Luigi 'Comio' Mantellini | 35afc06 | 2008-09-08 02:46:13 +0200 | [diff] [blame] | 1 | /* |
| 2 | LzmaDecode.c |
| 3 | LZMA Decoder (optimized for Speed version) |
| 4 | |
| 5 | LZMA SDK 4.40 Copyright (c) 1999-2006 Igor Pavlov (2006-05-01) |
| 6 | http://www.7-zip.org/ |
| 7 | |
| 8 | LZMA SDK is licensed under two licenses: |
| 9 | 1) GNU Lesser General Public License (GNU LGPL) |
| 10 | 2) Common Public License (CPL) |
| 11 | It means that you can select one of these two licenses and |
| 12 | follow rules of that license. |
| 13 | |
| 14 | SPECIAL EXCEPTION: |
| 15 | Igor Pavlov, as the author of this Code, expressly permits you to |
| 16 | statically or dynamically link your Code (or bind by name) to the |
| 17 | interfaces of this file without subjecting your linked Code to the |
| 18 | terms of the CPL or GNU LGPL. Any modifications or additions |
| 19 | to this file, however, are subject to the LGPL or CPL terms. |
| 20 | */ |
| 21 | |
| 22 | #include "LzmaDecode.h" |
| 23 | |
| 24 | #define kNumTopBits 24 |
| 25 | #define kTopValue ((UInt32)1 << kNumTopBits) |
| 26 | |
| 27 | #define kNumBitModelTotalBits 11 |
| 28 | #define kBitModelTotal (1 << kNumBitModelTotalBits) |
| 29 | #define kNumMoveBits 5 |
| 30 | |
| 31 | #define RC_READ_BYTE (*Buffer++) |
| 32 | |
| 33 | #define RC_INIT2 Code = 0; Range = 0xFFFFFFFF; \ |
| 34 | { int i; for(i = 0; i < 5; i++) { RC_TEST; Code = (Code << 8) | RC_READ_BYTE; }} |
| 35 | |
| 36 | #ifdef _LZMA_IN_CB |
| 37 | |
| 38 | #define RC_TEST { if (Buffer == BufferLim) \ |
| 39 | { SizeT size; int result = InCallback->Read(InCallback, &Buffer, &size); if (result != LZMA_RESULT_OK) return result; \ |
| 40 | BufferLim = Buffer + size; if (size == 0) return LZMA_RESULT_DATA_ERROR; }} |
| 41 | |
| 42 | #define RC_INIT Buffer = BufferLim = 0; RC_INIT2 |
| 43 | |
| 44 | #else |
| 45 | |
| 46 | #define RC_TEST { if (Buffer == BufferLim) return LZMA_RESULT_DATA_ERROR; } |
| 47 | |
| 48 | #define RC_INIT(buffer, bufferSize) Buffer = buffer; BufferLim = buffer + bufferSize; RC_INIT2 |
| 49 | |
| 50 | #endif |
| 51 | |
| 52 | #define RC_NORMALIZE if (Range < kTopValue) { RC_TEST; Range <<= 8; Code = (Code << 8) | RC_READ_BYTE; } |
| 53 | |
| 54 | #define IfBit0(p) RC_NORMALIZE; bound = (Range >> kNumBitModelTotalBits) * *(p); if (Code < bound) |
| 55 | #define UpdateBit0(p) Range = bound; *(p) += (kBitModelTotal - *(p)) >> kNumMoveBits; |
| 56 | #define UpdateBit1(p) Range -= bound; Code -= bound; *(p) -= (*(p)) >> kNumMoveBits; |
| 57 | |
| 58 | #define RC_GET_BIT2(p, mi, A0, A1) IfBit0(p) \ |
| 59 | { UpdateBit0(p); mi <<= 1; A0; } else \ |
