blob: f9dc005c50bc6921d521e067ff90cc993da08374 [file] [log] [blame]
Qu Wenruo07d977f2020-06-24 18:02:47 +02001/* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
2/*
3 * Copied from kernel/include/uapi/linux/btrfs_btree.h.
4 *
5 * Only modified the header.
6 */
7/* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
8#ifndef __BTRFS_TREE_H__
9#define __BTRFS_TREE_H__
10
11#include <linux/types.h>
12
13#define BTRFS_MAGIC 0x4D5F53665248425FULL /* ascii _BHRfS_M, no null */
14
15/*
16 * The max metadata block size (node size).
17 *
18 * This limit is somewhat artificial. The memmove and tree block locking cost
19 * go up with larger node size.
20 */
21#define BTRFS_MAX_METADATA_BLOCKSIZE 65536
22
23/*
24 * We can actually store much bigger names, but lets not confuse the rest
25 * of linux.
26 *
27 * btrfs_dir_item::name_len follows this limitation.
28 */
29#define BTRFS_NAME_LEN 255
30
31/*
32 * Objectids start from here.
33 *
34 * Check btrfs_disk_key for the meaning of objectids.
35 */
36
37/*
38 * Root tree holds pointers to all of the tree roots.
39 * Without special mention, the root tree contains the root bytenr of all other
40 * trees, except the chunk tree and the log tree.
41 *
42 * The super block contains the root bytenr of this tree.
43 */
44#define BTRFS_ROOT_TREE_OBJECTID 1ULL
45
46/*
47 * Extent tree stores information about which extents are in use, and backrefs
48 * for each extent.
49 */
50#define BTRFS_EXTENT_TREE_OBJECTID 2ULL
51
52/*
53 * Chunk tree stores btrfs logical address -> physical address mapping.
54 *
55 * The super block contains part of chunk tree for bootstrap, and contains
56 * the root bytenr of this tree.
57 */
58#define BTRFS_CHUNK_TREE_OBJECTID 3ULL
59
60/*
61 * Device tree stores info about which areas of a given device are in use,
62 * and physical address -> btrfs logical address mapping.
63 */
64#define BTRFS_DEV_TREE_OBJECTID 4ULL
65
66/* The fs tree is the first subvolume tree, storing files and directories. */
67#define BTRFS_FS_TREE_OBJECTID 5ULL
68
69/* Shows the directory objectid inside the root tree. */
70#define BTRFS_ROOT_TREE_DIR_OBJECTID 6ULL
71
72/* Csum tree holds checksums of all the data extents. */
73#define BTRFS_CSUM_TREE_OBJECTID 7ULL
74
75/* Quota tree holds quota configuration and tracking. */
76#define BTRFS_QUOTA_TREE_OBJECTID 8ULL
77
78/* UUID tree stores items that use the BTRFS_UUID_KEY* types. */
79#define BTRFS_UUID_TREE_OBJECTID 9ULL
80
81/* Free space cache tree (v2 space cache) tracks free space in block groups. */
82#define BTRFS_FREE_SPACE_TREE_OBJECTID 10ULL
83
84/* Indicates device stats in the device tree. */
85#define BTRFS_DEV_STATS_OBJECTID 0ULL
86
87/* For storing balance parameters in the root tree. */
88#define BTRFS_BALANCE_OBJECTID -4ULL
89
90/* Orhpan objectid for tracking unlinked/truncated files. */
91#define BTRFS_ORPHAN_OBJECTID -5ULL
92
93/* Does write ahead logging to speed up fsyncs. */
94#define BTRFS_TREE_LOG_OBJECTID -6ULL
95#define BTRFS_TREE_LOG_FIXUP_OBJECTID -7ULL
96
97/* For space balancing. */
98#define BTRFS_TREE_RELOC_OBJECTID -8ULL
99#define BTRFS_DATA_RELOC_TREE_OBJECTID -9ULL
100
101/* Extent checksums, shared between the csum tree and log trees. */
102#define BTRFS_EXTENT_CSUM_OBJECTID -10ULL
103
104/* For storing free space cache (v1 space cache). */
105#define BTRFS_FREE_SPACE_OBJECTID -11ULL
106
107/* The inode number assigned to the special inode for storing free ino cache. */
108#define BTRFS_FREE_INO_OBJECTID -12ULL
109
110/* Dummy objectid represents multiple objectids. */
111#define BTRFS_MULTIPLE_OBJECTIDS -255ULL
112
113/* All files have objectids in this range. */
114#define BTRFS_FIRST_FREE_OBJECTID 256ULL
115#define BTRFS_LAST_FREE_OBJECTID -256ULL
116#define BTRFS_FIRST_CHUNK_TREE_OBJECTID 256ULL
117
Qu Wenruo07d977f2020-06-24 18:02:47 +0200118/*
119 * The device items go into the chunk tree.
120 *
121 * The key is in the form
122 * (BTRFS_DEV_ITEMS_OBJECTID, BTRFS_DEV_ITEM_KEY, <device_id>)
123 */
124#define BTRFS_DEV_ITEMS_OBJECTID 1ULL
125
126#define BTRFS_BTREE_INODE_OBJECTID 1
127
128#define BTRFS_EMPTY_SUBVOL_DIR_OBJECTID 2
129
130#define BTRFS_DEV_REPLACE_DEVID 0ULL
131
132/*
133 * Types start from here.
134 *
135 * Check btrfs_disk_key for details about types.
136 */
137
138/*
139 * Inode items have the data typically returned from stat and store other
140 * info about object characteristics.
141 *
142 * There is one for every file and dir in the FS.
143 */
144#define BTRFS_INODE_ITEM_KEY 1
145/* reserve 2-11 close to the inode for later flexibility */
146#define BTRFS_INODE_REF_KEY 12
147#define BTRFS_INODE_EXTREF_KEY 13
148#define BTRFS_XATTR_ITEM_KEY 24
149#define BTRFS_ORPHAN_ITEM_KEY 48
150
151/*
152 * Dir items are the name -> inode pointers in a directory.
153 *
154 * There is one for every name in a directory.
155 */
156#define BTRFS_DIR_LOG_ITEM_KEY 60
157#define BTRFS_DIR_LOG_INDEX_KEY 72
158#define BTRFS_DIR_ITEM_KEY 84
159#define BTRFS_DIR_INDEX_KEY 96
160
161/* Stores info (position, size ...) about a data extent of a file */
162#define BTRFS_EXTENT_DATA_KEY 108
163
164/*
165 * Extent csums are stored in a separate tree and hold csums for
166 * an entire extent on disk.
