blob: 7bdebf586994e50663d2fba07d94c07f1c021fbd [file] [log] [blame]
Philippe Reynes5aa6cfb2019-03-15 15:14:36 +01001// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Copyright © 2010-2015 Broadcom Corporation
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 */
14
15#include <common.h>
16#include <asm/io.h>
17#include <memalign.h>
18#include <nand.h>
19#include <clk.h>
Simon Glass9bc15642020-02-03 07:36:16 -070020#include <dm/device_compat.h>
Simon Glassd66c5f72020-02-03 07:36:15 -070021#include <dm/devres.h>
22#include <linux/err.h>
Philippe Reynes5aa6cfb2019-03-15 15:14:36 +010023#include <linux/ioport.h>
24#include <linux/completion.h>
25#include <linux/errno.h>
26#include <linux/log2.h>
27#include <asm/processor.h>
28#include <dm.h>
29
30#include "brcmnand.h"
31#include "brcmnand_compat.h"
32
33/*
34 * This flag controls if WP stays on between erase/write commands to mitigate
35 * flash corruption due to power glitches. Values:
36 * 0: NAND_WP is not used or not available
37 * 1: NAND_WP is set by default, cleared for erase/write operations
38 * 2: NAND_WP is always cleared
39 */
40static int wp_on = 1;
41module_param(wp_on, int, 0444);
42
43/***********************************************************************
44 * Definitions
45 ***********************************************************************/
46
47#define DRV_NAME "brcmnand"
48
49#define CMD_NULL 0x00
50#define CMD_PAGE_READ 0x01
51#define CMD_SPARE_AREA_READ 0x02
52#define CMD_STATUS_READ 0x03
53#define CMD_PROGRAM_PAGE 0x04
54#define CMD_PROGRAM_SPARE_AREA 0x05
55#define CMD_COPY_BACK 0x06
56#define CMD_DEVICE_ID_READ 0x07
57#define CMD_BLOCK_ERASE 0x08
58#define CMD_FLASH_RESET 0x09
59#define CMD_BLOCKS_LOCK 0x0a
60#define CMD_BLOCKS_LOCK_DOWN 0x0b
61#define CMD_BLOCKS_UNLOCK 0x0c
62#define CMD_READ_BLOCKS_LOCK_STATUS 0x0d
63#define CMD_PARAMETER_READ 0x0e
64#define CMD_PARAMETER_CHANGE_COL 0x0f
65#define CMD_LOW_LEVEL_OP 0x10
66
67struct brcm_nand_dma_desc {
68 u32 next_desc;
69 u32 next_desc_ext;
70 u32 cmd_irq;
71 u32 dram_addr;
72 u32 dram_addr_ext;
73 u32 tfr_len;
74 u32 total_len;
75 u32 flash_addr;
76 u32 flash_addr_ext;
77 u32 cs;
78 u32 pad2[5];
79 u32 status_valid;
80} __packed;
81
82/* Bitfields for brcm_nand_dma_desc::status_valid */
83#define FLASH_DMA_ECC_ERROR (1 << 8)
84#define FLASH_DMA_CORR_ERROR (1 << 9)
85
86/* 512B flash cache in the NAND controller HW */
87#define FC_SHIFT 9U
88#define FC_BYTES 512U
89#define FC_WORDS (FC_BYTES >> 2)
90
91#define BRCMNAND_MIN_PAGESIZE 512
92#define BRCMNAND_MIN_BLOCKSIZE (8 * 1024)
93#define BRCMNAND_MIN_DEVSIZE (4ULL * 1024 * 1024)
94
95#define NAND_CTRL_RDY (INTFC_CTLR_READY | INTFC_FLASH_READY)
96#define NAND_POLL_STATUS_TIMEOUT_MS 100
97
98/* Controller feature flags */
99enum {
100 BRCMNAND_HAS_1K_SECTORS = BIT(0),
101 BRCMNAND_HAS_PREFETCH = BIT(1),
102 BRCMNAND_HAS_CACHE_MODE = BIT(2),
103 BRCMNAND_HAS_WP = BIT(3),
104};
105
106struct brcmnand_controller {
107#ifndef __UBOOT__
108 struct device *dev;
109#else
110 struct udevice *dev;
111#endif /* __UBOOT__ */
112 struct nand_hw_control controller;
