Kyungmin Park | c880c53 | 2008-11-19 16:25:44 +0100 | [diff] [blame^] | 1 | /* |
| 2 | * Copyright (c) International Business Machines Corp., 2006 |
| 3 | * |
| 4 | * This program is free software; you can redistribute it and/or modify |
| 5 | * it under the terms of the GNU General Public License as published by |
| 6 | * the Free Software Foundation; either version 2 of the License, or |
| 7 | * (at your option) any later version. |
| 8 | * |
| 9 | * This program is distributed in the hope that it will be useful, |
| 10 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 11 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See |
| 12 | * the GNU General Public License for more details. |
| 13 | * |
| 14 | * You should have received a copy of the GNU General Public License |
| 15 | * along with this program; if not, write to the Free Software |
| 16 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
| 17 | * |
| 18 | * Author: Artem Bityutskiy (Битюцкий Артём) |
| 19 | */ |
| 20 | |
| 21 | /* |
| 22 | * The UBI Eraseblock Association (EBA) unit. |
| 23 | * |
| 24 | * This unit is responsible for I/O to/from logical eraseblock. |
| 25 | * |
| 26 | * Although in this implementation the EBA table is fully kept and managed in |
| 27 | * RAM, which assumes poor scalability, it might be (partially) maintained on |
| 28 | * flash in future implementations. |
| 29 | * |
| 30 | * The EBA unit implements per-logical eraseblock locking. Before accessing a |
| 31 | * logical eraseblock it is locked for reading or writing. The per-logical |
| 32 | * eraseblock locking is implemented by means of the lock tree. The lock tree |
| 33 | * is an RB-tree which refers all the currently locked logical eraseblocks. The |
| 34 | * lock tree elements are &struct ubi_ltree_entry objects. They are indexed by |
| 35 | * (@vol_id, @lnum) pairs. |
| 36 | * |
| 37 | * EBA also maintains the global sequence counter which is incremented each |
| 38 | * time a logical eraseblock is mapped to a physical eraseblock and it is |
| 39 | * stored in the volume identifier header. This means that each VID header has |
| 40 | * a unique sequence number. The sequence number is only increased an we assume |
| 41 | * 64 bits is enough to never overflow. |
| 42 | */ |
| 43 | |
| 44 | #ifdef UBI_LINUX |
| 45 | #include <linux/slab.h> |
| 46 | #include <linux/crc32.h> |
| 47 | #include <linux/err.h> |
| 48 | #endif |
| 49 | |
| 50 | #include <ubi_uboot.h> |
| 51 | #include "ubi.h" |
| 52 | |
| 53 | /* Number of physical eraseblocks reserved for atomic LEB change operation */ |
| 54 | #define EBA_RESERVED_PEBS 1 |
| 55 | |
| 56 | /** |
| 57 | * next_sqnum - get next sequence number. |
| 58 | * @ubi: UBI device description object |
| 59 | * |
| 60 | * This function returns next sequence number to use, which is just the current |
| 61 | * global sequence counter value. It also increases the global sequence |
| 62 | * counter. |
| 63 | */ |
| 64 | static unsigned long long next_sqnum(struct ubi_device *ubi) |
| 65 | { |
| 66 | unsigned long long sqnum; |
| 67 | |
| 68 | spin_lock(&ubi->ltree_lock); |
| 69 | sqnum = ubi->global_sqnum++; |
| 70 | spin_unlock(&ubi->ltree_lock); |
| 71 | |
| 72 | return sqnum; |
| 73 | } |
| 74 | |
| 75 | /** |
| 76 | * ubi_get_compat - get compatibility flags of a volume. |
| 77 | * @ubi: UBI device description object |
| 78 | * @vol_id: volume ID |
| 79 | * |
| 80 | * This function returns compatibility flags for an internal volume. User |
| 81 | * volumes have no compatibility flags, so %0 is returned. |
| 82 | */ |
| 83 | static int ubi_get_compat(const struct ubi_device *ubi, int vol_id) |
| 84 | { |
| 85 | if (vol_id == UBI_LAYOUT_VOLUME_ID) |
| 86 | return UBI_LAYOUT_VOLUME_COMPAT; |
| 87 | return 0; |
| 88 | } |
| 89 | |
| 90 | /** |
| 91 | * ltree_lookup - look up the lock tree. |
| 92 | * @ubi: UBI device description object |
| 93 | * @vol_id: volume ID |
| 94 | * @lnum: logical eraseblock number |
| 95 | * |
| 96 | * This function returns a pointer to the corresponding &struct ubi_ltree_entry |
| 97 | * object if the logical eraseblock is locked and %NULL if it is not. |
| 98 | * @ubi->ltree_lock has to be locked. |
| 99 | */ |
| 100 | static struct ubi_ltree_entry *ltree_lookup(struct ubi_device *ubi, int vol_id, |
| 101 | int lnum) |
| 102 | { |
| 103 | struct rb_node *p; |
| 104 | |
| 105 | p = ubi->ltree.rb_node; |
| 106 | while (p) { |
| 107 | struct ubi_ltree_entry *le; |
| 108 | |
| 109 | le = rb_entry(p, struct ubi_ltree_entry, rb); |
| 110 | |
| 111 | if (vol_id < le->vol_id) |
| 112 | p = p->rb_left; |
| 113 | else if (vol_id > le->vol_id) |
| 114 | p = p->rb_right; |
| 115 | else { |
| 116 | if (lnum < le->lnum) |
| 117 | p = p->rb_left; |
| 118 | else if (lnum > le->lnum) |
| 119 | p = p->rb_right; |
| 120 | else |
| 121 | return le; |
| 122 | } |
| 123 | } |
| 124 | |
| 125 | return NULL; |
| 126 | } |
| 127 | |
| 128 | /** |
| 129 | * ltree_add_entry - add new entry to the lock tree. |
| 130 | * @ubi: UBI device description object |
| 131 | * @vol_id: volume ID |
| 132 | * @lnum: logical eraseblock number |
| 133 | * |
| 134 | * This function adds new entry for logical eraseblock (@vol_id, @lnum) to the |
| 135 | * lock tree. If such entry is already there, its usage counter is increased. |
| 136 | * Returns pointer to the lock tree entry or %-ENOMEM if memory allocation |
| 137 | * failed. |
| 138 | */ |
| 139 | static struct ubi_ltree_entry *ltree_add_entry(struct ubi_device *ubi, |
| 140 | int vol_id, int lnum) |
| 141 | { |
| 142 | struct ubi_ltree_entry *le, *le1, *le_free; |
| 143 | |
| 144 | le = kmalloc(sizeof(struct ubi_ltree_entry), GFP_NOFS); |
