Chin Liang See | 03534df | 2014-09-12 00:42:17 -0500 | [diff] [blame] | 1 | /* |
| 2 | * Copyright (C) 2014 Panasonic Corporation |
| 3 | * Copyright (C) 2013-2014, Altera Corporation <www.altera.com> |
| 4 | * Copyright (C) 2009-2010, Intel Corporation and its suppliers. |
| 5 | * |
| 6 | * SPDX-License-Identifier: GPL-2.0+ |
| 7 | */ |
| 8 | |
| 9 | #include <common.h> |
| 10 | #include <malloc.h> |
| 11 | #include <nand.h> |
| 12 | #include <asm/errno.h> |
| 13 | #include <asm/io.h> |
| 14 | |
| 15 | #include "denali.h" |
| 16 | |
| 17 | #define NAND_DEFAULT_TIMINGS -1 |
| 18 | |
| 19 | static int onfi_timing_mode = NAND_DEFAULT_TIMINGS; |
| 20 | |
| 21 | /* We define a macro here that combines all interrupts this driver uses into |
| 22 | * a single constant value, for convenience. */ |
| 23 | #define DENALI_IRQ_ALL (INTR_STATUS__DMA_CMD_COMP | \ |
| 24 | INTR_STATUS__ECC_TRANSACTION_DONE | \ |
| 25 | INTR_STATUS__ECC_ERR | \ |
| 26 | INTR_STATUS__PROGRAM_FAIL | \ |
| 27 | INTR_STATUS__LOAD_COMP | \ |
| 28 | INTR_STATUS__PROGRAM_COMP | \ |
| 29 | INTR_STATUS__TIME_OUT | \ |
| 30 | INTR_STATUS__ERASE_FAIL | \ |
| 31 | INTR_STATUS__RST_COMP | \ |
| 32 | INTR_STATUS__ERASE_COMP | \ |
| 33 | INTR_STATUS__ECC_UNCOR_ERR | \ |
| 34 | INTR_STATUS__INT_ACT | \ |
| 35 | INTR_STATUS__LOCKED_BLK) |
| 36 | |
| 37 | /* indicates whether or not the internal value for the flash bank is |
| 38 | * valid or not */ |
| 39 | #define CHIP_SELECT_INVALID -1 |
| 40 | |
| 41 | #define SUPPORT_8BITECC 1 |
| 42 | |
| 43 | /* |
| 44 | * this macro allows us to convert from an MTD structure to our own |
| 45 | * device context (denali) structure. |
| 46 | */ |
| 47 | #define mtd_to_denali(m) (((struct nand_chip *)mtd->priv)->priv) |
| 48 | |
| 49 | /* These constants are defined by the driver to enable common driver |
| 50 | * configuration options. */ |
| 51 | #define SPARE_ACCESS 0x41 |
| 52 | #define MAIN_ACCESS 0x42 |
| 53 | #define MAIN_SPARE_ACCESS 0x43 |
| 54 | |
| 55 | #define DENALI_UNLOCK_START 0x10 |
| 56 | #define DENALI_UNLOCK_END 0x11 |
| 57 | #define DENALI_LOCK 0x21 |
| 58 | #define DENALI_LOCK_TIGHT 0x31 |
| 59 | #define DENALI_BUFFER_LOAD 0x60 |
| 60 | #define DENALI_BUFFER_WRITE 0x62 |
| 61 | |
| 62 | #define DENALI_READ 0 |
| 63 | #define DENALI_WRITE 0x100 |
| 64 | |
| 65 | /* types of device accesses. We can issue commands and get status */ |
| 66 | #define COMMAND_CYCLE 0 |
| 67 | #define ADDR_CYCLE 1 |
| 68 | #define STATUS_CYCLE 2 |
| 69 | |
| 70 | /* this is a helper macro that allows us to |
| 71 | * format the bank into the proper bits for the controller */ |
| 72 | #define BANK(x) ((x) << 24) |
| 73 | |
| 74 | /* Interrupts are cleared by writing a 1 to the appropriate status bit */ |
| 75 | static inline void clear_interrupt(struct denali_nand_info *denali, |
| 76 | uint32_t irq_mask) |
| 77 | { |
| 78 | uint32_t intr_status_reg; |
| 79 | |
| 80 | intr_status_reg = INTR_STATUS(denali->flash_bank); |
| 81 | |
| 82 | writel(irq_mask, denali->flash_reg + intr_status_reg); |
| 83 | } |
| 84 | |
| 85 | static uint32_t read_interrupt_status(struct denali_nand_info *denali) |
| 86 | { |
| 87 | uint32_t intr_status_reg; |
| 88 | |
| 89 | intr_status_reg = INTR_STATUS(denali->flash_bank); |
| 90 | |
| 91 | return readl(denali->flash_reg + intr_status_reg); |
| 92 | } |
| 93 | |
| 94 | static void clear_interrupts(struct denali_nand_info *denali) |
| 95 | { |
| 96 | uint32_t status; |
| 97 | |
| 98 | status = read_interrupt_status(denali); |
| 99 | clear_interrupt(denali, status); |
| 100 | |
| 101 | denali->irq_status = 0; |
| 102 | } |
| 103 | |
| 104 | static void denali_irq_enable(struct denali_nand_info *denali, |
| 105 | uint32_t int_mask) |
| 106 | { |
| 107 | int i; |
| 108 | |
| 109 | for (i = 0; i < denali->max_banks; ++i) |
| 110 | writel(int_mask, denali->flash_reg + INTR_EN(i)); |
| 111 | } |
| 112 | |
| 113 | static uint32_t wait_for_irq(struct denali_nand_info *denali, uint32_t irq_mask) |
| 114 | { |
| 115 | unsigned long timeout = 1000000; |
| 116 | uint32_t intr_status; |
| 117 | |
| 118 | do { |
| 119 | intr_status = read_interrupt_status(denali) & DENALI_IRQ_ALL; |
| 120 | if (intr_status & irq_mask) { |
| 121 | denali->irq_status &= ~irq_mask; |
| 122 | /* our interrupt was detected */ |
| 123 | break; |
| 124 | } |
| 125 | udelay(1); |
| 126 | timeout--; |
| 127 | } while (timeout != 0); |
| 128 | |
| 129 | if (timeout == 0) { |
| 130 | /* timeout */ |
| 131 | printf("Denali timeout with interrupt status %08x\n", |
| 132 | read_interrupt_status(denali)); |
| 133 | intr_status = 0; |
| 134 | } |
| 135 | return intr_status; |
| 136 | } |
| 137 | |
| 138 | /* |
| 139 | * Certain operations for the denali NAND controller use an indexed mode to |
| 140 | * read/write data. The operation is performed by writing the address value |
| 141 | * of the command to the device memory followed by the data. This function |
| 142 | * abstracts this common operation. |
| 143 | */ |
| 144 | static void index_addr(struct denali_nand_info *denali, |
| 145 | uint32_t address, uint32_t data) |
| 146 | { |
| 147 | writel(address, denali->flash_mem + INDEX_CTRL_REG); |
| 148 | writel(data, denali->flash_mem + INDEX_DATA_REG); |
| 149 | } |
| 150 | |
| 151 | /* Perform an indexed read of the device */ |
| 152 | static void index_addr_read_data(struct denali_nand_info *denali, |
| 153 | uint32_t address, uint32_t *pdata) |
| 154 | { |
| 155 | writel(address, denali->flash_mem + INDEX_CTRL_REG); |
| 156 | *pdata = readl(denali->flash_mem + INDEX_DATA_REG); |
| 157 | } |
| 158 | |
| 159 | /* We need to buffer some data for some of the NAND core routines. |
| 160 | * The operations manage buffering that data. */ |
| 161 | static void reset_buf(struct denali_nand_info *denali) |