167 */
168#define BTRFS_EXTENT_CSUM_KEY 128
169
170/*
171 * Root items point to tree roots.
172 *
173 * They are typically in the root tree used by the super block to find all the
174 * other trees.
175 */
176#define BTRFS_ROOT_ITEM_KEY 132
177
178/*
179 * Root backrefs tie subvols and snapshots to the directory entries that
180 * reference them.
181 */
182#define BTRFS_ROOT_BACKREF_KEY 144
183
184/*
185 * Root refs make a fast index for listing all of the snapshots and
186 * subvolumes referenced by a given root. They point directly to the
187 * directory item in the root that references the subvol.
188 */
189#define BTRFS_ROOT_REF_KEY 156
190
191/*
192 * Extent items are in the extent tree.
193 *
194 * These record which blocks are used, and how many references there are.
195 */
196#define BTRFS_EXTENT_ITEM_KEY 168
197
198/*
199 * The same as the BTRFS_EXTENT_ITEM_KEY, except it's metadata we already know
200 * the length, so we save the level in key->offset instead of the length.
201 */
202#define BTRFS_METADATA_ITEM_KEY 169
203
204#define BTRFS_TREE_BLOCK_REF_KEY 176
205
206#define BTRFS_EXTENT_DATA_REF_KEY 178
207
208#define BTRFS_EXTENT_REF_V0_KEY 180
209
210#define BTRFS_SHARED_BLOCK_REF_KEY 182
211
212#define BTRFS_SHARED_DATA_REF_KEY 184
213
214/*
215 * Block groups give us hints into the extent allocation trees.
216 *
217 * Stores how many free space there is in a block group.
218 */
219#define BTRFS_BLOCK_GROUP_ITEM_KEY 192
220
221/*
222 * Every block group is represented in the free space tree by a free space info
223 * item, which stores some accounting information. It is keyed on
224 * (block_group_start, FREE_SPACE_INFO, block_group_length).
225 */
226#define BTRFS_FREE_SPACE_INFO_KEY 198
227
228/*
229 * A free space extent tracks an extent of space that is free in a block group.
230 * It is keyed on (start, FREE_SPACE_EXTENT, length).
231 */
232#define BTRFS_FREE_SPACE_EXTENT_KEY 199
233
234/*
235 * When a block group becomes very fragmented, we convert it to use bitmaps
236 * instead of extents.
237 *
238 * A free space bitmap is keyed on (start, FREE_SPACE_BITMAP, length).
239 * The corresponding item is a bitmap with (length / sectorsize) bits.
240 */
241#define BTRFS_FREE_SPACE_BITMAP_KEY 200
242
243#define BTRFS_DEV_EXTENT_KEY 204
244#define BTRFS_DEV_ITEM_KEY 216
245#define BTRFS_CHUNK_ITEM_KEY 228
246
247/*
248 * Records the overall state of the qgroups.
249 *
250 * There's only one instance of this key present,
251 * (0, BTRFS_QGROUP_STATUS_KEY, 0)
252 */
253#define BTRFS_QGROUP_STATUS_KEY 240
254/*
255 * Records the currently used space of the qgroup.
256 *
257 * One key per qgroup, (0, BTRFS_QGROUP_INFO_KEY, qgroupid).
258 */
259#define BTRFS_QGROUP_INFO_KEY 242
260
261/*
262 * Contains the user configured limits for the qgroup.
263 *
264 * One key per qgroup, (0, BTRFS_QGROUP_LIMIT_KEY, qgroupid).
265 */
266#define BTRFS_QGROUP_LIMIT_KEY 244
267
268/*
269 * Records the child-parent relationship of qgroups. For
270 * each relation, 2 keys are present:
271 * (childid, BTRFS_QGROUP_RELATION_KEY, parentid)
272 * (parentid, BTRFS_QGROUP_RELATION_KEY, childid)
273 */
274#define BTRFS_QGROUP_RELATION_KEY 246
275
276/* Obsolete name, see BTRFS_TEMPORARY_ITEM_KEY. */
277#define BTRFS_BALANCE_ITEM_KEY 248
278
279/*
280 * The key type for tree items that are stored persistently, but do not need to
281 * exist for extended period of time. The items can exist in any tree.
282 *
283 * [subtype, BTRFS_TEMPORARY_ITEM_KEY, data]
284 *
285 * Existing items:
286 *
287 * - balance status item
288 * (BTRFS_BALANCE_OBJECTID, BTRFS_TEMPORARY_ITEM_KEY, 0)
289 */
290#define BTRFS_TEMPORARY_ITEM_KEY 248
291
292/* Obsolete name, see BTRFS_PERSISTENT_ITEM_KEY */
293#define BTRFS_DEV_STATS_KEY 249
294
295/*
296 * The key type for tree items that are stored persistently and usually exist
297 * for a long period, eg. filesystem lifetime. The item kinds can be status
298 * information, stats or preference values. The item can exist in any tree.
299 *
300 * [subtype, BTRFS_PERSISTENT_ITEM_KEY, data]
301 *
302 * Existing items:
303 *
304 * - device statistics, store IO stats in the device tree, one key for all
305 * stats
306 * (BTRFS_DEV_STATS_OBJECTID, BTRFS_DEV_STATS_KEY, 0)
307 */
308#define BTRFS_PERSISTENT_ITEM_KEY 249
309
310/*
311 * Persistently stores the device replace state in the device tree.
312 *
313 * The key is built like this: (0, BTRFS_DEV_REPLACE_KEY, 0).
314 */
315#define BTRFS_DEV_REPLACE_KEY 250
316
317/*
318 * Stores items that allow to quickly map UUIDs to something else.
319 *
320 * These items are part of the filesystem UUID tree.
321 * The key is built like this:
322 * (UUID_upper_64_bits, BTRFS_UUID_KEY*, UUID_lower_64_bits).
323 */
324#define BTRFS_UUID_KEY_SUBVOL 251 /* for UUIDs assigned to subvols */
325#define BTRFS_UUID_KEY_RECEIVED_SUBVOL 252 /* for UUIDs assigned to
326 * received subvols */
327
328/*
329 * String items are for debugging.