| 145 | if (!le) |
| 146 | return ERR_PTR(-ENOMEM); |
| 147 | |
| 148 | le->users = 0; |
| 149 | init_rwsem(&le->mutex); |
| 150 | le->vol_id = vol_id; |
| 151 | le->lnum = lnum; |
| 152 | |
| 153 | spin_lock(&ubi->ltree_lock); |
| 154 | le1 = ltree_lookup(ubi, vol_id, lnum); |
| 155 | |
| 156 | if (le1) { |
| 157 | /* |
| 158 | * This logical eraseblock is already locked. The newly |
| 159 | * allocated lock entry is not needed. |
| 160 | */ |
| 161 | le_free = le; |
| 162 | le = le1; |
| 163 | } else { |
| 164 | struct rb_node **p, *parent = NULL; |
| 165 | |
| 166 | /* |
| 167 | * No lock entry, add the newly allocated one to the |
| 168 | * @ubi->ltree RB-tree. |
| 169 | */ |
| 170 | le_free = NULL; |
| 171 | |
| 172 | p = &ubi->ltree.rb_node; |
| 173 | while (*p) { |
| 174 | parent = *p; |
| 175 | le1 = rb_entry(parent, struct ubi_ltree_entry, rb); |
| 176 | |
| 177 | if (vol_id < le1->vol_id) |
| 178 | p = &(*p)->rb_left; |
| 179 | else if (vol_id > le1->vol_id) |
| 180 | p = &(*p)->rb_right; |
| 181 | else { |
| 182 | ubi_assert(lnum != le1->lnum); |
| 183 | if (lnum < le1->lnum) |
| 184 | p = &(*p)->rb_left; |
| 185 | else |
| 186 | p = &(*p)->rb_right; |
| 187 | } |
| 188 | } |
| 189 | |
| 190 | rb_link_node(&le->rb, parent, p); |
| 191 | rb_insert_color(&le->rb, &ubi->ltree); |
| 192 | } |
| 193 | le->users += 1; |
| 194 | spin_unlock(&ubi->ltree_lock); |
| 195 | |
| 196 | if (le_free) |
| 197 | kfree(le_free); |
| 198 | |
| 199 | return le; |
| 200 | } |
| 201 | |
| 202 | /** |
| 203 | * leb_read_lock - lock logical eraseblock for reading. |
| 204 | * @ubi: UBI device description object |
| 205 | * @vol_id: volume ID |
| 206 | * @lnum: logical eraseblock number |
| 207 | * |
| 208 | * This function locks a logical eraseblock for reading. Returns zero in case |
| 209 | * of success and a negative error code in case of failure. |
| 210 | */ |
| 211 | static int leb_read_lock(struct ubi_device *ubi, int vol_id, int lnum) |
| 212 | { |
| 213 | struct ubi_ltree_entry *le; |
| 214 | |
| 215 | le = ltree_add_entry(ubi, vol_id, lnum); |
| 216 | if (IS_ERR(le)) |
| 217 | return PTR_ERR(le); |
| 218 | down_read(&le->mutex); |
| 219 | return 0; |
| 220 | } |
| 221 | |
| 222 | /** |
| 223 | * leb_read_unlock - unlock logical eraseblock. |
| 224 | * @ubi: UBI device description object |
| 225 | * @vol_id: volume ID |
| 226 | * @lnum: logical eraseblock number |
| 227 | */ |
| 228 | static void leb_read_unlock(struct ubi_device *ubi, int vol_id, int lnum) |
| 229 | { |
| 230 | int _free = 0; |
| 231 | struct ubi_ltree_entry *le; |
| 232 | |
| 233 | spin_lock(&ubi->ltree_lock); |
| 234 | le = ltree_lookup(ubi, vol_id, lnum); |
| 235 | le->users -= 1; |
| 236 | ubi_assert(le->users >= 0); |
| 237 | if (le->users == 0) { |
| 238 | rb_erase(&le->rb, &ubi->ltree); |
| 239 | _free = 1; |
| 240 | } |
| 241 | spin_unlock(&ubi->ltree_lock); |
| 242 | |
| 243 | up_read(&le->mutex); |
| 244 | if (_free) |
| 245 | kfree(le); |
| 246 | } |
| 247 | |
| 248 | /** |
| 249 | * leb_write_lock - lock logical eraseblock for writing. |
| 250 | * @ubi: UBI device description object |
| 251 | * @vol_id: volume ID |
| 252 | * @lnum: logical eraseblock number |
| 253 | * |
| 254 | * This function locks a logical eraseblock for writing. Returns zero in case |
| 255 | * of success and a negative error code in case of failure. |
| 256 | */ |
| 257 | static int leb_write_lock(struct ubi_device *ubi, int vol_id, int lnum) |
| 258 | { |
| 259 | struct ubi_ltree_entry *le; |
| 260 | |
| 261 | le = ltree_add_entry(ubi, vol_id, lnum); |
| 262 | if (IS_ERR(le)) |
| 263 | return PTR_ERR(le); |
| 264 | down_write(&le->mutex); |
| 265 | return 0; |
| 266 | } |
| 267 | |
| 268 | /** |
| 269 | * leb_write_lock - lock logical eraseblock for writing. |
| 270 | * @ubi: UBI device description object |
| 271 | * @vol_id: volume ID |
| 272 | * @lnum: logical eraseblock number |
| 273 | * |
| 274 | * This function locks a logical eraseblock for writing if there is no |
| 275 | * contention and does nothing if there is contention. Returns %0 in case of |
| 276 | * success, %1 in case of contention, and and a negative error code in case of |
| 277 | * failure. |
| 278 | */ |
| 279 | static int leb_write_trylock(struct ubi_device *ubi, int vol_id, int lnum) |
| 280 | { |
| 281 | int _free; |
| 282 | struct ubi_ltree_entry *le; |
| 283 | |
| 284 | le = ltree_add_entry(ubi, vol_id, lnum); |
| 285 | if (IS_ERR(le)) |
| 286 | return PTR_ERR(le); |
| 287 | if (down_write_trylock(&le->mutex)) |
| 288 | return 0; |
| 289 | |
| 290 | /* Contention, cancel */ |
| 291 | spin_lock(&ubi->ltree_lock); |
| 292 | le->users -= 1; |
| 293 | ubi_assert(le->users >= 0); |
| 294 | if (le->users == 0) { |
| 295 | rb_erase(&le->rb, &ubi->ltree); |
| 296 | _free = 1; |
| 297 | } else |
| 298 | _free = 0; |
| 299 | spin_unlock(&ubi->ltree_lock); |
| 300 | if (_free) |
| 301 | kfree(le); |
| 302 | |
| 303 | return 1; |
| 304 | } |
| 305 | |
| 306 | /** |
| 307 | * leb_write_unlock - unlock logical eraseblock. |
| 308 | * @ubi: UBI device description object |
| 309 | * @vol_id: volume ID |
| 310 | * @lnum: logical eraseblock number |
| 311 | */ |
| 312 | static void leb_write_unlock(struct ubi_device *ubi, int vol_id, int lnum) |
| 313 | { |
| 314 | int _free; |
| 315 | struct ubi_ltree_entry *le; |
| 316 | |
| 317 | spin_lock(&ubi->ltree_lock); |
| 318 | le = ltree_lookup(ubi, vol_id, lnum); |
| 319 | le->users -= 1; |
| 320 | ubi_assert(le->users >= 0); |
| 321 | if (le->users == 0) { |
| 322 | rb_erase(&le->rb, &ubi->ltree); |
| 323 | _free = 1; |
| 324 | } else |
| 325 | _free = 0; |
| 326 | spin_unlock(&ubi->ltree_lock); |