| 60 | { UpdateBit1(p); mi = (mi + mi) + 1; A1; } |
| 61 | |
| 62 | #define RC_GET_BIT(p, mi) RC_GET_BIT2(p, mi, ; , ;) |
| 63 | |
| 64 | #define RangeDecoderBitTreeDecode(probs, numLevels, res) \ |
| 65 | { int i = numLevels; res = 1; \ |
| 66 | do { CProb *p = probs + res; RC_GET_BIT(p, res) } while(--i != 0); \ |
| 67 | res -= (1 << numLevels); } |
| 68 | |
| 69 | |
| 70 | #define kNumPosBitsMax 4 |
| 71 | #define kNumPosStatesMax (1 << kNumPosBitsMax) |
| 72 | |
| 73 | #define kLenNumLowBits 3 |
| 74 | #define kLenNumLowSymbols (1 << kLenNumLowBits) |
| 75 | #define kLenNumMidBits 3 |
| 76 | #define kLenNumMidSymbols (1 << kLenNumMidBits) |
| 77 | #define kLenNumHighBits 8 |
| 78 | #define kLenNumHighSymbols (1 << kLenNumHighBits) |
| 79 | |
| 80 | #define LenChoice 0 |
| 81 | #define LenChoice2 (LenChoice + 1) |
| 82 | #define LenLow (LenChoice2 + 1) |
| 83 | #define LenMid (LenLow + (kNumPosStatesMax << kLenNumLowBits)) |
| 84 | #define LenHigh (LenMid + (kNumPosStatesMax << kLenNumMidBits)) |
| 85 | #define kNumLenProbs (LenHigh + kLenNumHighSymbols) |
| 86 | |
| 87 | |
| 88 | #define kNumStates 12 |
| 89 | #define kNumLitStates 7 |
| 90 | |
| 91 | #define kStartPosModelIndex 4 |
| 92 | #define kEndPosModelIndex 14 |
| 93 | #define kNumFullDistances (1 << (kEndPosModelIndex >> 1)) |
| 94 | |
| 95 | #define kNumPosSlotBits 6 |
| 96 | #define kNumLenToPosStates 4 |
| 97 | |
| 98 | #define kNumAlignBits 4 |
| 99 | #define kAlignTableSize (1 << kNumAlignBits) |
| 100 | |
| 101 | #define kMatchMinLen 2 |
| 102 | |
| 103 | #define IsMatch 0 |
| 104 | #define IsRep (IsMatch + (kNumStates << kNumPosBitsMax)) |
| 105 | #define IsRepG0 (IsRep + kNumStates) |
| 106 | #define IsRepG1 (IsRepG0 + kNumStates) |
| 107 | #define IsRepG2 (IsRepG1 + kNumStates) |
| 108 | #define IsRep0Long (IsRepG2 + kNumStates) |
| 109 | #define PosSlot (IsRep0Long + (kNumStates << kNumPosBitsMax)) |
| 110 | #define SpecPos (PosSlot + (kNumLenToPosStates << kNumPosSlotBits)) |
| 111 | #define Align (SpecPos + kNumFullDistances - kEndPosModelIndex) |
| 112 | #define LenCoder (Align + kAlignTableSize) |
| 113 | #define RepLenCoder (LenCoder + kNumLenProbs) |
| 114 | #define Literal (RepLenCoder + kNumLenProbs) |
| 115 | |
| 116 | #if Literal != LZMA_BASE_SIZE |
| 117 | StopCompilingDueBUG |
| 118 | #endif |
| 119 | |
| 120 | int LzmaDecodeProperties(CLzmaProperties *propsRes, const unsigned char *propsData, int size) |
| 121 | { |
| 122 | unsigned char prop0; |
| 123 | if (size < LZMA_PROPERTIES_SIZE) |
| 124 | return LZMA_RESULT_DATA_ERROR; |
| 125 | prop0 = propsData[0]; |
| 126 | if (prop0 >= (9 * 5 * 5)) |