113 void __iomem *nand_base;
114 void __iomem *nand_fc; /* flash cache */
115 void __iomem *flash_dma_base;
116 unsigned int irq;
117 unsigned int dma_irq;
118 int nand_version;
Philippe Reynes7f28cf62019-03-15 15:14:37 +0100119 int parameter_page_big_endian;
Philippe Reynes5aa6cfb2019-03-15 15:14:36 +0100120
121 /* Some SoCs provide custom interrupt status register(s) */
122 struct brcmnand_soc *soc;
123
124 /* Some SoCs have a gateable clock for the controller */
125 struct clk *clk;
126
127 int cmd_pending;
128 bool dma_pending;
129 struct completion done;
130 struct completion dma_done;
131
132 /* List of NAND hosts (one for each chip-select) */
133 struct list_head host_list;
134
135 struct brcm_nand_dma_desc *dma_desc;
136 dma_addr_t dma_pa;
137
138 /* in-memory cache of the FLASH_CACHE, used only for some commands */
139 u8 flash_cache[FC_BYTES];
140
141 /* Controller revision details */
142 const u16 *reg_offsets;
143 unsigned int reg_spacing; /* between CS1, CS2, ... regs */
144 const u8 *cs_offsets; /* within each chip-select */
145 const u8 *cs0_offsets; /* within CS0, if different */
146 unsigned int max_block_size;
147 const unsigned int *block_sizes;
148 unsigned int max_page_size;
149 const unsigned int *page_sizes;
150 unsigned int max_oob;
151 u32 features;
152
153 /* for low-power standby/resume only */
154 u32 nand_cs_nand_select;
155 u32 nand_cs_nand_xor;
156 u32 corr_stat_threshold;
157 u32 flash_dma_mode;
158};
159
160struct brcmnand_cfg {
161 u64 device_size;
162 unsigned int block_size;
163 unsigned int page_size;
164 unsigned int spare_area_size;
165 unsigned int device_width;
166 unsigned int col_adr_bytes;
167 unsigned int blk_adr_bytes;
168 unsigned int ful_adr_bytes;
169 unsigned int sector_size_1k;
170 unsigned int ecc_level;
171 /* use for low-power standby/resume only */
172 u32 acc_control;
173 u32 config;
174 u32 config_ext;
175 u32 timing_1;
176 u32 timing_2;
177};
178
179struct brcmnand_host {
180 struct list_head node;
181
182 struct nand_chip chip;
183#ifndef __UBOOT__
184 struct platform_device *pdev;
185#else
186 struct udevice *pdev;
187#endif /* __UBOOT__ */
188 int cs;
189
190 unsigned int last_cmd;
191 unsigned int last_byte;
192 u64 last_addr;
193 struct brcmnand_cfg hwcfg;
194 struct brcmnand_controller *ctrl;
195};
196
197enum brcmnand_reg {
198 BRCMNAND_CMD_START = 0,
199 BRCMNAND_CMD_EXT_ADDRESS,
200 BRCMNAND_CMD_ADDRESS,
201 BRCMNAND_INTFC_STATUS,
202 BRCMNAND_CS_SELECT,
203 BRCMNAND_CS_XOR,
204 BRCMNAND_LL_OP,
205 BRCMNAND_CS0_BASE,
206 BRCMNAND_CS1_BASE, /* CS1 regs, if non-contiguous */
207 BRCMNAND_CORR_THRESHOLD,
208 BRCMNAND_CORR_THRESHOLD_EXT,
209 BRCMNAND_UNCORR_COUNT,
210 BRCMNAND_CORR_COUNT,
211 BRCMNAND_CORR_EXT_ADDR,
212 BRCMNAND_CORR_ADDR,
213 BRCMNAND_UNCORR_EXT_ADDR,
214 BRCMNAND_UNCORR_ADDR,
215 BRCMNAND_SEMAPHORE,
216 BRCMNAND_ID,
217 BRCMNAND_ID_EXT,
218 BRCMNAND_LL_RDATA,
219 BRCMNAND_OOB_READ_BASE,
220 BRCMNAND_OOB_READ_10_BASE, /* offset 0x10, if non-contiguous */
221 BRCMNAND_OOB_WRITE_BASE,
222 BRCMNAND_OOB_WRITE_10_BASE, /* offset 0x10, if non-contiguous */