| 327 | |
| 328 | up_write(&le->mutex); |
| 329 | if (_free) |
| 330 | kfree(le); |
| 331 | } |
| 332 | |
| 333 | /** |
| 334 | * ubi_eba_unmap_leb - un-map logical eraseblock. |
| 335 | * @ubi: UBI device description object |
| 336 | * @vol: volume description object |
| 337 | * @lnum: logical eraseblock number |
| 338 | * |
| 339 | * This function un-maps logical eraseblock @lnum and schedules corresponding |
| 340 | * physical eraseblock for erasure. Returns zero in case of success and a |
| 341 | * negative error code in case of failure. |
| 342 | */ |
| 343 | int ubi_eba_unmap_leb(struct ubi_device *ubi, struct ubi_volume *vol, |
| 344 | int lnum) |
| 345 | { |
| 346 | int err, pnum, vol_id = vol->vol_id; |
| 347 | |
| 348 | if (ubi->ro_mode) |
| 349 | return -EROFS; |
| 350 | |
| 351 | err = leb_write_lock(ubi, vol_id, lnum); |
| 352 | if (err) |
| 353 | return err; |
| 354 | |
| 355 | pnum = vol->eba_tbl[lnum]; |
| 356 | if (pnum < 0) |
| 357 | /* This logical eraseblock is already unmapped */ |
| 358 | goto out_unlock; |
| 359 | |
| 360 | dbg_eba("erase LEB %d:%d, PEB %d", vol_id, lnum, pnum); |
| 361 | |
| 362 | vol->eba_tbl[lnum] = UBI_LEB_UNMAPPED; |
| 363 | err = ubi_wl_put_peb(ubi, pnum, 0); |
| 364 | |
| 365 | out_unlock: |
| 366 | leb_write_unlock(ubi, vol_id, lnum); |
| 367 | return err; |
| 368 | } |
| 369 | |
| 370 | /** |
| 371 | * ubi_eba_read_leb - read data. |
| 372 | * @ubi: UBI device description object |
| 373 | * @vol: volume description object |
| 374 | * @lnum: logical eraseblock number |
| 375 | * @buf: buffer to store the read data |
| 376 | * @offset: offset from where to read |
| 377 | * @len: how many bytes to read |
| 378 | * @check: data CRC check flag |
| 379 | * |
| 380 | * If the logical eraseblock @lnum is unmapped, @buf is filled with 0xFF |
| 381 | * bytes. The @check flag only makes sense for static volumes and forces |
| 382 | * eraseblock data CRC checking. |
| 383 | * |
| 384 | * In case of success this function returns zero. In case of a static volume, |
| 385 | * if data CRC mismatches - %-EBADMSG is returned. %-EBADMSG may also be |
| 386 | * returned for any volume type if an ECC error was detected by the MTD device |
| 387 | * driver. Other negative error cored may be returned in case of other errors. |
| 388 | */ |
| 389 | int ubi_eba_read_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum, |
| 390 | void *buf, int offset, int len, int check) |
| 391 | { |
| 392 | int err, pnum, scrub = 0, vol_id = vol->vol_id; |
| 393 | struct ubi_vid_hdr *vid_hdr; |
| 394 | uint32_t uninitialized_var(crc); |
| 395 | |
| 396 | err = leb_read_lock(ubi, vol_id, lnum); |
| 397 | if (err) |
| 398 | return err; |
| 399 | |
| 400 | pnum = vol->eba_tbl[lnum]; |
| 401 | if (pnum < 0) { |
| 402 | /* |
| 403 | * The logical eraseblock is not mapped, fill the whole buffer |
| 404 | * with 0xFF bytes. The exception is static volumes for which |
| 405 | * it is an error to read unmapped logical eraseblocks. |
| 406 | */ |
| 407 | dbg_eba("read %d bytes from offset %d of LEB %d:%d (unmapped)", |
| 408 | len, offset, vol_id, lnum); |
| 409 | leb_read_unlock(ubi, vol_id, lnum); |
| 410 | ubi_assert(vol->vol_type != UBI_STATIC_VOLUME); |
| 411 | memset(buf, 0xFF, len); |
| 412 | return 0; |
| 413 | } |
| 414 | |
| 415 | dbg_eba("read %d bytes from offset %d of LEB %d:%d, PEB %d", |
| 416 | len, offset, vol_id, lnum, pnum); |
| 417 | |
| 418 | if (vol->vol_type == UBI_DYNAMIC_VOLUME) |
| 419 | check = 0; |
| 420 | |
| 421 | retry: |
| 422 | if (check) { |
| 423 | vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS); |
| 424 | if (!vid_hdr) { |
| 425 | err = -ENOMEM; |
| 426 | goto out_unlock; |
| 427 | } |
| 428 | |
| 429 | err = ubi_io_read_vid_hdr(ubi, pnum, vid_hdr, 1); |
| 430 | if (err && err != UBI_IO_BITFLIPS) { |
| 431 | if (err > 0) { |
| 432 | /* |
| 433 | * The header is either absent or corrupted. |
| 434 | * The former case means there is a bug - |
| 435 | * switch to read-only mode just in case. |
| 436 | * The latter case means a real corruption - we |
| 437 | * may try to recover data. FIXME: but this is |
| 438 | * not implemented. |
| 439 | */ |
| 440 | if (err == UBI_IO_BAD_VID_HDR) { |
| 441 | ubi_warn("bad VID header at PEB %d, LEB" |
| 442 | "%d:%d", pnum, vol_id, lnum); |
| 443 | err = -EBADMSG; |
| 444 | } else |
| 445 | ubi_ro_mode(ubi); |
| 446 | } |
| 447 | goto out_free; |
| 448 | } else if (err == UBI_IO_BITFLIPS) |
| 449 | scrub = 1; |
| 450 | |
| 451 | ubi_assert(lnum < be32_to_cpu(vid_hdr->used_ebs)); |
| 452 | ubi_assert(len == be32_to_cpu(vid_hdr->data_size)); |
| 453 | |
| 454 | crc = be32_to_cpu(vid_hdr->data_crc); |
| 455 | ubi_free_vid_hdr(ubi, vid_hdr); |
| 456 | } |
| 457 | |
| 458 | err = ubi_io_read_data(ubi, buf, pnum, offset, len); |
| 459 | if (err) { |
| 460 | if (err == UBI_IO_BITFLIPS) { |
| 461 | scrub = 1; |
| 462 | err = 0; |
| 463 | } else if (err == -EBADMSG) { |
| 464 | if (vol->vol_type == UBI_DYNAMIC_VOLUME) |
| 465 | goto out_unlock; |
| 466 | scrub = 1; |
| 467 | if (!check) { |
| 468 | ubi_msg("force data checking"); |
| 469 | check = 1; |
| 470 | goto retry; |
| 471 | } |
| 472 | } else |
| 473 | goto out_unlock; |
| 474 | } |
| 475 | |
| 476 | if (check) { |
| 477 | uint32_t crc1 = crc32(UBI_CRC32_INIT, buf, len); |
| 478 | if (crc1 != crc) { |
| 479 | ubi_warn("CRC error: calculated %#08x, must be %#08x", |
| 480 | crc1, crc); |
| 481 | err = -EBADMSG; |
| 482 | goto out_unlock; |
| 483 | } |
| 484 | } |
| 485 | |
| 486 | if (scrub) |
| 487 | err = ubi_wl_scrub_peb(ubi, pnum); |
| 488 | |
| 489 | leb_read_unlock(ubi, vol_id, lnum); |
| 490 | return err; |
