN) && |
| 2214 | (ucState == DRPAUSE) && |
| 2215 | (g_cCurrentJTAGState == ucState)) { |
| 2216 | ispVMStateMachine(DRCAPTURE); |
| 2217 | } |
| 2218 | ispVMStateMachine(ucState); |
| 2219 | #ifdef DEBUG |
| 2220 | printf("LDELAY %s ", GetState(ucState)); |
| 2221 | #endif /* DEBUG */ |
| 2222 | break; |
| 2223 | case SIR: |
| 2224 | #ifdef DEBUG |
| 2225 | printf("SIR "); |
| 2226 | #endif /* DEBUG */ |
| 2227 | /* |
| 2228 | * Shift in data into the device. |
| 2229 | */ |
| 2230 | |
| 2231 | cRetCode = ispVMShift(cOpcode); |
| 2232 | break; |
| 2233 | case SDR: |
| 2234 | |
| 2235 | #ifdef DEBUG |
| 2236 | printf("LSDR "); |
| 2237 | #endif /* DEBUG */ |
| 2238 | /* |
| 2239 | * Shift in data into the device. |
| 2240 | */ |
| 2241 | |
| 2242 | cRetCode = ispVMShift(cOpcode); |
| 2243 | break; |
| 2244 | case WAIT: |
| 2245 | |
| 2246 | /* |
| 2247 | * |
| 2248 | * Observe delay. |
| 2249 | * |
| 2250 | */ |
| 2251 | |
| 2252 | usDelay = (unsigned short)ispVMDataSize(); |
| 2253 | ispVMDelay(usDelay); |
| 2254 | |
| 2255 | #ifdef DEBUG |
| 2256 | if (usDelay & 0x8000) { |
| 2257 | |
| 2258 | /* |
| 2259 | * Since MSB is set, the delay time must |
| 2260 | * be decoded to millisecond. The |
| 2261 | * SVF2VME encodes the MSB to represent |
| 2262 | * millisecond. |
| 2263 | */ |
| 2264 | |
| 2265 | usDelay &= ~0x8000; |
| 2266 | printf("%.2E SEC;\n", |
| 2267 | (float) usDelay / 1000); |
| 2268 | } else { |
| 2269 | /* |
| 2270 | * Since MSB is not set, the delay time |
| 2271 | * is given as microseconds. |
| 2272 | */ |
| 2273 | |
| 2274 | printf("%.2E SEC;\n", |
| 2275 | (float) usDelay / 1000000); |
| 2276 | } |
| 2277 | #endif /* DEBUG */ |
| 2278 | break; |
| 2279 | case TCK: |
| 2280 | |
| 2281 | /* |
| 2282 | * Issue clock toggles. |
| 2283 | */ |
| 2284 | |
| 2285 | usToggle = (unsigned short)ispVMDataSize(); |
| 2286 | ispVMClocks(usToggle); |
| 2287 | |
| 2288 | #ifdef DEBUG |
| 2289 | printf("RUNTEST %d TCK;\n", usToggle); |
| 2290 | #endif /* DEBUG */ |
| 2291 | break; |
| 2292 | case ENDLOOP: |
| 2293 | |
| 2294 | /* |
| 2295 | * Exit point from processing loops. |
| 2296 | */ |
| 2297 | usContinue = 0; |
| 2298 | break; |
| 2299 | |
| 2300 | case COMMENT: |
| 2301 | |
| 2302 | /* |
| 2303 | * Display comment. |
| 2304 | */ |
| 2305 | |
| 2306 | ispVMComment((unsigned short) ispVMDataSize()); |
| 2307 | break; |
| 2308 | case ispEN: |
| 2309 | ucState = GetByte(); |
| 2310 | if ((ucState == ON) || (ucState == 0x01)) |
| 2311 | writePort(g_ucPinENABLE, 0x01); |
| 2312 | else |
| 2313 | writePort(g_ucPinENABLE, 0x00); |
| 2314 | ispVMDelay(1); |
| 2315 | break; |
| 2316 | case TRST: |
| 2317 | if (GetByte() == 0x01) |
| 2318 | writePort(g_ucPinTRST, 0x01); |
| 2319 | else |
| 2320 | writePort(g_ucPinTRST, 0x00); |
| 2321 | ispVMDelay(1); |
| 2322 | break; |
| 2323 | default: |
| 2324 | |
| 2325 | /* |
| 2326 | * Invalid opcode encountered. |
| 2327 | */ |
| 2328 | |
| 2329 | debug("\nINVALID OPCODE: 0x%.2X\n", cOpcode); |
| 2330 | |
| 2331 | return VME_INVALID_FILE; |
| 2332 | } |
| 2333 | } |
| 2334 | if (cRetCode >= 0) { |
| 2335 | /* |
| 2336 | * Break if intelligent programming is successful. |
| 2337 | */ |
| 2338 | |
| 2339 | break; |
| 2340 | } |
| 2341 | |
| 2342 | } |
| 2343 | /* |
| 2344 | * If HEAP_IN flag was temporarily disabled, |
| 2345 | * re-enable it before exiting |
| 2346 | */ |
| 2347 | |
| 2348 | if (cRepeatHeap) { |
| 2349 | g_usDataType |= HEAP_IN; |
| 2350 | } |