330 *
331 * They just store a short string of data in the FS.
332 */
333#define BTRFS_STRING_ITEM_KEY 253
334
Qu Wenruo07d977f2020-06-24 18:02:47 +0200335/* 32 bytes in various csum fields */
336#define BTRFS_CSUM_SIZE 32
337
338/* Csum types */
339enum btrfs_csum_type {
340 BTRFS_CSUM_TYPE_CRC32 = 0,
341 BTRFS_CSUM_TYPE_XXHASH = 1,
342 BTRFS_CSUM_TYPE_SHA256 = 2,
343 BTRFS_CSUM_TYPE_BLAKE2 = 3,
344};
345
346/*
347 * Flags definitions for directory entry item type.
348 *
349 * Used by:
350 * struct btrfs_dir_item.type
351 *
352 * Values 0..7 must match common file type values in fs_types.h.
353 */
354#define BTRFS_FT_UNKNOWN 0
355#define BTRFS_FT_REG_FILE 1
356#define BTRFS_FT_DIR 2
357#define BTRFS_FT_CHRDEV 3
358#define BTRFS_FT_BLKDEV 4
359#define BTRFS_FT_FIFO 5
360#define BTRFS_FT_SOCK 6
361#define BTRFS_FT_SYMLINK 7
362#define BTRFS_FT_XATTR 8
363#define BTRFS_FT_MAX 9
364
365#define BTRFS_FSID_SIZE 16
366#define BTRFS_UUID_SIZE 16
367
368/*
369 * The key defines the order in the tree, and so it also defines (optimal)
370 * block layout.
371 *
372 * Objectid and offset are interpreted based on type.
373 * While normally for objectid, it either represents a root number, or an
374 * inode number.
375 *
376 * Type tells us things about the object, and is a kind of stream selector.
377 * Check the following URL for full references about btrfs_disk_key/btrfs_key:
378 * https://btrfs.wiki.kernel.org/index.php/Btree_Items
379 *
380 * btrfs_disk_key is in disk byte order. struct btrfs_key is always
381 * in cpu native order. Otherwise they are identical and their sizes
382 * should be the same (ie both packed)
383 */
384struct btrfs_disk_key {
385 __le64 objectid;
386 __u8 type;
387 __le64 offset;
388} __attribute__ ((__packed__));
389
390struct btrfs_key {
391 __u64 objectid;
392 __u8 type;
393 __u64 offset;
394} __attribute__ ((__packed__));
395
396struct btrfs_dev_item {
397 /* The internal btrfs device id */
398 __le64 devid;
399
400 /* Size of the device */
401 __le64 total_bytes;
402
403 /* Bytes used */
404 __le64 bytes_used;
405
406 /* Optimal io alignment for this device */
407 __le32 io_align;
408
409 /* Optimal io width for this device */
410 __le32 io_width;
411
412 /* Minimal io size for this device */
413 __le32 sector_size;
414
415 /* Type and info about this device */
416 __le64 type;
417
418 /* Expected generation for this device */
419 __le64 generation;
420
421 /*
422 * Starting byte of this partition on the device,
423 * to allow for stripe alignment in the future.
424 */
425 __le64 start_offset;
426
427 /* Grouping information for allocation decisions */
428 __le32 dev_group;
429
430 /* Optimal seek speed 0-100 where 100 is fastest */
431 __u8 seek_speed;
432
433 /* Optimal bandwidth 0-100 where 100 is fastest */
434 __u8 bandwidth;
435
436 /* Btrfs generated uuid for this device */
437 __u8 uuid[BTRFS_UUID_SIZE];
438
439 /* UUID of FS who owns this device */
440 __u8 fsid[BTRFS_UUID_SIZE];
441} __attribute__ ((__packed__));
442
443struct btrfs_stripe {
444 __le64 devid;
445 __le64 offset;
446 __u8 dev_uuid[BTRFS_UUID_SIZE];
447} __attribute__ ((__packed__));
448
449struct btrfs_chunk {
450 /* Size of this chunk in bytes */
451 __le64 length;
452
453 /* Objectid of the root referencing this chunk */
454 __le64 owner;
455
456 __le64 stripe_len;
457 __le64 type;
458
459 /* Optimal io alignment for this chunk */
460 __le32 io_align;
461
462 /* Optimal io width for this chunk */
463 __le32 io_width;
464
465 /* Minimal io size for this chunk */
466 __le32 sector_size;
467
468 /*
469 * 2^16 stripes is quite a lot, a second limit is the size of a single
470 * item in the btree.
471 */
472 __le16 num_stripes;
473
474 /* Sub stripes only matter for raid10 */
475 __le16 sub_stripes;
476 struct btrfs_stripe stripe;
477 /* additional stripes go here */
478} __attribute__ ((__packed__));
479
480#define BTRFS_FREE_SPACE_EXTENT 1
481#define BTRFS_FREE_SPACE_BITMAP 2
482
483struct btrfs_free_space_entry {
484 __le64 offset;
485 __le64 bytes;
486 __u8 type;
487} __attribute__ ((__packed__));
488
489struct btrfs_free_space_header {
490 struct btrfs_disk_key location;
491 __le64 generation;
492 __le64 num_entries;
493 __le64 num_bitmaps;
494} __attribute__ ((__packed__));
495
496#define BTRFS_HEADER_FLAG_WRITTEN (1ULL << 0)
497#define BTRFS_HEADER_FLAG_RELOC (1ULL << 1)
498
499/* Super block flags */
500/* Errors detected */
501#define BTRFS_SUPER_FLAG_ERROR (1ULL << 2)
502
503#define BTRFS_SUPER_FLAG_SEEDING (1ULL << 32)
504#define BTRFS_SUPER_FLAG_METADUMP (1ULL << 33)
505#define BTRFS_SUPER_FLAG_METADUMP_V2 (1ULL << 34)
506#define BTRFS_SUPER_FLAG_CHANGING_FSID (1ULL << 35)
507#define BTRFS_SUPER_FLAG_CHANGING_FSID_V2 (1ULL << 36)
508
Qu Wenruo07d977f2020-06-24 18:02:47 +0200509/*
510 * Items in the extent tree are used to record the objectid of the
511 * owner of the block and the number of references.