| 491 | |
| 492 | out_free: |
| 493 | ubi_free_vid_hdr(ubi, vid_hdr); |
| 494 | out_unlock: |
| 495 | leb_read_unlock(ubi, vol_id, lnum); |
| 496 | return err; |
| 497 | } |
| 498 | |
| 499 | /** |
| 500 | * recover_peb - recover from write failure. |
| 501 | * @ubi: UBI device description object |
| 502 | * @pnum: the physical eraseblock to recover |
| 503 | * @vol_id: volume ID |
| 504 | * @lnum: logical eraseblock number |
| 505 | * @buf: data which was not written because of the write failure |
| 506 | * @offset: offset of the failed write |
| 507 | * @len: how many bytes should have been written |
| 508 | * |
| 509 | * This function is called in case of a write failure and moves all good data |
| 510 | * from the potentially bad physical eraseblock to a good physical eraseblock. |
| 511 | * This function also writes the data which was not written due to the failure. |
| 512 | * Returns new physical eraseblock number in case of success, and a negative |
| 513 | * error code in case of failure. |
| 514 | */ |
| 515 | static int recover_peb(struct ubi_device *ubi, int pnum, int vol_id, int lnum, |
| 516 | const void *buf, int offset, int len) |
| 517 | { |
| 518 | int err, idx = vol_id2idx(ubi, vol_id), new_pnum, data_size, tries = 0; |
| 519 | struct ubi_volume *vol = ubi->volumes[idx]; |
| 520 | struct ubi_vid_hdr *vid_hdr; |
| 521 | |
| 522 | vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS); |
| 523 | if (!vid_hdr) { |
| 524 | return -ENOMEM; |
| 525 | } |
| 526 | |
| 527 | mutex_lock(&ubi->buf_mutex); |
| 528 | |
| 529 | retry: |
| 530 | new_pnum = ubi_wl_get_peb(ubi, UBI_UNKNOWN); |
| 531 | if (new_pnum < 0) { |
| 532 | mutex_unlock(&ubi->buf_mutex); |
| 533 | ubi_free_vid_hdr(ubi, vid_hdr); |
| 534 | return new_pnum; |
| 535 | } |
| 536 | |
| 537 | ubi_msg("recover PEB %d, move data to PEB %d", pnum, new_pnum); |
| 538 | |
| 539 | err = ubi_io_read_vid_hdr(ubi, pnum, vid_hdr, 1); |
| 540 | if (err && err != UBI_IO_BITFLIPS) { |
| 541 | if (err > 0) |
| 542 | err = -EIO; |
| 543 | goto out_put; |
| 544 | } |
| 545 | |
| 546 | vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi)); |
| 547 | err = ubi_io_write_vid_hdr(ubi, new_pnum, vid_hdr); |
| 548 | if (err) |
| 549 | goto write_error; |
| 550 | |
| 551 | data_size = offset + len; |
| 552 | memset(ubi->peb_buf1 + offset, 0xFF, len); |
| 553 | |
| 554 | /* Read everything before the area where the write failure happened */ |
| 555 | if (offset > 0) { |
| 556 | err = ubi_io_read_data(ubi, ubi->peb_buf1, pnum, 0, offset); |
| 557 | if (err && err != UBI_IO_BITFLIPS) |
| 558 | goto out_put; |
| 559 | } |
| 560 | |
| 561 | memcpy(ubi->peb_buf1 + offset, buf, len); |
| 562 | |
| 563 | err = ubi_io_write_data(ubi, ubi->peb_buf1, new_pnum, 0, data_size); |
| 564 | if (err) |
| 565 | goto write_error; |
| 566 | |
| 567 | mutex_unlock(&ubi->buf_mutex); |
| 568 | ubi_free_vid_hdr(ubi, vid_hdr); |
| 569 | |
| 570 | vol->eba_tbl[lnum] = new_pnum; |
| 571 | ubi_wl_put_peb(ubi, pnum, 1); |
| 572 | |
| 573 | ubi_msg("data was successfully recovered"); |
| 574 | return 0; |
| 575 | |
| 576 | out_put: |
| 577 | mutex_unlock(&ubi->buf_mutex); |
| 578 | ubi_wl_put_peb(ubi, new_pnum, 1); |
| 579 | ubi_free_vid_hdr(ubi, vid_hdr); |
| 580 | return err; |
| 581 | |
| 582 | write_error: |
| 583 | /* |
| 584 | * Bad luck? This physical eraseblock is bad too? Crud. Let's try to |
| 585 | * get another one. |
| 586 | */ |
| 587 | ubi_warn("failed to write to PEB %d", new_pnum); |
| 588 | ubi_wl_put_peb(ubi, new_pnum, 1); |
| 589 | if (++tries > UBI_IO_RETRIES) { |
| 590 | mutex_unlock(&ubi->buf_mutex); |
| 591 | ubi_free_vid_hdr(ubi, vid_hdr); |
| 592 | return err; |
| 593 | } |
| 594 | ubi_msg("try again"); |
| 595 | goto retry; |
| 596 | } |
| 597 | |
| 598 | /** |
| 599 | * ubi_eba_write_leb - write data to dynamic volume. |
| 600 | * @ubi: UBI device description object |
| 601 | * @vol: volume description object |
| 602 | * @lnum: logical eraseblock number |
| 603 | * @buf: the data to write |
| 604 | * @offset: offset within the logical eraseblock where to write |
| 605 | * @len: how many bytes to write |
| 606 | * @dtype: data type |
| 607 | * |
| 608 | * This function writes data to logical eraseblock @lnum of a dynamic volume |
| 609 | * @vol. Returns zero in case of success and a negative error code in case |
| 610 | * of failure. In case of error, it is possible that something was still |
| 611 | * written to the flash media, but may be some garbage. |
| 612 | */ |
| 613 | int ubi_eba_write_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum, |
| 614 | const void *buf, int offset, int len, int dtype) |
| 615 | { |
| 616 | int err, pnum, tries = 0, vol_id = vol->vol_id; |
| 617 | struct ubi_vid_hdr *vid_hdr; |
| 618 | |
| 619 | if (ubi->ro_mode) |
| 620 | return -EROFS; |
| 621 | |
| 622 | err = leb_write_lock(ubi, vol_id, lnum); |
| 623 | if (err) |
| 624 | return err; |
| 625 | |
| 626 | pnum = vol->eba_tbl[lnum]; |
| 627 | if (pnum >= 0) { |
| 628 | dbg_eba("write %d bytes at offset %d of LEB %d:%d, PEB %d", |
| 629 | len, offset, vol_id, lnum, pnum); |
| 630 | |
| 631 | err = ubi_io_write_data(ubi, buf, pnum, offset, len); |
| 632 | if (err) { |
| 633 | ubi_warn("failed to write data to PEB %d", pnum); |
| 634 | if (err == -EIO && ubi->bad_allowed) |
| 635 | err = recover_peb(ubi, pnum, vol_id, lnum, buf, |
| 636 | offset, len); |
| 637 | if (err) |
| 638 | ubi_ro_mode(ubi); |
| 639 | } |
| 640 | leb_write_unlock(ubi, vol_id, lnum); |
| 641 | return err; |
| 642 | } |
| 643 | |
| 644 | /* |
| 645 | * The logical eraseblock is not mapped. We have to get a free physical |