| 2351 | |
| 2352 | /* |
| 2353 | * Set the data type register to not get data from the |
| 2354 | * intelligent data buffer. |
| 2355 | */ |
| 2356 | |
| 2357 | g_usDataType &= ~LHEAP_IN; |
| 2358 | return cRetCode; |
| 2359 | } |
| 2360 | /* |
| 2361 | * |
| 2362 | * ispVMClocks |
| 2363 | * |
| 2364 | * Applies the specified number of pulses to TCK. |
| 2365 | * |
| 2366 | */ |
| 2367 | |
| 2368 | void ispVMClocks(unsigned short Clocks) |
| 2369 | { |
| 2370 | unsigned short iClockIndex = 0; |
| 2371 | for (iClockIndex = 0; iClockIndex < Clocks; iClockIndex++) { |
| 2372 | sclock(); |
| 2373 | } |
| 2374 | } |
| 2375 | |
| 2376 | /* |
| 2377 | * |
| 2378 | * ispVMBypass |
| 2379 | * |
| 2380 | * This procedure takes care of the HIR, HDR, TIR, TDR for the |
| 2381 | * purpose of putting the other devices into Bypass mode. The |
| 2382 | * current state is checked to find out if it is at DRPAUSE or |
| 2383 | * IRPAUSE. If it is at DRPAUSE, perform bypass register scan. |
| 2384 | * If it is at IRPAUSE, scan into instruction registers the bypass |
| 2385 | * instruction. |
| 2386 | * |
| 2387 | */ |
| 2388 | |
| 2389 | void ispVMBypass(signed char ScanType, unsigned short Bits) |
| 2390 | { |
| 2391 | /* 09/11/07 NN added local variables initialization */ |
| 2392 | unsigned short iIndex = 0; |
| 2393 | unsigned short iSourceIndex = 0; |
| 2394 | unsigned char cBitState = 0; |
| 2395 | unsigned char cCurByte = 0; |
| 2396 | unsigned char *pcSource = NULL; |
| 2397 | |
| 2398 | if (Bits <= 0) { |
| 2399 | return; |
| 2400 | } |
| 2401 | |
| 2402 | switch (ScanType) { |
| 2403 | case HIR: |
| 2404 | pcSource = g_pucHIRData; |
| 2405 | break; |
| 2406 | case TIR: |
| 2407 | pcSource = g_pucTIRData; |
| 2408 | break; |
| 2409 | case HDR: |
| 2410 | pcSource = g_pucHDRData; |
| 2411 | break; |
| 2412 | case TDR: |
| 2413 | pcSource = g_pucTDRData; |
| 2414 | break; |
| 2415 | default: |
| 2416 | break; |
| 2417 | } |
| 2418 | |
| 2419 | iSourceIndex = 0; |
| 2420 | cBitState = 0; |
| 2421 | for (iIndex = 0; iIndex < Bits - 1; iIndex++) { |
| 2422 | /* Scan instruction or bypass register */ |
| 2423 | if (iIndex % 8 == 0) { |
| 2424 | cCurByte = pcSource[iSourceIndex++]; |
| 2425 | } |
| 2426 | cBitState = (unsigned char) (((cCurByte << iIndex % 8) & 0x80) |
| 2427 | ? 0x01 : 0x00); |
| 2428 | writePort(g_ucPinTDI, cBitState); |
| 2429 | sclock(); |
| 2430 | } |
| 2431 | |
| 2432 | if (iIndex % 8 == 0) { |
| 2433 | cCurByte = pcSource[iSourceIndex++]; |
| 2434 | } |
| 2435 | |
| 2436 | cBitState = (unsigned char) (((cCurByte << iIndex % 8) & 0x80) |
| 2437 | ? 0x01 : 0x00); |
| 2438 | writePort(g_ucPinTDI, cBitState); |
| 2439 | } |
| 2440 | |
| 2441 | /* |
| 2442 | * |
| 2443 | * ispVMStateMachine |
| 2444 | * |
| 2445 | * This procedure steps all devices in the daisy chain from a given |
| 2446 | * JTAG state to the next desirable state. If the next state is TLR, |
| 2447 | * the JTAG state machine is brute forced into TLR by driving TMS |
| 2448 | * high and pulse TCK 6 times. |
| 2449 | * |
| 2450 | */ |
| 2451 | |
| 2452 | void ispVMStateMachine(signed char cNextJTAGState) |
| 2453 | { |
| 2454 | /* 09/11/07 NN added local variables initialization */ |
| 2455 | signed char cPathIndex = 0; |
| 2456 | signed char cStateIndex = 0; |
| 2457 | |
| 2458 | if ((g_cCurrentJTAGState == cNextJTAGState) && |
| 2459 | (cNextJTAGState != RESET)) { |
| 2460 | return; |
| 2461 | } |
| 2462 | |