512 */
513struct btrfs_extent_item {
514 __le64 refs;
515 __le64 generation;
516 __le64 flags;
517} __attribute__ ((__packed__));
518
519struct btrfs_extent_item_v0 {
520 __le32 refs;
521} __attribute__ ((__packed__));
522
Qu Wenruo07d977f2020-06-24 18:02:47 +0200523#define BTRFS_EXTENT_FLAG_DATA (1ULL << 0)
524#define BTRFS_EXTENT_FLAG_TREE_BLOCK (1ULL << 1)
525
526/* Use full backrefs for extent pointers in the block */
527#define BTRFS_BLOCK_FLAG_FULL_BACKREF (1ULL << 8)
528
529/*
530 * This flag is only used internally by scrub and may be changed at any time
531 * it is only declared here to avoid collisions.
532 */
533#define BTRFS_EXTENT_FLAG_SUPER (1ULL << 48)
534
535struct btrfs_tree_block_info {
536 struct btrfs_disk_key key;
537 __u8 level;
538} __attribute__ ((__packed__));
539
540struct btrfs_extent_data_ref {
541 __le64 root;
542 __le64 objectid;
543 __le64 offset;
544 __le32 count;
545} __attribute__ ((__packed__));
546
547struct btrfs_shared_data_ref {
548 __le32 count;
549} __attribute__ ((__packed__));
550
551struct btrfs_extent_inline_ref {
552 __u8 type;
553 __le64 offset;
554} __attribute__ ((__packed__));
555
556/* Old style backrefs item */
557struct btrfs_extent_ref_v0 {
558 __le64 root;
559 __le64 generation;
560 __le64 objectid;
561 __le32 count;
562} __attribute__ ((__packed__));
563
Qu Wenruo07d977f2020-06-24 18:02:47 +0200564/* Dev extents record used space on individual devices.
565 *
566 * The owner field points back to the chunk allocation mapping tree that
567 * allocated the extent.
568 * The chunk tree uuid field is a way to double check the owner.
569 */
570struct btrfs_dev_extent {
571 __le64 chunk_tree;
572 __le64 chunk_objectid;
573 __le64 chunk_offset;
574 __le64 length;
575 __u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
576} __attribute__ ((__packed__));
577
578struct btrfs_inode_ref {
579 __le64 index;
580 __le16 name_len;
581 /* Name goes here */
582} __attribute__ ((__packed__));
583
584struct btrfs_inode_extref {
585 __le64 parent_objectid;
586 __le64 index;
587 __le16 name_len;
588 __u8 name[0];
589 /* Name goes here */
590} __attribute__ ((__packed__));
591
592struct btrfs_timespec {
593 __le64 sec;
594 __le32 nsec;
595} __attribute__ ((__packed__));
596
597/* Inode flags */
598#define BTRFS_INODE_NODATASUM (1 << 0)
599#define BTRFS_INODE_NODATACOW (1 << 1)
600#define BTRFS_INODE_READONLY (1 << 2)
601#define BTRFS_INODE_NOCOMPRESS (1 << 3)
602#define BTRFS_INODE_PREALLOC (1 << 4)
603#define BTRFS_INODE_SYNC (1 << 5)
604#define BTRFS_INODE_IMMUTABLE (1 << 6)
605#define BTRFS_INODE_APPEND (1 << 7)
606#define BTRFS_INODE_NODUMP (1 << 8)
607#define BTRFS_INODE_NOATIME (1 << 9)
608#define BTRFS_INODE_DIRSYNC (1 << 10)
609#define BTRFS_INODE_COMPRESS (1 << 11)
610
611#define BTRFS_INODE_ROOT_ITEM_INIT (1 << 31)
612
613#define BTRFS_INODE_FLAG_MASK \
614 (BTRFS_INODE_NODATASUM | \
615 BTRFS_INODE_NODATACOW | \
616 BTRFS_INODE_READONLY | \
617 BTRFS_INODE_NOCOMPRESS | \
618 BTRFS_INODE_PREALLOC | \
619 BTRFS_INODE_SYNC | \
620 BTRFS_INODE_IMMUTABLE | \
621 BTRFS_INODE_APPEND | \
622 BTRFS_INODE_NODUMP | \
623 BTRFS_INODE_NOATIME | \
624 BTRFS_INODE_DIRSYNC | \
625 BTRFS_INODE_COMPRESS | \
626 BTRFS_INODE_ROOT_ITEM_INIT)
627
628struct btrfs_inode_item {
629 /* Nfs style generation number */
630 __le64 generation;
631 /* Transid that last touched this inode */
632 __le64 transid;
633 __le64 size;
634 __le64 nbytes;
635 __le64 block_group;
636 __le32 nlink;
637 __le32 uid;
638 __le32 gid;
639 __le32 mode;
640 __le64 rdev;
641 __le64 flags;
642
643 /* Modification sequence number for NFS */
644 __le64 sequence;
645
646 /*
647 * A little future expansion, for more than this we can just grow the
648 * inode item and version it
649 */
650 __le64 reserved[4];
651 struct btrfs_timespec atime;
652 struct btrfs_timespec ctime;
653 struct btrfs_timespec mtime;
654 struct btrfs_timespec otime;
655} __attribute__ ((__packed__));
656
657struct btrfs_dir_log_item {
658 __le64 end;
659} __attribute__ ((__packed__));
660
661struct btrfs_dir_item {
662 struct btrfs_disk_key location;
663 __le64 transid;
664 __le16 data_len;
665 __le16 name_len;
666 __u8 type;
667} __attribute__ ((__packed__));
668
669#define BTRFS_ROOT_SUBVOL_RDONLY (1ULL << 0)
670
671/*
672 * Internal in-memory flag that a subvolume has been marked for deletion but
673 * still visible as a directory
674 */
675#define BTRFS_ROOT_SUBVOL_DEAD (1ULL << 48)
676
677struct btrfs_root_item {
678 struct btrfs_inode_item inode;
679 __le64 generation;
680 __le64 root_dirid;
681 __le64 bytenr;
682 __le64 byte_limit;
683 __le64 bytes_used;
684 __le64 last_snapshot;
685 __le64 flags;
686 __le32 refs;
687 struct btrfs_disk_key drop_progress;
688 __u8 drop_level;
689 __u8 level;
690
691 /*
692 * The following fields appear after subvol_uuids+subvol_times
693 * were introduced.
