blob: 308b7845f122e49b47ba46bc178824a746a9abfd [file] [log] [blame]
Chin Liang See03534df2014-09-12 00:42:17 -05001/*
2 * Copyright (C) 2014 Panasonic Corporation
3 * Copyright (C) 2013-2014, Altera Corporation <www.altera.com>
4 * Copyright (C) 2009-2010, Intel Corporation and its suppliers.
5 *
6 * SPDX-License-Identifier: GPL-2.0+
7 */
8
9#include <common.h>
10#include <malloc.h>
11#include <nand.h>
12#include <asm/errno.h>
13#include <asm/io.h>
14
15#include "denali.h"
16
17#define NAND_DEFAULT_TIMINGS -1
18
19static int onfi_timing_mode = NAND_DEFAULT_TIMINGS;
20
21/* We define a macro here that combines all interrupts this driver uses into
22 * a single constant value, for convenience. */
23#define DENALI_IRQ_ALL (INTR_STATUS__DMA_CMD_COMP | \
24 INTR_STATUS__ECC_TRANSACTION_DONE | \
25 INTR_STATUS__ECC_ERR | \
26 INTR_STATUS__PROGRAM_FAIL | \
27 INTR_STATUS__LOAD_COMP | \
28 INTR_STATUS__PROGRAM_COMP | \
29 INTR_STATUS__TIME_OUT | \
30 INTR_STATUS__ERASE_FAIL | \
31 INTR_STATUS__RST_COMP | \
32 INTR_STATUS__ERASE_COMP | \
33 INTR_STATUS__ECC_UNCOR_ERR | \
34 INTR_STATUS__INT_ACT | \
35 INTR_STATUS__LOCKED_BLK)
36
37/* indicates whether or not the internal value for the flash bank is
38 * valid or not */
39#define CHIP_SELECT_INVALID -1
40
41#define SUPPORT_8BITECC 1
42
43/*
44 * this macro allows us to convert from an MTD structure to our own
45 * device context (denali) structure.
46 */
47#define mtd_to_denali(m) (((struct nand_chip *)mtd->priv)->priv)
48
49/* These constants are defined by the driver to enable common driver
50 * configuration options. */
51#define SPARE_ACCESS 0x41
52#define MAIN_ACCESS 0x42
53#define MAIN_SPARE_ACCESS 0x43
54
55#define DENALI_UNLOCK_START 0x10
56#define DENALI_UNLOCK_END 0x11
57#define DENALI_LOCK 0x21
58#define DENALI_LOCK_TIGHT 0x31
59#define DENALI_BUFFER_LOAD 0x60
60#define DENALI_BUFFER_WRITE 0x62
61
62#define DENALI_READ 0
63#define DENALI_WRITE 0x100
64
65/* types of device accesses. We can issue commands and get status */
66#define COMMAND_CYCLE 0
67#define ADDR_CYCLE 1
68#define STATUS_CYCLE 2
69
70/* this is a helper macro that allows us to
71 * format the bank into the proper bits for the controller */
72#define BANK(x) ((x) << 24)
73
74/* Interrupts are cleared by writing a 1 to the appropriate status bit */
75static inline void clear_interrupt(struct denali_nand_info *denali,
76 uint32_t irq_mask)
77{
78 uint32_t intr_status_reg;
79
80 intr_status_reg = INTR_STATUS(denali->flash_bank);
81
82 writel(irq_mask, denali->flash_reg + intr_status_reg);
83}
84
85static uint32_t read_interrupt_status(struct denali_nand_info *denali)
86{
87 uint32_t intr_status_reg;
88
89 intr_status_reg = INTR_STATUS(denali->flash_bank);
90
91 return readl(denali->flash_reg + intr_status_reg);
92}
93
94static void clear_interrupts(struct denali_nand_info *denali)
95{
96 uint32_t status;
97
98 status = read_interrupt_status(denali);
99 clear_interrupt(denali, status);
100
101 denali->irq_status = 0;
102}
103
104static void denali_irq_enable(struct denali_nand_info *denali,
105 uint32_t int_mask)
106{
107 int i;
108
109 for (i = 0; i < denali->max_banks; ++i)
110 writel(int_mask, denali->flash_reg + INTR_EN(i));
111}
112
113static uint32_t wait_for_irq(struct denali_nand_info *denali, uint32_t irq_mask)
114{
115 unsigned long timeout = 1000000;
116 uint32_t intr_status;
117
118 do {
119 intr_status = read_interrupt_status(denali) & DENALI_IRQ_ALL;
120 if (intr_status & irq_mask) {
121 denali->irq_status &= ~irq_mask;
122 /* our interrupt was detected */
123 break;
124 }
125 udelay(1);
126 timeout--;
127 } while (timeout != 0);
128
129 if (timeout == 0) {
130 /* timeout */
131 printf("Denali timeout with interrupt status %08x\n",
132 read_interrupt_status(denali));
133 intr_status = 0;
134 }
135 return intr_status;
136}
137
138/*
139 * Certain operations for the denali NAND controller use an indexed mode to
140 * read/write data. The operation is performed by writing the address value
141 * of the command to the device memory followed by the data. This function
142 * abstracts this common operation.
143*/
144static void index_addr(struct denali_nand_info *denali,
145 uint32_t address, uint32_t data)
146{
147 writel(address, denali->flash_mem + INDEX_CTRL_REG);
148 writel(data, denali->flash_mem + INDEX_DATA_REG);
149}
150
151/* Perform an indexed read of the device */
152static void index_addr_read_data(struct denali_nand_info *denali,
153 uint32_t address, uint32_t *pdata)
154{
155 writel(address, denali->flash_mem + INDEX_CTRL_REG);
156 *pdata = readl(denali->flash_mem + INDEX_DATA_REG);
157}
158
159/* We need to buffer some data for some of the NAND core routines.
