blob: 2e0a209b4fb3e20d4fcdcd8e70f1057b54f04da4 [file] [log] [blame]
Kumar Gala711d11b2008-08-26 15:01:30 -05001/*
2 * Copyright 2008 Freescale Semiconductor, Inc.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * Version 2 as published by the Free Software Foundation.
7 */
8
9#include <common.h>
10#include <asm/fsl_ddr_sdram.h>
11
12#include "ddr.h"
13
14/*
15 * Calculate the Density of each Physical Rank.
16 * Returned size is in bytes.
17 *
18 * Study these table from Byte 31 of JEDEC SPD Spec.
19 *
20 * DDR I DDR II
21 * Bit Size Size
22 * --- ----- ------
23 * 7 high 512MB 512MB
24 * 6 256MB 256MB
25 * 5 128MB 128MB
26 * 4 64MB 16GB
27 * 3 32MB 8GB
28 * 2 16MB 4GB
29 * 1 2GB 2GB
30 * 0 low 1GB 1GB
31 *
32 * Reorder Table to be linear by stripping the bottom
33 * 2 or 5 bits off and shifting them up to the top.
34 */
35
36static phys_size_t
37compute_ranksize(unsigned int mem_type, unsigned char row_dens)
38{
39 phys_size_t bsize;
40
41 /* Bottom 2 bits up to the top. */
42 bsize = ((row_dens >> 2) | ((row_dens & 3) << 6));
43 bsize <<= 24ULL;
44 debug("DDR: DDR I rank density = 0x%08x\n", bsize);
45
46 return bsize;
47}
48
49/*
50 * Convert a two-nibble BCD value into a cycle time.
51 * While the spec calls for nano-seconds, picos are returned.
52 *
53 * This implements the tables for bytes 9, 23 and 25 for both
54 * DDR I and II. No allowance for distinguishing the invalid
55 * fields absent for DDR I yet present in DDR II is made.
56 * (That is, cycle times of .25, .33, .66 and .75 ns are
57 * allowed for both DDR II and I.)
58 */
59static unsigned int
60convert_bcd_tenths_to_cycle_time_ps(unsigned int spd_val)
61{
62 /* Table look up the lower nibble, allow DDR I & II. */
63 unsigned int tenths_ps[16] = {
64 0,
65 100,
66 200,
67 300,
68 400,
69 500,
70 600,
71 700,
72 800,
73 900,
74 250, /* This and the next 3 entries valid ... */
75 330, /* ... only for tCK calculations. */
76 660,
77 750,
78 0, /* undefined */
79 0 /* undefined */
80 };
81
82 unsigned int whole_ns = (spd_val & 0xF0) >> 4;
83 unsigned int tenth_ns = spd_val & 0x0F;
84 unsigned int ps = whole_ns * 1000 + tenths_ps[tenth_ns];
85
86 return ps;
87}
88
89static unsigned int
90convert_bcd_hundredths_to_cycle_time_ps(unsigned int spd_val)
91{
92 unsigned int tenth_ns = (spd_val & 0xF0) >> 4;
93 unsigned int hundredth_ns = spd_val & 0x0F;
94 unsigned int ps = tenth_ns * 100 + hundredth_ns * 10;
95
96 return ps;
97}
98
99static unsigned int byte40_table_ps[8] = {
100 0,
101 250,
102 330,
103 500,
104 660,
105 750,
106 0, /* supposed to be RFC, but not sure what that means */
107 0 /* Undefined */
108};
109
110static unsigned int
111compute_trfc_ps_from_spd(unsigned char trctrfc_ext, unsigned char trfc)
112{
113 unsigned int trfc_ps;
114
115 trfc_ps = (((trctrfc_ext & 0x1) * 256) + trfc) * 1000
116 + byte40_table_ps[(trctrfc_ext >> 1) & 0x7];
117
118 return trfc_ps;
119}
120
121static unsigned int
122compute_trc_ps_from_spd(unsigned char trctrfc_ext, unsigned char trc)
123{
124 unsigned int trc_ps;
125
126 trc_ps = trc * 1000 + byte40_table_ps[(trctrfc_ext >> 4) & 0x7];
127
128 return trc_ps;
129}
130
131/*
132 * tCKmax from DDR I SPD Byte 43
133 *
134 * Bits 7:2 == whole ns
135 * Bits 1:0 == quarter ns
136 * 00 == 0.00 ns
137 * 01 == 0.25 ns
138 * 10 == 0.50 ns
139 * 11 == 0.75 ns
140 *
141 * Returns picoseconds.