694 */
695
696 /*
697 * This generation number is used to test if the new fields are valid
698 * and up to date while reading the root item. Every time the root item
699 * is written out, the "generation" field is copied into this field. If
700 * anyone ever mounted the fs with an older kernel, we will have
701 * mismatching generation values here and thus must invalidate the
702 * new fields. See btrfs_update_root and btrfs_find_last_root for
703 * details.
704 * The offset of generation_v2 is also used as the start for the memset
705 * when invalidating the fields.
706 */
707 __le64 generation_v2;
708 __u8 uuid[BTRFS_UUID_SIZE];
709 __u8 parent_uuid[BTRFS_UUID_SIZE];
710 __u8 received_uuid[BTRFS_UUID_SIZE];
711 __le64 ctransid; /* Updated when an inode changes */
712 __le64 otransid; /* Trans when created */
713 __le64 stransid; /* Trans when sent. Non-zero for received subvol. */
714 __le64 rtransid; /* Trans when received. Non-zero for received subvol.*/
715 struct btrfs_timespec ctime;
716 struct btrfs_timespec otime;
717 struct btrfs_timespec stime;
718 struct btrfs_timespec rtime;
719 __le64 reserved[8]; /* For future */
720} __attribute__ ((__packed__));
721
722/* This is used for both forward and backward root refs */
723struct btrfs_root_ref {
724 __le64 dirid;
725 __le64 sequence;
726 __le16 name_len;
727} __attribute__ ((__packed__));
728
729struct btrfs_disk_balance_args {
730 /*
731 * Profiles to operate on.
732 *
733 * SINGLE is denoted by BTRFS_AVAIL_ALLOC_BIT_SINGLE.
734 */
735 __le64 profiles;
736
737 /*
738 * Usage filter
739 * BTRFS_BALANCE_ARGS_USAGE with a single value means '0..N'
740 * BTRFS_BALANCE_ARGS_USAGE_RANGE - range syntax, min..max
741 */
742 union {
743 __le64 usage;
744 struct {
745 __le32 usage_min;
746 __le32 usage_max;
747 };
748 };
749
750 /* Devid filter */
751 __le64 devid;
752
753 /* Devid subset filter [pstart..pend) */
754 __le64 pstart;
755 __le64 pend;
756
757 /* Btrfs virtual address space subset filter [vstart..vend) */
758 __le64 vstart;
759 __le64 vend;
760
761 /*
762 * Profile to convert to.
763 *
764 * SINGLE is denoted by BTRFS_AVAIL_ALLOC_BIT_SINGLE.
765 */
766 __le64 target;
767
768 /* BTRFS_BALANCE_ARGS_* */
769 __le64 flags;
770
771 /*
772 * BTRFS_BALANCE_ARGS_LIMIT with value 'limit'.
773 * BTRFS_BALANCE_ARGS_LIMIT_RANGE - the extend version can use minimum
774 * and maximum.
775 */
776 union {
777 __le64 limit;
778 struct {
779 __le32 limit_min;
780 __le32 limit_max;
781 };
782 };
783
784 /*
785 * Process chunks that cross stripes_min..stripes_max devices,
786 * BTRFS_BALANCE_ARGS_STRIPES_RANGE.
787 */
788 __le32 stripes_min;
789 __le32 stripes_max;
790
791 __le64 unused[6];
792} __attribute__ ((__packed__));
793
794/*
795 * Stores balance parameters to disk so that balance can be properly
796 * resumed after crash or unmount.
797 */
798struct btrfs_balance_item {
799 /* BTRFS_BALANCE_* */
800 __le64 flags;
801
802 struct btrfs_disk_balance_args data;
803 struct btrfs_disk_balance_args meta;
804 struct btrfs_disk_balance_args sys;
805
806 __le64 unused[4];
807} __attribute__ ((__packed__));
808
809enum {
810 BTRFS_FILE_EXTENT_INLINE = 0,
811 BTRFS_FILE_EXTENT_REG = 1,
812 BTRFS_FILE_EXTENT_PREALLOC = 2,
813 BTRFS_NR_FILE_EXTENT_TYPES = 3,
814};
815
816enum btrfs_compression_type {
817 BTRFS_COMPRESS_NONE = 0,
818 BTRFS_COMPRESS_ZLIB = 1,
819 BTRFS_COMPRESS_LZO = 2,
820 BTRFS_COMPRESS_ZSTD = 3,
821 BTRFS_NR_COMPRESS_TYPES = 4,
822};
823
824struct btrfs_file_extent_item {
825 /* Transaction id that created this extent */
826 __le64 generation;
827 /*
828 * Max number of bytes to hold this extent in ram.
829 *
830 * When we split a compressed extent we can't know how big each of the
831 * resulting pieces will be. So, this is an upper limit on the size of
832 * the extent in ram instead of an exact limit.
833 */
834 __le64 ram_bytes;
835
836 /*
837 * 32 bits for the various ways we might encode the data,
838 * including compression and encryption. If any of these
839 * are set to something a given disk format doesn't understand
840 * it is treated like an incompat flag for reading and writing,
841 * but not for stat.
842 */
843 __u8 compression;
844 __u8 encryption;
845 __le16 other_encoding; /* Spare for later use */
846
847 /* Are we inline data or a real extent? */
848 __u8 type;
849
850 /*
851 * Disk space consumed by the extent, checksum blocks are not included
852 * in these numbers
853 *
854 * At this offset in the structure, the inline extent data start.
855 */
856 __le64 disk_bytenr;
857 __le64 disk_num_bytes;
858
859 /*
860 * The logical offset inside the file extent.
861 *
862 * This allows a file extent to point into the middle of an existing
863 * extent on disk, sharing it between two snapshots (useful if some
864 * bytes in the middle of the extent have changed).
865 */
866 __le64 offset;
867
868 /*
869 * The logical number of bytes this file extent is referencing (no
870 * csums included).
871 *
872 * This always reflects the size uncompressed and without encoding.