| 162 | { |
| 163 | denali->buf.head = 0; |
| 164 | denali->buf.tail = 0; |
| 165 | } |
| 166 | |
| 167 | static void write_byte_to_buf(struct denali_nand_info *denali, uint8_t byte) |
| 168 | { |
| 169 | denali->buf.buf[denali->buf.tail++] = byte; |
| 170 | } |
| 171 | |
| 172 | /* resets a specific device connected to the core */ |
| 173 | static void reset_bank(struct denali_nand_info *denali) |
| 174 | { |
| 175 | uint32_t irq_status; |
| 176 | uint32_t irq_mask = INTR_STATUS__RST_COMP | |
| 177 | INTR_STATUS__TIME_OUT; |
| 178 | |
| 179 | clear_interrupts(denali); |
| 180 | |
| 181 | writel(1 << denali->flash_bank, denali->flash_reg + DEVICE_RESET); |
| 182 | |
| 183 | irq_status = wait_for_irq(denali, irq_mask); |
| 184 | if (irq_status & INTR_STATUS__TIME_OUT) |
| 185 | debug("reset bank failed.\n"); |
| 186 | } |
| 187 | |
| 188 | /* Reset the flash controller */ |
| 189 | static uint32_t denali_nand_reset(struct denali_nand_info *denali) |
| 190 | { |
| 191 | uint32_t i; |
| 192 | |
| 193 | for (i = 0; i < denali->max_banks; i++) |
| 194 | writel(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT, |
| 195 | denali->flash_reg + INTR_STATUS(i)); |
| 196 | |
| 197 | for (i = 0; i < denali->max_banks; i++) { |
| 198 | writel(1 << i, denali->flash_reg + DEVICE_RESET); |
| 199 | while (!(readl(denali->flash_reg + INTR_STATUS(i)) & |
| 200 | (INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT))) |
| 201 | if (readl(denali->flash_reg + INTR_STATUS(i)) & |
| 202 | INTR_STATUS__TIME_OUT) |
| 203 | debug("NAND Reset operation timed out on bank" |
| 204 | " %d\n", i); |
| 205 | } |
| 206 | |
| 207 | for (i = 0; i < denali->max_banks; i++) |
| 208 | writel(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT, |
| 209 | denali->flash_reg + INTR_STATUS(i)); |
| 210 | |
| 211 | return 0; |
| 212 | } |
| 213 | |
| 214 | /* |
| 215 | * this routine calculates the ONFI timing values for a given mode and |
| 216 | * programs the clocking register accordingly. The mode is determined by |
| 217 | * the get_onfi_nand_para routine. |
| 218 | */ |
| 219 | static void nand_onfi_timing_set(struct denali_nand_info *denali, |
| 220 | uint16_t mode) |
| 221 | { |
| 222 | uint32_t trea[6] = {40, 30, 25, 20, 20, 16}; |
| 223 | uint32_t trp[6] = {50, 25, 17, 15, 12, 10}; |
| 224 | uint32_t treh[6] = {30, 15, 15, 10, 10, 7}; |
| 225 | uint32_t trc[6] = {100, 50, 35, 30, 25, 20}; |
| 226 | uint32_t trhoh[6] = {0, 15, 15, 15, 15, 15}; |
| 227 | uint32_t trloh[6] = {0, 0, 0, 0, 5, 5}; |
| 228 | uint32_t tcea[6] = {100, 45, 30, 25, 25, 25}; |
| 229 | uint32_t tadl[6] = {200, 100, 100, 100, 70, 70}; |
| 230 | uint32_t trhw[6] = {200, 100, 100, 100, 100, 100}; |
| 231 | uint32_t trhz[6] = {200, 100, 100, 100, 100, 100}; |
| 232 | uint32_t twhr[6] = {120, 80, 80, 60, 60, 60}; |
| 233 | uint32_t tcs[6] = {70, 35, 25, 25, 20, 15}; |
| 234 | |
| 235 | uint32_t tclsrising = 1; |
| 236 | uint32_t data_invalid_rhoh, data_invalid_rloh, data_invalid; |
| 237 | uint32_t dv_window = 0; |
| 238 | uint32_t en_lo, en_hi; |
| 239 | uint32_t acc_clks; |
| 240 | uint32_t addr_2_data, re_2_we, re_2_re, we_2_re, cs_cnt; |
| 241 | |
| 242 | en_lo = DIV_ROUND_UP(trp[mode], CLK_X); |
| 243 | en_hi = DIV_ROUND_UP(treh[mode], CLK_X); |
| 244 | if ((en_hi * CLK_X) < (treh[mode] + 2)) |
| 245 | en_hi++; |
| 246 | |
| 247 | if ((en_lo + en_hi) * CLK_X < trc[mode]) |
| 248 | en_lo += DIV_ROUND_UP((trc[mode] - (en_lo + en_hi) * CLK_X), |
| 249 | CLK_X); |
| 250 | |
| 251 | if ((en_lo + en_hi) < CLK_MULTI) |
| 252 | en_lo += CLK_MULTI - en_lo - en_hi; |
| 253 | |
| 254 | while (dv_window < 8) { |
| 255 | data_invalid_rhoh = en_lo * CLK_X + trhoh[mode]; |
| 256 | |
| 257 | data_invalid_rloh = (en_lo + en_hi) * CLK_X + trloh[mode]; |
| 258 | |
| 259 | data_invalid = |
| 260 | data_invalid_rhoh < |
| 261 | data_invalid_rloh ? data_invalid_rhoh : data_invalid_rloh; |
| 262 | |
| 263 | dv_window = data_invalid - trea[mode]; |
| 264 | |
| 265 | if (dv_window < 8) |
| 266 | en_lo++; |
| 267 | } |
| 268 | |
| 269 | acc_clks = DIV_ROUND_UP(trea[mode], CLK_X); |
| 270 | |
| 271 | while (((acc_clks * CLK_X) - trea[mode]) < 3) |
| 272 | acc_clks++; |
| 273 | |
| 274 | if ((data_invalid - acc_clks * CLK_X) < 2) |
| 275 | debug("%s, Line %d: Warning!\n", __FILE__, __LINE__); |
| 276 | |
| 277 | addr_2_data = DIV_ROUND_UP(tadl[mode], CLK_X); |
| 278 | re_2_we = DIV_ROUND_UP(trhw[mode], CLK_X); |
| 279 | re_2_re = DIV_ROUND_UP(trhz[mode], CLK_X); |
| 280 | we_2_re = DIV_ROUND_UP(twhr[mode], CLK_X); |
| 281 | cs_cnt = DIV_ROUND_UP((tcs[mode] - trp[mode]), CLK_X); |
| 282 | if (!tclsrising) |
| 283 | cs_cnt = DIV_ROUND_UP(tcs[mode], CLK_X); |
| 284 | if (cs_cnt == 0) |
| 285 | cs_cnt = 1; |
| 286 | |
| 287 | if (tcea[mode]) { |
| 288 | while (((cs_cnt * CLK_X) + trea[mode]) < tcea[mode]) |
| 289 | cs_cnt++; |
| 290 | } |
| 291 | |
| 292 | /* Sighting 3462430: Temporary hack for MT29F128G08CJABAWP:B */ |
| 293 | if ((readl(denali->flash_reg + MANUFACTURER_ID) == 0) && |
| 294 | (readl(denali->flash_reg + DEVICE_ID) == 0x88)) |
| 295 | acc_clks = 6; |
| 296 | |
| 297 | writel(acc_clks, denali->flash_reg + ACC_CLKS); |
| 298 | writel(re_2_we, denali->flash_reg + RE_2_WE); |
| 299 | writel(re_2_re, denali->flash_reg + RE_2_RE); |
| 300 | writel(we_2_re, denali->flash_reg + WE_2_RE); |
| 301 | writel(addr_2_data, denali->flash_reg + ADDR_2_DATA); |
| 302 | writel(en_lo, denali->flash_reg + RDWR_EN_LO_CNT); |
| 303 | writel(en_hi, denali->flash_reg + RDWR_EN_HI_CNT); |
| 304 | writel(cs_cnt, denali->flash_reg + CS_SETUP_CNT); |
| 305 | } |
| 306 | |
| 307 | /* queries the NAND device to see what ONFI modes it supports. */ |
| 308 | static uint32_t get_onfi_nand_para(struct denali_nand_info *denali) |