142 */
143static unsigned int
144compute_tckmax_from_spd_ps(unsigned int byte43)
145{
146 return (byte43 >> 2) * 1000 + (byte43 & 0x3) * 250;
147}
148
149/*
150 * Determine Refresh Rate. Ignore self refresh bit on DDR I.
151 * Table from SPD Spec, Byte 12, converted to picoseconds and
152 * filled in with "default" normal values.
153 */
154static unsigned int
155determine_refresh_rate_ps(const unsigned int spd_refresh)
156{
157 unsigned int refresh_time_ps[8] = {
158 15625000, /* 0 Normal 1.00x */
159 3900000, /* 1 Reduced .25x */
160 7800000, /* 2 Extended .50x */
161 31300000, /* 3 Extended 2.00x */
162 62500000, /* 4 Extended 4.00x */
163 125000000, /* 5 Extended 8.00x */
164 15625000, /* 6 Normal 1.00x filler */
165 15625000, /* 7 Normal 1.00x filler */
166 };
167
168 return refresh_time_ps[spd_refresh & 0x7];
169}
170
171/*
172 * The purpose of this function is to compute a suitable
173 * CAS latency given the DRAM clock period. The SPD only
174 * defines at most 3 CAS latencies. Typically the slower in
175 * frequency the DIMM runs at, the shorter its CAS latency can be.
176 * If the DIMM is operating at a sufficiently low frequency,
177 * it may be able to run at a CAS latency shorter than the
178 * shortest SPD-defined CAS latency.
179 *
180 * If a CAS latency is not found, 0 is returned.
181 *
182 * Do this by finding in the standard speed bin table the longest
183 * tCKmin that doesn't exceed the value of mclk_ps (tCK).
184 *
185 * An assumption made is that the SDRAM device allows the
186 * CL to be programmed for a value that is lower than those
187 * advertised by the SPD. This is not always the case,
188 * as those modes not defined in the SPD are optional.
189 *
190 * CAS latency de-rating based upon values JEDEC Standard No. 79-E
191 * Table 11.
192 *
193 * ordinal 2, ddr1_speed_bins[1] contains tCK for CL=2
194 */
195 /* CL2.0 CL2.5 CL3.0 */
196unsigned short ddr1_speed_bins[] = {0, 7500, 6000, 5000 };
197
198unsigned int
199compute_derated_DDR1_CAS_latency(unsigned int mclk_ps)
200{
201 const unsigned int num_speed_bins = ARRAY_SIZE(ddr1_speed_bins);
202 unsigned int lowest_tCKmin_found = 0;
203 unsigned int lowest_tCKmin_CL = 0;
204 unsigned int i;
205
206 debug("mclk_ps = %u\n", mclk_ps);
207
208 for (i = 0; i < num_speed_bins; i++) {
209 unsigned int x = ddr1_speed_bins[i];
210 debug("i=%u, x = %u, lowest_tCKmin_found = %u\n",
211 i, x, lowest_tCKmin_found);
212 if (x && lowest_tCKmin_found <= x && x <= mclk_ps) {
213 lowest_tCKmin_found = x;
214 lowest_tCKmin_CL = i + 1;
215 }
216 }
217
218 debug("lowest_tCKmin_CL = %u\n", lowest_tCKmin_CL);
219
220 return lowest_tCKmin_CL;
221}
222
223/*
224 * ddr_compute_dimm_parameters for DDR1 SPD
225 *
226 * Compute DIMM parameters based upon the SPD information in spd.
227 * Writes the results to the dimm_params_t structure pointed by pdimm.
228 *
229 * FIXME: use #define for the retvals
230 */
231unsigned int
232ddr_compute_dimm_parameters(const ddr1_spd_eeprom_t *spd,
233 dimm_params_t *pdimm,
234 unsigned int dimm_number)
235{
236 unsigned int retval;
237
238 if (spd->mem_type) {
239 if (spd->mem_type != SPD_MEMTYPE_DDR) {
240 printf("DIMM %u: is not a DDR1 SPD.\n", dimm_number);
241 return 1;
242 }
243 } else {
244 memset(pdimm, 0, sizeof(dimm_params_t));
245 return 1;
246 }
247
248 retval = ddr1_spd_check(spd);
249 if (retval) {
250 printf("DIMM %u: failed checksum\n", dimm_number);
251 return 2;
252 }
253
254 /*
255 * The part name in ASCII in the SPD EEPROM is not null terminated.