| 127 | return LZMA_RESULT_DATA_ERROR; |
| 128 | { |
| 129 | for (propsRes->pb = 0; prop0 >= (9 * 5); propsRes->pb++, prop0 -= (9 * 5)); |
| 130 | for (propsRes->lp = 0; prop0 >= 9; propsRes->lp++, prop0 -= 9); |
| 131 | propsRes->lc = prop0; |
| 132 | /* |
| 133 | unsigned char remainder = (unsigned char)(prop0 / 9); |
| 134 | propsRes->lc = prop0 % 9; |
| 135 | propsRes->pb = remainder / 5; |
| 136 | propsRes->lp = remainder % 5; |
| 137 | */ |
| 138 | } |
| 139 | |
| 140 | #ifdef _LZMA_OUT_READ |
| 141 | { |
| 142 | int i; |
| 143 | propsRes->DictionarySize = 0; |
| 144 | for (i = 0; i < 4; i++) |
| 145 | propsRes->DictionarySize += (UInt32)(propsData[1 + i]) << (i * 8); |
| 146 | if (propsRes->DictionarySize == 0) |
| 147 | propsRes->DictionarySize = 1; |
| 148 | } |
| 149 | #endif |
| 150 | return LZMA_RESULT_OK; |
| 151 | } |
| 152 | |
| 153 | #define kLzmaStreamWasFinishedId (-1) |
| 154 | |
| 155 | int LzmaDecode(CLzmaDecoderState *vs, |
| 156 | #ifdef _LZMA_IN_CB |
| 157 | ILzmaInCallback *InCallback, |
| 158 | #else |
| 159 | const unsigned char *inStream, SizeT inSize, SizeT *inSizeProcessed, |
| 160 | #endif |
| 161 | unsigned char *outStream, SizeT outSize, SizeT *outSizeProcessed) |
| 162 | { |
| 163 | CProb *p = vs->Probs; |
| 164 | SizeT nowPos = 0; |
| 165 | Byte previousByte = 0; |
| 166 | UInt32 posStateMask = (1 << (vs->Properties.pb)) - 1; |
| 167 | UInt32 literalPosMask = (1 << (vs->Properties.lp)) - 1; |
| 168 | int lc = vs->Properties.lc; |
| 169 | |
| 170 | #ifdef _LZMA_OUT_READ |
| 171 | |
| 172 | UInt32 Range = vs->Range; |
| 173 | UInt32 Code = vs->Code; |
| 174 | #ifdef _LZMA_IN_CB |
| 175 | const Byte *Buffer = vs->Buffer; |
| 176 | const Byte *BufferLim = vs->BufferLim; |
| 177 | #else |
| 178 | const Byte *Buffer = inStream; |
| 179 | const Byte *BufferLim = inStream + inSize; |
| 180 | #endif |
| 181 | int state = vs->State; |
| 182 | UInt32 rep0 = vs->Reps[0], rep1 = vs->Reps[1], rep2 = vs->Reps[2], rep3 = vs->Reps[3]; |
| 183 | int len = vs->RemainLen; |
| 184 | UInt32 globalPos = vs->GlobalPos; |
| 185 | UInt32 distanceLimit = vs->DistanceLimit; |
| 186 | |
| 187 | Byte *dictionary = vs->Dictionary; |
| 188 | UInt32 dictionarySize = vs->Properties.DictionarySize; |
| 189 | UInt32 dictionaryPos = vs->DictionaryPos; |
| 190 | |
| 191 | Byte tempDictionary[4]; |
| 192 | |
| 193 | #ifndef _LZMA_IN_CB |
| 194 | *inSizeProcessed = 0; |
| 195 | #endif |
| 196 | *outSizeProcessed = 0; |
| 197 | if (len == kLzmaStreamWasFinishedId) |
| 198 | return LZMA_RESULT_OK; |
| 199 | |
| 200 | if (dictionarySize == 0) |
| 201 | { |
| 202 | dictionary = tempDictionary; |
