blob: 5695bef6fd2a5d77dd83a9994c418c38d287dc04 [file] [log] [blame]
Ruchika Guptaac1b2692014-10-15 11:35:30 +05301/*
2 * SEC Descriptor Construction Library
3 * Basic job descriptor construction
4 *
5 * Copyright 2014 Freescale Semiconductor, Inc.
6 *
7 * SPDX-License-Identifier: GPL-2.0+
8 *
9 */
10
11#include <common.h>
Raul Cardenasb5a36d82015-02-27 11:22:06 -060012#include <fsl_sec.h>
Ruchika Guptaac1b2692014-10-15 11:35:30 +053013#include "desc_constr.h"
14#include "jobdesc.h"
Ruchika Gupta29c1a6b2015-01-23 16:01:55 +053015#include "rsa_caam.h"
Ruchika Guptaac1b2692014-10-15 11:35:30 +053016
Raul Cardenasb5a36d82015-02-27 11:22:06 -060017#ifdef CONFIG_MX6
18/*!
19 * Secure memory run command
20 *
21 * @param sec_mem_cmd Secure memory command register
22 * @return cmd_status Secure memory command status register
23 */
24uint32_t secmem_set_cmd(uint32_t sec_mem_cmd)
25{
26 uint32_t temp_reg;
27
28 sec_out32(CAAM_SMCJR0, sec_mem_cmd);
29
30 do {
31 temp_reg = sec_in32(CAAM_SMCSJR0);
32 } while (temp_reg & CMD_COMPLETE);
33
34 return temp_reg;
35}
36
37/*!
38 * CAAM page allocation:
39 * Allocates a partition from secure memory, with the id
40 * equal to partion_num. This will de-allocate the page
41 * if it is already allocated. The partition will have
42 * full access permissions. The permissions are set before,
43 * running a job descriptor. A memory page of secure RAM
44 * is allocated for the partition.
45 *
46 * @param page Number of the page to allocate.
47 * @param partition Number of the partition to allocate.
48 * @return 0 on success, ERROR_IN_PAGE_ALLOC otherwise
49 */
50int caam_page_alloc(uint8_t page_num, uint8_t partition_num)
51{
52 uint32_t temp_reg;
53
54 /*
55 * De-Allocate partition_num if already allocated to ARM core
56 */
57 if (sec_in32(CAAM_SMPO_0) & PARTITION_OWNER(partition_num)) {
58 temp_reg = secmem_set_cmd(PARTITION(partition_num) |
59 CMD_PART_DEALLOC);
60 if (temp_reg & SMCSJR_AERR) {
61 printf("Error: De-allocation status 0x%X\n", temp_reg);
62 return ERROR_IN_PAGE_ALLOC;
63 }
64 }
65
66 /* set the access rights to allow full access */
67 sec_out32(CAAM_SMAG1JR0(partition_num), 0xF);
68 sec_out32(CAAM_SMAG2JR0(partition_num), 0xF);
69 sec_out32(CAAM_SMAPJR0(partition_num), 0xFF);
70
71 /* Now need to allocate partition_num of secure RAM. */
72 /* De-Allocate page_num by starting with a page inquiry command */
73 temp_reg = secmem_set_cmd(PAGE(page_num) | CMD_INQUIRY);
74
75 /* if the page is owned, de-allocate it */
76 if ((temp_reg & SMCSJR_PO) == PAGE_OWNED) {
77 temp_reg = secmem_set_cmd(PAGE(page_num) | CMD_PAGE_DEALLOC);
78 if (temp_reg & SMCSJR_AERR) {
79 printf("Error: Allocation status 0x%X\n", temp_reg);
80 return ERROR_IN_PAGE_ALLOC;
81 }
82 }
83
84 /* Allocate page_num to partition_num */
85 temp_reg = secmem_set_cmd(PAGE(page_num) | PARTITION(partition_num)
86 | CMD_PAGE_ALLOC);
87 if (temp_reg & SMCSJR_AERR) {
88 printf("Error: Allocation status 0x%X\n", temp_reg);
89 return ERROR_IN_PAGE_ALLOC;
90 }
91 /* page inquiry command to ensure that the page was allocated */
92 temp_reg = secmem_set_cmd(PAGE(page_num) | CMD_INQUIRY);
93
94 /* if the page is not owned => problem */
95 if ((temp_reg & SMCSJR_PO) != PAGE_OWNED) {
96 printf("Allocation of page %d in partition %d failed 0x%X\n",
97 temp_reg, page_num, partition_num);