873 */
874 __le64 num_bytes;
875
876} __attribute__ ((__packed__));
877
878struct btrfs_csum_item {
879 __u8 csum;
880} __attribute__ ((__packed__));
881
882enum btrfs_dev_stat_values {
883 /* Disk I/O failure stats */
884 BTRFS_DEV_STAT_WRITE_ERRS, /* EIO or EREMOTEIO from lower layers */
885 BTRFS_DEV_STAT_READ_ERRS, /* EIO or EREMOTEIO from lower layers */
886 BTRFS_DEV_STAT_FLUSH_ERRS, /* EIO or EREMOTEIO from lower layers */
887
888 /* Stats for indirect indications for I/O failures */
889 BTRFS_DEV_STAT_CORRUPTION_ERRS, /* Checksum error, bytenr error or
890 * contents is illegal: this is an
891 * indication that the block was damaged
892 * during read or write, or written to
893 * wrong location or read from wrong
894 * location */
895 BTRFS_DEV_STAT_GENERATION_ERRS, /* An indication that blocks have not
896 * been written */
897
898 BTRFS_DEV_STAT_VALUES_MAX
899};
900
901struct btrfs_dev_stats_item {
902 /*
903 * Grow this item struct at the end for future enhancements and keep
904 * the existing values unchanged.
905 */
906 __le64 values[BTRFS_DEV_STAT_VALUES_MAX];
907} __attribute__ ((__packed__));
908
909#define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_ALWAYS 0
910#define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID 1
911
912struct btrfs_dev_replace_item {
913 /*
914 * Grow this item struct at the end for future enhancements and keep
915 * the existing values unchanged.
916 */
917 __le64 src_devid;
918 __le64 cursor_left;
919 __le64 cursor_right;
920 __le64 cont_reading_from_srcdev_mode;
921
922 __le64 replace_state;
923 __le64 time_started;
924 __le64 time_stopped;
925 __le64 num_write_errors;
926 __le64 num_uncorrectable_read_errors;
927} __attribute__ ((__packed__));
928
929/* Different types of block groups (and chunks) */
930#define BTRFS_BLOCK_GROUP_DATA (1ULL << 0)
931#define BTRFS_BLOCK_GROUP_SYSTEM (1ULL << 1)
932#define BTRFS_BLOCK_GROUP_METADATA (1ULL << 2)
933#define BTRFS_BLOCK_GROUP_RAID0 (1ULL << 3)
934#define BTRFS_BLOCK_GROUP_RAID1 (1ULL << 4)
935#define BTRFS_BLOCK_GROUP_DUP (1ULL << 5)
936#define BTRFS_BLOCK_GROUP_RAID10 (1ULL << 6)
937#define BTRFS_BLOCK_GROUP_RAID5 (1ULL << 7)
938#define BTRFS_BLOCK_GROUP_RAID6 (1ULL << 8)
939#define BTRFS_BLOCK_GROUP_RAID1C3 (1ULL << 9)
940#define BTRFS_BLOCK_GROUP_RAID1C4 (1ULL << 10)
941#define BTRFS_BLOCK_GROUP_RESERVED (BTRFS_AVAIL_ALLOC_BIT_SINGLE | \
942 BTRFS_SPACE_INFO_GLOBAL_RSV)
943
944enum btrfs_raid_types {
945 BTRFS_RAID_RAID10,
946 BTRFS_RAID_RAID1,
947 BTRFS_RAID_DUP,
948 BTRFS_RAID_RAID0,
949 BTRFS_RAID_SINGLE,
950 BTRFS_RAID_RAID5,
951 BTRFS_RAID_RAID6,
952 BTRFS_RAID_RAID1C3,
953 BTRFS_RAID_RAID1C4,
954 BTRFS_NR_RAID_TYPES
955};
956
957#define BTRFS_BLOCK_GROUP_TYPE_MASK (BTRFS_BLOCK_GROUP_DATA | \
958 BTRFS_BLOCK_GROUP_SYSTEM | \
959 BTRFS_BLOCK_GROUP_METADATA)
960
961#define BTRFS_BLOCK_GROUP_PROFILE_MASK (BTRFS_BLOCK_GROUP_RAID0 | \
962 BTRFS_BLOCK_GROUP_RAID1 | \
963 BTRFS_BLOCK_GROUP_RAID1C3 | \
964 BTRFS_BLOCK_GROUP_RAID1C4 | \
965 BTRFS_BLOCK_GROUP_RAID5 | \
966 BTRFS_BLOCK_GROUP_RAID6 | \
967 BTRFS_BLOCK_GROUP_DUP | \
968 BTRFS_BLOCK_GROUP_RAID10)
969#define BTRFS_BLOCK_GROUP_RAID56_MASK (BTRFS_BLOCK_GROUP_RAID5 | \
970 BTRFS_BLOCK_GROUP_RAID6)
971
972#define BTRFS_BLOCK_GROUP_RAID1_MASK (BTRFS_BLOCK_GROUP_RAID1 | \
973 BTRFS_BLOCK_GROUP_RAID1C3 | \
974 BTRFS_BLOCK_GROUP_RAID1C4)
975
976/*
977 * We need a bit for restriper to be able to tell when chunks of type
978 * SINGLE are available. This "extended" profile format is used in
979 * fs_info->avail_*_alloc_bits (in-memory) and balance item fields
980 * (on-disk). The corresponding on-disk bit in chunk.type is reserved
981 * to avoid remappings between two formats in future.
982 */
983#define BTRFS_AVAIL_ALLOC_BIT_SINGLE (1ULL << 48)
984
985/*
986 * A fake block group type that is used to communicate global block reserve
987 * size to userspace via the SPACE_INFO ioctl.
988 */
989#define BTRFS_SPACE_INFO_GLOBAL_RSV (1ULL << 49)
990
991#define BTRFS_EXTENDED_PROFILE_MASK (BTRFS_BLOCK_GROUP_PROFILE_MASK | \
992 BTRFS_AVAIL_ALLOC_BIT_SINGLE)
993
994static inline __u64 chunk_to_extended(__u64 flags)
995{
996 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0)
997 flags |= BTRFS_AVAIL_ALLOC_BIT_SINGLE;
998
999 return flags;
1000}
1001static inline __u64 extended_to_chunk(__u64 flags)
1002{
1003 return flags & ~BTRFS_AVAIL_ALLOC_BIT_SINGLE;
1004}
1005
1006struct btrfs_block_group_item {
1007 __le64 used;
1008 __le64 chunk_objectid;
1009 __le64 flags;
1010} __attribute__ ((__packed__));
1011
1012struct btrfs_free_space_info {
1013 __le32 extent_count;
1014 __le32 flags;
1015} __attribute__ ((__packed__));
1016
1017#define BTRFS_FREE_SPACE_USING_BITMAPS (1ULL << 0)
1018
1019#define BTRFS_QGROUP_LEVEL_SHIFT 48
1020static inline __u64 btrfs_qgroup_level(__u64 qgroupid)
1021{
1022 return qgroupid >> BTRFS_QGROUP_LEVEL_SHIFT;
1023}
1024
1025/* Is subvolume quota turned on? */
1026#define BTRFS_QGROUP_STATUS_FLAG_ON (1ULL << 0)
1027
1028/* Is qgroup rescan running? */
1029#define BTRFS_QGROUP_STATUS_FLAG_RESCAN (1ULL << 1)
1030
1031/*
1032 * Some qgroup entries are known to be out of date, either because the
1033 * configuration has changed in a way that makes a rescan necessary, or
1034 * because the fs has been mounted with a non-qgroup-aware version.
