blob: 165705cea9d30fca26850ce72e78aa4d588fa8b0 [file] [log] [blame]
wdenk4a9cbbe2002-08-27 09:48:53 +00001/*
wdenk1ebf41e2004-01-02 14:00:00 +00002 * (C) Copyright 2000-2004
wdenk4a9cbbe2002-08-27 09:48:53 +00003 * Wolfgang Denk, DENX Software Engineering, wd@denx.de.
4 *
5 * See file CREDITS for list of people who contributed to this
6 * project.
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License as
10 * published by the Free Software Foundation; either version 2 of
11 * the License, or (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
21 * MA 02111-1307 USA
22 */
23
24#include <common.h>
25#include <mpc8xx.h>
26#include <asm/processor.h>
27
wdenkfde37042004-01-31 20:06:54 +000028#if !defined(CONFIG_TQM866M) || defined(CFG_MEASURE_CPUCLK)
wdenkb50cde52004-01-24 20:25:54 +000029
wdenk4a9cbbe2002-08-27 09:48:53 +000030#define PITC_SHIFT 16
31#define PITR_SHIFT 16
32/* pitc values to time for 58/8192 seconds (about 70.8 milliseconds) */
33#define SPEED_PIT_COUNTS 58
34#define SPEED_PITC ((SPEED_PIT_COUNTS - 1) << PITC_SHIFT)
35#define SPEED_PITC_INIT ((SPEED_PIT_COUNTS + 1) << PITC_SHIFT)
36
wdenk4a9cbbe2002-08-27 09:48:53 +000037/* Access functions for the Machine State Register */
38static __inline__ unsigned long get_msr(void)
39{
40 unsigned long msr;
41
42 asm volatile("mfmsr %0" : "=r" (msr) :);
43 return msr;
44}
45
46static __inline__ void set_msr(unsigned long msr)
47{
48 asm volatile("mtmsr %0" : : "r" (msr));
49}
wdenk4a9cbbe2002-08-27 09:48:53 +000050
51/* ------------------------------------------------------------------------- */
52
53/*
54 * Measure CPU clock speed (core clock GCLK1, GCLK2),
55 * also determine bus clock speed (checking bus divider factor)
56 *
57 * (Approx. GCLK frequency in Hz)
58 *
59 * Initializes timer 2 and PIT, but disables them before return.
60 * [Use timer 2, because MPC823 CPUs mask 0.x do not have timers 3 and 4]
61 *
62 * When measuring the CPU clock against the PIT, we count cpu clocks
63 * for 58/8192 seconds with a prescale divide by 177 for the cpu clock.
64 * These strange values for the timing interval and prescaling are used
65 * because the formula for the CPU clock is:
66 *
wdenk88d73b52004-02-11 21:35:18 +000067 * CPU clock = count * (177 * (8192 / 58))
wdenk4a9cbbe2002-08-27 09:48:53 +000068 *
wdenk88d73b52004-02-11 21:35:18 +000069 * = count * 24999.7241
wdenk4a9cbbe2002-08-27 09:48:53 +000070 *
wdenk88d73b52004-02-11 21:35:18 +000071 * which is very close to
wdenk4a9cbbe2002-08-27 09:48:53 +000072 *
wdenk88d73b52004-02-11 21:35:18 +000073 * = count * 25000
wdenk4a9cbbe2002-08-27 09:48:53 +000074 *
75 * Since the count gives the CPU clock divided by 25000, we can get
76 * the CPU clock rounded to the nearest 0.1 MHz by
77 *
wdenk88d73b52004-02-11 21:35:18 +000078 * CPU clock = ((count + 2) / 4) * 100000;
wdenk4a9cbbe2002-08-27 09:48:53 +000079 *
80 * The rounding is important since the measurement is sometimes going
81 * to be high or low by 0.025 MHz, depending on exactly how the clocks
82 * and counters interact. By rounding we get the exact answer for any
83 * CPU clock that is an even multiple of 0.1 MHz.