| 2463 | for (cStateIndex = 0; cStateIndex < 25; cStateIndex++) { |
| 2464 | if ((g_cCurrentJTAGState == |
| 2465 | g_JTAGTransistions[cStateIndex].CurState) && |
| 2466 | (cNextJTAGState == |
| 2467 | g_JTAGTransistions[cStateIndex].NextState)) { |
| 2468 | break; |
| 2469 | } |
| 2470 | } |
| 2471 | |
| 2472 | g_cCurrentJTAGState = cNextJTAGState; |
| 2473 | for (cPathIndex = 0; |
| 2474 | cPathIndex < g_JTAGTransistions[cStateIndex].Pulses; |
| 2475 | cPathIndex++) { |
| 2476 | if ((g_JTAGTransistions[cStateIndex].Pattern << cPathIndex) |
| 2477 | & 0x80) { |
| 2478 | writePort(g_ucPinTMS, (unsigned char) 0x01); |
| 2479 | } else { |
| 2480 | writePort(g_ucPinTMS, (unsigned char) 0x00); |
| 2481 | } |
| 2482 | sclock(); |
| 2483 | } |
| 2484 | |
| 2485 | writePort(g_ucPinTDI, 0x00); |
| 2486 | writePort(g_ucPinTMS, 0x00); |
| 2487 | } |
| 2488 | |
| 2489 | /* |
| 2490 | * |
| 2491 | * ispVMStart |
| 2492 | * |
| 2493 | * Enable the port to the device and set the state to RESET (TLR). |
| 2494 | * |
| 2495 | */ |
| 2496 | |
| 2497 | void ispVMStart() |
| 2498 | { |
| 2499 | #ifdef DEBUG |
| 2500 | printf("// ISPVM EMBEDDED ADDED\n"); |
| 2501 | printf("STATE RESET;\n"); |
| 2502 | #endif |
| 2503 | g_usFlowControl = 0; |
| 2504 | g_usDataType = g_uiChecksumIndex = g_cCurrentJTAGState = 0; |
| 2505 | g_usHeadDR = g_usHeadIR = g_usTailDR = g_usTailIR = 0; |
| 2506 | g_usMaxSize = g_usShiftValue = g_usRepeatLoops = 0; |
| 2507 | g_usTDOSize = g_usMASKSize = g_usTDISize = 0; |
| 2508 | g_usDMASKSize = g_usLCOUNTSize = g_usHDRSize = 0; |
| 2509 | g_usTDRSize = g_usHIRSize = g_usTIRSize = g_usHeapSize = 0; |
| 2510 | g_pLVDSList = NULL; |
| 2511 | g_usLVDSPairCount = 0; |
| 2512 | previous_size = 0; |
| 2513 | |
| 2514 | ispVMStateMachine(RESET); /*step devices to RESET state*/ |
| 2515 | } |
| 2516 | |
| 2517 | /* |
| 2518 | * |
| 2519 | * ispVMEnd |
| 2520 | * |
| 2521 | * Set the state of devices to RESET to enable the devices and disable |
| 2522 | * the port. |
| 2523 | * |
| 2524 | */ |
| 2525 | |
| 2526 | void ispVMEnd() |
| 2527 | { |
| 2528 | #ifdef DEBUG |
| 2529 | printf("// ISPVM EMBEDDED ADDED\n"); |
| 2530 | printf("STATE RESET;\n"); |
| 2531 | printf("RUNTEST 1.00E-001 SEC;\n"); |
| 2532 | #endif |
| 2533 | |
| 2534 | ispVMStateMachine(RESET); /*step devices to RESET state */ |
| 2535 | ispVMDelay(1000); /*wake up devices*/ |
| 2536 | } |
| 2537 | |
| 2538 | /* |
| 2539 | * |
| 2540 | * ispVMSend |
| 2541 | * |
| 2542 | * Send the TDI data stream to devices. The data stream can be |
| 2543 | * instructions or data. |
| 2544 | * |
| 2545 | */ |
| 2546 | |
| 2547 | signed char ispVMSend(unsigned short a_usiDataSize) |
| 2548 | { |
| 2549 | /* 09/11/07 NN added local variables initialization */ |
| 2550 | unsigned short iIndex = 0; |
| 2551 | unsigned short iInDataIndex = 0; |
| 2552 | unsigned char cCurByte = 0; |
| 2553 | unsigned char cBitState = 0; |
| 2554 | |
| 2555 | for (iIndex = 0; iIndex < a_usiDataSize - 1; iIndex++) { |
| 2556 | if (iIndex % 8 == 0) { |
| 2557 | cCurByte = g_pucInData[iInDataIndex++]; |
| 2558 | } |
| 2559 | cBitState = (unsigned char)(((cCurByte << iIndex % 8) & 0x80) |
| 2560 | ? 0x01 : 0x00); |
| 2561 | writePort(g_ucPinTDI, cBitState); |
| 2562 | sclock(); |
| 2563 | } |
| 2564 | |
| 2565 | if (iIndex % 8 == 0) { |
| 2566 | /* Take care of the last bit */ |
| 2567 | cCurByte = g_pucInData[iInDataIndex]; |
| 2568 | } |
| 2569 | |
| 2570 | cBitState = (unsigned char) (((cCurByte << iIndex % 8) & 0x80) |