| 309 | { |
| 310 | int i; |
| 311 | /* |
| 312 | * we needn't to do a reset here because driver has already |
| 313 | * reset all the banks before |
| 314 | */ |
| 315 | if (!(readl(denali->flash_reg + ONFI_TIMING_MODE) & |
| 316 | ONFI_TIMING_MODE__VALUE)) |
| 317 | return -EIO; |
| 318 | |
| 319 | for (i = 5; i > 0; i--) { |
| 320 | if (readl(denali->flash_reg + ONFI_TIMING_MODE) & |
| 321 | (0x01 << i)) |
| 322 | break; |
| 323 | } |
| 324 | |
| 325 | nand_onfi_timing_set(denali, i); |
| 326 | |
| 327 | /* By now, all the ONFI devices we know support the page cache */ |
| 328 | /* rw feature. So here we enable the pipeline_rw_ahead feature */ |
| 329 | return 0; |
| 330 | } |
| 331 | |
| 332 | static void get_samsung_nand_para(struct denali_nand_info *denali, |
| 333 | uint8_t device_id) |
| 334 | { |
| 335 | if (device_id == 0xd3) { /* Samsung K9WAG08U1A */ |
| 336 | /* Set timing register values according to datasheet */ |
| 337 | writel(5, denali->flash_reg + ACC_CLKS); |
| 338 | writel(20, denali->flash_reg + RE_2_WE); |
| 339 | writel(12, denali->flash_reg + WE_2_RE); |
| 340 | writel(14, denali->flash_reg + ADDR_2_DATA); |
| 341 | writel(3, denali->flash_reg + RDWR_EN_LO_CNT); |
| 342 | writel(2, denali->flash_reg + RDWR_EN_HI_CNT); |
| 343 | writel(2, denali->flash_reg + CS_SETUP_CNT); |
| 344 | } |
| 345 | } |
| 346 | |
| 347 | static void get_toshiba_nand_para(struct denali_nand_info *denali) |
| 348 | { |
| 349 | uint32_t tmp; |
| 350 | |
| 351 | /* Workaround to fix a controller bug which reports a wrong */ |
| 352 | /* spare area size for some kind of Toshiba NAND device */ |
| 353 | if ((readl(denali->flash_reg + DEVICE_MAIN_AREA_SIZE) == 4096) && |
| 354 | (readl(denali->flash_reg + DEVICE_SPARE_AREA_SIZE) == 64)) { |
| 355 | writel(216, denali->flash_reg + DEVICE_SPARE_AREA_SIZE); |
| 356 | tmp = readl(denali->flash_reg + DEVICES_CONNECTED) * |
| 357 | readl(denali->flash_reg + DEVICE_SPARE_AREA_SIZE); |
| 358 | writel(tmp, denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE); |
| 359 | } |
| 360 | } |
| 361 | |
| 362 | static void get_hynix_nand_para(struct denali_nand_info *denali, |
| 363 | uint8_t device_id) |
| 364 | { |
| 365 | uint32_t main_size, spare_size; |
| 366 | |
| 367 | switch (device_id) { |
| 368 | case 0xD5: /* Hynix H27UAG8T2A, H27UBG8U5A or H27UCG8VFA */ |
| 369 | case 0xD7: /* Hynix H27UDG8VEM, H27UCG8UDM or H27UCG8V5A */ |
| 370 | writel(128, denali->flash_reg + PAGES_PER_BLOCK); |
| 371 | writel(4096, denali->flash_reg + DEVICE_MAIN_AREA_SIZE); |
| 372 | writel(224, denali->flash_reg + DEVICE_SPARE_AREA_SIZE); |
| 373 | main_size = 4096 * |
| 374 | readl(denali->flash_reg + DEVICES_CONNECTED); |
| 375 | spare_size = 224 * |
| 376 | readl(denali->flash_reg + DEVICES_CONNECTED); |
| 377 | writel(main_size, denali->flash_reg + LOGICAL_PAGE_DATA_SIZE); |
| 378 | writel(spare_size, denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE); |
| 379 | writel(0, denali->flash_reg + DEVICE_WIDTH); |
| 380 | break; |
| 381 | default: |
| 382 | debug("Spectra: Unknown Hynix NAND (Device ID: 0x%x)." |
| 383 | "Will use default parameter values instead.\n", |
| 384 | device_id); |
| 385 | } |
| 386 | } |
| 387 | |
| 388 | /* |
| 389 | * determines how many NAND chips are connected to the controller. Note for |
| 390 | * Intel CE4100 devices we don't support more than one device. |
| 391 | */ |
| 392 | static void find_valid_banks(struct denali_nand_info *denali) |
| 393 | { |
| 394 | uint32_t id[denali->max_banks]; |
| 395 | int i; |
| 396 | |
| 397 | denali->total_used_banks = 1; |
| 398 | for (i = 0; i < denali->max_banks; i++) { |
| 399 | index_addr(denali, (uint32_t)(MODE_11 | (i << 24) | 0), 0x90); |
| 400 | index_addr(denali, (uint32_t)(MODE_11 | (i << 24) | 1), 0); |
| 401 | index_addr_read_data(denali, |
| 402 | (uint32_t)(MODE_11 | (i << 24) | 2), |
| 403 | &id[i]); |
| 404 | |
| 405 | if (i == 0) { |
| 406 | if (!(id[i] & 0x0ff)) |
| 407 | break; |
| 408 | } else { |
| 409 | if ((id[i] & 0x0ff) == (id[0] & 0x0ff)) |
| 410 | denali->total_used_banks++; |
| 411 | else |
| 412 | break; |
| 413 | } |
| 414 | } |
| 415 | } |
| 416 | |
| 417 | /* |
| 418 | * Use the configuration feature register to determine the maximum number of |
| 419 | * banks that the hardware supports. |
| 420 | */ |
| 421 | static void detect_max_banks(struct denali_nand_info *denali) |
| 422 | { |
| 423 | uint32_t features = readl(denali->flash_reg + FEATURES); |
| 424 | denali->max_banks = 2 << (features & FEATURES__N_BANKS); |
| 425 | } |
| 426 | |
| 427 | static void detect_partition_feature(struct denali_nand_info *denali) |
| 428 | { |
| 429 | /* |
| 430 | * For MRST platform, denali->fwblks represent the |
| 431 | * number of blocks firmware is taken, |
| 432 | * FW is in protect partition and MTD driver has no |
| 433 | * permission to access it. So let driver know how many |
| 434 | * blocks it can't touch. |
| 435 | */ |
| 436 | if (readl(denali->flash_reg + FEATURES) & FEATURES__PARTITION) { |
| 437 | if ((readl(denali->flash_reg + PERM_SRC_ID(1)) & |
| 438 | PERM_SRC_ID__SRCID) == SPECTRA_PARTITION_ID) { |
| 439 | denali->fwblks = |
| 440 | ((readl(denali->flash_reg + MIN_MAX_BANK(1)) & |
| 441 | MIN_MAX_BANK__MIN_VALUE) * |
| 442 | denali->blksperchip) |
| 443 | + |
| 444 | (readl(denali->flash_reg + MIN_BLK_ADDR(1)) & |
| 445 | MIN_BLK_ADDR__VALUE); |
| 446 | } else { |
| 447 | denali->fwblks = SPECTRA_START_BLOCK; |
| 448 | } |
| 449 | } else { |
| 450 | denali->fwblks = SPECTRA_START_BLOCK; |
| 451 | } |
| 452 | } |
| 453 | |
| 454 | static uint32_t denali_nand_timing_set(struct denali_nand_info *denali) |
| 455 | { |
| 456 | uint32_t id_bytes[5], addr; |
| 457 | uint8_t i, maf_id, device_id; |