160 * The operations manage buffering that data. */
161static void reset_buf(struct denali_nand_info *denali)
162{
163 denali->buf.head = 0;
164 denali->buf.tail = 0;
165}
166
167static void write_byte_to_buf(struct denali_nand_info *denali, uint8_t byte)
168{
169 denali->buf.buf[denali->buf.tail++] = byte;
170}
171
172/* resets a specific device connected to the core */
173static void reset_bank(struct denali_nand_info *denali)
174{
175 uint32_t irq_status;
176 uint32_t irq_mask = INTR_STATUS__RST_COMP |
177 INTR_STATUS__TIME_OUT;
178
179 clear_interrupts(denali);
180
181 writel(1 << denali->flash_bank, denali->flash_reg + DEVICE_RESET);
182
183 irq_status = wait_for_irq(denali, irq_mask);
184 if (irq_status & INTR_STATUS__TIME_OUT)
185 debug("reset bank failed.\n");
186}
187
188/* Reset the flash controller */
189static uint32_t denali_nand_reset(struct denali_nand_info *denali)
190{
191 uint32_t i;
192
193 for (i = 0; i < denali->max_banks; i++)
194 writel(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT,
195 denali->flash_reg + INTR_STATUS(i));
196
197 for (i = 0; i < denali->max_banks; i++) {
198 writel(1 << i, denali->flash_reg + DEVICE_RESET);
199 while (!(readl(denali->flash_reg + INTR_STATUS(i)) &
200 (INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT)))
201 if (readl(denali->flash_reg + INTR_STATUS(i)) &
202 INTR_STATUS__TIME_OUT)
203 debug("NAND Reset operation timed out on bank"
204 " %d\n", i);
205 }
206
207 for (i = 0; i < denali->max_banks; i++)
208 writel(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT,
209 denali->flash_reg + INTR_STATUS(i));
210
211 return 0;
212}
213
214/*
215 * this routine calculates the ONFI timing values for a given mode and
216 * programs the clocking register accordingly. The mode is determined by
217 * the get_onfi_nand_para routine.
218 */
219static void nand_onfi_timing_set(struct denali_nand_info *denali,
220 uint16_t mode)
221{
222 uint32_t trea[6] = {40, 30, 25, 20, 20, 16};
223 uint32_t trp[6] = {50, 25, 17, 15, 12, 10};
224 uint32_t treh[6] = {30, 15, 15, 10, 10, 7};
225 uint32_t trc[6] = {100, 50, 35, 30, 25, 20};
226 uint32_t trhoh[6] = {0, 15, 15, 15, 15, 15};
227 uint32_t trloh[6] = {0, 0, 0, 0, 5, 5};
228 uint32_t tcea[6] = {100, 45, 30, 25, 25, 25};
229 uint32_t tadl[6] = {200, 100, 100, 100, 70, 70};
230 uint32_t trhw[6] = {200, 100, 100, 100, 100, 100};
231 uint32_t trhz[6] = {200, 100, 100, 100, 100, 100};
232 uint32_t twhr[6] = {120, 80, 80, 60, 60, 60};
233 uint32_t tcs[6] = {70, 35, 25, 25, 20, 15};
234
235 uint32_t tclsrising = 1;
236 uint32_t data_invalid_rhoh, data_invalid_rloh, data_invalid;
237 uint32_t dv_window = 0;
238 uint32_t en_lo, en_hi;
239 uint32_t acc_clks;
240 uint32_t addr_2_data, re_2_we, re_2_re, we_2_re, cs_cnt;
241
242 en_lo = DIV_ROUND_UP(trp[mode], CLK_X);
243 en_hi = DIV_ROUND_UP(treh[mode], CLK_X);
244 if ((en_hi * CLK_X) < (treh[mode] + 2))
245 en_hi++;
246
247 if ((en_lo + en_hi) * CLK_X < trc[mode])
248 en_lo += DIV_ROUND_UP((trc[mode] - (en_lo + en_hi) * CLK_X),
249 CLK_X);
250
251 if ((en_lo + en_hi) < CLK_MULTI)
252 en_lo += CLK_MULTI - en_lo - en_hi;
253
254 while (dv_window < 8) {
255 data_invalid_rhoh = en_lo * CLK_X + trhoh[mode];
256
257 data_invalid_rloh = (en_lo + en_hi) * CLK_X + trloh[mode];
258
259 data_invalid =
260 data_invalid_rhoh <
261 data_invalid_rloh ? data_invalid_rhoh : data_invalid_rloh;
262
263 dv_window = data_invalid - trea[mode];
264
265 if (dv_window < 8)
266 en_lo++;
267 }
268
269 acc_clks = DIV_ROUND_UP(trea[mode], CLK_X);
270
271 while (((acc_clks * CLK_X) - trea[mode]) < 3)
272 acc_clks++;
273
274 if ((data_invalid - acc_clks * CLK_X) < 2)
275 debug("%s, Line %d: Warning!\n", __FILE__, __LINE__);
276
277 addr_2_data = DIV_ROUND_UP(tadl[mode], CLK_X);
278 re_2_we = DIV_ROUND_UP(trhw[mode], CLK_X);
279 re_2_re = DIV_ROUND_UP(trhz[mode], CLK_X);
280 we_2_re = DIV_ROUND_UP(twhr[mode], CLK_X);
281 cs_cnt = DIV_ROUND_UP((tcs[mode] - trp[mode]), CLK_X);
282 if (!tclsrising)
283 cs_cnt = DIV_ROUND_UP(tcs[mode], CLK_X);
284 if (cs_cnt == 0)
285 cs_cnt = 1;
286
287 if (tcea[mode]) {
288 while (((cs_cnt * CLK_X) + trea[mode]) < tcea[mode])
289 cs_cnt++;
290 }
291
292 /* Sighting 3462430: Temporary hack for MT29F128G08CJABAWP:B */
293 if ((readl(denali->flash_reg + MANUFACTURER_ID) == 0) &&
294 (readl(denali->flash_reg + DEVICE_ID) == 0x88))
295 acc_clks = 6;
296
297 writel(acc_clks, denali->flash_reg + ACC_CLKS);
298 writel(re_2_we, denali->flash_reg + RE_2_WE);
299 writel(re_2_re, denali->flash_reg + RE_2_RE);
300 writel(we_2_re, denali->flash_reg + WE_2_RE);