| 2571 | ? 0x01 : 0x00); |
| 2572 | |
| 2573 | writePort(g_ucPinTDI, cBitState); |
| 2574 | if (g_usFlowControl & CASCADE) { |
| 2575 | /*1/15/04 Clock in last bit for the first n-1 cascaded frames */ |
| 2576 | sclock(); |
| 2577 | } |
| 2578 | |
| 2579 | return 0; |
| 2580 | } |
| 2581 | |
| 2582 | /* |
| 2583 | * |
| 2584 | * ispVMRead |
| 2585 | * |
| 2586 | * Read the data stream from devices and verify. |
| 2587 | * |
| 2588 | */ |
| 2589 | |
| 2590 | signed char ispVMRead(unsigned short a_usiDataSize) |
| 2591 | { |
| 2592 | /* 09/11/07 NN added local variables initialization */ |
| 2593 | unsigned short usDataSizeIndex = 0; |
| 2594 | unsigned short usErrorCount = 0; |
| 2595 | unsigned short usLastBitIndex = 0; |
| 2596 | unsigned char cDataByte = 0; |
| 2597 | unsigned char cMaskByte = 0; |
| 2598 | unsigned char cInDataByte = 0; |
| 2599 | unsigned char cCurBit = 0; |
| 2600 | unsigned char cByteIndex = 0; |
| 2601 | unsigned short usBufferIndex = 0; |
| 2602 | unsigned char ucDisplayByte = 0x00; |
| 2603 | unsigned char ucDisplayFlag = 0x01; |
| 2604 | char StrChecksum[256] = {0}; |
| 2605 | unsigned char g_usCalculateChecksum = 0x00; |
| 2606 | |
| 2607 | /* 09/11/07 NN Type cast mismatch variables */ |
| 2608 | usLastBitIndex = (unsigned short)(a_usiDataSize - 1); |
| 2609 | |
| 2610 | #ifndef DEBUG |
| 2611 | /* |
| 2612 | * If mask is not all zeros, then set the display flag to 0x00, |
| 2613 | * otherwise it shall be set to 0x01 to indicate that data read |
| 2614 | * from the device shall be displayed. If DEBUG is defined, |
| 2615 | * always display data. |
| 2616 | */ |
| 2617 | |
| 2618 | for (usDataSizeIndex = 0; usDataSizeIndex < (a_usiDataSize + 7) / 8; |
| 2619 | usDataSizeIndex++) { |
| 2620 | if (g_usDataType & MASK_DATA) { |
| 2621 | if (g_pucOutMaskData[usDataSizeIndex] != 0x00) { |
| 2622 | ucDisplayFlag = 0x00; |
| 2623 | break; |
| 2624 | } |
| 2625 | } else if (g_usDataType & CMASK_DATA) { |
| 2626 | g_usCalculateChecksum = 0x01; |
| 2627 | ucDisplayFlag = 0x00; |
| 2628 | break; |
| 2629 | } else { |
| 2630 | ucDisplayFlag = 0x00; |
| 2631 | break; |
| 2632 | } |
| 2633 | } |
| 2634 | #endif /* DEBUG */ |
| 2635 | |
| 2636 | /* |
| 2637 | * |
| 2638 | * Begin shifting data in and out of the device. |
| 2639 | * |
| 2640 | **/ |
| 2641 | |
| 2642 | for (usDataSizeIndex = 0; usDataSizeIndex < a_usiDataSize; |
| 2643 | usDataSizeIndex++) { |
| 2644 | if (cByteIndex == 0) { |
| 2645 | |
| 2646 | /* |
| 2647 | * Grab byte from TDO buffer. |
| 2648 | */ |
| 2649 | |
| 2650 | if (g_usDataType & TDO_DATA) { |
| 2651 | cDataByte = g_pucOutData[usBufferIndex]; |
| 2652 | } |
| 2653 | |
| 2654 | /* |
| 2655 | * Grab byte from MASK buffer. |
| 2656 | */ |
| 2657 | |
| 2658 | if (g_usDataType & MASK_DATA) { |
| 2659 | cMaskByte = g_pucOutMaskData[usBufferIndex]; |
| 2660 | } else { |
| 2661 | cMaskByte = 0xFF; |
| 2662 | } |
| 2663 | |
| 2664 | /* |
| 2665 | * Grab byte from CMASK buffer. |
| 2666 | */ |
| 2667 | |
| 2668 | if (g_usDataType & CMASK_DATA) { |
| 2669 | cMaskByte = 0x00; |
| 2670 | g_usCalculateChecksum = 0x01; |
| 2671 | } |
| 2672 | |
| 2673 | /* |
| 2674 | * Grab byte from TDI buffer. |
| 2675 | */ |
| 2676 | |
| 2677 | if (g_usDataType & TDI_DATA) { |
| 2678 | cInDataByte = g_pucInData[usBufferIndex]; |
| 2679 | } |
| 2680 | |
| 2681 | usBufferIndex++; |
| 2682 | } |
| 2683 | |
| 2684 | cCurBit = readPort(); |
| 2685 | |
| 2686 | if (ucDisplayFlag) { |