| 458 | |
| 459 | /* Use read id method to get device ID and other |
| 460 | * params. For some NAND chips, controller can't |
| 461 | * report the correct device ID by reading from |
| 462 | * DEVICE_ID register |
| 463 | * */ |
| 464 | addr = (uint32_t)MODE_11 | BANK(denali->flash_bank); |
| 465 | index_addr(denali, (uint32_t)addr | 0, 0x90); |
| 466 | index_addr(denali, (uint32_t)addr | 1, 0); |
| 467 | for (i = 0; i < 5; i++) |
| 468 | index_addr_read_data(denali, addr | 2, &id_bytes[i]); |
| 469 | maf_id = id_bytes[0]; |
| 470 | device_id = id_bytes[1]; |
| 471 | |
| 472 | if (readl(denali->flash_reg + ONFI_DEVICE_NO_OF_LUNS) & |
| 473 | ONFI_DEVICE_NO_OF_LUNS__ONFI_DEVICE) { /* ONFI 1.0 NAND */ |
| 474 | if (get_onfi_nand_para(denali)) |
| 475 | return -EIO; |
| 476 | } else if (maf_id == 0xEC) { /* Samsung NAND */ |
| 477 | get_samsung_nand_para(denali, device_id); |
| 478 | } else if (maf_id == 0x98) { /* Toshiba NAND */ |
| 479 | get_toshiba_nand_para(denali); |
| 480 | } else if (maf_id == 0xAD) { /* Hynix NAND */ |
| 481 | get_hynix_nand_para(denali, device_id); |
| 482 | } |
| 483 | |
| 484 | find_valid_banks(denali); |
| 485 | |
| 486 | detect_partition_feature(denali); |
| 487 | |
| 488 | /* If the user specified to override the default timings |
| 489 | * with a specific ONFI mode, we apply those changes here. |
| 490 | */ |
| 491 | if (onfi_timing_mode != NAND_DEFAULT_TIMINGS) |
| 492 | nand_onfi_timing_set(denali, onfi_timing_mode); |
| 493 | |
| 494 | return 0; |
| 495 | } |
| 496 | |
| 497 | /* validation function to verify that the controlling software is making |
| 498 | * a valid request |
| 499 | */ |
| 500 | static inline bool is_flash_bank_valid(int flash_bank) |
| 501 | { |
| 502 | return flash_bank >= 0 && flash_bank < 4; |
| 503 | } |
| 504 | |
| 505 | static void denali_irq_init(struct denali_nand_info *denali) |
| 506 | { |
| 507 | uint32_t int_mask = 0; |
| 508 | int i; |
| 509 | |
| 510 | /* Disable global interrupts */ |
| 511 | writel(0, denali->flash_reg + GLOBAL_INT_ENABLE); |
| 512 | |
| 513 | int_mask = DENALI_IRQ_ALL; |
| 514 | |
| 515 | /* Clear all status bits */ |
| 516 | for (i = 0; i < denali->max_banks; ++i) |
| 517 | writel(0xFFFF, denali->flash_reg + INTR_STATUS(i)); |
| 518 | |
| 519 | denali_irq_enable(denali, int_mask); |
| 520 | } |
| 521 | |
| 522 | /* This helper function setups the registers for ECC and whether or not |
| 523 | * the spare area will be transferred. */ |
| 524 | static void setup_ecc_for_xfer(struct denali_nand_info *denali, bool ecc_en, |
| 525 | bool transfer_spare) |
| 526 | { |
| 527 | int ecc_en_flag = 0, transfer_spare_flag = 0; |
| 528 | |
| 529 | /* set ECC, transfer spare bits if needed */ |
| 530 | ecc_en_flag = ecc_en ? ECC_ENABLE__FLAG : 0; |
| 531 | transfer_spare_flag = transfer_spare ? TRANSFER_SPARE_REG__FLAG : 0; |
| 532 | |
| 533 | /* Enable spare area/ECC per user's request. */ |
| 534 | writel(ecc_en_flag, denali->flash_reg + ECC_ENABLE); |
| 535 | /* applicable for MAP01 only */ |
| 536 | writel(transfer_spare_flag, denali->flash_reg + TRANSFER_SPARE_REG); |
| 537 | } |
| 538 | |
| 539 | /* sends a pipeline command operation to the controller. See the Denali NAND |
| 540 | * controller's user guide for more information (section 4.2.3.6). |
| 541 | */ |
| 542 | static int denali_send_pipeline_cmd(struct denali_nand_info *denali, |
| 543 | bool ecc_en, bool transfer_spare, |
| 544 | int access_type, int op) |
| 545 | { |
| 546 | uint32_t addr, cmd, irq_status; |
| 547 | static uint32_t page_count = 1; |
| 548 | |
| 549 | setup_ecc_for_xfer(denali, ecc_en, transfer_spare); |
| 550 | |
| 551 | /* clear interrupts */ |
| 552 | clear_interrupts(denali); |
| 553 | |
| 554 | addr = BANK(denali->flash_bank) | denali->page; |
| 555 | |
| 556 | /* setup the acccess type */ |
| 557 | cmd = MODE_10 | addr; |
| 558 | index_addr(denali, cmd, access_type); |
| 559 | |
| 560 | /* setup the pipeline command */ |
| 561 | index_addr(denali, cmd, 0x2000 | op | page_count); |
| 562 | |
| 563 | cmd = MODE_01 | addr; |
| 564 | writel(cmd, denali->flash_mem + INDEX_CTRL_REG); |
| 565 | |
| 566 | if (op == DENALI_READ) { |
| 567 | /* wait for command to be accepted */ |
| 568 | irq_status = wait_for_irq(denali, INTR_STATUS__LOAD_COMP); |
| 569 | |
| 570 | if (irq_status == 0) |
| 571 | return -EIO; |
| 572 | } |
| 573 | |
| 574 | return 0; |
| 575 | } |
| 576 | |
| 577 | /* helper function that simply writes a buffer to the flash */ |
| 578 | static int write_data_to_flash_mem(struct denali_nand_info *denali, |
| 579 | const uint8_t *buf, int len) |
| 580 | { |
| 581 | uint32_t i = 0, *buf32; |
| 582 | |
| 583 | /* verify that the len is a multiple of 4. see comment in |
| 584 | * read_data_from_flash_mem() */ |
| 585 | BUG_ON((len % 4) != 0); |
| 586 | |
| 587 | /* write the data to the flash memory */ |
| 588 | buf32 = (uint32_t *)buf; |
| 589 | for (i = 0; i < len / 4; i++) |
| 590 | writel(*buf32++, denali->flash_mem + INDEX_DATA_REG); |
| 591 | return i * 4; /* intent is to return the number of bytes read */ |
| 592 | } |
| 593 | |
| 594 | /* helper function that simply reads a buffer from the flash */ |
| 595 | static int read_data_from_flash_mem(struct denali_nand_info *denali, |
| 596 | uint8_t *buf, int len) |
| 597 | { |
| 598 | uint32_t i, *buf32; |
| 599 | |
| 600 | /* |
| 601 | * we assume that len will be a multiple of 4, if not |
| 602 | * it would be nice to know about it ASAP rather than |
| 603 | * have random failures... |
| 604 | * This assumption is based on the fact that this |
| 605 | * function is designed to be used to read flash pages, |
| 606 | * which are typically multiples of 4... |
| 607 | */ |
| 608 | |
| 609 | BUG_ON((len % 4) != 0); |