| 203 | dictionarySize = 1; |
| 204 | tempDictionary[0] = vs->TempDictionary[0]; |
| 205 | } |
| 206 | |
| 207 | if (len == kLzmaNeedInitId) |
| 208 | { |
| 209 | { |
| 210 | UInt32 numProbs = Literal + ((UInt32)LZMA_LIT_SIZE << (lc + vs->Properties.lp)); |
| 211 | UInt32 i; |
| 212 | for (i = 0; i < numProbs; i++) |
| 213 | p[i] = kBitModelTotal >> 1; |
| 214 | rep0 = rep1 = rep2 = rep3 = 1; |
| 215 | state = 0; |
| 216 | globalPos = 0; |
| 217 | distanceLimit = 0; |
| 218 | dictionaryPos = 0; |
| 219 | dictionary[dictionarySize - 1] = 0; |
| 220 | #ifdef _LZMA_IN_CB |
| 221 | RC_INIT; |
| 222 | #else |
| 223 | RC_INIT(inStream, inSize); |
| 224 | #endif |
| 225 | } |
| 226 | len = 0; |
| 227 | } |
| 228 | while(len != 0 && nowPos < outSize) |
| 229 | { |
| 230 | UInt32 pos = dictionaryPos - rep0; |
| 231 | if (pos >= dictionarySize) |
| 232 | pos += dictionarySize; |
| 233 | outStream[nowPos++] = dictionary[dictionaryPos] = dictionary[pos]; |
| 234 | if (++dictionaryPos == dictionarySize) |
| 235 | dictionaryPos = 0; |
| 236 | len--; |
| 237 | } |
| 238 | if (dictionaryPos == 0) |
| 239 | previousByte = dictionary[dictionarySize - 1]; |
| 240 | else |
| 241 | previousByte = dictionary[dictionaryPos - 1]; |
| 242 | |
| 243 | #else /* if !_LZMA_OUT_READ */ |
| 244 | |
| 245 | int state = 0; |
| 246 | UInt32 rep0 = 1, rep1 = 1, rep2 = 1, rep3 = 1; |
| 247 | int len = 0; |
| 248 | const Byte *Buffer; |
| 249 | const Byte *BufferLim; |
| 250 | UInt32 Range; |
| 251 | UInt32 Code; |
| 252 | |
| 253 | #ifndef _LZMA_IN_CB |
| 254 | *inSizeProcessed = 0; |
| 255 | #endif |
| 256 | *outSizeProcessed = 0; |
| 257 | |
| 258 | { |
| 259 | UInt32 i; |
| 260 | UInt32 numProbs = Literal + ((UInt32)LZMA_LIT_SIZE << (lc + vs->Properties.lp)); |
| 261 | for (i = 0; i < numProbs; i++) |
| 262 | p[i] = kBitModelTotal >> 1; |
| 263 | } |
| 264 | |
| 265 | #ifdef _LZMA_IN_CB |
| 266 | RC_INIT; |
| 267 | #else |
| 268 | RC_INIT(inStream, inSize); |
| 269 | #endif |
| 270 | |
| 271 | #endif /* _LZMA_OUT_READ */ |
| 272 | |
| 273 | while(nowPos < outSize) |
| 274 | { |
| 275 | CProb *prob; |
| 276 | UInt32 bound; |
| 277 | int posState = (int)( |
| 278 | (nowPos |
| 279 | #ifdef _LZMA_OUT_READ |
| 280 | + globalPos |
| 281 | #endif |
| 282 | ) |
| 283 | & posStateMask); |
| 284 | |
| 285 | prob = p + IsMatch + (state << kNumPosBitsMax) + posState; |
| 286 | IfBit0(prob) |
| 287 | { |
| 288 | int symbol = 1; |
| 289 | UpdateBit0(prob) |
| 290 | prob = p + Literal + (LZMA_LIT_SIZE * |
| 291 | ((( |
| 292 | (nowPos |
| 293 | #ifdef _LZMA_OUT_READ |
| 294 | + globalPos |
| 295 | #endif |
| 296 | ) |