| 2687 | ucDisplayByte <<= 1; |
| 2688 | ucDisplayByte |= cCurBit; |
| 2689 | } |
| 2690 | |
| 2691 | /* |
| 2692 | * Check if data read from port matches with expected TDO. |
| 2693 | */ |
| 2694 | |
| 2695 | if (g_usDataType & TDO_DATA) { |
| 2696 | /* 08/28/08 NN Added Calculate checksum support. */ |
| 2697 | if (g_usCalculateChecksum) { |
| 2698 | if (cCurBit == 0x01) |
| 2699 | g_usChecksum += |
| 2700 | (1 << (g_uiChecksumIndex % 8)); |
| 2701 | g_uiChecksumIndex++; |
| 2702 | } else { |
| 2703 | if ((((cMaskByte << cByteIndex) & 0x80) |
| 2704 | ? 0x01 : 0x00)) { |
| 2705 | if (cCurBit != (unsigned char) |
| 2706 | (((cDataByte << cByteIndex) & 0x80) |
| 2707 | ? 0x01 : 0x00)) { |
| 2708 | usErrorCount++; |
| 2709 | } |
| 2710 | } |
| 2711 | } |
| 2712 | } |
| 2713 | |
| 2714 | /* |
| 2715 | * Write TDI data to the port. |
| 2716 | */ |
| 2717 | |
| 2718 | writePort(g_ucPinTDI, |
| 2719 | (unsigned char)(((cInDataByte << cByteIndex) & 0x80) |
| 2720 | ? 0x01 : 0x00)); |
| 2721 | |
| 2722 | if (usDataSizeIndex < usLastBitIndex) { |
| 2723 | |
| 2724 | /* |
| 2725 | * Clock data out from the data shift register. |
| 2726 | */ |
| 2727 | |
| 2728 | sclock(); |
| 2729 | } else if (g_usFlowControl & CASCADE) { |
| 2730 | |
| 2731 | /* |
| 2732 | * Clock in last bit for the first N - 1 cascaded frames |
| 2733 | */ |
| 2734 | |
| 2735 | sclock(); |
| 2736 | } |
| 2737 | |
| 2738 | /* |
| 2739 | * Increment the byte index. If it exceeds 7, then reset it back |
| 2740 | * to zero. |
| 2741 | */ |
| 2742 | |
| 2743 | cByteIndex++; |
| 2744 | if (cByteIndex >= 8) { |
| 2745 | if (ucDisplayFlag) { |
| 2746 | |
| 2747 | /* |
| 2748 | * Store displayed data in the TDO buffer. By reusing |
| 2749 | * the TDO buffer to store displayed data, there is no |
| 2750 | * need to allocate a buffer simply to hold display |
| 2751 | * data. This will not cause any false verification |
| 2752 | * errors because the true TDO byte has already |
| 2753 | * been consumed. |
| 2754 | */ |
| 2755 | |
| 2756 | g_pucOutData[usBufferIndex - 1] = ucDisplayByte; |
| 2757 | ucDisplayByte = 0; |
| 2758 | } |
| 2759 | |
| 2760 | cByteIndex = 0; |
| 2761 | } |
| 2762 | /* 09/12/07 Nguyen changed to display the 1 bit expected data */ |
| 2763 | else if (a_usiDataSize == 1) { |
| 2764 | if (ucDisplayFlag) { |
| 2765 | |
| 2766 | /* |
| 2767 | * Store displayed data in the TDO buffer. |
| 2768 | * By reusing the TDO buffer to store displayed |
| 2769 | * data, there is no need to allocate |
| 2770 | * a buffer simply to hold display data. This |
| 2771 | * will not cause any false verification errors |
| 2772 | * because the true TDO byte has already |
| 2773 | * been consumed. |
| 2774 | */ |
| 2775 | |
| 2776 | /* |
| 2777 | * Flip ucDisplayByte and store it in cDataByte. |
| 2778 | */ |
| 2779 | cDataByte = 0x00; |
| 2780 | for (usBufferIndex = 0; usBufferIndex < 8; |
| 2781 | usBufferIndex++) { |
| 2782 | cDataByte <<= 1; |
| 2783 | if (ucDisplayByte & 0x01) { |
| 2784 | cDataByte |= 0x01; |
| 2785 | } |
| 2786 | ucDisplayByte >>= 1; |
| 2787 | } |
| 2788 | g_pucOutData[0] = cDataByte; |
| 2789 | ucDisplayByte = 0; |
| 2790 | } |
| 2791 | |
| 2792 | cByteIndex = 0; |
| 2793 | } |
| 2794 | } |
| 2795 | |
| 2796 | if (ucDisplayFlag) { |
| 2797 | |
| 2798 | #ifdef DEBUG |
| 2799 | debug("RECEIVED TDO ("); |
| 2800 | #else |
| 2801 | vme_out_string("Display Data: 0x"); |
| 2802 | #endif /* DEBUG */ |
| 2803 | |