| 610 | |
| 611 | /* transfer the data from the flash */ |
| 612 | buf32 = (uint32_t *)buf; |
| 613 | for (i = 0; i < len / 4; i++) |
| 614 | *buf32++ = readl(denali->flash_mem + INDEX_DATA_REG); |
| 615 | |
| 616 | return i * 4; /* intent is to return the number of bytes read */ |
| 617 | } |
| 618 | |
| 619 | static void denali_mode_main_access(struct denali_nand_info *denali) |
| 620 | { |
| 621 | uint32_t addr, cmd; |
| 622 | |
| 623 | addr = BANK(denali->flash_bank) | denali->page; |
| 624 | cmd = MODE_10 | addr; |
| 625 | index_addr(denali, cmd, MAIN_ACCESS); |
| 626 | } |
| 627 | |
| 628 | static void denali_mode_main_spare_access(struct denali_nand_info *denali) |
| 629 | { |
| 630 | uint32_t addr, cmd; |
| 631 | |
| 632 | addr = BANK(denali->flash_bank) | denali->page; |
| 633 | cmd = MODE_10 | addr; |
| 634 | index_addr(denali, cmd, MAIN_SPARE_ACCESS); |
| 635 | } |
| 636 | |
| 637 | /* writes OOB data to the device */ |
| 638 | static int write_oob_data(struct mtd_info *mtd, uint8_t *buf, int page) |
| 639 | { |
| 640 | struct denali_nand_info *denali = mtd_to_denali(mtd); |
| 641 | uint32_t irq_status; |
| 642 | uint32_t irq_mask = INTR_STATUS__PROGRAM_COMP | |
| 643 | INTR_STATUS__PROGRAM_FAIL; |
| 644 | int status = 0; |
| 645 | |
| 646 | denali->page = page; |
| 647 | |
| 648 | if (denali_send_pipeline_cmd(denali, false, true, SPARE_ACCESS, |
| 649 | DENALI_WRITE) == 0) { |
| 650 | write_data_to_flash_mem(denali, buf, mtd->oobsize); |
| 651 | |
| 652 | /* wait for operation to complete */ |
| 653 | irq_status = wait_for_irq(denali, irq_mask); |
| 654 | |
| 655 | if (irq_status == 0) { |
| 656 | dev_err(denali->dev, "OOB write failed\n"); |
| 657 | status = -EIO; |
| 658 | } |
| 659 | } else { |
| 660 | printf("unable to send pipeline command\n"); |
| 661 | status = -EIO; |
| 662 | } |
| 663 | return status; |
| 664 | } |
| 665 | |
| 666 | /* reads OOB data from the device */ |
| 667 | static void read_oob_data(struct mtd_info *mtd, uint8_t *buf, int page) |
| 668 | { |
| 669 | struct denali_nand_info *denali = mtd_to_denali(mtd); |
| 670 | uint32_t irq_mask = INTR_STATUS__LOAD_COMP, |
| 671 | irq_status = 0, addr = 0x0, cmd = 0x0; |
| 672 | |
| 673 | denali->page = page; |
| 674 | |
| 675 | if (denali_send_pipeline_cmd(denali, false, true, SPARE_ACCESS, |
| 676 | DENALI_READ) == 0) { |
| 677 | read_data_from_flash_mem(denali, buf, mtd->oobsize); |
| 678 | |
| 679 | /* wait for command to be accepted |
| 680 | * can always use status0 bit as the mask is identical for each |
| 681 | * bank. */ |
| 682 | irq_status = wait_for_irq(denali, irq_mask); |
| 683 | |
| 684 | if (irq_status == 0) |
| 685 | printf("page on OOB timeout %d\n", denali->page); |
| 686 | |
| 687 | /* We set the device back to MAIN_ACCESS here as I observed |
| 688 | * instability with the controller if you do a block erase |
| 689 | * and the last transaction was a SPARE_ACCESS. Block erase |
| 690 | * is reliable (according to the MTD test infrastructure) |
| 691 | * if you are in MAIN_ACCESS. |
| 692 | */ |
| 693 | addr = BANK(denali->flash_bank) | denali->page; |
| 694 | cmd = MODE_10 | addr; |
| 695 | index_addr(denali, cmd, MAIN_ACCESS); |
| 696 | } |
| 697 | } |
| 698 | |
| 699 | /* this function examines buffers to see if they contain data that |
| 700 | * indicate that the buffer is part of an erased region of flash. |
| 701 | */ |
| 702 | static bool is_erased(uint8_t *buf, int len) |
| 703 | { |
| 704 | int i = 0; |
| 705 | for (i = 0; i < len; i++) |
| 706 | if (buf[i] != 0xFF) |
| 707 | return false; |
| 708 | return true; |
| 709 | } |
| 710 | |
| 711 | /* programs the controller to either enable/disable DMA transfers */ |
| 712 | static void denali_enable_dma(struct denali_nand_info *denali, bool en) |
| 713 | { |
| 714 | uint32_t reg_val = 0x0; |
| 715 | |
| 716 | if (en) |
| 717 | reg_val = DMA_ENABLE__FLAG; |
| 718 | |
| 719 | writel(reg_val, denali->flash_reg + DMA_ENABLE); |
| 720 | readl(denali->flash_reg + DMA_ENABLE); |
| 721 | } |
| 722 | |
| 723 | /* setups the HW to perform the data DMA */ |
| 724 | static void denali_setup_dma(struct denali_nand_info *denali, int op) |
| 725 | { |
| 726 | uint32_t mode; |
| 727 | const int page_count = 1; |
| 728 | uint32_t addr = (uint32_t)denali->buf.dma_buf; |
| 729 | |
| 730 | flush_dcache_range(addr, addr + sizeof(denali->buf.dma_buf)); |
| 731 | |
| 732 | /* For Denali controller that is 64 bit bus IP core */ |
| 733 | #ifdef CONFIG_SYS_NAND_DENALI_64BIT |
| 734 | mode = MODE_10 | BANK(denali->flash_bank) | denali->page; |
| 735 | |
| 736 | /* DMA is a three step process */ |
| 737 | |
| 738 | /* 1. setup transfer type, interrupt when complete, |
| 739 | burst len = 64 bytes, the number of pages */ |
| 740 | index_addr(denali, mode, 0x01002000 | (64 << 16) | op | page_count); |
| 741 | |
| 742 | /* 2. set memory low address bits 31:0 */ |
| 743 | index_addr(denali, mode, addr); |
| 744 | |
| 745 | /* 3. set memory high address bits 64:32 */ |
| 746 | index_addr(denali, mode, 0); |
| 747 | #else |
| 748 | mode = MODE_10 | BANK(denali->flash_bank); |
| 749 | |
| 750 | /* DMA is a four step process */ |
| 751 | |
| 752 | /* 1. setup transfer type and # of pages */ |
| 753 | index_addr(denali, mode | denali->page, 0x2000 | op | page_count); |
| 754 | |
| 755 | /* 2. set memory high address bits 23:8 */ |
| 756 | index_addr(denali, mode | ((uint32_t)(addr >> 16) << 8), 0x2200); |
| 757 | |
| 758 | /* 3. set memory low address bits 23:8 */ |
| 759 | index_addr(denali, mode | ((uint32_t)addr << 8), 0x2300); |
| 760 | |
| 761 | /* 4. interrupt when complete, burst len = 64 bytes*/ |
| 762 | index_addr(denali, mode | 0x14000, 0x2400); |
| 763 | #endif |
| 764 | } |
| 765 | |