1035 */
1036#define BTRFS_QGROUP_STATUS_FLAG_INCONSISTENT (1ULL << 2)
1037
1038#define BTRFS_QGROUP_STATUS_VERSION 1
1039
1040struct btrfs_qgroup_status_item {
1041 __le64 version;
1042 /*
1043 * The generation is updated during every commit. As older
1044 * versions of btrfs are not aware of qgroups, it will be
1045 * possible to detect inconsistencies by checking the
1046 * generation on mount time.
1047 */
1048 __le64 generation;
1049
1050 /* Flag definitions see above */
1051 __le64 flags;
1052
1053 /*
1054 * Only used during scanning to record the progress of the scan.
1055 * It contains a logical address.
1056 */
1057 __le64 rescan;
1058} __attribute__ ((__packed__));
1059
1060struct btrfs_qgroup_info_item {
1061 __le64 generation;
1062 __le64 rfer;
1063 __le64 rfer_cmpr;
1064 __le64 excl;
1065 __le64 excl_cmpr;
1066} __attribute__ ((__packed__));
1067
1068/*
1069 * Flags definition for qgroup limits
1070 *
1071 * Used by:
1072 * struct btrfs_qgroup_limit.flags
1073 * struct btrfs_qgroup_limit_item.flags
1074 */
1075#define BTRFS_QGROUP_LIMIT_MAX_RFER (1ULL << 0)
1076#define BTRFS_QGROUP_LIMIT_MAX_EXCL (1ULL << 1)
1077#define BTRFS_QGROUP_LIMIT_RSV_RFER (1ULL << 2)
1078#define BTRFS_QGROUP_LIMIT_RSV_EXCL (1ULL << 3)
1079#define BTRFS_QGROUP_LIMIT_RFER_CMPR (1ULL << 4)
1080#define BTRFS_QGROUP_LIMIT_EXCL_CMPR (1ULL << 5)
1081
1082struct btrfs_qgroup_limit_item {
1083 /* Only updated when any of the other values change. */
1084 __le64 flags;
1085 __le64 max_rfer;
1086 __le64 max_excl;
1087 __le64 rsv_rfer;
1088 __le64 rsv_excl;
1089} __attribute__ ((__packed__));
1090
1091/*
1092 * Just in case we somehow lose the roots and are not able to mount,
1093 * we store an array of the roots from previous transactions in the super.
1094 */
1095#define BTRFS_NUM_BACKUP_ROOTS 4
1096struct btrfs_root_backup {
1097 __le64 tree_root;
1098 __le64 tree_root_gen;
1099
1100 __le64 chunk_root;
1101 __le64 chunk_root_gen;
1102
1103 __le64 extent_root;
1104 __le64 extent_root_gen;
1105
1106 __le64 fs_root;
1107 __le64 fs_root_gen;
1108
1109 __le64 dev_root;
1110 __le64 dev_root_gen;
1111
1112 __le64 csum_root;
1113 __le64 csum_root_gen;
1114
1115 __le64 total_bytes;
1116 __le64 bytes_used;
1117 __le64 num_devices;
1118 /* future */
1119 __le64 unused_64[4];
1120
1121 u8 tree_root_level;
1122 u8 chunk_root_level;
1123 u8 extent_root_level;
1124 u8 fs_root_level;
1125 u8 dev_root_level;
1126 u8 csum_root_level;
1127 /* future and to align */
1128 u8 unused_8[10];
1129} __attribute__ ((__packed__));
1130
1131/*
1132 * This is a very generous portion of the super block, giving us room to
1133 * translate 14 chunks with 3 stripes each.
1134 */
1135#define BTRFS_SYSTEM_CHUNK_ARRAY_SIZE 2048
1136
1137#define BTRFS_LABEL_SIZE 256
1138
1139/* The super block basically lists the main trees of the FS. */
1140struct btrfs_super_block {
1141 /* The first 4 fields must match struct btrfs_header */
1142 u8 csum[BTRFS_CSUM_SIZE];
1143 /* FS specific UUID, visible to user */
1144 u8 fsid[BTRFS_FSID_SIZE];
1145 __le64 bytenr; /* this block number */
1146 __le64 flags;
1147
1148 /* Allowed to be different from the btrfs_header from here own down. */
1149 __le64 magic;
1150 __le64 generation;
1151 __le64 root;
1152 __le64 chunk_root;
1153 __le64 log_root;
1154
1155 /* This will help find the new super based on the log root. */
1156 __le64 log_root_transid;
1157 __le64 total_bytes;
1158 __le64 bytes_used;
1159 __le64 root_dir_objectid;
1160 __le64 num_devices;
1161 __le32 sectorsize;
1162 __le32 nodesize;
1163 __le32 __unused_leafsize;
1164 __le32 stripesize;
1165 __le32 sys_chunk_array_size;
1166 __le64 chunk_root_generation;
1167 __le64 compat_flags;
1168 __le64 compat_ro_flags;
1169 __le64 incompat_flags;
1170 __le16 csum_type;
1171 u8 root_level;
1172 u8 chunk_root_level;
1173 u8 log_root_level;
1174 struct btrfs_dev_item dev_item;
1175
1176 char label[BTRFS_LABEL_SIZE];
1177
1178 __le64 cache_generation;
1179 __le64 uuid_tree_generation;
1180
1181 /* The UUID written into btree blocks */
1182 u8 metadata_uuid[BTRFS_FSID_SIZE];
1183
1184 /* Future expansion */
1185 __le64 reserved[28];
1186 u8 sys_chunk_array[BTRFS_SYSTEM_CHUNK_ARRAY_SIZE];
1187 struct btrfs_root_backup super_roots[BTRFS_NUM_BACKUP_ROOTS];
1188} __attribute__ ((__packed__));
1189
1190/*
1191 * Feature flags
1192 *
1193 * Used by:
1194 * struct btrfs_super_block::(compat|compat_ro|incompat)_flags
1195 * struct btrfs_ioctl_feature_flags
1196 */
1197#define BTRFS_FEATURE_COMPAT_RO_FREE_SPACE_TREE (1ULL << 0)
1198
1199/*
1200 * Older kernels (< 4.9) on big-endian systems produced broken free space tree
1201 * bitmaps, and btrfs-progs also used to corrupt the free space tree (versions
1202 * < 4.7.3). If this bit is clear, then the free space tree cannot be trusted.