| 2804 | /* 09/11/07 NN Type cast mismatch variables */ |
| 2805 | for (usDataSizeIndex = (unsigned short) |
| 2806 | ((a_usiDataSize + 7) / 8); |
| 2807 | usDataSizeIndex > 0 ; usDataSizeIndex--) { |
| 2808 | cMaskByte = g_pucOutData[usDataSizeIndex - 1]; |
| 2809 | cDataByte = 0x00; |
| 2810 | |
| 2811 | /* |
| 2812 | * Flip cMaskByte and store it in cDataByte. |
| 2813 | */ |
| 2814 | |
| 2815 | for (usBufferIndex = 0; usBufferIndex < 8; |
| 2816 | usBufferIndex++) { |
| 2817 | cDataByte <<= 1; |
| 2818 | if (cMaskByte & 0x01) { |
| 2819 | cDataByte |= 0x01; |
| 2820 | } |
| 2821 | cMaskByte >>= 1; |
| 2822 | } |
| 2823 | #ifdef DEBUG |
| 2824 | printf("%.2X", cDataByte); |
| 2825 | if ((((a_usiDataSize + 7) / 8) - usDataSizeIndex) |
| 2826 | % 40 == 39) { |
| 2827 | printf("\n\t\t"); |
| 2828 | } |
| 2829 | #else |
| 2830 | vme_out_hex(cDataByte); |
| 2831 | #endif /* DEBUG */ |
| 2832 | } |
| 2833 | |
| 2834 | #ifdef DEBUG |
| 2835 | printf(")\n\n"); |
| 2836 | #else |
| 2837 | vme_out_string("\n\n"); |
| 2838 | #endif /* DEBUG */ |
| 2839 | /* 09/02/08 Nguyen changed to display the data Checksum */ |
| 2840 | if (g_usChecksum != 0) { |
| 2841 | g_usChecksum &= 0xFFFF; |
| 2842 | sprintf(StrChecksum, "Data Checksum: %.4lX\n\n", |
| 2843 | g_usChecksum); |
| 2844 | vme_out_string(StrChecksum); |
| 2845 | g_usChecksum = 0; |
| 2846 | } |
| 2847 | } |
| 2848 | |
| 2849 | if (usErrorCount > 0) { |
| 2850 | if (g_usFlowControl & VERIFYUES) { |
| 2851 | vme_out_string( |
| 2852 | "USERCODE verification failed. " |
| 2853 | "Continue programming......\n\n"); |
| 2854 | g_usFlowControl &= ~(VERIFYUES); |
| 2855 | return 0; |
| 2856 | } else { |
| 2857 | |
| 2858 | #ifdef DEBUG |
| 2859 | printf("TOTAL ERRORS: %d\n", usErrorCount); |
| 2860 | #endif /* DEBUG */ |
| 2861 | |
| 2862 | return VME_VERIFICATION_FAILURE; |
| 2863 | } |
| 2864 | } else { |
| 2865 | if (g_usFlowControl & VERIFYUES) { |
| 2866 | vme_out_string("USERCODE verification passed. " |
| 2867 | "Programming aborted.\n\n"); |
| 2868 | g_usFlowControl &= ~(VERIFYUES); |
| 2869 | return 1; |
| 2870 | } else { |
| 2871 | return 0; |
| 2872 | } |
| 2873 | } |
| 2874 | } |
| 2875 | |
| 2876 | /* |
| 2877 | * |
| 2878 | * ispVMReadandSave |
| 2879 | * |
| 2880 | * Support dynamic I/O. |
| 2881 | * |
| 2882 | */ |
| 2883 | |
| 2884 | signed char ispVMReadandSave(unsigned short int a_usiDataSize) |
| 2885 | { |
| 2886 | /* 09/11/07 NN added local variables initialization */ |
| 2887 | unsigned short int usDataSizeIndex = 0; |
| 2888 | unsigned short int usLastBitIndex = 0; |
| 2889 | unsigned short int usBufferIndex = 0; |
| 2890 | unsigned short int usOutBitIndex = 0; |
| 2891 | unsigned short int usLVDSIndex = 0; |
| 2892 | unsigned char cDataByte = 0; |
| 2893 | unsigned char cDMASKByte = 0; |
| 2894 | unsigned char cInDataByte = 0; |
| 2895 | unsigned char cCurBit = 0; |
| 2896 | unsigned char cByteIndex = 0; |
| 2897 | signed char cLVDSByteIndex = 0; |
| 2898 | |
| 2899 | /* 09/11/07 NN Type cast mismatch variables */ |
| 2900 | usLastBitIndex = (unsigned short) (a_usiDataSize - 1); |
| 2901 | |
| 2902 | /* |
| 2903 | * |
| 2904 | * Iterate through the data bits. |
| 2905 | * |
| 2906 | */ |
| 2907 | |
| 2908 | for (usDataSizeIndex = 0; usDataSizeIndex < a_usiDataSize; |
| 2909 | usDataSizeIndex++) { |
| 2910 | if (cByteIndex == 0) { |
| 2911 | |
| 2912 | /* |
| 2913 | * Grab byte from DMASK buffer. |
| 2914 | */ |
| 2915 | |
| 2916 | if (g_usDataType & DMASK_DATA) { |