223 BRCMNAND_FC_BASE,
224};
225
226/* BRCMNAND v4.0 */
227static const u16 brcmnand_regs_v40[] = {
228 [BRCMNAND_CMD_START] = 0x04,
229 [BRCMNAND_CMD_EXT_ADDRESS] = 0x08,
230 [BRCMNAND_CMD_ADDRESS] = 0x0c,
231 [BRCMNAND_INTFC_STATUS] = 0x6c,
232 [BRCMNAND_CS_SELECT] = 0x14,
233 [BRCMNAND_CS_XOR] = 0x18,
234 [BRCMNAND_LL_OP] = 0x178,
235 [BRCMNAND_CS0_BASE] = 0x40,
236 [BRCMNAND_CS1_BASE] = 0xd0,
237 [BRCMNAND_CORR_THRESHOLD] = 0x84,
238 [BRCMNAND_CORR_THRESHOLD_EXT] = 0,
239 [BRCMNAND_UNCORR_COUNT] = 0,
240 [BRCMNAND_CORR_COUNT] = 0,
241 [BRCMNAND_CORR_EXT_ADDR] = 0x70,
242 [BRCMNAND_CORR_ADDR] = 0x74,
243 [BRCMNAND_UNCORR_EXT_ADDR] = 0x78,
244 [BRCMNAND_UNCORR_ADDR] = 0x7c,
245 [BRCMNAND_SEMAPHORE] = 0x58,
246 [BRCMNAND_ID] = 0x60,
247 [BRCMNAND_ID_EXT] = 0x64,
248 [BRCMNAND_LL_RDATA] = 0x17c,
249 [BRCMNAND_OOB_READ_BASE] = 0x20,
250 [BRCMNAND_OOB_READ_10_BASE] = 0x130,
251 [BRCMNAND_OOB_WRITE_BASE] = 0x30,
252 [BRCMNAND_OOB_WRITE_10_BASE] = 0,
253 [BRCMNAND_FC_BASE] = 0x200,
254};
255
256/* BRCMNAND v5.0 */
257static const u16 brcmnand_regs_v50[] = {
258 [BRCMNAND_CMD_START] = 0x04,
259 [BRCMNAND_CMD_EXT_ADDRESS] = 0x08,
260 [BRCMNAND_CMD_ADDRESS] = 0x0c,
261 [BRCMNAND_INTFC_STATUS] = 0x6c,
262 [BRCMNAND_CS_SELECT] = 0x14,
263 [BRCMNAND_CS_XOR] = 0x18,
264 [BRCMNAND_LL_OP] = 0x178,
265 [BRCMNAND_CS0_BASE] = 0x40,
266 [BRCMNAND_CS1_BASE] = 0xd0,
267 [BRCMNAND_CORR_THRESHOLD] = 0x84,
268 [BRCMNAND_CORR_THRESHOLD_EXT] = 0,
269 [BRCMNAND_UNCORR_COUNT] = 0,
270 [BRCMNAND_CORR_COUNT] = 0,
271 [BRCMNAND_CORR_EXT_ADDR] = 0x70,
272 [BRCMNAND_CORR_ADDR] = 0x74,
273 [BRCMNAND_UNCORR_EXT_ADDR] = 0x78,
274 [BRCMNAND_UNCORR_ADDR] = 0x7c,
275 [BRCMNAND_SEMAPHORE] = 0x58,
276 [BRCMNAND_ID] = 0x60,
277 [BRCMNAND_ID_EXT] = 0x64,
278 [BRCMNAND_LL_RDATA] = 0x17c,
279 [BRCMNAND_OOB_READ_BASE] = 0x20,
280 [BRCMNAND_OOB_READ_10_BASE] = 0x130,
281 [BRCMNAND_OOB_WRITE_BASE] = 0x30,
282 [BRCMNAND_OOB_WRITE_10_BASE] = 0x140,
283 [BRCMNAND_FC_BASE] = 0x200,
284};
285
286/* BRCMNAND v6.0 - v7.1 */
287static const u16 brcmnand_regs_v60[] = {
288 [BRCMNAND_CMD_START] = 0x04,
289 [BRCMNAND_CMD_EXT_ADDRESS] = 0x08,
290 [BRCMNAND_CMD_ADDRESS] = 0x0c,
291 [BRCMNAND_INTFC_STATUS] = 0x14,
292 [BRCMNAND_CS_SELECT] = 0x18,
293 [BRCMNAND_CS_XOR] = 0x1c,
294 [BRCMNAND_LL_OP] = 0x20,
295 [BRCMNAND_CS0_BASE] = 0x50,
296 [BRCMNAND_CS1_BASE] = 0,
297 [BRCMNAND_CORR_THRESHOLD] = 0xc0,
298 [BRCMNAND_CORR_THRESHOLD_EXT] = 0xc4,
299 [BRCMNAND_UNCORR_COUNT] = 0xfc,
300 [BRCMNAND_CORR_COUNT] = 0x100,
301 [BRCMNAND_CORR_EXT_ADDR] = 0x10c,
302 [BRCMNAND_CORR_ADDR] = 0x110,
303 [BRCMNAND_UNCORR_EXT_ADDR] = 0x114,
304 [BRCMNAND_UNCORR_ADDR] = 0x118,
305 [BRCMNAND_SEMAPHORE] = 0x150,
306 [BRCMNAND_ID] = 0x194,
307 [BRCMNAND_ID_EXT] = 0x198,
308 [BRCMNAND_LL_RDATA] = 0x19c,
309 [BRCMNAND_OOB_READ_BASE] = 0x200,
310 [BRCMNAND_OOB_READ_10_BASE] = 0,
311 [BRCMNAND_OOB_WRITE_BASE] = 0x280,
312 [BRCMNAND_OOB_WRITE_10_BASE] = 0,
313 [BRCMNAND_FC_BASE] = 0x400,
314};
315
316/* BRCMNAND v7.1 */
317static const u16 brcmnand_regs_v71[] = {
318 [BRCMNAND_CMD_START] = 0x04,
319 [BRCMNAND_CMD_EXT_ADDRESS] = 0x08,