| 297 | & literalPosMask) << lc) + (previousByte >> (8 - lc)))); |
| 298 | |
| 299 | if (state >= kNumLitStates) |
| 300 | { |
| 301 | int matchByte; |
| 302 | #ifdef _LZMA_OUT_READ |
| 303 | UInt32 pos = dictionaryPos - rep0; |
| 304 | if (pos >= dictionarySize) |
| 305 | pos += dictionarySize; |
| 306 | matchByte = dictionary[pos]; |
| 307 | #else |
| 308 | matchByte = outStream[nowPos - rep0]; |
| 309 | #endif |
| 310 | do |
| 311 | { |
| 312 | int bit; |
| 313 | CProb *probLit; |
| 314 | matchByte <<= 1; |
| 315 | bit = (matchByte & 0x100); |
| 316 | probLit = prob + 0x100 + bit + symbol; |
| 317 | RC_GET_BIT2(probLit, symbol, if (bit != 0) break, if (bit == 0) break) |
| 318 | } |
| 319 | while (symbol < 0x100); |
| 320 | } |
| 321 | while (symbol < 0x100) |
| 322 | { |
| 323 | CProb *probLit = prob + symbol; |
| 324 | RC_GET_BIT(probLit, symbol) |
| 325 | } |
| 326 | previousByte = (Byte)symbol; |
| 327 | |
| 328 | outStream[nowPos++] = previousByte; |
| 329 | #ifdef _LZMA_OUT_READ |
| 330 | if (distanceLimit < dictionarySize) |
| 331 | distanceLimit++; |
| 332 | |
| 333 | dictionary[dictionaryPos] = previousByte; |
| 334 | if (++dictionaryPos == dictionarySize) |
| 335 | dictionaryPos = 0; |
| 336 | #endif |
| 337 | if (state < 4) state = 0; |
| 338 | else if (state < 10) state -= 3; |
| 339 | else state -= 6; |
| 340 | } |
| 341 | else |
| 342 | { |
| 343 | UpdateBit1(prob); |
| 344 | prob = p + IsRep + state; |
| 345 | IfBit0(prob) |
| 346 | { |
| 347 | UpdateBit0(prob); |
| 348 | rep3 = rep2; |
| 349 | rep2 = rep1; |
| 350 | rep1 = rep0; |
| 351 | state = state < kNumLitStates ? 0 : 3; |
| 352 | prob = p + LenCoder; |
| 353 | } |
| 354 | else |
| 355 | { |
| 356 | UpdateBit1(prob); |
| 357 | prob = p + IsRepG0 + state; |
| 358 | IfBit0(prob) |
| 359 | { |
| 360 | UpdateBit0(prob); |
| 361 | prob = p + IsRep0Long + (state << kNumPosBitsMax) + posState; |
| 362 | IfBit0(prob) |
| 363 | { |
| 364 | #ifdef _LZMA_OUT_READ |
| 365 | UInt32 pos; |
| 366 | #endif |
| 367 | UpdateBit0(prob); |
| 368 | |
| 369 | #ifdef _LZMA_OUT_READ |
| 370 | if (distanceLimit == 0) |
| 371 | #else |
| 372 | if (nowPos == 0) |
| 373 | #endif |
| 374 | return LZMA_RESULT_DATA_ERROR; |
| 375 | |
| 376 | state = state < kNumLitStates ? 9 : 11; |
| 377 | #ifdef _LZMA_OUT_READ |
| 378 | pos = dictionaryPos - rep0; |
| 379 | if (pos >= dictionarySize) |
| 380 | pos += dictionarySize; |
| 381 | previousByte = dictionary[pos]; |
| 382 | dictionary[dictionaryPos] = previousByte; |
| 383 | if (++dictionaryPos == dictionarySize) |
| 384 | dictionaryPos = 0; |
| 385 | #else |
| 386 | previousByte = outStream[nowPos - rep0]; |