| 2917 | cDMASKByte = g_pucOutDMaskData[usBufferIndex]; |
| 2918 | } else { |
| 2919 | cDMASKByte = 0x00; |
| 2920 | } |
| 2921 | |
| 2922 | /* |
| 2923 | * Grab byte from TDI buffer. |
| 2924 | */ |
| 2925 | |
| 2926 | if (g_usDataType & TDI_DATA) { |
| 2927 | cInDataByte = g_pucInData[usBufferIndex]; |
| 2928 | } |
| 2929 | |
| 2930 | usBufferIndex++; |
| 2931 | } |
| 2932 | |
| 2933 | cCurBit = readPort(); |
| 2934 | cDataByte = (unsigned char)(((cInDataByte << cByteIndex) & 0x80) |
| 2935 | ? 0x01 : 0x00); |
| 2936 | |
| 2937 | /* |
| 2938 | * Initialize the byte to be zero. |
| 2939 | */ |
| 2940 | |
| 2941 | if (usOutBitIndex % 8 == 0) { |
| 2942 | g_pucOutData[usOutBitIndex / 8] = 0x00; |
| 2943 | } |
| 2944 | |
| 2945 | /* |
| 2946 | * Use TDI, DMASK, and device TDO to create new TDI (actually |
| 2947 | * stored in g_pucOutData). |
| 2948 | */ |
| 2949 | |
| 2950 | if ((((cDMASKByte << cByteIndex) & 0x80) ? 0x01 : 0x00)) { |
| 2951 | |
| 2952 | if (g_pLVDSList) { |
| 2953 | for (usLVDSIndex = 0; |
| 2954 | usLVDSIndex < g_usLVDSPairCount; |
| 2955 | usLVDSIndex++) { |
| 2956 | if (g_pLVDSList[usLVDSIndex]. |
| 2957 | usNegativeIndex == |
| 2958 | usDataSizeIndex) { |
| 2959 | g_pLVDSList[usLVDSIndex]. |
| 2960 | ucUpdate = 0x01; |
| 2961 | break; |
| 2962 | } |
| 2963 | } |
| 2964 | } |
| 2965 | |
| 2966 | /* |
| 2967 | * DMASK bit is 1, use TDI. |
| 2968 | */ |
| 2969 | |
| 2970 | g_pucOutData[usOutBitIndex / 8] |= (unsigned char) |
| 2971 | (((cDataByte & 0x1) ? 0x01 : 0x00) << |
| 2972 | (7 - usOutBitIndex % 8)); |
| 2973 | } else { |
| 2974 | |
| 2975 | /* |
| 2976 | * DMASK bit is 0, use device TDO. |
| 2977 | */ |
| 2978 | |
| 2979 | g_pucOutData[usOutBitIndex / 8] |= (unsigned char) |
| 2980 | (((cCurBit & 0x1) ? 0x01 : 0x00) << |
| 2981 | (7 - usOutBitIndex % 8)); |
| 2982 | } |
| 2983 | |
| 2984 | /* |
| 2985 | * Shift in TDI in order to get TDO out. |
| 2986 | */ |
| 2987 | |
| 2988 | usOutBitIndex++; |
| 2989 | writePort(g_ucPinTDI, cDataByte); |
| 2990 | if (usDataSizeIndex < usLastBitIndex) { |
| 2991 | sclock(); |
| 2992 | } |
| 2993 | |
| 2994 | /* |
| 2995 | * Increment the byte index. If it exceeds 7, then reset it back |
| 2996 | * to zero. |
| 2997 | */ |
| 2998 | |
| 2999 | cByteIndex++; |
| 3000 | if (cByteIndex >= 8) { |
| 3001 | cByteIndex = 0; |
| 3002 | } |
| 3003 | } |
| 3004 | |
| 3005 | /* |
| 3006 | * If g_pLVDSList exists and pairs need updating, then update |
| 3007 | * the negative-pair to receive the flipped positive-pair value. |
| 3008 | */ |
| 3009 | |
| 3010 | if (g_pLVDSList) { |
| 3011 | for (usLVDSIndex = 0; usLVDSIndex < g_usLVDSPairCount; |
| 3012 | usLVDSIndex++) { |
| 3013 | if (g_pLVDSList[usLVDSIndex].ucUpdate) { |
| 3014 | |
| 3015 | /* |
| 3016 | * Read the positive value and flip it. |
| 3017 | */ |
| 3018 | |
| 3019 | cDataByte = (unsigned char) |
| 3020 | (((g_pucOutData[g_pLVDSList[usLVDSIndex]. |
| 3021 | usPositiveIndex / 8] |
| 3022 | << (g_pLVDSList[usLVDSIndex]. |
| 3023 | usPositiveIndex % 8)) & 0x80) ? |
| 3024 | 0x01 : 0x00); |
| 3025 | /* 09/11/07 NN Type cast mismatch variables */ |
| 3026 | cDataByte = (unsigned char) (!cDataByte); |
| 3027 | |
| 3028 | /* |
| 3029 | * Get the byte that needs modification. |
| 3030 | */ |
| 3031 | |
| 3032 | cInDataByte = |
| 3033 | g_pucOutData[g_pLVDSList[usLVDSIndex]. |
| 3034 | usNegativeIndex / 8]; |
| 3035 | |
| 3036 | if (cDataByte) { |
| 3037 | |
| 3038 | /* |