320 [BRCMNAND_CMD_ADDRESS] = 0x0c,
321 [BRCMNAND_INTFC_STATUS] = 0x14,
322 [BRCMNAND_CS_SELECT] = 0x18,
323 [BRCMNAND_CS_XOR] = 0x1c,
324 [BRCMNAND_LL_OP] = 0x20,
325 [BRCMNAND_CS0_BASE] = 0x50,
326 [BRCMNAND_CS1_BASE] = 0,
327 [BRCMNAND_CORR_THRESHOLD] = 0xdc,
328 [BRCMNAND_CORR_THRESHOLD_EXT] = 0xe0,
329 [BRCMNAND_UNCORR_COUNT] = 0xfc,
330 [BRCMNAND_CORR_COUNT] = 0x100,
331 [BRCMNAND_CORR_EXT_ADDR] = 0x10c,
332 [BRCMNAND_CORR_ADDR] = 0x110,
333 [BRCMNAND_UNCORR_EXT_ADDR] = 0x114,
334 [BRCMNAND_UNCORR_ADDR] = 0x118,
335 [BRCMNAND_SEMAPHORE] = 0x150,
336 [BRCMNAND_ID] = 0x194,
337 [BRCMNAND_ID_EXT] = 0x198,
338 [BRCMNAND_LL_RDATA] = 0x19c,
339 [BRCMNAND_OOB_READ_BASE] = 0x200,
340 [BRCMNAND_OOB_READ_10_BASE] = 0,
341 [BRCMNAND_OOB_WRITE_BASE] = 0x280,
342 [BRCMNAND_OOB_WRITE_10_BASE] = 0,
343 [BRCMNAND_FC_BASE] = 0x400,
344};
345
346/* BRCMNAND v7.2 */
347static const u16 brcmnand_regs_v72[] = {
348 [BRCMNAND_CMD_START] = 0x04,
349 [BRCMNAND_CMD_EXT_ADDRESS] = 0x08,
350 [BRCMNAND_CMD_ADDRESS] = 0x0c,
351 [BRCMNAND_INTFC_STATUS] = 0x14,
352 [BRCMNAND_CS_SELECT] = 0x18,
353 [BRCMNAND_CS_XOR] = 0x1c,
354 [BRCMNAND_LL_OP] = 0x20,
355 [BRCMNAND_CS0_BASE] = 0x50,
356 [BRCMNAND_CS1_BASE] = 0,
357 [BRCMNAND_CORR_THRESHOLD] = 0xdc,
358 [BRCMNAND_CORR_THRESHOLD_EXT] = 0xe0,
359 [BRCMNAND_UNCORR_COUNT] = 0xfc,
360 [BRCMNAND_CORR_COUNT] = 0x100,
361 [BRCMNAND_CORR_EXT_ADDR] = 0x10c,
362 [BRCMNAND_CORR_ADDR] = 0x110,
363 [BRCMNAND_UNCORR_EXT_ADDR] = 0x114,
364 [BRCMNAND_UNCORR_ADDR] = 0x118,
365 [BRCMNAND_SEMAPHORE] = 0x150,
366 [BRCMNAND_ID] = 0x194,
367 [BRCMNAND_ID_EXT] = 0x198,
368 [BRCMNAND_LL_RDATA] = 0x19c,
369 [BRCMNAND_OOB_READ_BASE] = 0x200,
370 [BRCMNAND_OOB_READ_10_BASE] = 0,
371 [BRCMNAND_OOB_WRITE_BASE] = 0x400,
372 [BRCMNAND_OOB_WRITE_10_BASE] = 0,
373 [BRCMNAND_FC_BASE] = 0x600,
374};
375
376enum brcmnand_cs_reg {
377 BRCMNAND_CS_CFG_EXT = 0,
378 BRCMNAND_CS_CFG,
379 BRCMNAND_CS_ACC_CONTROL,
380 BRCMNAND_CS_TIMING1,
381 BRCMNAND_CS_TIMING2,
382};
383
384/* Per chip-select offsets for v7.1 */
385static const u8 brcmnand_cs_offsets_v71[] = {
386 [BRCMNAND_CS_ACC_CONTROL] = 0x00,
387 [BRCMNAND_CS_CFG_EXT] = 0x04,
388 [BRCMNAND_CS_CFG] = 0x08,
389 [BRCMNAND_CS_TIMING1] = 0x0c,
390 [BRCMNAND_CS_TIMING2] = 0x10,
391};
392
393/* Per chip-select offsets for pre v7.1, except CS0 on <= v5.0 */
394static const u8 brcmnand_cs_offsets[] = {
395 [BRCMNAND_CS_ACC_CONTROL] = 0x00,
396 [BRCMNAND_CS_CFG_EXT] = 0x04,
397 [BRCMNAND_CS_CFG] = 0x04,
398 [BRCMNAND_CS_TIMING1] = 0x08,
399 [BRCMNAND_CS_TIMING2] = 0x0c,
400};
401
402/* Per chip-select offset for <= v5.0 on CS0 only */
403static const u8 brcmnand_cs_offsets_cs0[] = {
404 [BRCMNAND_CS_ACC_CONTROL] = 0x00,
405 [BRCMNAND_CS_CFG_EXT] = 0x08,
406 [BRCMNAND_CS_CFG] = 0x08,
407 [BRCMNAND_CS_TIMING1] = 0x10,
408 [BRCMNAND_CS_TIMING2] = 0x14,
409};
410
411/*
412 * Bitfields for the CFG and CFG_EXT registers. Pre-v7.1 controllers only had
413 * one config register, but once the bitfields overflowed, newer controllers
414 * (v7.1 and newer) added a CFG_EXT register and shuffled a few fields around.