301 writel(addr_2_data, denali->flash_reg + ADDR_2_DATA);
302 writel(en_lo, denali->flash_reg + RDWR_EN_LO_CNT);
303 writel(en_hi, denali->flash_reg + RDWR_EN_HI_CNT);
304 writel(cs_cnt, denali->flash_reg + CS_SETUP_CNT);
305}
306
307/* queries the NAND device to see what ONFI modes it supports. */
308static uint32_t get_onfi_nand_para(struct denali_nand_info *denali)
309{
310 int i;
311 /*
312 * we needn't to do a reset here because driver has already
313 * reset all the banks before
314 */
315 if (!(readl(denali->flash_reg + ONFI_TIMING_MODE) &
316 ONFI_TIMING_MODE__VALUE))
317 return -EIO;
318
319 for (i = 5; i > 0; i--) {
320 if (readl(denali->flash_reg + ONFI_TIMING_MODE) &
321 (0x01 << i))
322 break;
323 }
324
325 nand_onfi_timing_set(denali, i);
326
327 /* By now, all the ONFI devices we know support the page cache */
328 /* rw feature. So here we enable the pipeline_rw_ahead feature */
329 return 0;
330}
331
332static void get_samsung_nand_para(struct denali_nand_info *denali,
333 uint8_t device_id)
334{
335 if (device_id == 0xd3) { /* Samsung K9WAG08U1A */
336 /* Set timing register values according to datasheet */
337 writel(5, denali->flash_reg + ACC_CLKS);
338 writel(20, denali->flash_reg + RE_2_WE);
339 writel(12, denali->flash_reg + WE_2_RE);
340 writel(14, denali->flash_reg + ADDR_2_DATA);
341 writel(3, denali->flash_reg + RDWR_EN_LO_CNT);
342 writel(2, denali->flash_reg + RDWR_EN_HI_CNT);
343 writel(2, denali->flash_reg + CS_SETUP_CNT);
344 }
345}
346
347static void get_toshiba_nand_para(struct denali_nand_info *denali)
348{
349 uint32_t tmp;
350
351 /* Workaround to fix a controller bug which reports a wrong */
352 /* spare area size for some kind of Toshiba NAND device */
353 if ((readl(denali->flash_reg + DEVICE_MAIN_AREA_SIZE) == 4096) &&
354 (readl(denali->flash_reg + DEVICE_SPARE_AREA_SIZE) == 64)) {
355 writel(216, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
356 tmp = readl(denali->flash_reg + DEVICES_CONNECTED) *
357 readl(denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
358 writel(tmp, denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
359 }
360}
361
362static void get_hynix_nand_para(struct denali_nand_info *denali,
363 uint8_t device_id)
364{
365 uint32_t main_size, spare_size;
366
367 switch (device_id) {
368 case 0xD5: /* Hynix H27UAG8T2A, H27UBG8U5A or H27UCG8VFA */
369 case 0xD7: /* Hynix H27UDG8VEM, H27UCG8UDM or H27UCG8V5A */
370 writel(128, denali->flash_reg + PAGES_PER_BLOCK);
371 writel(4096, denali->flash_reg + DEVICE_MAIN_AREA_SIZE);
372 writel(224, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
373 main_size = 4096 *
374 readl(denali->flash_reg + DEVICES_CONNECTED);
375 spare_size = 224 *
376 readl(denali->flash_reg + DEVICES_CONNECTED);
377 writel(main_size, denali->flash_reg + LOGICAL_PAGE_DATA_SIZE);
378 writel(spare_size, denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
379 writel(0, denali->flash_reg + DEVICE_WIDTH);
380 break;
381 default:
382 debug("Spectra: Unknown Hynix NAND (Device ID: 0x%x)."
383 "Will use default parameter values instead.\n",
384 device_id);
385 }
386}
387
388/*
389 * determines how many NAND chips are connected to the controller. Note for
390 * Intel CE4100 devices we don't support more than one device.
391 */
392static void find_valid_banks(struct denali_nand_info *denali)
393{
394 uint32_t id[denali->max_banks];
395 int i;
396
397 denali->total_used_banks = 1;
398 for (i = 0; i < denali->max_banks; i++) {
399 index_addr(denali, (uint32_t)(MODE_11 | (i << 24) | 0), 0x90);
400 index_addr(denali, (uint32_t)(MODE_11 | (i << 24) | 1), 0);
401 index_addr_read_data(denali,
402 (uint32_t)(MODE_11 | (i << 24) | 2),
403 &id[i]);
404
405 if (i == 0) {
406 if (!(id[i] & 0x0ff))
407 break;
408 } else {
409 if ((id[i] & 0x0ff) == (id[0] & 0x0ff))
410 denali->total_used_banks++;
411 else
412 break;
413 }
414 }
415}
416
417/*
418 * Use the configuration feature register to determine the maximum number of
419 * banks that the hardware supports.
420 */
421static void detect_max_banks(struct denali_nand_info *denali)
422{
423 uint32_t features = readl(denali->flash_reg + FEATURES);
424 denali->max_banks = 2 << (features & FEATURES__N_BANKS);
425}
426
427static void detect_partition_feature(struct denali_nand_info *denali)
428{
429 /*
430 * For MRST platform, denali->fwblks represent the
431 * number of blocks firmware is taken,
432 * FW is in protect partition and MTD driver has no
433 * permission to access it. So let driver know how many
434 * blocks it can't touch.