| 387 | #endif |
| 388 | outStream[nowPos++] = previousByte; |
| 389 | #ifdef _LZMA_OUT_READ |
| 390 | if (distanceLimit < dictionarySize) |
| 391 | distanceLimit++; |
| 392 | #endif |
| 393 | |
| 394 | continue; |
| 395 | } |
| 396 | else |
| 397 | { |
| 398 | UpdateBit1(prob); |
| 399 | } |
| 400 | } |
| 401 | else |
| 402 | { |
| 403 | UInt32 distance; |
| 404 | UpdateBit1(prob); |
| 405 | prob = p + IsRepG1 + state; |
| 406 | IfBit0(prob) |
| 407 | { |
| 408 | UpdateBit0(prob); |
| 409 | distance = rep1; |
| 410 | } |
| 411 | else |
| 412 | { |
| 413 | UpdateBit1(prob); |
| 414 | prob = p + IsRepG2 + state; |
| 415 | IfBit0(prob) |
| 416 | { |
| 417 | UpdateBit0(prob); |
| 418 | distance = rep2; |
| 419 | } |
| 420 | else |
| 421 | { |
| 422 | UpdateBit1(prob); |
| 423 | distance = rep3; |
| 424 | rep3 = rep2; |
| 425 | } |
| 426 | rep2 = rep1; |
| 427 | } |
| 428 | rep1 = rep0; |
| 429 | rep0 = distance; |
| 430 | } |
| 431 | state = state < kNumLitStates ? 8 : 11; |
| 432 | prob = p + RepLenCoder; |
| 433 | } |
| 434 | { |
| 435 | int numBits, offset; |
| 436 | CProb *probLen = prob + LenChoice; |
| 437 | IfBit0(probLen) |
| 438 | { |
| 439 | UpdateBit0(probLen); |
| 440 | probLen = prob + LenLow + (posState << kLenNumLowBits); |
| 441 | offset = 0; |
| 442 | numBits = kLenNumLowBits; |
| 443 | } |
| 444 | else |
| 445 | { |
| 446 | UpdateBit1(probLen); |
| 447 | probLen = prob + LenChoice2; |
| 448 | IfBit0(probLen) |
| 449 | { |
| 450 | UpdateBit0(probLen); |
| 451 | probLen = prob + LenMid + (posState << kLenNumMidBits); |
| 452 | offset = kLenNumLowSymbols; |
| 453 | numBits = kLenNumMidBits; |
| 454 | } |
| 455 | else |
| 456 | { |
| 457 | UpdateBit1(probLen); |
| 458 | probLen = prob + LenHigh; |
| 459 | offset = kLenNumLowSymbols + kLenNumMidSymbols; |
| 460 | numBits = kLenNumHighBits; |
| 461 | } |
| 462 | } |
| 463 | RangeDecoderBitTreeDecode(probLen, numBits, len); |
| 464 | len += offset; |
| 465 | } |
| 466 | |
| 467 | if (state < 4) |
| 468 | { |
| 469 | int posSlot; |
| 470 | state += kNumLitStates; |
| 471 | prob = p + PosSlot + |
| 472 | ((len < kNumLenToPosStates ? len : kNumLenToPosStates - 1) << |
| 473 | kNumPosSlotBits); |
| 474 | RangeDecoderBitTreeDecode(prob, kNumPosSlotBits, posSlot); |
| 475 | if (posSlot >= kStartPosModelIndex) |
| 476 | { |
| 477 | int numDirectBits = ((posSlot >> 1) - 1); |
| 478 | rep0 = (2 | ((UInt32)posSlot & 1)); |
| 479 | if (posSlot < kEndPosModelIndex) |
| 480 | { |
| 481 | rep0 <<= numDirectBits; |
| 482 | prob = p + SpecPos + rep0 - posSlot - 1; |
| 483 | } |
| 484 | else |
| 485 | { |
| 486 | numDirectBits -= kNumAlignBits; |