415 */
416enum {
417 CFG_BLK_ADR_BYTES_SHIFT = 8,
418 CFG_COL_ADR_BYTES_SHIFT = 12,
419 CFG_FUL_ADR_BYTES_SHIFT = 16,
420 CFG_BUS_WIDTH_SHIFT = 23,
421 CFG_BUS_WIDTH = BIT(CFG_BUS_WIDTH_SHIFT),
422 CFG_DEVICE_SIZE_SHIFT = 24,
423
424 /* Only for pre-v7.1 (with no CFG_EXT register) */
425 CFG_PAGE_SIZE_SHIFT = 20,
426 CFG_BLK_SIZE_SHIFT = 28,
427
428 /* Only for v7.1+ (with CFG_EXT register) */
429 CFG_EXT_PAGE_SIZE_SHIFT = 0,
430 CFG_EXT_BLK_SIZE_SHIFT = 4,
431};
432
433/* BRCMNAND_INTFC_STATUS */
434enum {
435 INTFC_FLASH_STATUS = GENMASK(7, 0),
436
437 INTFC_ERASED = BIT(27),
438 INTFC_OOB_VALID = BIT(28),
439 INTFC_CACHE_VALID = BIT(29),
440 INTFC_FLASH_READY = BIT(30),
441 INTFC_CTLR_READY = BIT(31),
442};
443
444static inline u32 nand_readreg(struct brcmnand_controller *ctrl, u32 offs)
445{
446 return brcmnand_readl(ctrl->nand_base + offs);
447}
448
449static inline void nand_writereg(struct brcmnand_controller *ctrl, u32 offs,
450 u32 val)
451{
452 brcmnand_writel(val, ctrl->nand_base + offs);
453}
454
455static int brcmnand_revision_init(struct brcmnand_controller *ctrl)
456{
457 static const unsigned int block_sizes_v6[] = { 8, 16, 128, 256, 512, 1024, 2048, 0 };
458 static const unsigned int block_sizes_v4[] = { 16, 128, 8, 512, 256, 1024, 2048, 0 };
459 static const unsigned int page_sizes[] = { 512, 2048, 4096, 8192, 0 };
460
461 ctrl->nand_version = nand_readreg(ctrl, 0) & 0xffff;
462
463 /* Only support v4.0+? */
464 if (ctrl->nand_version < 0x0400) {
465 dev_err(ctrl->dev, "version %#x not supported\n",
466 ctrl->nand_version);
467 return -ENODEV;
468 }
469
470 /* Register offsets */
471 if (ctrl->nand_version >= 0x0702)
472 ctrl->reg_offsets = brcmnand_regs_v72;
473 else if (ctrl->nand_version >= 0x0701)
474 ctrl->reg_offsets = brcmnand_regs_v71;
475 else if (ctrl->nand_version >= 0x0600)
476 ctrl->reg_offsets = brcmnand_regs_v60;
477 else if (ctrl->nand_version >= 0x0500)
478 ctrl->reg_offsets = brcmnand_regs_v50;
479 else if (ctrl->nand_version >= 0x0400)
480 ctrl->reg_offsets = brcmnand_regs_v40;
481
482 /* Chip-select stride */
483 if (ctrl->nand_version >= 0x0701)
484 ctrl->reg_spacing = 0x14;
485 else
486 ctrl->reg_spacing = 0x10;
487
488 /* Per chip-select registers */
489 if (ctrl->nand_version >= 0x0701) {
490 ctrl->cs_offsets = brcmnand_cs_offsets_v71;
491 } else {
492 ctrl->cs_offsets = brcmnand_cs_offsets;
493
494 /* v5.0 and earlier has a different CS0 offset layout */
495 if (ctrl->nand_version <= 0x0500)
496 ctrl->cs0_offsets = brcmnand_cs_offsets_cs0;
497 }
498
499 /* Page / block sizes */
500 if (ctrl->nand_version >= 0x0701) {
501 /* >= v7.1 use nice power-of-2 values! */
502 ctrl->max_page_size = 16 * 1024;
503 ctrl->max_block_size = 2 * 1024 * 1024;
504 } else {
505 ctrl->page_sizes = page_sizes;
506 if (ctrl->nand_version >= 0x0600)
507 ctrl->block_sizes = block_sizes_v6;
508 else
509 ctrl->block_sizes = block_sizes_v4;
510
511 if (ctrl->nand_version < 0x0400) {
512 ctrl->max_page_size = 4096;
513 ctrl->max_block_size = 512 * 1024;
514 }
515 }
516
517 /* Maximum spare area sector size (per 512B) */
518 if (ctrl->nand_version >= 0x0702)
519 ctrl->max_oob = 128;
520 else if (ctrl->nand_version >= 0x0600)
521 ctrl->max_oob = 64;
522 else if (ctrl->nand_version >= 0x0500)
523 ctrl->max_oob = 32;
524 else
525 ctrl->max_oob = 16;
526
527 /* v6.0 and newer (except v6.1) have prefetch support */
528 if (ctrl->nand_version >= 0x0600 && ctrl->nand_version != 0x0601)
529 ctrl->features |= BRCMNAND_HAS_PREFETCH;
530
531 /*
532 * v6.x has cache mode, but it's implemented differently. Ignore it for
533 * now.