435 */
436 if (readl(denali->flash_reg + FEATURES) & FEATURES__PARTITION) {
437 if ((readl(denali->flash_reg + PERM_SRC_ID(1)) &
438 PERM_SRC_ID__SRCID) == SPECTRA_PARTITION_ID) {
439 denali->fwblks =
440 ((readl(denali->flash_reg + MIN_MAX_BANK(1)) &
441 MIN_MAX_BANK__MIN_VALUE) *
442 denali->blksperchip)
443 +
444 (readl(denali->flash_reg + MIN_BLK_ADDR(1)) &
445 MIN_BLK_ADDR__VALUE);
446 } else {
447 denali->fwblks = SPECTRA_START_BLOCK;
448 }
449 } else {
450 denali->fwblks = SPECTRA_START_BLOCK;
451 }
452}
453
454static uint32_t denali_nand_timing_set(struct denali_nand_info *denali)
455{
456 uint32_t id_bytes[5], addr;
457 uint8_t i, maf_id, device_id;
458
459 /* Use read id method to get device ID and other
460 * params. For some NAND chips, controller can't
461 * report the correct device ID by reading from
462 * DEVICE_ID register
463 * */
464 addr = (uint32_t)MODE_11 | BANK(denali->flash_bank);
465 index_addr(denali, (uint32_t)addr | 0, 0x90);
466 index_addr(denali, (uint32_t)addr | 1, 0);
467 for (i = 0; i < 5; i++)
468 index_addr_read_data(denali, addr | 2, &id_bytes[i]);
469 maf_id = id_bytes[0];
470 device_id = id_bytes[1];
471
472 if (readl(denali->flash_reg + ONFI_DEVICE_NO_OF_LUNS) &
473 ONFI_DEVICE_NO_OF_LUNS__ONFI_DEVICE) { /* ONFI 1.0 NAND */
474 if (get_onfi_nand_para(denali))
475 return -EIO;
476 } else if (maf_id == 0xEC) { /* Samsung NAND */
477 get_samsung_nand_para(denali, device_id);
478 } else if (maf_id == 0x98) { /* Toshiba NAND */
479 get_toshiba_nand_para(denali);
480 } else if (maf_id == 0xAD) { /* Hynix NAND */
481 get_hynix_nand_para(denali, device_id);
482 }
483
484 find_valid_banks(denali);
485
486 detect_partition_feature(denali);
487
488 /* If the user specified to override the default timings
489 * with a specific ONFI mode, we apply those changes here.
490 */
491 if (onfi_timing_mode != NAND_DEFAULT_TIMINGS)
492 nand_onfi_timing_set(denali, onfi_timing_mode);
493
494 return 0;
495}
496
497/* validation function to verify that the controlling software is making
498 * a valid request
499 */
500static inline bool is_flash_bank_valid(int flash_bank)
501{
502 return flash_bank >= 0 && flash_bank < 4;
503}
504
505static void denali_irq_init(struct denali_nand_info *denali)
506{
507 uint32_t int_mask = 0;
508 int i;
509
510 /* Disable global interrupts */
511 writel(0, denali->flash_reg + GLOBAL_INT_ENABLE);
512
513 int_mask = DENALI_IRQ_ALL;
514
515 /* Clear all status bits */
516 for (i = 0; i < denali->max_banks; ++i)
517 writel(0xFFFF, denali->flash_reg + INTR_STATUS(i));
518
519 denali_irq_enable(denali, int_mask);
520}
521
522/* This helper function setups the registers for ECC and whether or not
523 * the spare area will be transferred. */
524static void setup_ecc_for_xfer(struct denali_nand_info *denali, bool ecc_en,
525 bool transfer_spare)
526{
527 int ecc_en_flag = 0, transfer_spare_flag = 0;
528
529 /* set ECC, transfer spare bits if needed */
530 ecc_en_flag = ecc_en ? ECC_ENABLE__FLAG : 0;
531 transfer_spare_flag = transfer_spare ? TRANSFER_SPARE_REG__FLAG : 0;
532
533 /* Enable spare area/ECC per user's request. */
534 writel(ecc_en_flag, denali->flash_reg + ECC_ENABLE);
535 /* applicable for MAP01 only */
536 writel(transfer_spare_flag, denali->flash_reg + TRANSFER_SPARE_REG);
537}
538
539/* sends a pipeline command operation to the controller. See the Denali NAND
540 * controller's user guide for more information (section 4.2.3.6).
541 */
542static int denali_send_pipeline_cmd(struct denali_nand_info *denali,
543 bool ecc_en, bool transfer_spare,
544 int access_type, int op)
545{
546 uint32_t addr, cmd, irq_status;
547 static uint32_t page_count = 1;
548
549 setup_ecc_for_xfer(denali, ecc_en, transfer_spare);
550
551 /* clear interrupts */
552 clear_interrupts(denali);
553
554 addr = BANK(denali->flash_bank) | denali->page;
555
556 /* setup the acccess type */
557 cmd = MODE_10 | addr;
558 index_addr(denali, cmd, access_type);
559
560 /* setup the pipeline command */
561 index_addr(denali, cmd, 0x2000 | op | page_count);
562
563 cmd = MODE_01 | addr;
564 writel(cmd, denali->flash_mem + INDEX_CTRL_REG);
565
566 if (op == DENALI_READ) {
567 /* wait for command to be accepted */
568 irq_status = wait_for_irq(denali, INTR_STATUS__LOAD_COMP);
569
570 if (irq_status == 0)
571 return -EIO;
572 }
573
574 return 0;
575}
576
577/* helper function that simply writes a buffer to the flash */
578static int write_data_to_flash_mem(struct denali_nand_info *denali,
579 const uint8_t *buf, int len)
580{
581 uint32_t i = 0, *buf32;
582
583 /* verify that the len is a multiple of 4. see comment in
584 * read_data_from_flash_mem() */
585 BUG_ON((len % 4) != 0);
586
587 /* write the data to the flash memory */
588 buf32 = (uint32_t *)buf;
589 for (i = 0; i < len / 4; i++)
590 writel(*buf32++, denali->flash_mem + INDEX_DATA_REG);
591 return i * 4; /* intent is to return the number of bytes read */
592}
593
594/* helper function that simply reads a buffer from the flash */
595static int read_data_from_flash_mem(struct denali_nand_info *denali,
596 uint8_t *buf, int len)
597{
598 uint32_t i, *buf32;
599
600 /*
601 * we assume that len will be a multiple of 4, if not
602 * it would be nice to know about it ASAP rather than
603 * have random failures...