| 766 | /* Common DMA function */ |
| 767 | static uint32_t denali_dma_configuration(struct denali_nand_info *denali, |
| 768 | uint32_t ops, bool raw_xfer, |
| 769 | uint32_t irq_mask, int oob_required) |
| 770 | { |
| 771 | uint32_t irq_status = 0; |
| 772 | /* setup_ecc_for_xfer(bool ecc_en, bool transfer_spare) */ |
| 773 | setup_ecc_for_xfer(denali, !raw_xfer, oob_required); |
| 774 | |
| 775 | /* clear any previous interrupt flags */ |
| 776 | clear_interrupts(denali); |
| 777 | |
| 778 | /* enable the DMA */ |
| 779 | denali_enable_dma(denali, true); |
| 780 | |
| 781 | /* setup the DMA */ |
| 782 | denali_setup_dma(denali, ops); |
| 783 | |
| 784 | /* wait for operation to complete */ |
| 785 | irq_status = wait_for_irq(denali, irq_mask); |
| 786 | |
| 787 | /* if ECC fault happen, seems we need delay before turning off DMA. |
| 788 | * If not, the controller will go into non responsive condition */ |
| 789 | if (irq_status & INTR_STATUS__ECC_UNCOR_ERR) |
| 790 | udelay(100); |
| 791 | |
| 792 | /* disable the DMA */ |
| 793 | denali_enable_dma(denali, false); |
| 794 | |
| 795 | return irq_status; |
| 796 | } |
| 797 | |
| 798 | static int write_page(struct mtd_info *mtd, struct nand_chip *chip, |
| 799 | const uint8_t *buf, bool raw_xfer, int oob_required) |
| 800 | { |
| 801 | struct denali_nand_info *denali = mtd_to_denali(mtd); |
| 802 | |
| 803 | uint32_t irq_status = 0; |
| 804 | uint32_t irq_mask = INTR_STATUS__DMA_CMD_COMP; |
| 805 | |
| 806 | denali->status = 0; |
| 807 | |
| 808 | /* copy buffer into DMA buffer */ |
| 809 | memcpy(denali->buf.dma_buf, buf, mtd->writesize); |
| 810 | |
| 811 | /* need extra memcpy for raw transfer */ |
| 812 | if (raw_xfer) |
| 813 | memcpy(denali->buf.dma_buf + mtd->writesize, |
| 814 | chip->oob_poi, mtd->oobsize); |
| 815 | |
| 816 | /* setting up DMA */ |
| 817 | irq_status = denali_dma_configuration(denali, DENALI_WRITE, raw_xfer, |
| 818 | irq_mask, oob_required); |
| 819 | |
| 820 | /* if timeout happen, error out */ |
| 821 | if (!(irq_status & INTR_STATUS__DMA_CMD_COMP)) { |
| 822 | debug("DMA timeout for denali write_page\n"); |
| 823 | denali->status = NAND_STATUS_FAIL; |
| 824 | return -EIO; |
| 825 | } |
| 826 | |
| 827 | if (irq_status & INTR_STATUS__LOCKED_BLK) { |
| 828 | debug("Failed as write to locked block\n"); |
| 829 | denali->status = NAND_STATUS_FAIL; |
| 830 | return -EIO; |
| 831 | } |
| 832 | return 0; |
| 833 | } |
| 834 | |
| 835 | /* NAND core entry points */ |
| 836 | |
| 837 | /* |
| 838 | * this is the callback that the NAND core calls to write a page. Since |
| 839 | * writing a page with ECC or without is similar, all the work is done |
| 840 | * by write_page above. |
| 841 | */ |
| 842 | static int denali_write_page(struct mtd_info *mtd, struct nand_chip *chip, |
| 843 | const uint8_t *buf, int oob_required) |
| 844 | { |
| 845 | struct denali_nand_info *denali = mtd_to_denali(mtd); |
| 846 | |
| 847 | /* |
| 848 | * for regular page writes, we let HW handle all the ECC |
| 849 | * data written to the device. |
| 850 | */ |
| 851 | if (oob_required) |
| 852 | /* switch to main + spare access */ |
| 853 | denali_mode_main_spare_access(denali); |
| 854 | else |
| 855 | /* switch to main access only */ |
| 856 | denali_mode_main_access(denali); |
| 857 | |
| 858 | return write_page(mtd, chip, buf, false, oob_required); |
| 859 | } |
| 860 | |
| 861 | /* |
| 862 | * This is the callback that the NAND core calls to write a page without ECC. |
| 863 | * raw access is similar to ECC page writes, so all the work is done in the |
| 864 | * write_page() function above. |
| 865 | */ |
| 866 | static int denali_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip, |
| 867 | const uint8_t *buf, int oob_required) |
| 868 | { |
| 869 | struct denali_nand_info *denali = mtd_to_denali(mtd); |
| 870 | |
| 871 | /* |
| 872 | * for raw page writes, we want to disable ECC and simply write |
| 873 | * whatever data is in the buffer. |
| 874 | */ |
| 875 | |
| 876 | if (oob_required) |
| 877 | /* switch to main + spare access */ |
| 878 | denali_mode_main_spare_access(denali); |
| 879 | else |
| 880 | /* switch to main access only */ |
| 881 | denali_mode_main_access(denali); |
| 882 | |
| 883 | return write_page(mtd, chip, buf, true, oob_required); |
| 884 | } |
| 885 | |
| 886 | static int denali_write_oob(struct mtd_info *mtd, struct nand_chip *chip, |
| 887 | int page) |
| 888 | { |
| 889 | return write_oob_data(mtd, chip->oob_poi, page); |
| 890 | } |
| 891 | |
| 892 | /* raw include ECC value and all the spare area */ |
| 893 | static int denali_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip, |
| 894 | uint8_t *buf, int oob_required, int page) |
| 895 | { |
| 896 | struct denali_nand_info *denali = mtd_to_denali(mtd); |
| 897 | |
| 898 | uint32_t irq_status, irq_mask = INTR_STATUS__DMA_CMD_COMP; |
| 899 | |
| 900 | if (denali->page != page) { |
| 901 | debug("Missing NAND_CMD_READ0 command\n"); |
| 902 | return -EIO; |
| 903 | } |
| 904 | |
| 905 | if (oob_required) |
| 906 | /* switch to main + spare access */ |
| 907 | denali_mode_main_spare_access(denali); |
| 908 | else |
| 909 | /* switch to main access only */ |
| 910 | denali_mode_main_access(denali); |
| 911 | |
| 912 | /* setting up the DMA where ecc_enable is false */ |
| 913 | irq_status = denali_dma_configuration(denali, DENALI_READ, true, |
| 914 | irq_mask, oob_required); |
| 915 | |
| 916 | /* if timeout happen, error out */ |
| 917 | if (!(irq_status & INTR_STATUS__DMA_CMD_COMP)) { |
| 918 | debug("DMA timeout for denali_read_page_raw\n"); |
| 919 | return -EIO; |
| 920 | } |
| 921 | |
| 922 | /* splitting the content to destination buffer holder */ |
| 923 | memcpy(chip->oob_poi, (denali->buf.dma_buf + mtd->writesize), |