98
99 return ERROR_IN_PAGE_ALLOC;
100 }
101
102 return 0;
103}
104
105int inline_cnstr_jobdesc_blob_dek(uint32_t *desc, const uint8_t *plain_txt,
106 uint8_t *dek_blob, uint32_t in_sz)
107{
108 uint32_t ret = 0;
109 u32 aad_w1, aad_w2;
110 /* output blob will have 32 bytes key blob in beginning and
111 * 16 byte HMAC identifier at end of data blob */
112 uint32_t out_sz = in_sz + KEY_BLOB_SIZE + MAC_SIZE;
113 /* Setting HDR for blob */
114 uint8_t wrapped_key_hdr[8] = {HDR_TAG, 0x00, WRP_HDR_SIZE + out_sz,
115 HDR_PAR, HAB_MOD, HAB_ALG, in_sz, HAB_FLG};
116
117 /* initialize the blob array */
118 memset(dek_blob, 0, out_sz + 8);
119 /* Copy the header into the DEK blob buffer */
120 memcpy(dek_blob, wrapped_key_hdr, sizeof(wrapped_key_hdr));
121
122 /* allocating secure memory */
123 ret = caam_page_alloc(PAGE_1, PARTITION_1);
124 if (ret)
125 return ret;
126
127 /* Write DEK to secure memory */
128 memcpy((uint32_t *)SEC_MEM_PAGE1, (uint32_t *)plain_txt, in_sz);
129
130 unsigned long start = (unsigned long)SEC_MEM_PAGE1 &
131 ~(ARCH_DMA_MINALIGN - 1);
132 unsigned long end = ALIGN(start + 0x1000, ARCH_DMA_MINALIGN);
133 flush_dcache_range(start, end);
134
135 /* Now configure the access rights of the partition */
136 sec_out32(CAAM_SMAG1JR0(PARTITION_1), KS_G1); /* set group 1 */
137 sec_out32(CAAM_SMAG2JR0(PARTITION_1), 0); /* clear group 2 */
138 sec_out32(CAAM_SMAPJR0(PARTITION_1), PERM); /* set perm & locks */
139
140 /* construct aad for AES */
141 aad_w1 = (in_sz << OP_ALG_ALGSEL_SHIFT) | KEY_AES_SRC | LD_CCM_MODE;
142 aad_w2 = 0x0;
143
144 init_job_desc(desc, 0);
145
146 append_cmd(desc, CMD_LOAD | CLASS_2 | KEY_IMM | KEY_ENC |
147 (0x0c << LDST_OFFSET_SHIFT) | 0x08);
148
149 append_u32(desc, aad_w1);
150
151 append_u32(desc, aad_w2);
152
153 append_cmd_ptr(desc, (dma_addr_t)SEC_MEM_PAGE1, in_sz, CMD_SEQ_IN_PTR);
154
155 append_cmd_ptr(desc, (dma_addr_t)dek_blob + 8, out_sz, CMD_SEQ_OUT_PTR);
156
157 append_operation(desc, OP_TYPE_ENCAP_PROTOCOL | OP_PCLID_BLOB |
158 OP_PCLID_SECMEM);
159
160 return ret;
161}
162#endif
Ruchika Gupta4345a572014-10-07 15:46:20 +0530163
Ruchika Guptaac1b2692014-10-15 11:35:30 +0530164void inline_cnstr_jobdesc_hash(uint32_t *desc,
165 const uint8_t *msg, uint32_t msgsz, uint8_t *digest,
166 u32 alg_type, uint32_t alg_size, int sg_tbl)
167{
168 /* SHA 256 , output is of length 32 words */
169 uint32_t storelen = alg_size;
170 u32 options;
171 dma_addr_t dma_addr_in, dma_addr_out;
172
173 dma_addr_in = virt_to_phys((void *)msg);
174 dma_addr_out = virt_to_phys((void *)digest);
175
176 init_job_desc(desc, 0);
177 append_operation(desc, OP_TYPE_CLASS2_ALG |
178 OP_ALG_AAI_HASH | OP_ALG_AS_INITFINAL |
179 OP_ALG_ENCRYPT | OP_ALG_ICV_OFF | alg_type);
180
181 options = LDST_CLASS_2_CCB | FIFOLD_TYPE_MSG | FIFOLD_TYPE_LAST2;
182 if (sg_tbl)
183 options |= FIFOLDST_SGF;
184 if (msgsz > 0xffff) {
185 options |= FIFOLDST_EXT;
186 append_fifo_load(desc, dma_addr_in, 0, options);
187 append_cmd(desc, msgsz);
188 } else {
189 append_fifo_load(desc, dma_addr_in, msgsz, options);
190 }
191
192 append_store(desc, dma_addr_out, storelen,
193 LDST_CLASS_2_CCB | LDST_SRCDST_BYTE_CONTEXT);
194}
Ruchika Gupta4345a572014-10-07 15:46:20 +0530195
196void inline_cnstr_jobdesc_blob_encap(uint32_t *desc, uint8_t *key_idnfr,
197 uint8_t *plain_txt, uint8_t *enc_blob,