604 * This assumption is based on the fact that this
605 * function is designed to be used to read flash pages,
606 * which are typically multiples of 4...
607 */
608
609 BUG_ON((len % 4) != 0);
610
611 /* transfer the data from the flash */
612 buf32 = (uint32_t *)buf;
613 for (i = 0; i < len / 4; i++)
614 *buf32++ = readl(denali->flash_mem + INDEX_DATA_REG);
615
616 return i * 4; /* intent is to return the number of bytes read */
617}
618
619static void denali_mode_main_access(struct denali_nand_info *denali)
620{
621 uint32_t addr, cmd;
622
623 addr = BANK(denali->flash_bank) | denali->page;
624 cmd = MODE_10 | addr;
625 index_addr(denali, cmd, MAIN_ACCESS);
626}
627
628static void denali_mode_main_spare_access(struct denali_nand_info *denali)
629{
630 uint32_t addr, cmd;
631
632 addr = BANK(denali->flash_bank) | denali->page;
633 cmd = MODE_10 | addr;
634 index_addr(denali, cmd, MAIN_SPARE_ACCESS);
635}
636
637/* writes OOB data to the device */
638static int write_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
639{
640 struct denali_nand_info *denali = mtd_to_denali(mtd);
641 uint32_t irq_status;
642 uint32_t irq_mask = INTR_STATUS__PROGRAM_COMP |
643 INTR_STATUS__PROGRAM_FAIL;
644 int status = 0;
645
646 denali->page = page;
647
648 if (denali_send_pipeline_cmd(denali, false, true, SPARE_ACCESS,
649 DENALI_WRITE) == 0) {
650 write_data_to_flash_mem(denali, buf, mtd->oobsize);
651
652 /* wait for operation to complete */
653 irq_status = wait_for_irq(denali, irq_mask);
654
655 if (irq_status == 0) {
656 dev_err(denali->dev, "OOB write failed\n");
657 status = -EIO;
658 }
659 } else {
660 printf("unable to send pipeline command\n");
661 status = -EIO;
662 }
663 return status;
664}
665
666/* reads OOB data from the device */
667static void read_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
668{
669 struct denali_nand_info *denali = mtd_to_denali(mtd);
670 uint32_t irq_mask = INTR_STATUS__LOAD_COMP,
671 irq_status = 0, addr = 0x0, cmd = 0x0;
672
673 denali->page = page;
674
675 if (denali_send_pipeline_cmd(denali, false, true, SPARE_ACCESS,
676 DENALI_READ) == 0) {
677 read_data_from_flash_mem(denali, buf, mtd->oobsize);
678
679 /* wait for command to be accepted
680 * can always use status0 bit as the mask is identical for each
681 * bank. */
682 irq_status = wait_for_irq(denali, irq_mask);
683
684 if (irq_status == 0)
685 printf("page on OOB timeout %d\n", denali->page);
686
687 /* We set the device back to MAIN_ACCESS here as I observed
688 * instability with the controller if you do a block erase
689 * and the last transaction was a SPARE_ACCESS. Block erase
690 * is reliable (according to the MTD test infrastructure)
691 * if you are in MAIN_ACCESS.
692 */
693 addr = BANK(denali->flash_bank) | denali->page;
694 cmd = MODE_10 | addr;
695 index_addr(denali, cmd, MAIN_ACCESS);
696 }
697}
698
699/* this function examines buffers to see if they contain data that
700 * indicate that the buffer is part of an erased region of flash.
701 */
702static bool is_erased(uint8_t *buf, int len)
703{
704 int i = 0;
705 for (i = 0; i < len; i++)
706 if (buf[i] != 0xFF)
707 return false;
708 return true;
709}
710
711/* programs the controller to either enable/disable DMA transfers */
712static void denali_enable_dma(struct denali_nand_info *denali, bool en)
713{
714 uint32_t reg_val = 0x0;
715
716 if (en)
717 reg_val = DMA_ENABLE__FLAG;
718
719 writel(reg_val, denali->flash_reg + DMA_ENABLE);
720 readl(denali->flash_reg + DMA_ENABLE);
721}
722
723/* setups the HW to perform the data DMA */
724static void denali_setup_dma(struct denali_nand_info *denali, int op)
725{
726 uint32_t mode;
727 const int page_count = 1;
728 uint32_t addr = (uint32_t)denali->buf.dma_buf;
729
730 flush_dcache_range(addr, addr + sizeof(denali->buf.dma_buf));
731
732/* For Denali controller that is 64 bit bus IP core */
733#ifdef CONFIG_SYS_NAND_DENALI_64BIT
734 mode = MODE_10 | BANK(denali->flash_bank) | denali->page;
735
736 /* DMA is a three step process */
737
738 /* 1. setup transfer type, interrupt when complete,
739 burst len = 64 bytes, the number of pages */
740 index_addr(denali, mode, 0x01002000 | (64 << 16) | op | page_count);
741
742 /* 2. set memory low address bits 31:0 */
743 index_addr(denali, mode, addr);
744
745 /* 3. set memory high address bits 64:32 */
746 index_addr(denali, mode, 0);
747#else
748 mode = MODE_10 | BANK(denali->flash_bank);
749
750 /* DMA is a four step process */
751
752 /* 1. setup transfer type and # of pages */
753 index_addr(denali, mode | denali->page, 0x2000 | op | page_count);
754
755 /* 2. set memory high address bits 23:8 */
756 index_addr(denali, mode | ((uint32_t)(addr >> 16) << 8), 0x2200);
757
758 /* 3. set memory low address bits 23:8 */
759 index_addr(denali, mode | ((uint32_t)addr << 8), 0x2300);
760
761 /* 4. interrupt when complete, burst len = 64 bytes*/
762 index_addr(denali, mode | 0x14000, 0x2400);
763#endif
764}
765
766/* Common DMA function */
767static uint32_t denali_dma_configuration(struct denali_nand_info *denali,
768 uint32_t ops, bool raw_xfer,
769 uint32_t irq_mask, int oob_required)
770{
771 uint32_t irq_status = 0;
772 /* setup_ecc_for_xfer(bool ecc_en, bool transfer_spare) */
773 setup_ecc_for_xfer(denali, !raw_xfer, oob_required);
774
775 /* clear any previous interrupt flags */
776 clear_interrupts(denali);
777
778 /* enable the DMA */
779 denali_enable_dma(denali, true);
780
781 /* setup the DMA */
782 denali_setup_dma(denali, ops);
783
784 /* wait for operation to complete */
785 irq_status = wait_for_irq(denali, irq_mask);
786
787 /* if ECC fault happen, seems we need delay before turning off DMA.