84 */
85
wdenk2bb11052003-07-17 23:16:40 +000086unsigned long measure_gclk(void)
wdenk4a9cbbe2002-08-27 09:48:53 +000087{
wdenk4a9cbbe2002-08-27 09:48:53 +000088 volatile immap_t *immr = (immap_t *) CFG_IMMR;
wdenk4a9cbbe2002-08-27 09:48:53 +000089 volatile cpmtimer8xx_t *timerp = &immr->im_cpmtimer;
90 ulong timer2_val;
91 ulong msr_val;
92
wdenk2bb11052003-07-17 23:16:40 +000093#ifdef CONFIG_MPC866_et_al
wdenk9c53f402003-10-15 23:53:47 +000094 /* dont use OSCM, only use EXTCLK/512 */
95 immr->im_clkrst.car_sccr |= SCCR_RTSEL | SCCR_RTDIV;
wdenk2bb11052003-07-17 23:16:40 +000096#else
wdenk9c53f402003-10-15 23:53:47 +000097 immr->im_clkrst.car_sccr &= ~(SCCR_RTSEL | SCCR_RTDIV);
wdenk2bb11052003-07-17 23:16:40 +000098#endif
99
wdenk4a9cbbe2002-08-27 09:48:53 +0000100 /* Reset + Stop Timer 2, no cascading
101 */
102 timerp->cpmt_tgcr &= ~(TGCR_CAS2 | TGCR_RST2);
103
104 /* Keep stopped, halt in debug mode
105 */
106 timerp->cpmt_tgcr |= (TGCR_FRZ2 | TGCR_STP2);
107
108 /* Timer 2 setup:
109 * Output ref. interrupt disable, int. clock
110 * Prescale by 177. Note that prescaler divides by value + 1
111 * so we must subtract 1 here.
112 */
113 timerp->cpmt_tmr2 = ((177 - 1) << TMR_PS_SHIFT) | TMR_ICLK_IN_GEN;
114
wdenk88d73b52004-02-11 21:35:18 +0000115 timerp->cpmt_tcn2 = 0; /* reset state */
116 timerp->cpmt_tgcr |= TGCR_RST2; /* enable timer 2 */
wdenk4a9cbbe2002-08-27 09:48:53 +0000117
118 /*
119 * PIT setup:
120 *
wdenk57b2d802003-06-27 21:31:46 +0000121 * We want to time for SPEED_PITC_COUNTS counts (of 8192 Hz),
122 * so the count value would be SPEED_PITC_COUNTS - 1.
123 * But there would be an uncertainty in the start time of 1/4
124 * count since when we enable the PIT the count is not
125 * synchronized to the 32768 Hz oscillator. The trick here is
126 * to start the count higher and wait until the PIT count
127 * changes to the required value before starting timer 2.
wdenk4a9cbbe2002-08-27 09:48:53 +0000128 *
wdenk57b2d802003-06-27 21:31:46 +0000129 * One count high should be enough, but occasionally the start
130 * is off by 1 or 2 counts of 32768 Hz. With the start value
131 * set two counts high it seems very reliable.