| 924 | mtd->oobsize); |
| 925 | memcpy(buf, denali->buf.dma_buf, mtd->writesize); |
| 926 | |
| 927 | return 0; |
| 928 | } |
| 929 | |
| 930 | static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip, |
| 931 | uint8_t *buf, int oob_required, int page) |
| 932 | { |
| 933 | struct denali_nand_info *denali = mtd_to_denali(mtd); |
| 934 | uint32_t irq_status, irq_mask = INTR_STATUS__DMA_CMD_COMP; |
| 935 | |
| 936 | if (denali->page != page) { |
| 937 | debug("Missing NAND_CMD_READ0 command\n"); |
| 938 | return -EIO; |
| 939 | } |
| 940 | |
| 941 | if (oob_required) |
| 942 | /* switch to main + spare access */ |
| 943 | denali_mode_main_spare_access(denali); |
| 944 | else |
| 945 | /* switch to main access only */ |
| 946 | denali_mode_main_access(denali); |
| 947 | |
| 948 | /* setting up the DMA where ecc_enable is true */ |
| 949 | irq_status = denali_dma_configuration(denali, DENALI_READ, false, |
| 950 | irq_mask, oob_required); |
| 951 | |
| 952 | memcpy(buf, denali->buf.dma_buf, mtd->writesize); |
| 953 | |
| 954 | /* check whether any ECC error */ |
| 955 | if (irq_status & INTR_STATUS__ECC_UNCOR_ERR) { |
| 956 | /* is the ECC cause by erase page, check using read_page_raw */ |
| 957 | debug(" Uncorrected ECC detected\n"); |
| 958 | denali_read_page_raw(mtd, chip, buf, oob_required, |
| 959 | denali->page); |
| 960 | |
| 961 | if (is_erased(buf, mtd->writesize) == true && |
| 962 | is_erased(chip->oob_poi, mtd->oobsize) == true) { |
| 963 | debug(" ECC error cause by erased block\n"); |
| 964 | /* false alarm, return the 0xFF */ |
| 965 | } else { |
| 966 | return -EIO; |
| 967 | } |
| 968 | } |
| 969 | memcpy(buf, denali->buf.dma_buf, mtd->writesize); |
| 970 | return 0; |
| 971 | } |
| 972 | |
| 973 | static int denali_read_oob(struct mtd_info *mtd, struct nand_chip *chip, |
| 974 | int page) |
| 975 | { |
| 976 | read_oob_data(mtd, chip->oob_poi, page); |
| 977 | |
| 978 | return 0; |
| 979 | } |
| 980 | |
| 981 | static uint8_t denali_read_byte(struct mtd_info *mtd) |
| 982 | { |
| 983 | struct denali_nand_info *denali = mtd_to_denali(mtd); |
| 984 | uint32_t addr, result; |
| 985 | |
| 986 | addr = (uint32_t)MODE_11 | BANK(denali->flash_bank); |
| 987 | index_addr_read_data(denali, addr | 2, &result); |
| 988 | return (uint8_t)result & 0xFF; |
| 989 | } |
| 990 | |
| 991 | static void denali_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) |
| 992 | { |
| 993 | struct denali_nand_info *denali = mtd_to_denali(mtd); |
| 994 | uint32_t i, addr, result; |
| 995 | |
| 996 | /* delay for tR (data transfer from Flash array to data register) */ |
| 997 | udelay(25); |
| 998 | |
| 999 | /* ensure device completed else additional delay and polling */ |
| 1000 | wait_for_irq(denali, INTR_STATUS__INT_ACT); |
| 1001 | |
| 1002 | addr = (uint32_t)MODE_11 | BANK(denali->flash_bank); |
| 1003 | for (i = 0; i < len; i++) { |
| 1004 | index_addr_read_data(denali, (uint32_t)addr | 2, &result); |
| 1005 | write_byte_to_buf(denali, result); |
| 1006 | } |
| 1007 | memcpy(buf, denali->buf.buf, len); |
| 1008 | } |
| 1009 | |
| 1010 | static void denali_select_chip(struct mtd_info *mtd, int chip) |
| 1011 | { |
| 1012 | struct denali_nand_info *denali = mtd_to_denali(mtd); |
| 1013 | |
| 1014 | denali->flash_bank = chip; |
| 1015 | } |
| 1016 | |
| 1017 | static int denali_waitfunc(struct mtd_info *mtd, struct nand_chip *chip) |
| 1018 | { |
| 1019 | struct denali_nand_info *denali = mtd_to_denali(mtd); |
| 1020 | int status = denali->status; |
| 1021 | denali->status = 0; |
| 1022 | |
| 1023 | return status; |
| 1024 | } |
| 1025 | |
| 1026 | static void denali_erase(struct mtd_info *mtd, int page) |
| 1027 | { |
| 1028 | struct denali_nand_info *denali = mtd_to_denali(mtd); |
| 1029 | uint32_t cmd, irq_status; |
| 1030 | |
| 1031 | /* clear interrupts */ |
| 1032 | clear_interrupts(denali); |
| 1033 | |
| 1034 | /* setup page read request for access type */ |
| 1035 | cmd = MODE_10 | BANK(denali->flash_bank) | page; |
| 1036 | index_addr(denali, cmd, 0x1); |
| 1037 | |
| 1038 | /* wait for erase to complete or failure to occur */ |
| 1039 | irq_status = wait_for_irq(denali, INTR_STATUS__ERASE_COMP | |
| 1040 | INTR_STATUS__ERASE_FAIL); |
| 1041 | |
| 1042 | if (irq_status & INTR_STATUS__ERASE_FAIL || |
| 1043 | irq_status & INTR_STATUS__LOCKED_BLK) |
| 1044 | denali->status = NAND_STATUS_FAIL; |
| 1045 | else |
| 1046 | denali->status = 0; |
| 1047 | } |
| 1048 | |
| 1049 | static void denali_cmdfunc(struct mtd_info *mtd, unsigned int cmd, int col, |
| 1050 | int page) |
| 1051 | { |
| 1052 | struct denali_nand_info *denali = mtd_to_denali(mtd); |
| 1053 | uint32_t addr; |
| 1054 | |
| 1055 | switch (cmd) { |
| 1056 | case NAND_CMD_PAGEPROG: |
| 1057 | break; |
| 1058 | case NAND_CMD_STATUS: |
| 1059 | addr = MODE_11 | BANK(denali->flash_bank); |
| 1060 | index_addr(denali, addr | 0, cmd); |
| 1061 | break; |
Chin Liang See | 03534df | 2014-09-12 00:42:17 -0500 | [diff] [blame] | 1062 | case NAND_CMD_READID: |
Masahiro Yamada | 40525e2 | 2014-10-03 20:03:03 +0900 | [diff] [blame] | 1063 | case NAND_CMD_PARAM: |
Chin Liang See | 03534df | 2014-09-12 00:42:17 -0500 | [diff] [blame] | 1064 | reset_buf(denali); |
| 1065 | /* sometimes ManufactureId read from register is not right |
| 1066 | * e.g. some of Micron MT29F32G08QAA MLC NAND chips |
| 1067 | * So here we send READID cmd to NAND insteand |
| 1068 | * */ |
| 1069 | addr = MODE_11 | BANK(denali->flash_bank); |
| 1070 | index_addr(denali, addr | 0, cmd); |
| 1071 | index_addr(denali, addr | 1, col & 0xFF); |
Masahiro Yamada | 40525e2 | 2014-10-03 20:03:03 +0900 | [diff] [blame] | 1072 | if (cmd == NAND_CMD_PARAM) |
| 1073 | udelay(50); |