788 * If not, the controller will go into non responsive condition */
789 if (irq_status & INTR_STATUS__ECC_UNCOR_ERR)
790 udelay(100);
791
792 /* disable the DMA */
793 denali_enable_dma(denali, false);
794
795 return irq_status;
796}
797
798static int write_page(struct mtd_info *mtd, struct nand_chip *chip,
799 const uint8_t *buf, bool raw_xfer, int oob_required)
800{
801 struct denali_nand_info *denali = mtd_to_denali(mtd);
802
803 uint32_t irq_status = 0;
804 uint32_t irq_mask = INTR_STATUS__DMA_CMD_COMP;
805
806 denali->status = 0;
807
808 /* copy buffer into DMA buffer */
809 memcpy(denali->buf.dma_buf, buf, mtd->writesize);
810
811 /* need extra memcpy for raw transfer */
812 if (raw_xfer)
813 memcpy(denali->buf.dma_buf + mtd->writesize,
814 chip->oob_poi, mtd->oobsize);
815
816 /* setting up DMA */
817 irq_status = denali_dma_configuration(denali, DENALI_WRITE, raw_xfer,
818 irq_mask, oob_required);
819
820 /* if timeout happen, error out */
821 if (!(irq_status & INTR_STATUS__DMA_CMD_COMP)) {
822 debug("DMA timeout for denali write_page\n");
823 denali->status = NAND_STATUS_FAIL;
824 return -EIO;
825 }
826
827 if (irq_status & INTR_STATUS__LOCKED_BLK) {
828 debug("Failed as write to locked block\n");
829 denali->status = NAND_STATUS_FAIL;
830 return -EIO;
831 }
832 return 0;
833}
834
835/* NAND core entry points */
836
837/*
838 * this is the callback that the NAND core calls to write a page. Since
839 * writing a page with ECC or without is similar, all the work is done
840 * by write_page above.
841 */
842static int denali_write_page(struct mtd_info *mtd, struct nand_chip *chip,
843 const uint8_t *buf, int oob_required)
844{
845 struct denali_nand_info *denali = mtd_to_denali(mtd);
846
847 /*
848 * for regular page writes, we let HW handle all the ECC
849 * data written to the device.
850 */
851 if (oob_required)
852 /* switch to main + spare access */
853 denali_mode_main_spare_access(denali);
854 else
855 /* switch to main access only */
856 denali_mode_main_access(denali);
857
858 return write_page(mtd, chip, buf, false, oob_required);
859}
860
861/*
862 * This is the callback that the NAND core calls to write a page without ECC.
863 * raw access is similar to ECC page writes, so all the work is done in the
864 * write_page() function above.
865 */
866static int denali_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
867 const uint8_t *buf, int oob_required)
868{
869 struct denali_nand_info *denali = mtd_to_denali(mtd);
870
871 /*
872 * for raw page writes, we want to disable ECC and simply write
873 * whatever data is in the buffer.
874 */
875
876 if (oob_required)
877 /* switch to main + spare access */
878 denali_mode_main_spare_access(denali);
879 else
880 /* switch to main access only */
881 denali_mode_main_access(denali);
882
883 return write_page(mtd, chip, buf, true, oob_required);
884}
885
886static int denali_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
887 int page)
888{
889 return write_oob_data(mtd, chip->oob_poi, page);
890}
891
892/* raw include ECC value and all the spare area */
893static int denali_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
894 uint8_t *buf, int oob_required, int page)
895{
896 struct denali_nand_info *denali = mtd_to_denali(mtd);
897
898 uint32_t irq_status, irq_mask = INTR_STATUS__DMA_CMD_COMP;
899
900 if (denali->page != page) {
901 debug("Missing NAND_CMD_READ0 command\n");
902 return -EIO;
903 }
904
905 if (oob_required)
906 /* switch to main + spare access */
907 denali_mode_main_spare_access(denali);
908 else
909 /* switch to main access only */
910 denali_mode_main_access(denali);
911
912 /* setting up the DMA where ecc_enable is false */
913 irq_status = denali_dma_configuration(denali, DENALI_READ, true,
914 irq_mask, oob_required);
915
916 /* if timeout happen, error out */
917 if (!(irq_status & INTR_STATUS__DMA_CMD_COMP)) {
918 debug("DMA timeout for denali_read_page_raw\n");
919 return -EIO;
920 }
921
922 /* splitting the content to destination buffer holder */
923 memcpy(chip->oob_poi, (denali->buf.dma_buf + mtd->writesize),
924 mtd->oobsize);
925 memcpy(buf, denali->buf.dma_buf, mtd->writesize);
926
927 return 0;
928}
929
930static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip,
931 uint8_t *buf, int oob_required, int page)
932{
933 struct denali_nand_info *denali = mtd_to_denali(mtd);
934 uint32_t irq_status, irq_mask = INTR_STATUS__DMA_CMD_COMP;
935
936 if (denali->page != page) {
937 debug("Missing NAND_CMD_READ0 command\n");
938 return -EIO;
939 }