132 */
wdenk4a9cbbe2002-08-27 09:48:53 +0000133
134 immr->im_sitk.sitk_pitck = KAPWR_KEY; /* PIT initialization */
135 immr->im_sit.sit_pitc = SPEED_PITC_INIT;
136
137 immr->im_sitk.sitk_piscrk = KAPWR_KEY;
138 immr->im_sit.sit_piscr = CFG_PISCR;
139
140 /*
141 * Start measurement - disable interrupts, just in case
142 */
143 msr_val = get_msr ();
144 set_msr (msr_val & ~MSR_EE);
145
146 immr->im_sit.sit_piscr |= PISCR_PTE;
147
148 /* spin until get exact count when we want to start */
149 while (immr->im_sit.sit_pitr > SPEED_PITC);
150
wdenk88d73b52004-02-11 21:35:18 +0000151 timerp->cpmt_tgcr &= ~TGCR_STP2; /* Start Timer 2 */
wdenk4a9cbbe2002-08-27 09:48:53 +0000152 while ((immr->im_sit.sit_piscr & PISCR_PS) == 0);
wdenk88d73b52004-02-11 21:35:18 +0000153 timerp->cpmt_tgcr |= TGCR_STP2; /* Stop Timer 2 */
wdenk4a9cbbe2002-08-27 09:48:53 +0000154
155 /* re-enable external interrupts if they were on */
156 set_msr (msr_val);
157
158 /* Disable timer and PIT
159 */
160 timer2_val = timerp->cpmt_tcn2; /* save before reset timer */
161
162 timerp->cpmt_tgcr &= ~(TGCR_RST2 | TGCR_FRZ2 | TGCR_STP2);
163 immr->im_sit.sit_piscr &= ~PISCR_PTE;
164
wdenk1ebf41e2004-01-02 14:00:00 +0000165#if defined(CONFIG_MPC866_et_al)
wdenk9c53f402003-10-15 23:53:47 +0000166 /* not using OSCM, using XIN, so scale appropriately */
wdenk2bb11052003-07-17 23:16:40 +0000167 return (((timer2_val + 2) / 4) * (CFG_8XX_XIN/512))/8192 * 100000L;
168#else
wdenk88d73b52004-02-11 21:35:18 +0000169 return ((timer2_val + 2) / 4) * 100000L; /* convert to Hz */
wdenk2bb11052003-07-17 23:16:40 +0000170#endif
171}
172
wdenkfde37042004-01-31 20:06:54 +0000173#endif
174
175#if !defined(CONFIG_TQM866M)
176
wdenk2bb11052003-07-17 23:16:40 +0000177/*
178 * get_clocks() fills in gd->cpu_clock depending on CONFIG_8xx_GCLK_FREQ
179 * or (if it is not defined) measure_gclk() (which uses the ref clock)
180 * from above.
181 */
182int get_clocks (void)
183{
184 DECLARE_GLOBAL_DATA_PTR;
wdenk4a9cbbe2002-08-27 09:48:53 +0000185
wdenk2bb11052003-07-17 23:16:40 +0000186 volatile immap_t *immr = (immap_t *) CFG_IMMR;
187#ifndef CONFIG_8xx_GCLK_FREQ
188 gd->cpu_clk = measure_gclk();
wdenk4a9cbbe2002-08-27 09:48:53 +0000189#else /* CONFIG_8xx_GCLK_FREQ */
wdenk4a9cbbe2002-08-27 09:48:53 +0000190 /*
wdenk57b2d802003-06-27 21:31:46 +0000191 * If for some reason measuring the gclk frequency won't
192 * work, we return the hardwired value.
193 * (For example, the cogent CMA286-60 CPU module has no
194 * separate oscillator for PITRTCLK)
wdenk4a9cbbe2002-08-27 09:48:53 +0000195 */
196
197 gd->cpu_clk = CONFIG_8xx_GCLK_FREQ;
198
199#endif /* CONFIG_8xx_GCLK_FREQ */
200
201 if ((immr->im_clkrst.car_sccr & SCCR_EBDF11) == 0) {
202 /* No Bus Divider active */
203 gd->bus_clk = gd->cpu_clk;
204 } else {
205 /* The MPC8xx has only one BDF: half clock speed */
206 gd->bus_clk = gd->cpu_clk / 2;
207 }
208
209 return (0);
210}
211
wdenkb50cde52004-01-24 20:25:54 +0000212#else /* CONFIG_MPC866_et_al */
213
214static long init_pll_866 (long clk);
215
216/* This function sets up PLL (init_pll_866() is called) and
217 * fills gd->cpu_clk and gd->bus_clk according to the environment
218 * variable 'cpuclk' or to CFG_866_CPUCLK_DEFAULT (if 'cpuclk'
219 * contains invalid value).