| 646 | * eraseblock and write the volume identifier header there first. |
| 647 | */ |
| 648 | vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS); |
| 649 | if (!vid_hdr) { |
| 650 | leb_write_unlock(ubi, vol_id, lnum); |
| 651 | return -ENOMEM; |
| 652 | } |
| 653 | |
| 654 | vid_hdr->vol_type = UBI_VID_DYNAMIC; |
| 655 | vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi)); |
| 656 | vid_hdr->vol_id = cpu_to_be32(vol_id); |
| 657 | vid_hdr->lnum = cpu_to_be32(lnum); |
| 658 | vid_hdr->compat = ubi_get_compat(ubi, vol_id); |
| 659 | vid_hdr->data_pad = cpu_to_be32(vol->data_pad); |
| 660 | |
| 661 | retry: |
| 662 | pnum = ubi_wl_get_peb(ubi, dtype); |
| 663 | if (pnum < 0) { |
| 664 | ubi_free_vid_hdr(ubi, vid_hdr); |
| 665 | leb_write_unlock(ubi, vol_id, lnum); |
| 666 | return pnum; |
| 667 | } |
| 668 | |
| 669 | dbg_eba("write VID hdr and %d bytes at offset %d of LEB %d:%d, PEB %d", |
| 670 | len, offset, vol_id, lnum, pnum); |
| 671 | |
| 672 | err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr); |
| 673 | if (err) { |
| 674 | ubi_warn("failed to write VID header to LEB %d:%d, PEB %d", |
| 675 | vol_id, lnum, pnum); |
| 676 | goto write_error; |
| 677 | } |
| 678 | |
| 679 | if (len) { |
| 680 | err = ubi_io_write_data(ubi, buf, pnum, offset, len); |
| 681 | if (err) { |
| 682 | ubi_warn("failed to write %d bytes at offset %d of " |
| 683 | "LEB %d:%d, PEB %d", len, offset, vol_id, |
| 684 | lnum, pnum); |
| 685 | goto write_error; |
| 686 | } |
| 687 | } |
| 688 | |
| 689 | vol->eba_tbl[lnum] = pnum; |
| 690 | |
| 691 | leb_write_unlock(ubi, vol_id, lnum); |
| 692 | ubi_free_vid_hdr(ubi, vid_hdr); |
| 693 | return 0; |
| 694 | |
| 695 | write_error: |
| 696 | if (err != -EIO || !ubi->bad_allowed) { |
| 697 | ubi_ro_mode(ubi); |
| 698 | leb_write_unlock(ubi, vol_id, lnum); |
| 699 | ubi_free_vid_hdr(ubi, vid_hdr); |
| 700 | return err; |
| 701 | } |
| 702 | |
| 703 | /* |
| 704 | * Fortunately, this is the first write operation to this physical |
| 705 | * eraseblock, so just put it and request a new one. We assume that if |
| 706 | * this physical eraseblock went bad, the erase code will handle that. |
| 707 | */ |
| 708 | err = ubi_wl_put_peb(ubi, pnum, 1); |
| 709 | if (err || ++tries > UBI_IO_RETRIES) { |
| 710 | ubi_ro_mode(ubi); |
| 711 | leb_write_unlock(ubi, vol_id, lnum); |
| 712 | ubi_free_vid_hdr(ubi, vid_hdr); |
| 713 | return err; |
| 714 | } |
| 715 | |
| 716 | vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi)); |
| 717 | ubi_msg("try another PEB"); |
| 718 | goto retry; |
| 719 | } |
| 720 | |
| 721 | /** |
| 722 | * ubi_eba_write_leb_st - write data to static volume. |
| 723 | * @ubi: UBI device description object |
| 724 | * @vol: volume description object |
| 725 | * @lnum: logical eraseblock number |
| 726 | * @buf: data to write |
| 727 | * @len: how many bytes to write |
| 728 | * @dtype: data type |
| 729 | * @used_ebs: how many logical eraseblocks will this volume contain |
| 730 | * |
| 731 | * This function writes data to logical eraseblock @lnum of static volume |
| 732 | * @vol. The @used_ebs argument should contain total number of logical |
| 733 | * eraseblock in this static volume. |
| 734 | * |
| 735 | * When writing to the last logical eraseblock, the @len argument doesn't have |
| 736 | * to be aligned to the minimal I/O unit size. Instead, it has to be equivalent |
| 737 | * to the real data size, although the @buf buffer has to contain the |
| 738 | * alignment. In all other cases, @len has to be aligned. |
| 739 | * |
| 740 | * It is prohibited to write more then once to logical eraseblocks of static |
| 741 | * volumes. This function returns zero in case of success and a negative error |
| 742 | * code in case of failure. |
| 743 | */ |
| 744 | int ubi_eba_write_leb_st(struct ubi_device *ubi, struct ubi_volume *vol, |
| 745 | int lnum, const void *buf, int len, int dtype, |
| 746 | int used_ebs) |
| 747 | { |
| 748 | int err, pnum, tries = 0, data_size = len, vol_id = vol->vol_id; |
| 749 | struct ubi_vid_hdr *vid_hdr; |
| 750 | uint32_t crc; |
| 751 | |
| 752 | if (ubi->ro_mode) |
| 753 | return -EROFS; |
| 754 | |
| 755 | if (lnum == used_ebs - 1) |
| 756 | /* If this is the last LEB @len may be unaligned */ |
| 757 | len = ALIGN(data_size, ubi->min_io_size); |
| 758 | else |
| 759 | ubi_assert(!(len & (ubi->min_io_size - 1))); |
| 760 | |
| 761 | vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS); |
| 762 | if (!vid_hdr) |
| 763 | return -ENOMEM; |
| 764 | |
| 765 | err = leb_write_lock(ubi, vol_id, lnum); |
| 766 | if (err) { |
| 767 | ubi_free_vid_hdr(ubi, vid_hdr); |
| 768 | return err; |
| 769 | } |
| 770 | |
| 771 | vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi)); |
| 772 | vid_hdr->vol_id = cpu_to_be32(vol_id); |
| 773 | vid_hdr->lnum = cpu_to_be32(lnum); |
| 774 | vid_hdr->compat = ubi_get_compat(ubi, vol_id); |
| 775 | vid_hdr->data_pad = cpu_to_be32(vol->data_pad); |
| 776 | |
| 777 | crc = crc32(UBI_CRC32_INIT, buf, data_size); |
| 778 | vid_hdr->vol_type = UBI_VID_STATIC; |
| 779 | vid_hdr->data_size = cpu_to_be32(data_size); |
| 780 | vid_hdr->used_ebs = cpu_to_be32(used_ebs); |
| 781 | vid_hdr->data_crc = cpu_to_be32(crc); |
| 782 | |
| 783 | retry: |
| 784 | pnum = ubi_wl_get_peb(ubi, dtype); |
| 785 | if (pnum < 0) { |
| 786 | ubi_free_vid_hdr(ubi, vid_hdr); |
| 787 | leb_write_unlock(ubi, vol_id, lnum); |
| 788 | return pnum; |
| 789 | } |
| 790 | |
| 791 | dbg_eba("write VID hdr and %d bytes at LEB %d:%d, PEB %d, used_ebs %d", |
| 792 | len, vol_id, lnum, pnum, used_ebs); |
| 793 | |
| 794 | err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr); |