940
941 if (oob_required)
942 /* switch to main + spare access */
943 denali_mode_main_spare_access(denali);
944 else
945 /* switch to main access only */
946 denali_mode_main_access(denali);
947
948 /* setting up the DMA where ecc_enable is true */
949 irq_status = denali_dma_configuration(denali, DENALI_READ, false,
950 irq_mask, oob_required);
951
952 memcpy(buf, denali->buf.dma_buf, mtd->writesize);
953
954 /* check whether any ECC error */
955 if (irq_status & INTR_STATUS__ECC_UNCOR_ERR) {
956 /* is the ECC cause by erase page, check using read_page_raw */
957 debug(" Uncorrected ECC detected\n");
958 denali_read_page_raw(mtd, chip, buf, oob_required,
959 denali->page);
960
961 if (is_erased(buf, mtd->writesize) == true &&
962 is_erased(chip->oob_poi, mtd->oobsize) == true) {
963 debug(" ECC error cause by erased block\n");
964 /* false alarm, return the 0xFF */
965 } else {
966 return -EIO;
967 }
968 }
969 memcpy(buf, denali->buf.dma_buf, mtd->writesize);
970 return 0;
971}
972
973static int denali_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
974 int page)
975{
976 read_oob_data(mtd, chip->oob_poi, page);
977
978 return 0;
979}
980
981static uint8_t denali_read_byte(struct mtd_info *mtd)
982{
983 struct denali_nand_info *denali = mtd_to_denali(mtd);
984 uint32_t addr, result;
985
986 addr = (uint32_t)MODE_11 | BANK(denali->flash_bank);
987 index_addr_read_data(denali, addr | 2, &result);
988 return (uint8_t)result & 0xFF;
989}
990
991static void denali_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
992{
993 struct denali_nand_info *denali = mtd_to_denali(mtd);
994 uint32_t i, addr, result;
995
996 /* delay for tR (data transfer from Flash array to data register) */
997 udelay(25);
998
999 /* ensure device completed else additional delay and polling */
1000 wait_for_irq(denali, INTR_STATUS__INT_ACT);
1001
1002 addr = (uint32_t)MODE_11 | BANK(denali->flash_bank);
1003 for (i = 0; i < len; i++) {
1004 index_addr_read_data(denali, (uint32_t)addr | 2, &result);
1005 write_byte_to_buf(denali, result);
1006 }
1007 memcpy(buf, denali->buf.buf, len);
1008}
1009
1010static void denali_select_chip(struct mtd_info *mtd, int chip)
1011{
1012 struct denali_nand_info *denali = mtd_to_denali(mtd);
1013
1014 denali->flash_bank = chip;
1015}
1016
1017static int denali_waitfunc(struct mtd_info *mtd, struct nand_chip *chip)
1018{
1019 struct denali_nand_info *denali = mtd_to_denali(mtd);
1020 int status = denali->status;
1021 denali->status = 0;
1022
1023 return status;
1024}
1025
1026static void denali_erase(struct mtd_info *mtd, int page)
1027{
1028 struct denali_nand_info *denali = mtd_to_denali(mtd);
1029 uint32_t cmd, irq_status;
1030
1031 /* clear interrupts */
1032 clear_interrupts(denali);
1033
1034 /* setup page read request for access type */
1035 cmd = MODE_10 | BANK(denali->flash_bank) | page;
1036 index_addr(denali, cmd, 0x1);
1037
1038 /* wait for erase to complete or failure to occur */
1039 irq_status = wait_for_irq(denali, INTR_STATUS__ERASE_COMP |
1040 INTR_STATUS__ERASE_FAIL);
1041
1042 if (irq_status & INTR_STATUS__ERASE_FAIL ||
1043 irq_status & INTR_STATUS__LOCKED_BLK)
1044 denali->status = NAND_STATUS_FAIL;
1045 else
1046 denali->status = 0;
1047}
1048
1049static void denali_cmdfunc(struct mtd_info *mtd, unsigned int cmd, int col,
1050 int page)
1051{
1052 struct denali_nand_info *denali = mtd_to_denali(mtd);
1053 uint32_t addr;
1054
1055 switch (cmd) {
1056 case NAND_CMD_PAGEPROG:
1057 break;
1058 case NAND_CMD_STATUS:
1059 addr = MODE_11 | BANK(denali->flash_bank);
1060 index_addr(denali, addr | 0, cmd);
1061 break;
Chin Liang See03534df2014-09-12 00:42:17 -05001062 case NAND_CMD_READID:
Masahiro Yamada40525e22014-10-03 20:03:03 +09001063 case NAND_CMD_PARAM:
Chin Liang See03534df2014-09-12 00:42:17 -05001064 reset_buf(denali);
1065 /* sometimes ManufactureId read from register is not right
1066 * e.g. some of Micron MT29F32G08QAA MLC NAND chips
1067 * So here we send READID cmd to NAND insteand
1068 * */
1069 addr = MODE_11 | BANK(denali->flash_bank);
1070 index_addr(denali, addr | 0, cmd);
1071 index_addr(denali, addr | 1, col & 0xFF);
Masahiro Yamada40525e22014-10-03 20:03:03 +09001072 if (cmd == NAND_CMD_PARAM)
1073 udelay(50);
Chin Liang See03534df2014-09-12 00:42:17 -05001074 break;
Masahiro Yamadab692b3f2014-10-03 20:03:04 +09001075 case NAND_CMD_RNDOUT:
1076 addr = MODE_11 | BANK(denali->flash_bank);
1077 index_addr(denali, addr | 0, cmd);
1078 index_addr(denali, addr | 1, col & 0xFF);
1079 index_addr(denali, addr | 1, col >> 8);