220 * This functions requires an MPC866 series CPU.
221 */
222int get_clocks_866 (void)
223{
224 DECLARE_GLOBAL_DATA_PTR;
225
226 volatile immap_t *immr = (immap_t *) CFG_IMMR;
wdenk88d73b52004-02-11 21:35:18 +0000227 char tmp[64];
228 long cpuclk = 0;
229 long sccr_reg;
wdenkb50cde52004-01-24 20:25:54 +0000230
231 if (getenv_r ("cpuclk", tmp, sizeof (tmp)) > 0)
232 cpuclk = simple_strtoul (tmp, NULL, 10) * 1000000;
233
234 if ((CFG_866_CPUCLK_MIN > cpuclk) || (CFG_866_CPUCLK_MAX < cpuclk))
235 cpuclk = CFG_866_CPUCLK_DEFAULT;
236
237 gd->cpu_clk = init_pll_866 (cpuclk);
wdenkfde37042004-01-31 20:06:54 +0000238#if defined(CFG_MEASURE_CPUCLK)
239 gd->cpu_clk = measure_gclk ();
240#endif
wdenkb50cde52004-01-24 20:25:54 +0000241
wdenk88d73b52004-02-11 21:35:18 +0000242 /* if cpu clock <= 66 MHz then set bus division factor to 1,
243 * otherwise set it to 2
244 */
245 sccr_reg = immr->im_clkrst.car_sccr;
246 sccr_reg &= ~SCCR_EBDF11;
247 if (gd->cpu_clk <= 66000000) {
248 sccr_reg |= SCCR_EBDF00; /* bus division factor = 1 */
wdenkb50cde52004-01-24 20:25:54 +0000249 gd->bus_clk = gd->cpu_clk;
wdenk88d73b52004-02-11 21:35:18 +0000250 } else {
251 sccr_reg |= SCCR_EBDF01; /* bus division factor = 2 */
wdenkb50cde52004-01-24 20:25:54 +0000252 gd->bus_clk = gd->cpu_clk / 2;
wdenk88d73b52004-02-11 21:35:18 +0000253 }
254 immr->im_clkrst.car_sccr = sccr_reg;
wdenkb50cde52004-01-24 20:25:54 +0000255
256 return (0);
257}
258
259/* Adjust sdram refresh rate to actual CPU clock.
260 */
261int sdram_adjust_866 (void)
262{
263 DECLARE_GLOBAL_DATA_PTR;
264
265 volatile immap_t *immr = (immap_t *) CFG_IMMR;
wdenk88d73b52004-02-11 21:35:18 +0000266 long mamr;
wdenkb50cde52004-01-24 20:25:54 +0000267
268 mamr = immr->im_memctl.memc_mamr;
269 mamr &= ~MAMR_PTA_MSK;
270 mamr |= ((gd->cpu_clk / CFG_866_PTA_PER_CLK) << MAMR_PTA_SHIFT);
271 immr->im_memctl.memc_mamr = mamr;
272
273 return (0);
274}
275
276/* Configure PLL for MPC866/859 CPU series
277 * PLL multiplication factor is set to the value nearest to the desired clk,
278 * assuming a oscclk of 10 MHz.