198 uint32_t in_sz)
199{
200 dma_addr_t dma_addr_key_idnfr, dma_addr_in, dma_addr_out;
201 uint32_t key_sz = KEY_IDNFR_SZ_BYTES;
202 /* output blob will have 32 bytes key blob in beginning and
203 * 16 byte HMAC identifier at end of data blob */
204 uint32_t out_sz = in_sz + KEY_BLOB_SIZE + MAC_SIZE;
205
206 dma_addr_key_idnfr = virt_to_phys((void *)key_idnfr);
207 dma_addr_in = virt_to_phys((void *)plain_txt);
208 dma_addr_out = virt_to_phys((void *)enc_blob);
209
210 init_job_desc(desc, 0);
211
212 append_key(desc, dma_addr_key_idnfr, key_sz, CLASS_2);
213
214 append_seq_in_ptr(desc, dma_addr_in, in_sz, 0);
215
216 append_seq_out_ptr(desc, dma_addr_out, out_sz, 0);
217
218 append_operation(desc, OP_TYPE_ENCAP_PROTOCOL | OP_PCLID_BLOB);
219}
220
221void inline_cnstr_jobdesc_blob_decap(uint32_t *desc, uint8_t *key_idnfr,
222 uint8_t *enc_blob, uint8_t *plain_txt,
223 uint32_t out_sz)
224{
225 dma_addr_t dma_addr_key_idnfr, dma_addr_in, dma_addr_out;
226 uint32_t key_sz = KEY_IDNFR_SZ_BYTES;
227 uint32_t in_sz = out_sz + KEY_BLOB_SIZE + MAC_SIZE;
228
229 dma_addr_key_idnfr = virt_to_phys((void *)key_idnfr);
230 dma_addr_in = virt_to_phys((void *)enc_blob);
231 dma_addr_out = virt_to_phys((void *)plain_txt);
232
233 init_job_desc(desc, 0);
234
235 append_key(desc, dma_addr_key_idnfr, key_sz, CLASS_2);
236
237 append_seq_in_ptr(desc, dma_addr_in, in_sz, 0);
238
239 append_seq_out_ptr(desc, dma_addr_out, out_sz, 0);
240
241 append_operation(desc, OP_TYPE_DECAP_PROTOCOL | OP_PCLID_BLOB);
242}
243
244/*
245 * Descriptor to instantiate RNG State Handle 0 in normal mode and
246 * load the JDKEK, TDKEK and TDSK registers
247 */
248void inline_cnstr_jobdesc_rng_instantiation(uint32_t *desc)
249{
250 u32 *jump_cmd;
251
252 init_job_desc(desc, 0);
253
254 /* INIT RNG in non-test mode */
255 append_operation(desc, OP_TYPE_CLASS1_ALG | OP_ALG_ALGSEL_RNG |
256 OP_ALG_AS_INIT);
257
258 /* wait for done */
259 jump_cmd = append_jump(desc, JUMP_CLASS_CLASS1);
260 set_jump_tgt_here(desc, jump_cmd);
261
262 /*
263 * load 1 to clear written reg:
264 * resets the done interrrupt and returns the RNG to idle.
265 */
266 append_load_imm_u32(desc, 1, LDST_SRCDST_WORD_CLRW);
267
268 /* generate secure keys (non-test) */
269 append_operation(desc, OP_TYPE_CLASS1_ALG | OP_ALG_ALGSEL_RNG |
270 OP_ALG_RNG4_SK);
271}
Ruchika Gupta29c1a6b2015-01-23 16:01:55 +0530272
273/* Change key size to bytes form bits in calling function*/
274void inline_cnstr_jobdesc_pkha_rsaexp(uint32_t *desc,
275 struct pk_in_params *pkin, uint8_t *out,
276 uint32_t out_siz)
277{
278 dma_addr_t dma_addr_e, dma_addr_a, dma_addr_n, dma_addr_out;
279
280 dma_addr_e = virt_to_phys((void *)pkin->e);
281 dma_addr_a = virt_to_phys((void *)pkin->a);
282 dma_addr_n = virt_to_phys((void *)pkin->n);
283 dma_addr_out = virt_to_phys((void *)out);
284
285 init_job_desc(desc, 0);
286 append_key(desc, dma_addr_e, pkin->e_siz, KEY_DEST_PKHA_E | CLASS_1);
287
288 append_fifo_load(desc, dma_addr_a,
289 pkin->a_siz, LDST_CLASS_1_CCB | FIFOLD_TYPE_PK_A);
290
291 append_fifo_load(desc, dma_addr_n,
292 pkin->n_siz, LDST_CLASS_1_CCB | FIFOLD_TYPE_PK_N);
293
294 append_operation(desc, OP_TYPE_PK | OP_ALG_PK | OP_ALG_PKMODE_MOD_EXPO);
295
296 append_fifo_store(desc, dma_addr_out, out_siz,
297 LDST_CLASS_1_CCB | FIFOST_TYPE_PKHA_B);
298}