1203 * btrfs-progs can also intentionally clear this bit to ask the kernel to
1204 * rebuild the free space tree, however this might not work on older kernels
1205 * that do not know about this bit. If not sure, clear the cache manually on
1206 * first mount when booting older kernel versions.
1207 */
1208#define BTRFS_FEATURE_COMPAT_RO_FREE_SPACE_TREE_VALID (1ULL << 1)
1209
1210#define BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF (1ULL << 0)
1211#define BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL (1ULL << 1)
1212#define BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS (1ULL << 2)
1213#define BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO (1ULL << 3)
1214#define BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD (1ULL << 4)
1215
1216/*
1217 * Older kernels tried to do bigger metadata blocks, but the
1218 * code was pretty buggy. Lets not let them try anymore.
1219 */
1220#define BTRFS_FEATURE_INCOMPAT_BIG_METADATA (1ULL << 5)
1221
1222#define BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF (1ULL << 6)
1223#define BTRFS_FEATURE_INCOMPAT_RAID56 (1ULL << 7)
1224#define BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA (1ULL << 8)
1225#define BTRFS_FEATURE_INCOMPAT_NO_HOLES (1ULL << 9)
1226#define BTRFS_FEATURE_INCOMPAT_METADATA_UUID (1ULL << 10)
1227#define BTRFS_FEATURE_INCOMPAT_RAID1C34 (1ULL << 11)
1228
1229/*
1230 * Compat flags that we support.
1231 *
1232 * If any incompat flags are set other than the ones specified below then we
1233 * will fail to mount.
1234 */
1235#define BTRFS_FEATURE_COMPAT_SUPP 0ULL
1236#define BTRFS_FEATURE_COMPAT_SAFE_SET 0ULL
1237#define BTRFS_FEATURE_COMPAT_SAFE_CLEAR 0ULL
1238
1239#define BTRFS_FEATURE_COMPAT_RO_SUPP \
1240 (BTRFS_FEATURE_COMPAT_RO_FREE_SPACE_TREE | \
1241 BTRFS_FEATURE_COMPAT_RO_FREE_SPACE_TREE_VALID)
1242
1243#define BTRFS_FEATURE_COMPAT_RO_SAFE_SET 0ULL
1244#define BTRFS_FEATURE_COMPAT_RO_SAFE_CLEAR 0ULL
1245
1246#define BTRFS_FEATURE_INCOMPAT_SUPP \
1247 (BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF | \
1248 BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL | \
1249 BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS | \
1250 BTRFS_FEATURE_INCOMPAT_BIG_METADATA | \
1251 BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO | \
1252 BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD | \
1253 BTRFS_FEATURE_INCOMPAT_RAID56 | \
1254 BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF | \
1255 BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA | \
1256 BTRFS_FEATURE_INCOMPAT_NO_HOLES | \
1257 BTRFS_FEATURE_INCOMPAT_METADATA_UUID | \
1258 BTRFS_FEATURE_INCOMPAT_RAID1C34)
1259
1260#define BTRFS_FEATURE_INCOMPAT_SAFE_SET \
1261 (BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF)
1262#define BTRFS_FEATURE_INCOMPAT_SAFE_CLEAR 0ULL
1263
1264#define BTRFS_BACKREF_REV_MAX 256
1265#define BTRFS_BACKREF_REV_SHIFT 56
1266#define BTRFS_BACKREF_REV_MASK (((u64)BTRFS_BACKREF_REV_MAX - 1) << \
1267 BTRFS_BACKREF_REV_SHIFT)
1268
1269#define BTRFS_OLD_BACKREF_REV 0
1270#define BTRFS_MIXED_BACKREF_REV 1
1271
1272#define BTRFS_MAX_LEVEL 8
1273
1274/* Every tree block (leaf or node) starts with this header. */
1275struct btrfs_header {
1276 /* These first four must match the super block */
1277 u8 csum[BTRFS_CSUM_SIZE];
1278 u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */
1279 __le64 bytenr; /* Which block this node is supposed to live in */
1280 __le64 flags;
1281
1282 /* Allowed to be different from the super from here on down. */
1283 u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
1284 __le64 generation;
1285 __le64 owner;
1286 __le32 nritems;
1287 u8 level;
1288} __attribute__ ((__packed__));
1289
1290/*
1291 * A leaf is full of items. Offset and size tell us where to find
1292 * the item in the leaf (relative to the start of the data area).
1293 */
1294struct btrfs_item {
1295 struct btrfs_disk_key key;
1296 __le32 offset;
1297 __le32 size;
1298} __attribute__ ((__packed__));
1299
1300/*
1301 * leaves have an item area and a data area:
1302 * [item0, item1....itemN] [free space] [dataN...data1, data0]
1303 *
1304 * The data is separate from the items to get the keys closer together
1305 * during searches.
1306 */
1307struct btrfs_leaf {
1308 struct btrfs_header header;
1309 struct btrfs_item items[];
1310} __attribute__ ((__packed__));
1311
1312/*
1313 * All non-leaf blocks are nodes, they hold only keys and pointers to children
1314 * blocks.
1315 */
1316struct btrfs_key_ptr {
1317 struct btrfs_disk_key key;
1318 __le64 blockptr;
1319 __le64 generation;
1320} __attribute__ ((__packed__));
1321
1322struct btrfs_node {
1323 struct btrfs_header header;
1324 struct btrfs_key_ptr ptrs[];
1325} __attribute__ ((__packed__));
1326
1327#endif /* __BTRFS_TREE_H__ */