| 795 | if (err) { |
| 796 | ubi_warn("failed to write VID header to LEB %d:%d, PEB %d", |
| 797 | vol_id, lnum, pnum); |
| 798 | goto write_error; |
| 799 | } |
| 800 | |
| 801 | err = ubi_io_write_data(ubi, buf, pnum, 0, len); |
| 802 | if (err) { |
| 803 | ubi_warn("failed to write %d bytes of data to PEB %d", |
| 804 | len, pnum); |
| 805 | goto write_error; |
| 806 | } |
| 807 | |
| 808 | ubi_assert(vol->eba_tbl[lnum] < 0); |
| 809 | vol->eba_tbl[lnum] = pnum; |
| 810 | |
| 811 | leb_write_unlock(ubi, vol_id, lnum); |
| 812 | ubi_free_vid_hdr(ubi, vid_hdr); |
| 813 | return 0; |
| 814 | |
| 815 | write_error: |
| 816 | if (err != -EIO || !ubi->bad_allowed) { |
| 817 | /* |
| 818 | * This flash device does not admit of bad eraseblocks or |
| 819 | * something nasty and unexpected happened. Switch to read-only |
| 820 | * mode just in case. |
| 821 | */ |
| 822 | ubi_ro_mode(ubi); |
| 823 | leb_write_unlock(ubi, vol_id, lnum); |
| 824 | ubi_free_vid_hdr(ubi, vid_hdr); |
| 825 | return err; |
| 826 | } |
| 827 | |
| 828 | err = ubi_wl_put_peb(ubi, pnum, 1); |
| 829 | if (err || ++tries > UBI_IO_RETRIES) { |
| 830 | ubi_ro_mode(ubi); |
| 831 | leb_write_unlock(ubi, vol_id, lnum); |
| 832 | ubi_free_vid_hdr(ubi, vid_hdr); |
| 833 | return err; |
| 834 | } |
| 835 | |
| 836 | vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi)); |
| 837 | ubi_msg("try another PEB"); |
| 838 | goto retry; |
| 839 | } |
| 840 | |
| 841 | /* |
| 842 | * ubi_eba_atomic_leb_change - change logical eraseblock atomically. |
| 843 | * @ubi: UBI device description object |
| 844 | * @vol: volume description object |
| 845 | * @lnum: logical eraseblock number |
| 846 | * @buf: data to write |
| 847 | * @len: how many bytes to write |
| 848 | * @dtype: data type |
| 849 | * |
| 850 | * This function changes the contents of a logical eraseblock atomically. @buf |
| 851 | * has to contain new logical eraseblock data, and @len - the length of the |
| 852 | * data, which has to be aligned. This function guarantees that in case of an |
| 853 | * unclean reboot the old contents is preserved. Returns zero in case of |
| 854 | * success and a negative error code in case of failure. |
| 855 | * |
| 856 | * UBI reserves one LEB for the "atomic LEB change" operation, so only one |
| 857 | * LEB change may be done at a time. This is ensured by @ubi->alc_mutex. |
| 858 | */ |
| 859 | int ubi_eba_atomic_leb_change(struct ubi_device *ubi, struct ubi_volume *vol, |
| 860 | int lnum, const void *buf, int len, int dtype) |
| 861 | { |
| 862 | int err, pnum, tries = 0, vol_id = vol->vol_id; |
| 863 | struct ubi_vid_hdr *vid_hdr; |
| 864 | uint32_t crc; |
| 865 | |
| 866 | if (ubi->ro_mode) |
| 867 | return -EROFS; |
| 868 | |
| 869 | if (len == 0) { |
| 870 | /* |
| 871 | * Special case when data length is zero. In this case the LEB |
| 872 | * has to be unmapped and mapped somewhere else. |
| 873 | */ |
| 874 | err = ubi_eba_unmap_leb(ubi, vol, lnum); |
| 875 | if (err) |
| 876 | return err; |
| 877 | return ubi_eba_write_leb(ubi, vol, lnum, NULL, 0, 0, dtype); |
| 878 | } |
| 879 | |
| 880 | vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS); |
| 881 | if (!vid_hdr) |
| 882 | return -ENOMEM; |
| 883 | |
| 884 | mutex_lock(&ubi->alc_mutex); |
| 885 | err = leb_write_lock(ubi, vol_id, lnum); |
| 886 | if (err) |
| 887 | goto out_mutex; |
| 888 | |
| 889 | vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi)); |
| 890 | vid_hdr->vol_id = cpu_to_be32(vol_id); |
| 891 | vid_hdr->lnum = cpu_to_be32(lnum); |
| 892 | vid_hdr->compat = ubi_get_compat(ubi, vol_id); |
| 893 | vid_hdr->data_pad = cpu_to_be32(vol->data_pad); |
| 894 | |
| 895 | crc = crc32(UBI_CRC32_INIT, buf, len); |
| 896 | vid_hdr->vol_type = UBI_VID_DYNAMIC; |
| 897 | vid_hdr->data_size = cpu_to_be32(len); |
| 898 | vid_hdr->copy_flag = 1; |
| 899 | vid_hdr->data_crc = cpu_to_be32(crc); |
| 900 | |
| 901 | retry: |
| 902 | pnum = ubi_wl_get_peb(ubi, dtype); |
| 903 | if (pnum < 0) { |
| 904 | err = pnum; |
| 905 | goto out_leb_unlock; |
| 906 | } |
| 907 | |
| 908 | dbg_eba("change LEB %d:%d, PEB %d, write VID hdr to PEB %d", |
| 909 | vol_id, lnum, vol->eba_tbl[lnum], pnum); |
| 910 | |
| 911 | err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr); |
| 912 | if (err) { |
| 913 | ubi_warn("failed to write VID header to LEB %d:%d, PEB %d", |
| 914 | vol_id, lnum, pnum); |
| 915 | goto write_error; |
| 916 | } |
| 917 | |
| 918 | err = ubi_io_write_data(ubi, buf, pnum, 0, len); |
| 919 | if (err) { |
| 920 | ubi_warn("failed to write %d bytes of data to PEB %d", |
| 921 | len, pnum); |
| 922 | goto write_error; |
| 923 | } |
| 924 | |
| 925 | if (vol->eba_tbl[lnum] >= 0) { |
| 926 | err = ubi_wl_put_peb(ubi, vol->eba_tbl[lnum], 1); |
| 927 | if (err) |
| 928 | goto out_leb_unlock; |
| 929 | } |
| 930 | |
| 931 | vol->eba_tbl[lnum] = pnum; |
| 932 | |
| 933 | out_leb_unlock: |
| 934 | leb_write_unlock(ubi, vol_id, lnum); |
| 935 | out_mutex: |
| 936 | mutex_unlock(&ubi->alc_mutex); |
| 937 | ubi_free_vid_hdr(ubi, vid_hdr); |
| 938 | return err; |
| 939 | |
| 940 | write_error: |
| 941 | if (err != -EIO || !ubi->bad_allowed) { |
| 942 | /* |
| 943 | * This flash device does not admit of bad eraseblocks or |
| 944 | * something nasty and unexpected happened. Switch to read-only |
| 945 | * mode just in case. |
| 946 | */ |
| 947 | ubi_ro_mode(ubi); |
| 948 | goto out_leb_unlock; |
| 949 | } |
| 950 | |
| 951 | err = ubi_wl_put_peb(ubi, pnum, 1); |
| 952 | if (err || ++tries > UBI_IO_RETRIES) { |
| 953 | ubi_ro_mode(ubi); |
| 954 | goto out_leb_unlock; |
| 955 | } |
| 956 | |
| 957 | vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi)); |