534 */
535 if (ctrl->nand_version >= 0x0700)
536 ctrl->features |= BRCMNAND_HAS_CACHE_MODE;
537
538 if (ctrl->nand_version >= 0x0500)
539 ctrl->features |= BRCMNAND_HAS_1K_SECTORS;
540
541 if (ctrl->nand_version >= 0x0700)
542 ctrl->features |= BRCMNAND_HAS_WP;
543#ifndef __UBOOT__
544 else if (of_property_read_bool(ctrl->dev->of_node, "brcm,nand-has-wp"))
545#else
546 else if (dev_read_bool(ctrl->dev, "brcm,nand-has-wp"))
547#endif /* __UBOOT__ */
548 ctrl->features |= BRCMNAND_HAS_WP;
549
550 return 0;
551}
552
553static inline u32 brcmnand_read_reg(struct brcmnand_controller *ctrl,
554 enum brcmnand_reg reg)
555{
556 u16 offs = ctrl->reg_offsets[reg];
557
558 if (offs)
559 return nand_readreg(ctrl, offs);
560 else
561 return 0;
562}
563
564static inline void brcmnand_write_reg(struct brcmnand_controller *ctrl,
565 enum brcmnand_reg reg, u32 val)
566{
567 u16 offs = ctrl->reg_offsets[reg];
568
569 if (offs)
570 nand_writereg(ctrl, offs, val);
571}
572
573static inline void brcmnand_rmw_reg(struct brcmnand_controller *ctrl,
574 enum brcmnand_reg reg, u32 mask, unsigned
575 int shift, u32 val)
576{
577 u32 tmp = brcmnand_read_reg(ctrl, reg);
578
579 tmp &= ~mask;
580 tmp |= val << shift;
581 brcmnand_write_reg(ctrl, reg, tmp);
582}
583
584static inline u32 brcmnand_read_fc(struct brcmnand_controller *ctrl, int word)
585{
586 return __raw_readl(ctrl->nand_fc + word * 4);
587}
588
589static inline void brcmnand_write_fc(struct brcmnand_controller *ctrl,
590 int word, u32 val)
591{
592 __raw_writel(val, ctrl->nand_fc + word * 4);
593}
594
595static inline u16 brcmnand_cs_offset(struct brcmnand_controller *ctrl, int cs,
596 enum brcmnand_cs_reg reg)
597{
598 u16 offs_cs0 = ctrl->reg_offsets[BRCMNAND_CS0_BASE];
599 u16 offs_cs1 = ctrl->reg_offsets[BRCMNAND_CS1_BASE];
600 u8 cs_offs;
601
602 if (cs == 0 && ctrl->cs0_offsets)
603 cs_offs = ctrl->cs0_offsets[reg];
604 else
605 cs_offs = ctrl->cs_offsets[reg];
606
607 if (cs && offs_cs1)
608 return offs_cs1 + (cs - 1) * ctrl->reg_spacing + cs_offs;
609
610 return offs_cs0 + cs * ctrl->reg_spacing + cs_offs;
611}
612
613static inline u32 brcmnand_count_corrected(struct brcmnand_controller *ctrl)
614{
615 if (ctrl->nand_version < 0x0600)
616 return 1;
617 return brcmnand_read_reg(ctrl, BRCMNAND_CORR_COUNT);
618}
619
620static void brcmnand_wr_corr_thresh(struct brcmnand_host *host, u8 val)
621{
622 struct brcmnand_controller *ctrl = host->ctrl;
623 unsigned int shift = 0, bits;
624 enum brcmnand_reg reg = BRCMNAND_CORR_THRESHOLD;
625 int cs = host->cs;
626
627 if (ctrl->nand_version >= 0x0702)
628 bits = 7;
629 else if (ctrl->nand_version >= 0x0600)
630 bits = 6;
631 else if (ctrl->nand_version >= 0x0500)
632 bits = 5;
633 else
634 bits = 4;
635
636 if (ctrl->nand_version >= 0x0702) {
637 if (cs >= 4)
638 reg = BRCMNAND_CORR_THRESHOLD_EXT;
639 shift = (cs % 4) * bits;
640 } else if (ctrl->nand_version >= 0x0600) {
641 if (cs >= 5)
642 reg = BRCMNAND_CORR_THRESHOLD_EXT;
643 shift = (cs % 5) * bits;
644 }
645 brcmnand_rmw_reg(ctrl, reg, (bits - 1) << shift, shift, val);
646}
647
648static inline int brcmnand_cmd_shift(struct brcmnand_controller *ctrl)
649{
650 if (ctrl->nand_version < 0x0602)
651 return 24;
652 return 0;
653}
654
655/***********************************************************************
656 * NAND ACC CONTROL bitfield
657 *
658 * Some bits have remained constant throughout hardware revision, while
659 * others have shifted around.