279 */
280static long init_pll_866 (long clk)
281{
282 extern void plprcr_write_866 (long);
283
284 volatile immap_t *immr = (immap_t *) CFG_IMMR;
wdenk88d73b52004-02-11 21:35:18 +0000285 long n, plprcr;
286 char mfi, mfn, mfd, s, pdf;
287 long step_mfi, step_mfn;
wdenkb50cde52004-01-24 20:25:54 +0000288
wdenkfde37042004-01-31 20:06:54 +0000289 if (clk < 20000000) {
290 clk *= 2;
291 pdf = 1;
292 } else {
293 pdf = 0;
294 }
295
296 if (clk < 40000000) {
297 s = 2;
298 step_mfi = CFG_866_OSCCLK / 4;
299 mfd = 7;
300 step_mfn = CFG_866_OSCCLK / 30;
301 } else if (clk < 80000000) {
wdenkb50cde52004-01-24 20:25:54 +0000302 s = 1;
303 step_mfi = CFG_866_OSCCLK / 2;
304 mfd = 14;
305 step_mfn = CFG_866_OSCCLK / 30;
306 } else {
307 s = 0;
308 step_mfi = CFG_866_OSCCLK;
309 mfd = 29;
310 step_mfn = CFG_866_OSCCLK / 30;
311 }
312
313 /* Calculate integer part of multiplication factor
314 */
315 n = clk / step_mfi;
316 mfi = (char)n;
317
318 /* Calculate numerator of fractional part of multiplication factor
319 */
320 n = clk - (n * step_mfi);
321 mfn = (char)(n / step_mfn);
322
323 /* Calculate effective clk
324 */
wdenkfde37042004-01-31 20:06:54 +0000325 n = ((mfi * step_mfi) + (mfn * step_mfn)) / (pdf + 1);
wdenkb50cde52004-01-24 20:25:54 +0000326
327 immr->im_clkrstk.cark_plprcrk = KAPWR_KEY;
328
329 plprcr = (immr->im_clkrst.car_plprcr & ~(PLPRCR_MFN_MSK
330 | PLPRCR_MFD_MSK | PLPRCR_S_MSK
wdenkfde37042004-01-31 20:06:54 +0000331 | PLPRCR_MFI_MSK | PLPRCR_DBRMO
332 | PLPRCR_PDF_MSK))
wdenkb50cde52004-01-24 20:25:54 +0000333 | (mfn << PLPRCR_MFN_SHIFT)
334 | (mfd << PLPRCR_MFD_SHIFT)
335 | (s << PLPRCR_S_SHIFT)
336 | (mfi << PLPRCR_MFI_SHIFT)
337 | (pdf << PLPRCR_PDF_SHIFT);
338
339 if( (mfn > 0) && ((mfd / mfn) > 10) )
340 plprcr |= PLPRCR_DBRMO;
341
342 plprcr_write_866 (plprcr); /* set value using SIU4/9 workaround */
343 immr->im_clkrstk.cark_plprcrk = 0x00000000;
344
345 return (n);
346}
347
348#endif /* CONFIG_MPC866_et_al */
349
wdenkc78bf132004-04-24 23:23:30 +0000350#if defined(CONFIG_TQM8xxL) && !defined(CONFIG_TQM866M)
351/*
352 * Adjust sdram refresh rate to actual CPU clock
353 * and set timebase source according to actual CPU clock
354 */
355int adjust_sdram_tbs_8xx (void)
356{
357 DECLARE_GLOBAL_DATA_PTR;
358
359 volatile immap_t *immr = (immap_t *) CFG_IMMR;
360 long mamr;
361 long sccr;
362
363 mamr = immr->im_memctl.memc_mamr;
364 mamr &= ~MAMR_PTA_MSK;
365 mamr |= ((gd->cpu_clk / CFG_PTA_PER_CLK) << MAMR_PTA_SHIFT);
366 immr->im_memctl.memc_mamr = mamr;
367
368 if (gd->cpu_clk < 67000000) {
369 sccr = immr->im_clkrst.car_sccr;
370 sccr |= SCCR_TBS;
371 immr->im_clkrst.car_sccr = sccr;
372 }
373
374 return (0);
375}
376#endif /* CONFIG_TQM8xxL/M, !TQM866M */
377
wdenk4a9cbbe2002-08-27 09:48:53 +0000378/* ------------------------------------------------------------------------- */