| 487 | do |
| 488 | { |
| 489 | RC_NORMALIZE |
| 490 | Range >>= 1; |
| 491 | rep0 <<= 1; |
| 492 | if (Code >= Range) |
| 493 | { |
| 494 | Code -= Range; |
| 495 | rep0 |= 1; |
| 496 | } |
| 497 | } |
| 498 | while (--numDirectBits != 0); |
| 499 | prob = p + Align; |
| 500 | rep0 <<= kNumAlignBits; |
| 501 | numDirectBits = kNumAlignBits; |
| 502 | } |
| 503 | { |
| 504 | int i = 1; |
| 505 | int mi = 1; |
| 506 | do |
| 507 | { |
| 508 | CProb *prob3 = prob + mi; |
| 509 | RC_GET_BIT2(prob3, mi, ; , rep0 |= i); |
| 510 | i <<= 1; |
| 511 | } |
| 512 | while(--numDirectBits != 0); |
| 513 | } |
| 514 | } |
| 515 | else |
| 516 | rep0 = posSlot; |
| 517 | if (++rep0 == (UInt32)(0)) |
| 518 | { |
| 519 | /* it's for stream version */ |
| 520 | len = kLzmaStreamWasFinishedId; |
| 521 | break; |
| 522 | } |
| 523 | } |
| 524 | |
| 525 | len += kMatchMinLen; |
| 526 | #ifdef _LZMA_OUT_READ |
| 527 | if (rep0 > distanceLimit) |
| 528 | #else |
| 529 | if (rep0 > nowPos) |
| 530 | #endif |
| 531 | return LZMA_RESULT_DATA_ERROR; |
| 532 | |
| 533 | #ifdef _LZMA_OUT_READ |
| 534 | if (dictionarySize - distanceLimit > (UInt32)len) |
| 535 | distanceLimit += len; |
| 536 | else |
| 537 | distanceLimit = dictionarySize; |
| 538 | #endif |
| 539 | |
| 540 | do |
| 541 | { |
| 542 | #ifdef _LZMA_OUT_READ |
| 543 | UInt32 pos = dictionaryPos - rep0; |
| 544 | if (pos >= dictionarySize) |
| 545 | pos += dictionarySize; |
| 546 | previousByte = dictionary[pos]; |
| 547 | dictionary[dictionaryPos] = previousByte; |
| 548 | if (++dictionaryPos == dictionarySize) |
| 549 | dictionaryPos = 0; |
| 550 | #else |
| 551 | previousByte = outStream[nowPos - rep0]; |
| 552 | #endif |
| 553 | len--; |
| 554 | outStream[nowPos++] = previousByte; |
| 555 | } |
| 556 | while(len != 0 && nowPos < outSize); |
| 557 | } |
| 558 | } |
| 559 | RC_NORMALIZE; |
| 560 | |
| 561 | #ifdef _LZMA_OUT_READ |
| 562 | vs->Range = Range; |
| 563 | vs->Code = Code; |
| 564 | vs->DictionaryPos = dictionaryPos; |
| 565 | vs->GlobalPos = globalPos + (UInt32)nowPos; |
| 566 | vs->DistanceLimit = distanceLimit; |
| 567 | vs->Reps[0] = rep0; |
| 568 | vs->Reps[1] = rep1; |
| 569 | vs->Reps[2] = rep2; |
| 570 | vs->Reps[3] = rep3; |
| 571 | vs->State = state; |
| 572 | vs->RemainLen = len; |
| 573 | vs->TempDictionary[0] = tempDictionary[0]; |
| 574 | #endif |
| 575 | |
| 576 | #ifdef _LZMA_IN_CB |
| 577 | vs->Buffer = Buffer; |
| 578 | vs->BufferLim = BufferLim; |
| 579 | #else |
| 580 | *inSizeProcessed = (SizeT)(Buffer - inStream); |
| 581 | #endif |
| 582 | *outSizeProcessed = nowPos; |
| 583 | return LZMA_RESULT_OK; |
| 584 | } |