1080 index_addr(denali, addr | 0, NAND_CMD_RNDOUTSTART);
1081 break;
Chin Liang See03534df2014-09-12 00:42:17 -05001082 case NAND_CMD_READ0:
1083 case NAND_CMD_SEQIN:
1084 denali->page = page;
1085 break;
1086 case NAND_CMD_RESET:
1087 reset_bank(denali);
1088 break;
1089 case NAND_CMD_READOOB:
1090 /* TODO: Read OOB data */
1091 break;
1092 case NAND_CMD_ERASE1:
1093 /*
1094 * supporting block erase only, not multiblock erase as
1095 * it will cross plane and software need complex calculation
1096 * to identify the block count for the cross plane
1097 */
1098 denali_erase(mtd, page);
1099 break;
1100 case NAND_CMD_ERASE2:
1101 /* nothing to do here as it was done during NAND_CMD_ERASE1 */
1102 break;
1103 case NAND_CMD_UNLOCK1:
1104 addr = MODE_10 | BANK(denali->flash_bank) | page;
1105 index_addr(denali, addr | 0, DENALI_UNLOCK_START);
1106 break;
1107 case NAND_CMD_UNLOCK2:
1108 addr = MODE_10 | BANK(denali->flash_bank) | page;
1109 index_addr(denali, addr | 0, DENALI_UNLOCK_END);
1110 break;
1111 case NAND_CMD_LOCK:
1112 addr = MODE_10 | BANK(denali->flash_bank);
1113 index_addr(denali, addr | 0, DENALI_LOCK);
1114 break;
1115 default:
1116 printf(": unsupported command received 0x%x\n", cmd);
1117 break;
1118 }
1119}
1120/* end NAND core entry points */
1121
1122/* Initialization code to bring the device up to a known good state */
1123static void denali_hw_init(struct denali_nand_info *denali)
1124{
1125 /*
1126 * tell driver how many bit controller will skip before writing
1127 * ECC code in OOB. This is normally used for bad block marker
1128 */
1129 writel(CONFIG_NAND_DENALI_SPARE_AREA_SKIP_BYTES,
1130 denali->flash_reg + SPARE_AREA_SKIP_BYTES);
1131 detect_max_banks(denali);
1132 denali_nand_reset(denali);
1133 writel(0x0F, denali->flash_reg + RB_PIN_ENABLED);
1134 writel(CHIP_EN_DONT_CARE__FLAG,
1135 denali->flash_reg + CHIP_ENABLE_DONT_CARE);
1136 writel(0xffff, denali->flash_reg + SPARE_AREA_MARKER);
1137
1138 /* Should set value for these registers when init */
1139 writel(0, denali->flash_reg + TWO_ROW_ADDR_CYCLES);
1140 writel(1, denali->flash_reg + ECC_ENABLE);
1141 denali_nand_timing_set(denali);
1142 denali_irq_init(denali);
1143}
1144
1145static struct nand_ecclayout nand_oob;
1146
1147static int denali_nand_init(struct nand_chip *nand)
1148{
1149 struct denali_nand_info *denali;
1150
1151 denali = malloc(sizeof(*denali));
1152 if (!denali)
1153 return -ENOMEM;
1154
1155 nand->priv = denali;
1156
1157 denali->flash_reg = (void __iomem *)CONFIG_SYS_NAND_REGS_BASE;
1158 denali->flash_mem = (void __iomem *)CONFIG_SYS_NAND_DATA_BASE;
1159
1160#ifdef CONFIG_SYS_NAND_USE_FLASH_BBT
1161 /* check whether flash got BBT table (located at end of flash). As we
1162 * use NAND_BBT_NO_OOB, the BBT page will start with
1163 * bbt_pattern. We will have mirror pattern too */
1164 nand->bbt_options |= NAND_BBT_USE_FLASH;
1165 /*
1166 * We are using main + spare with ECC support. As BBT need ECC support,
1167 * we need to ensure BBT code don't write to OOB for the BBT pattern.
1168 * All BBT info will be stored into data area with ECC support.
1169 */
1170 nand->bbt_options |= NAND_BBT_NO_OOB;
1171#endif
1172
1173 nand->ecc.mode = NAND_ECC_HW;
1174 nand->ecc.size = CONFIG_NAND_DENALI_ECC_SIZE;
1175 nand->ecc.read_oob = denali_read_oob;
1176 nand->ecc.write_oob = denali_write_oob;
1177 nand->ecc.read_page = denali_read_page;
1178 nand->ecc.read_page_raw = denali_read_page_raw;
1179 nand->ecc.write_page = denali_write_page;
1180 nand->ecc.write_page_raw = denali_write_page_raw;
1181 /*
1182 * Tell driver the ecc strength. This register may be already set
1183 * correctly. So we read this value out.
1184 */
1185 nand->ecc.strength = readl(denali->flash_reg + ECC_CORRECTION);
1186 switch (nand->ecc.size) {
1187 case 512:
1188 nand->ecc.bytes = (nand->ecc.strength * 13 + 15) / 16 * 2;
1189 break;
1190 case 1024:
1191 nand->ecc.bytes = (nand->ecc.strength * 14 + 15) / 16 * 2;
1192 break;
1193 default:
1194 pr_err("Unsupported ECC size\n");
1195 return -EINVAL;
1196 }
1197 nand_oob.eccbytes = nand->ecc.bytes;
1198 nand->ecc.layout = &nand_oob;
1199
1200 /* Set address of hardware control function */
1201 nand->cmdfunc = denali_cmdfunc;
1202 nand->read_byte = denali_read_byte;
1203 nand->read_buf = denali_read_buf;
1204 nand->select_chip = denali_select_chip;
1205 nand->waitfunc = denali_waitfunc;
1206 denali_hw_init(denali);
1207 return 0;
1208}
1209
1210int board_nand_init(struct nand_chip *chip)
1211{
1212 return denali_nand_init(chip);
1213}