| 958 | ubi_msg("try another PEB"); |
| 959 | goto retry; |
| 960 | } |
| 961 | |
| 962 | /** |
| 963 | * ubi_eba_copy_leb - copy logical eraseblock. |
| 964 | * @ubi: UBI device description object |
| 965 | * @from: physical eraseblock number from where to copy |
| 966 | * @to: physical eraseblock number where to copy |
| 967 | * @vid_hdr: VID header of the @from physical eraseblock |
| 968 | * |
| 969 | * This function copies logical eraseblock from physical eraseblock @from to |
| 970 | * physical eraseblock @to. The @vid_hdr buffer may be changed by this |
| 971 | * function. Returns: |
| 972 | * o %0 in case of success; |
| 973 | * o %1 if the operation was canceled and should be tried later (e.g., |
| 974 | * because a bit-flip was detected at the target PEB); |
| 975 | * o %2 if the volume is being deleted and this LEB should not be moved. |
| 976 | */ |
| 977 | int ubi_eba_copy_leb(struct ubi_device *ubi, int from, int to, |
| 978 | struct ubi_vid_hdr *vid_hdr) |
| 979 | { |
| 980 | int err, vol_id, lnum, data_size, aldata_size, idx; |
| 981 | struct ubi_volume *vol; |
| 982 | uint32_t crc; |
| 983 | |
| 984 | vol_id = be32_to_cpu(vid_hdr->vol_id); |
| 985 | lnum = be32_to_cpu(vid_hdr->lnum); |
| 986 | |
| 987 | dbg_eba("copy LEB %d:%d, PEB %d to PEB %d", vol_id, lnum, from, to); |
| 988 | |
| 989 | if (vid_hdr->vol_type == UBI_VID_STATIC) { |
| 990 | data_size = be32_to_cpu(vid_hdr->data_size); |
| 991 | aldata_size = ALIGN(data_size, ubi->min_io_size); |
| 992 | } else |
| 993 | data_size = aldata_size = |
| 994 | ubi->leb_size - be32_to_cpu(vid_hdr->data_pad); |
| 995 | |
| 996 | idx = vol_id2idx(ubi, vol_id); |
| 997 | spin_lock(&ubi->volumes_lock); |
| 998 | /* |
| 999 | * Note, we may race with volume deletion, which means that the volume |
| 1000 | * this logical eraseblock belongs to might be being deleted. Since the |
| 1001 | * volume deletion unmaps all the volume's logical eraseblocks, it will |
| 1002 | * be locked in 'ubi_wl_put_peb()' and wait for the WL worker to finish. |
| 1003 | */ |
| 1004 | vol = ubi->volumes[idx]; |
| 1005 | if (!vol) { |
| 1006 | /* No need to do further work, cancel */ |
| 1007 | dbg_eba("volume %d is being removed, cancel", vol_id); |
| 1008 | spin_unlock(&ubi->volumes_lock); |
| 1009 | return 2; |
| 1010 | } |
| 1011 | spin_unlock(&ubi->volumes_lock); |
| 1012 | |
| 1013 | /* |
| 1014 | * We do not want anybody to write to this logical eraseblock while we |
| 1015 | * are moving it, so lock it. |
| 1016 | * |
| 1017 | * Note, we are using non-waiting locking here, because we cannot sleep |
| 1018 | * on the LEB, since it may cause deadlocks. Indeed, imagine a task is |
| 1019 | * unmapping the LEB which is mapped to the PEB we are going to move |
| 1020 | * (@from). This task locks the LEB and goes sleep in the |
| 1021 | * 'ubi_wl_put_peb()' function on the @ubi->move_mutex. In turn, we are |
| 1022 | * holding @ubi->move_mutex and go sleep on the LEB lock. So, if the |
| 1023 | * LEB is already locked, we just do not move it and return %1. |
| 1024 | */ |
| 1025 | err = leb_write_trylock(ubi, vol_id, lnum); |
| 1026 | if (err) { |
| 1027 | dbg_eba("contention on LEB %d:%d, cancel", vol_id, lnum); |
| 1028 | return err; |
| 1029 | } |
| 1030 | |
| 1031 | /* |
| 1032 | * The LEB might have been put meanwhile, and the task which put it is |
| 1033 | * probably waiting on @ubi->move_mutex. No need to continue the work, |
| 1034 | * cancel it. |
| 1035 | */ |
| 1036 | if (vol->eba_tbl[lnum] != from) { |
| 1037 | dbg_eba("LEB %d:%d is no longer mapped to PEB %d, mapped to " |
| 1038 | "PEB %d, cancel", vol_id, lnum, from, |
| 1039 | vol->eba_tbl[lnum]); |
| 1040 | err = 1; |
| 1041 | goto out_unlock_leb; |
| 1042 | } |
| 1043 | |
| 1044 | /* |
| 1045 | * OK, now the LEB is locked and we can safely start moving iy. Since |
| 1046 | * this function utilizes thie @ubi->peb1_buf buffer which is shared |
| 1047 | * with some other functions, so lock the buffer by taking the |
| 1048 | * @ubi->buf_mutex. |
| 1049 | */ |
| 1050 | mutex_lock(&ubi->buf_mutex); |
| 1051 | dbg_eba("read %d bytes of data", aldata_size); |
| 1052 | err = ubi_io_read_data(ubi, ubi->peb_buf1, from, 0, aldata_size); |
| 1053 | if (err && err != UBI_IO_BITFLIPS) { |
| 1054 | ubi_warn("error %d while reading data from PEB %d", |
| 1055 | err, from); |
| 1056 | goto out_unlock_buf; |
| 1057 | } |
| 1058 | |
| 1059 | /* |
| 1060 | * Now we have got to calculate how much data we have to to copy. In |
| 1061 | * case of a static volume it is fairly easy - the VID header contains |
| 1062 | * the data size. In case of a dynamic volume it is more difficult - we |
| 1063 | * have to read the contents, cut 0xFF bytes from the end and copy only |
| 1064 | * the first part. We must do this to avoid writing 0xFF bytes as it |
| 1065 | * may have some side-effects. And not only this. It is important not |
| 1066 | * to include those 0xFFs to CRC because later the they may be filled |
| 1067 | * by data. |
| 1068 | */ |
| 1069 | if (vid_hdr->vol_type == UBI_VID_DYNAMIC) |
| 1070 | aldata_size = data_size = |
| 1071 | ubi_calc_data_len(ubi, ubi->peb_buf1, data_size); |
| 1072 | |
| 1073 | cond_resched(); |
| 1074 | crc = crc32(UBI_CRC32_INIT, ubi->peb_buf1, data_size); |
| 1075 | cond_resched(); |
| 1076 | |
| 1077 | /* |
| 1078 | * It may turn out to me that the whole @from physical eraseblock |
| 1079 | * contains only 0xFF bytes. Then we have to only write the VID header |
| 1080 | * and do not write any data. This also means we should not set |
| 1081 | * @vid_hdr->copy_flag, @vid_hdr->data_size, and @vid_hdr->data_crc. |
| 1082 | */ |