Chin Liang See | 03534df | 2014-09-12 00:42:17 -0500 | [diff] [blame] | 1074 | break; |
Masahiro Yamada | b692b3f | 2014-10-03 20:03:04 +0900 | [diff] [blame] | 1075 | case NAND_CMD_RNDOUT: |
| 1076 | addr = MODE_11 | BANK(denali->flash_bank); |
| 1077 | index_addr(denali, addr | 0, cmd); |
| 1078 | index_addr(denali, addr | 1, col & 0xFF); |
| 1079 | index_addr(denali, addr | 1, col >> 8); |
| 1080 | index_addr(denali, addr | 0, NAND_CMD_RNDOUTSTART); |
| 1081 | break; |
Chin Liang See | 03534df | 2014-09-12 00:42:17 -0500 | [diff] [blame] | 1082 | case NAND_CMD_READ0: |
| 1083 | case NAND_CMD_SEQIN: |
| 1084 | denali->page = page; |
| 1085 | break; |
| 1086 | case NAND_CMD_RESET: |
| 1087 | reset_bank(denali); |
| 1088 | break; |
| 1089 | case NAND_CMD_READOOB: |
| 1090 | /* TODO: Read OOB data */ |
| 1091 | break; |
| 1092 | case NAND_CMD_ERASE1: |
| 1093 | /* |
| 1094 | * supporting block erase only, not multiblock erase as |
| 1095 | * it will cross plane and software need complex calculation |
| 1096 | * to identify the block count for the cross plane |
| 1097 | */ |
| 1098 | denali_erase(mtd, page); |
| 1099 | break; |
| 1100 | case NAND_CMD_ERASE2: |
| 1101 | /* nothing to do here as it was done during NAND_CMD_ERASE1 */ |
| 1102 | break; |
| 1103 | case NAND_CMD_UNLOCK1: |
| 1104 | addr = MODE_10 | BANK(denali->flash_bank) | page; |
| 1105 | index_addr(denali, addr | 0, DENALI_UNLOCK_START); |
| 1106 | break; |
| 1107 | case NAND_CMD_UNLOCK2: |
| 1108 | addr = MODE_10 | BANK(denali->flash_bank) | page; |
| 1109 | index_addr(denali, addr | 0, DENALI_UNLOCK_END); |
| 1110 | break; |
| 1111 | case NAND_CMD_LOCK: |
| 1112 | addr = MODE_10 | BANK(denali->flash_bank); |
| 1113 | index_addr(denali, addr | 0, DENALI_LOCK); |
| 1114 | break; |
| 1115 | default: |
| 1116 | printf(": unsupported command received 0x%x\n", cmd); |
| 1117 | break; |
| 1118 | } |
| 1119 | } |
| 1120 | /* end NAND core entry points */ |
| 1121 | |
| 1122 | /* Initialization code to bring the device up to a known good state */ |
| 1123 | static void denali_hw_init(struct denali_nand_info *denali) |
| 1124 | { |
| 1125 | /* |
| 1126 | * tell driver how many bit controller will skip before writing |
| 1127 | * ECC code in OOB. This is normally used for bad block marker |
| 1128 | */ |
| 1129 | writel(CONFIG_NAND_DENALI_SPARE_AREA_SKIP_BYTES, |
| 1130 | denali->flash_reg + SPARE_AREA_SKIP_BYTES); |
| 1131 | detect_max_banks(denali); |
| 1132 | denali_nand_reset(denali); |
| 1133 | writel(0x0F, denali->flash_reg + RB_PIN_ENABLED); |
| 1134 | writel(CHIP_EN_DONT_CARE__FLAG, |
| 1135 | denali->flash_reg + CHIP_ENABLE_DONT_CARE); |
| 1136 | writel(0xffff, denali->flash_reg + SPARE_AREA_MARKER); |
| 1137 | |
| 1138 | /* Should set value for these registers when init */ |
| 1139 | writel(0, denali->flash_reg + TWO_ROW_ADDR_CYCLES); |
| 1140 | writel(1, denali->flash_reg + ECC_ENABLE); |
| 1141 | denali_nand_timing_set(denali); |
| 1142 | denali_irq_init(denali); |
| 1143 | } |
| 1144 | |
| 1145 | static struct nand_ecclayout nand_oob; |
| 1146 | |
| 1147 | static int denali_nand_init(struct nand_chip *nand) |
| 1148 | { |
| 1149 | struct denali_nand_info *denali; |
| 1150 | |
| 1151 | denali = malloc(sizeof(*denali)); |
| 1152 | if (!denali) |
| 1153 | return -ENOMEM; |
| 1154 | |
| 1155 | nand->priv = denali; |
| 1156 | |
| 1157 | denali->flash_reg = (void __iomem *)CONFIG_SYS_NAND_REGS_BASE; |
| 1158 | denali->flash_mem = (void __iomem *)CONFIG_SYS_NAND_DATA_BASE; |
| 1159 | |
| 1160 | #ifdef CONFIG_SYS_NAND_USE_FLASH_BBT |
| 1161 | /* check whether flash got BBT table (located at end of flash). As we |
| 1162 | * use NAND_BBT_NO_OOB, the BBT page will start with |
| 1163 | * bbt_pattern. We will have mirror pattern too */ |
| 1164 | nand->bbt_options |= NAND_BBT_USE_FLASH; |
| 1165 | /* |
| 1166 | * We are using main + spare with ECC support. As BBT need ECC support, |
| 1167 | * we need to ensure BBT code don't write to OOB for the BBT pattern. |
| 1168 | * All BBT info will be stored into data area with ECC support. |
| 1169 | */ |
| 1170 | nand->bbt_options |= NAND_BBT_NO_OOB; |
| 1171 | #endif |
| 1172 | |
| 1173 | nand->ecc.mode = NAND_ECC_HW; |
| 1174 | nand->ecc.size = CONFIG_NAND_DENALI_ECC_SIZE; |
| 1175 | nand->ecc.read_oob = denali_read_oob; |
| 1176 | nand->ecc.write_oob = denali_write_oob; |
| 1177 | nand->ecc.read_page = denali_read_page; |
| 1178 | nand->ecc.read_page_raw = denali_read_page_raw; |
| 1179 | nand->ecc.write_page = denali_write_page; |
| 1180 | nand->ecc.write_page_raw = denali_write_page_raw; |
| 1181 | /* |
| 1182 | * Tell driver the ecc strength. This register may be already set |
| 1183 | * correctly. So we read this value out. |
| 1184 | */ |
| 1185 | nand->ecc.strength = readl(denali->flash_reg + ECC_CORRECTION); |
| 1186 | switch (nand->ecc.size) { |
| 1187 | case 512: |
| 1188 | nand->ecc.bytes = (nand->ecc.strength * 13 + 15) / 16 * 2; |
| 1189 | break; |
| 1190 | case 1024: |
| 1191 | nand->ecc.bytes = (nand->ecc.strength * 14 + 15) / 16 * 2; |
| 1192 | break; |
| 1193 | default: |
| 1194 | pr_err("Unsupported ECC size\n"); |
| 1195 | return -EINVAL; |
| 1196 | } |
| 1197 | nand_oob.eccbytes = nand->ecc.bytes; |
| 1198 | nand->ecc.layout = &nand_oob; |
| 1199 | |
| 1200 | /* Set address of hardware control function */ |
| 1201 | nand->cmdfunc = denali_cmdfunc; |
| 1202 | nand->read_byte = denali_read_byte; |
| 1203 | nand->read_buf = denali_read_buf; |
| 1204 | nand->select_chip = denali_select_chip; |
| 1205 | nand->waitfunc = denali_waitfunc; |
| 1206 | denali_hw_init(denali); |
| 1207 | return 0; |
| 1208 | } |
| 1209 | |
| 1210 | int board_nand_init(struct nand_chip *chip) |
| 1211 | { |
| 1212 | return denali_nand_init(chip); |
| 1213 | } |