256 * Guarantee null termination here by presetting all bytes to 0
257 * and copying the part name in ASCII from the SPD onto it
258 */
259 memset(pdimm->mpart, 0, sizeof(pdimm->mpart));
260 memcpy(pdimm->mpart, spd->mpart, sizeof(pdimm->mpart) - 1);
261
262 /* DIMM organization parameters */
263 pdimm->n_ranks = spd->nrows;
264 pdimm->rank_density = compute_ranksize(spd->mem_type, spd->bank_dens);
265 pdimm->capacity = pdimm->n_ranks * pdimm->rank_density;
266 pdimm->data_width = spd->dataw_lsb;
267 pdimm->primary_sdram_width = spd->primw;
268 pdimm->ec_sdram_width = spd->ecw;
269
270 /*
271 * FIXME: Need to determine registered_dimm status.
272 * 1 == register buffered
273 * 0 == unbuffered
274 */
275 pdimm->registered_dimm = 0; /* unbuffered */
276
277 /* SDRAM device parameters */
278 pdimm->n_row_addr = spd->nrow_addr;
279 pdimm->n_col_addr = spd->ncol_addr;
280 pdimm->n_banks_per_sdram_device = spd->nbanks;
281 pdimm->edc_config = spd->config;
282 pdimm->burst_lengths_bitmask = spd->burstl;
283 pdimm->row_density = spd->bank_dens;
284
285 /*
286 * Calculate the Maximum Data Rate based on the Minimum Cycle time.
287 * The SPD clk_cycle field (tCKmin) is measured in tenths of
288 * nanoseconds and represented as BCD.
289 */
290 pdimm->tCKmin_X_ps
291 = convert_bcd_tenths_to_cycle_time_ps(spd->clk_cycle);
292 pdimm->tCKmin_X_minus_1_ps
293 = convert_bcd_tenths_to_cycle_time_ps(spd->clk_cycle2);
294 pdimm->tCKmin_X_minus_2_ps
295 = convert_bcd_tenths_to_cycle_time_ps(spd->clk_cycle3);
296
297 pdimm->tCKmax_ps = compute_tckmax_from_spd_ps(spd->tckmax);
298
299 /*
300 * Compute CAS latencies defined by SPD
301 * The SPD caslat_X should have at least 1 and at most 3 bits set.
302 *
303 * If cas_lat after masking is 0, the __ilog2 function returns
304 * 255 into the variable. This behavior is abused once.
305 */
306 pdimm->caslat_X = __ilog2(spd->cas_lat);
307 pdimm->caslat_X_minus_1 = __ilog2(spd->cas_lat
308 & ~(1 << pdimm->caslat_X));
309 pdimm->caslat_X_minus_2 = __ilog2(spd->cas_lat
310 & ~(1 << pdimm->caslat_X)
311 & ~(1 << pdimm->caslat_X_minus_1));
312
313 /* Compute CAS latencies below that defined by SPD */
314 pdimm->caslat_lowest_derated
315 = compute_derated_DDR1_CAS_latency(get_memory_clk_period_ps());
316
317 /* Compute timing parameters */
318 pdimm->tRCD_ps = spd->trcd * 250;
319 pdimm->tRP_ps = spd->trp * 250;
320 pdimm->tRAS_ps = spd->tras * 1000;
321
322 pdimm->tWR_ps = mclk_to_picos(3);
323 pdimm->tWTR_ps = mclk_to_picos(1);
324 pdimm->tRFC_ps = compute_trfc_ps_from_spd(0, spd->trfc);
325
326 pdimm->tRRD_ps = spd->trrd * 250;
327 pdimm->tRC_ps = compute_trc_ps_from_spd(0, spd->trc);
328
329 pdimm->refresh_rate_ps = determine_refresh_rate_ps(spd->refresh);
330
331 pdimm->tIS_ps = convert_bcd_hundredths_to_cycle_time_ps(spd->ca_setup);
332 pdimm->tIH_ps = convert_bcd_hundredths_to_cycle_time_ps(spd->ca_hold);
333 pdimm->tDS_ps
334 = convert_bcd_hundredths_to_cycle_time_ps(spd->data_setup);
335 pdimm->tDH_ps
336 = convert_bcd_hundredths_to_cycle_time_ps(spd->data_hold);
337
338 pdimm->tRTP_ps = mclk_to_picos(2); /* By the book. */
339 pdimm->tDQSQ_max_ps = spd->tdqsq * 10;
340 pdimm->tQHS_ps = spd->tqhs * 10;
341
342 return 0;
343}