660 ***********************************************************************/
661
662/* Constant for all versions (where supported) */
663enum {
664 /* See BRCMNAND_HAS_CACHE_MODE */
665 ACC_CONTROL_CACHE_MODE = BIT(22),
666
667 /* See BRCMNAND_HAS_PREFETCH */
668 ACC_CONTROL_PREFETCH = BIT(23),
669
670 ACC_CONTROL_PAGE_HIT = BIT(24),
671 ACC_CONTROL_WR_PREEMPT = BIT(25),
672 ACC_CONTROL_PARTIAL_PAGE = BIT(26),
673 ACC_CONTROL_RD_ERASED = BIT(27),
674 ACC_CONTROL_FAST_PGM_RDIN = BIT(28),
675 ACC_CONTROL_WR_ECC = BIT(30),
676 ACC_CONTROL_RD_ECC = BIT(31),
677};
678
679static inline u32 brcmnand_spare_area_mask(struct brcmnand_controller *ctrl)
680{
681 if (ctrl->nand_version >= 0x0702)
682 return GENMASK(7, 0);
683 else if (ctrl->nand_version >= 0x0600)
684 return GENMASK(6, 0);
685 else
686 return GENMASK(5, 0);
687}
688
689#define NAND_ACC_CONTROL_ECC_SHIFT 16
690#define NAND_ACC_CONTROL_ECC_EXT_SHIFT 13
691
692static inline u32 brcmnand_ecc_level_mask(struct brcmnand_controller *ctrl)
693{
694 u32 mask = (ctrl->nand_version >= 0x0600) ? 0x1f : 0x0f;
695
696 mask <<= NAND_ACC_CONTROL_ECC_SHIFT;
697
698 /* v7.2 includes additional ECC levels */
699 if (ctrl->nand_version >= 0x0702)
700 mask |= 0x7 << NAND_ACC_CONTROL_ECC_EXT_SHIFT;
701
702 return mask;
703}
704
705static void brcmnand_set_ecc_enabled(struct brcmnand_host *host, int en)
706{
707 struct brcmnand_controller *ctrl = host->ctrl;
708 u16 offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_ACC_CONTROL);
709 u32 acc_control = nand_readreg(ctrl, offs);
710 u32 ecc_flags = ACC_CONTROL_WR_ECC | ACC_CONTROL_RD_ECC;
711
712 if (en) {
713 acc_control |= ecc_flags; /* enable RD/WR ECC */
714 acc_control |= host->hwcfg.ecc_level
715 << NAND_ACC_CONTROL_ECC_SHIFT;
716 } else {
717 acc_control &= ~ecc_flags; /* disable RD/WR ECC */
718 acc_control &= ~brcmnand_ecc_level_mask(ctrl);
719 }
720
721 nand_writereg(ctrl, offs, acc_control);
722}
723
724static inline int brcmnand_sector_1k_shift(struct brcmnand_controller *ctrl)
725{
726 if (ctrl->nand_version >= 0x0702)
727 return 9;
728 else if (ctrl->nand_version >= 0x0600)
729 return 7;
730 else if (ctrl->nand_version >= 0x0500)
731 return 6;
732 else
733 return -1;
734}
735
736static int brcmnand_get_sector_size_1k(struct brcmnand_host *host)
737{
738 struct brcmnand_controller *ctrl = host->ctrl;
739 int shift = brcmnand_sector_1k_shift(ctrl);
740 u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs,
741 BRCMNAND_CS_ACC_CONTROL);
742
743 if (shift < 0)
744 return 0;
745
746 return (nand_readreg(ctrl, acc_control_offs) >> shift) & 0x1;
747}
748
749static void brcmnand_set_sector_size_1k(struct brcmnand_host *host, int val)
750{
751 struct brcmnand_controller *ctrl = host->ctrl;
752 int shift = brcmnand_sector_1k_shift(ctrl);
753 u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs,
754 BRCMNAND_CS_ACC_CONTROL);
755 u32 tmp;
756
757 if (shift < 0)
758 return;
759
760 tmp = nand_readreg(ctrl, acc_control_offs);
761 tmp &= ~(1 << shift);
762 tmp |= (!!val) << shift;
763 nand_writereg(ctrl, acc_control_offs, tmp);
764}
765
766/***********************************************************************
767 * CS_NAND_SELECT
768 ***********************************************************************/
769
770enum {
771 CS_SELECT_NAND_WP = BIT(29),
772 CS_SELECT_AUTO_DEVICE_ID_CFG = BIT(30),
773};
774
775static int bcmnand_ctrl_poll_status(struct brcmnand_controller *ctrl,
776 u32 mask, u32 expected_val,
777 unsigned long timeout_ms)
778{
779#ifndef __UBOOT__
780 unsigned long limit;
781 u32 val;
782
783 if (!timeout_ms)
784 timeout_ms = NAND_POLL_STATUS_TIMEOUT_MS;
785
786 limit = jiffies + msecs_to_jiffies(timeout_ms);
787 do {
788 val = brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS);
789 if ((val & mask) == expected_val)
790 return 0;
791
792 cpu_relax();
793 } while (time_after(limit, jiffies));
794#else
795 unsigned long base, limit;
796 u32 val;
797
798 if (!timeout_ms)
799 timeout_ms = NAND_POLL_STATUS_TIMEOUT_MS;
800