| 3039 | * Copy over the current byte and |
| 3040 | * set the negative bit to 1. |
| 3041 | */ |
| 3042 | |
| 3043 | cDataByte = 0x00; |
| 3044 | for (cLVDSByteIndex = 7; |
| 3045 | cLVDSByteIndex >= 0; |
| 3046 | cLVDSByteIndex--) { |
| 3047 | cDataByte <<= 1; |
| 3048 | if (7 - |
| 3049 | (g_pLVDSList[usLVDSIndex]. |
| 3050 | usNegativeIndex % 8) == |
| 3051 | cLVDSByteIndex) { |
| 3052 | |
| 3053 | /* |
| 3054 | * Set negative bit to 1 |
| 3055 | */ |
| 3056 | |
| 3057 | cDataByte |= 0x01; |
| 3058 | } else if (cInDataByte & 0x80) { |
| 3059 | cDataByte |= 0x01; |
| 3060 | } |
| 3061 | |
| 3062 | cInDataByte <<= 1; |
| 3063 | } |
| 3064 | |
| 3065 | /* |
| 3066 | * Store the modified byte. |
| 3067 | */ |
| 3068 | |
| 3069 | g_pucOutData[g_pLVDSList[usLVDSIndex]. |
| 3070 | usNegativeIndex / 8] = cDataByte; |
| 3071 | } else { |
| 3072 | |
| 3073 | /* |
| 3074 | * Copy over the current byte and set |
| 3075 | * the negative bit to 0. |
| 3076 | */ |
| 3077 | |
| 3078 | cDataByte = 0x00; |
| 3079 | for (cLVDSByteIndex = 7; |
| 3080 | cLVDSByteIndex >= 0; |
| 3081 | cLVDSByteIndex--) { |
| 3082 | cDataByte <<= 1; |
| 3083 | if (7 - |
| 3084 | (g_pLVDSList[usLVDSIndex]. |
| 3085 | usNegativeIndex % 8) == |
| 3086 | cLVDSByteIndex) { |
| 3087 | |
| 3088 | /* |
| 3089 | * Set negative bit to 0 |
| 3090 | */ |
| 3091 | |
| 3092 | cDataByte |= 0x00; |
| 3093 | } else if (cInDataByte & 0x80) { |
| 3094 | cDataByte |= 0x01; |
| 3095 | } |
| 3096 | |
| 3097 | cInDataByte <<= 1; |
| 3098 | } |
| 3099 | |
| 3100 | /* |
| 3101 | * Store the modified byte. |
| 3102 | */ |
| 3103 | |
| 3104 | g_pucOutData[g_pLVDSList[usLVDSIndex]. |
| 3105 | usNegativeIndex / 8] = cDataByte; |
| 3106 | } |
| 3107 | |
| 3108 | break; |
| 3109 | } |
| 3110 | } |
| 3111 | } |
| 3112 | |
| 3113 | return 0; |
| 3114 | } |
| 3115 | |
| 3116 | signed char ispVMProcessLVDS(unsigned short a_usLVDSCount) |
| 3117 | { |
| 3118 | unsigned short usLVDSIndex = 0; |
| 3119 | |
| 3120 | /* |
| 3121 | * Allocate memory to hold LVDS pairs. |
| 3122 | */ |
| 3123 | |
| 3124 | ispVMMemManager(LVDS, a_usLVDSCount); |
| 3125 | g_usLVDSPairCount = a_usLVDSCount; |
| 3126 | |
| 3127 | #ifdef DEBUG |
| 3128 | printf("LVDS %d (", a_usLVDSCount); |
| 3129 | #endif /* DEBUG */ |
| 3130 | |
| 3131 | /* |
| 3132 | * Iterate through each given LVDS pair. |
| 3133 | */ |
| 3134 | |
| 3135 | for (usLVDSIndex = 0; usLVDSIndex < g_usLVDSPairCount; usLVDSIndex++) { |
| 3136 | |
| 3137 | /* |
| 3138 | * Assign the positive and negative indices of the LVDS pair. |
| 3139 | */ |
| 3140 | |
| 3141 | /* 09/11/07 NN Type cast mismatch variables */ |
| 3142 | g_pLVDSList[usLVDSIndex].usPositiveIndex = |
| 3143 | (unsigned short) ispVMDataSize(); |
| 3144 | /* 09/11/07 NN Type cast mismatch variables */ |
| 3145 | g_pLVDSList[usLVDSIndex].usNegativeIndex = |
| 3146 | (unsigned short)ispVMDataSize(); |
| 3147 | |
| 3148 | #ifdef DEBUG |
| 3149 | if (usLVDSIndex < g_usLVDSPairCount - 1) { |
| 3150 | printf("%d:%d, ", |
| 3151 | g_pLVDSList[usLVDSIndex].usPositiveIndex, |
| 3152 | g_pLVDSList[usLVDSIndex].usNegativeIndex); |
| 3153 | } else { |
| 3154 | printf("%d:%d", |
| 3155 | g_pLVDSList[usLVDSIndex].usPositiveIndex, |
| 3156 | g_pLVDSList[usLVDSIndex].usNegativeIndex); |
| 3157 | } |
| 3158 | #endif /* DEBUG */ |
| 3159 | |
| 3160 | } |
| 3161 | |
| 3162 | #ifdef DEBUG |
| 3163 | printf(");\n", a_usLVDSCount); |
| 3164 | #endif /* DEBUG */ |
| 3165 | |
| 3166 | return 0; |
| 3167 | } |