| 1083 | if (data_size > 0) { |
| 1084 | vid_hdr->copy_flag = 1; |
| 1085 | vid_hdr->data_size = cpu_to_be32(data_size); |
| 1086 | vid_hdr->data_crc = cpu_to_be32(crc); |
| 1087 | } |
| 1088 | vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi)); |
| 1089 | |
| 1090 | err = ubi_io_write_vid_hdr(ubi, to, vid_hdr); |
| 1091 | if (err) |
| 1092 | goto out_unlock_buf; |
| 1093 | |
| 1094 | cond_resched(); |
| 1095 | |
| 1096 | /* Read the VID header back and check if it was written correctly */ |
| 1097 | err = ubi_io_read_vid_hdr(ubi, to, vid_hdr, 1); |
| 1098 | if (err) { |
| 1099 | if (err != UBI_IO_BITFLIPS) |
| 1100 | ubi_warn("cannot read VID header back from PEB %d", to); |
| 1101 | else |
| 1102 | err = 1; |
| 1103 | goto out_unlock_buf; |
| 1104 | } |
| 1105 | |
| 1106 | if (data_size > 0) { |
| 1107 | err = ubi_io_write_data(ubi, ubi->peb_buf1, to, 0, aldata_size); |
| 1108 | if (err) |
| 1109 | goto out_unlock_buf; |
| 1110 | |
| 1111 | cond_resched(); |
| 1112 | |
| 1113 | /* |
| 1114 | * We've written the data and are going to read it back to make |
| 1115 | * sure it was written correctly. |
| 1116 | */ |
| 1117 | |
| 1118 | err = ubi_io_read_data(ubi, ubi->peb_buf2, to, 0, aldata_size); |
| 1119 | if (err) { |
| 1120 | if (err != UBI_IO_BITFLIPS) |
| 1121 | ubi_warn("cannot read data back from PEB %d", |
| 1122 | to); |
| 1123 | else |
| 1124 | err = 1; |
| 1125 | goto out_unlock_buf; |
| 1126 | } |
| 1127 | |
| 1128 | cond_resched(); |
| 1129 | |
| 1130 | if (memcmp(ubi->peb_buf1, ubi->peb_buf2, aldata_size)) { |
| 1131 | ubi_warn("read data back from PEB %d - it is different", |
| 1132 | to); |
| 1133 | goto out_unlock_buf; |
| 1134 | } |
| 1135 | } |
| 1136 | |
| 1137 | ubi_assert(vol->eba_tbl[lnum] == from); |
| 1138 | vol->eba_tbl[lnum] = to; |
| 1139 | |
| 1140 | out_unlock_buf: |
| 1141 | mutex_unlock(&ubi->buf_mutex); |
| 1142 | out_unlock_leb: |
| 1143 | leb_write_unlock(ubi, vol_id, lnum); |
| 1144 | return err; |
| 1145 | } |
| 1146 | |
| 1147 | /** |
| 1148 | * ubi_eba_init_scan - initialize the EBA unit using scanning information. |
| 1149 | * @ubi: UBI device description object |
| 1150 | * @si: scanning information |
| 1151 | * |
| 1152 | * This function returns zero in case of success and a negative error code in |
| 1153 | * case of failure. |
| 1154 | */ |
| 1155 | int ubi_eba_init_scan(struct ubi_device *ubi, struct ubi_scan_info *si) |
| 1156 | { |
| 1157 | int i, j, err, num_volumes; |
| 1158 | struct ubi_scan_volume *sv; |
| 1159 | struct ubi_volume *vol; |
| 1160 | struct ubi_scan_leb *seb; |
| 1161 | struct rb_node *rb; |
| 1162 | |
| 1163 | dbg_eba("initialize EBA unit"); |
| 1164 | |
| 1165 | spin_lock_init(&ubi->ltree_lock); |
| 1166 | mutex_init(&ubi->alc_mutex); |
| 1167 | ubi->ltree = RB_ROOT; |
| 1168 | |
| 1169 | ubi->global_sqnum = si->max_sqnum + 1; |
| 1170 | num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT; |
| 1171 | |
| 1172 | for (i = 0; i < num_volumes; i++) { |
| 1173 | vol = ubi->volumes[i]; |
| 1174 | if (!vol) |
| 1175 | continue; |
| 1176 | |
| 1177 | cond_resched(); |
| 1178 | |
| 1179 | vol->eba_tbl = kmalloc(vol->reserved_pebs * sizeof(int), |
| 1180 | GFP_KERNEL); |
| 1181 | if (!vol->eba_tbl) { |
| 1182 | err = -ENOMEM; |
| 1183 | goto out_free; |
| 1184 | } |
| 1185 | |
| 1186 | for (j = 0; j < vol->reserved_pebs; j++) |
| 1187 | vol->eba_tbl[j] = UBI_LEB_UNMAPPED; |
| 1188 | |
| 1189 | sv = ubi_scan_find_sv(si, idx2vol_id(ubi, i)); |
| 1190 | if (!sv) |
| 1191 | continue; |
| 1192 | |
| 1193 | ubi_rb_for_each_entry(rb, seb, &sv->root, u.rb) { |
| 1194 | if (seb->lnum >= vol->reserved_pebs) |
| 1195 | /* |
| 1196 | * This may happen in case of an unclean reboot |
| 1197 | * during re-size. |
| 1198 | */ |
| 1199 | ubi_scan_move_to_list(sv, seb, &si->erase); |
| 1200 | vol->eba_tbl[seb->lnum] = seb->pnum; |
| 1201 | } |
| 1202 | } |
| 1203 | |
| 1204 | if (ubi->avail_pebs < EBA_RESERVED_PEBS) { |
| 1205 | ubi_err("no enough physical eraseblocks (%d, need %d)", |
| 1206 | ubi->avail_pebs, EBA_RESERVED_PEBS); |
| 1207 | err = -ENOSPC; |
| 1208 | goto out_free; |
| 1209 | } |
| 1210 | ubi->avail_pebs -= EBA_RESERVED_PEBS; |
| 1211 | ubi->rsvd_pebs += EBA_RESERVED_PEBS; |
| 1212 | |
| 1213 | if (ubi->bad_allowed) { |
| 1214 | ubi_calculate_reserved(ubi); |
| 1215 | |
| 1216 | if (ubi->avail_pebs < ubi->beb_rsvd_level) { |
| 1217 | /* No enough free physical eraseblocks */ |
| 1218 | ubi->beb_rsvd_pebs = ubi->avail_pebs; |
| 1219 | ubi_warn("cannot reserve enough PEBs for bad PEB " |
| 1220 | "handling, reserved %d, need %d", |
| 1221 | ubi->beb_rsvd_pebs, ubi->beb_rsvd_level); |
| 1222 | } else |
| 1223 | ubi->beb_rsvd_pebs = ubi->beb_rsvd_level; |
| 1224 | |
| 1225 | ubi->avail_pebs -= ubi->beb_rsvd_pebs; |
| 1226 | ubi->rsvd_pebs += ubi->beb_rsvd_pebs; |
| 1227 | } |
| 1228 | |
| 1229 | dbg_eba("EBA unit is initialized"); |
| 1230 | return 0; |
| 1231 | |
| 1232 | out_free: |
| 1233 | for (i = 0; i < num_volumes; i++) { |
| 1234 | if (!ubi->volumes[i]) |
| 1235 | continue; |
| 1236 | kfree(ubi->volumes[i]->eba_tbl); |
| 1237 | } |
| 1238 | return err; |
| 1239 | } |
| 1240 | |
| 1241 | /** |
| 1242 | * ubi_eba_close - close EBA unit. |
| 1243 | * @ubi: UBI device description object |
| 1244 | */ |
| 1245 | void ubi_eba_close(const struct ubi_device *ubi) |
| 1246 | { |
| 1247 | int i, num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT; |
| 1248 | |
| 1249 | dbg_eba("close EBA unit"); |
| 1250 | |
| 1251 | for (i = 0; i < num_volumes; i++) { |
| 1252 | if (!ubi->volumes[i]) |
| 1253 | continue; |
| 1254 | kfree(ubi->volumes[i]->eba_tbl); |
| 1255 | } |
| 1256 | } |