801 base = get_timer(0);
802 limit = CONFIG_SYS_HZ * timeout_ms / 1000;
803 do {
804 val = brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS);
805 if ((val & mask) == expected_val)
806 return 0;
807
808 cpu_relax();
809 } while (get_timer(base) < limit);
810#endif /* __UBOOT__ */
811
812 dev_warn(ctrl->dev, "timeout on status poll (expected %x got %x)\n",
813 expected_val, val & mask);
814
815 return -ETIMEDOUT;
816}
817
818static inline void brcmnand_set_wp(struct brcmnand_controller *ctrl, bool en)
819{
820 u32 val = en ? CS_SELECT_NAND_WP : 0;
821
822 brcmnand_rmw_reg(ctrl, BRCMNAND_CS_SELECT, CS_SELECT_NAND_WP, 0, val);
823}
824
825/***********************************************************************
826 * Flash DMA
827 ***********************************************************************/
828
829enum flash_dma_reg {
830 FLASH_DMA_REVISION = 0x00,
831 FLASH_DMA_FIRST_DESC = 0x04,
832 FLASH_DMA_FIRST_DESC_EXT = 0x08,
833 FLASH_DMA_CTRL = 0x0c,
834 FLASH_DMA_MODE = 0x10,
835 FLASH_DMA_STATUS = 0x14,
836 FLASH_DMA_INTERRUPT_DESC = 0x18,
837 FLASH_DMA_INTERRUPT_DESC_EXT = 0x1c,
838 FLASH_DMA_ERROR_STATUS = 0x20,
839 FLASH_DMA_CURRENT_DESC = 0x24,
840 FLASH_DMA_CURRENT_DESC_EXT = 0x28,
841};
842
843static inline bool has_flash_dma(struct brcmnand_controller *ctrl)
844{
845 return ctrl->flash_dma_base;
846}
847
848static inline bool flash_dma_buf_ok(const void *buf)
849{
850#ifndef __UBOOT__
851 return buf && !is_vmalloc_addr(buf) &&
852 likely(IS_ALIGNED((uintptr_t)buf, 4));
853#else
854 return buf && likely(IS_ALIGNED((uintptr_t)buf, 4));
855#endif /* __UBOOT__ */
856}
857
858static inline void flash_dma_writel(struct brcmnand_controller *ctrl, u8 offs,
859 u32 val)
860{
861 brcmnand_writel(val, ctrl->flash_dma_base + offs);
862}
863
864static inline u32 flash_dma_readl(struct brcmnand_controller *ctrl, u8 offs)
865{
866 return brcmnand_readl(ctrl->flash_dma_base + offs);
867}
868
869/* Low-level operation types: command, address, write, or read */
870enum brcmnand_llop_type {
871 LL_OP_CMD,
872 LL_OP_ADDR,
873 LL_OP_WR,
874 LL_OP_RD,
875};
876
877/***********************************************************************
878 * Internal support functions
879 ***********************************************************************/
880
881static inline bool is_hamming_ecc(struct brcmnand_controller *ctrl,
882 struct brcmnand_cfg *cfg)
883{
884 if (ctrl->nand_version <= 0x0701)
885 return cfg->sector_size_1k == 0 && cfg->spare_area_size == 16 &&
886 cfg->ecc_level == 15;
887 else
888 return cfg->sector_size_1k == 0 && ((cfg->spare_area_size == 16 &&
889 cfg->ecc_level == 15) ||
890 (cfg->spare_area_size == 28 && cfg->ecc_level == 16));
891}
892
893/*
William Zhang1100e492019-09-04 10:51:13 -0700894 * Returns a nand_ecclayout strucutre for the given layout/configuration.
895 * Returns NULL on failure.
Philippe Reynes5aa6cfb2019-03-15 15:14:36 +0100896 */
William Zhang1100e492019-09-04 10:51:13 -0700897static struct nand_ecclayout *brcmnand_create_layout(int ecc_level,
898 struct brcmnand_host *host)
Philippe Reynes5aa6cfb2019-03-15 15:14:36 +0100899{
Philippe Reynes5aa6cfb2019-03-15 15:14:36 +0100900 struct brcmnand_cfg *cfg = &host->hwcfg;
William Zhang1100e492019-09-04 10:51:13 -0700901 int i, j;
902 struct nand_ecclayout *layout;
903 int req;
904 int sectors;
905 int sas;
906 int idx1, idx2;
Philippe Reynes5aa6cfb2019-03-15 15:14:36 +0100907
William Zhang1100e492019-09-04 10:51:13 -0700908#ifndef __UBOOT__
909 layout = devm_kzalloc(&host->pdev->dev, sizeof(*layout), GFP_KERNEL);
910#else
911 layout = devm_kzalloc(host->pdev, sizeof(*layout), GFP_KERNEL);
912#endif
913 if (!layout)
914 return NULL;
Philippe Reynes5aa6cfb2019-03-15 15:14:36 +0100915
William Zhang1100e492019-09-04 10:51:13 -0700916 sectors = cfg->page_size / (512 << cfg->sector_size_1k);
917 sas = cfg->spare_area_size << cfg->sector_size_1k;
Philippe Reynes5aa6cfb2019-03-15 15:14:36 +0100918
William Zhang1100e492019-09-04 10:51:13 -0700919 /* Hamming */
920 if (is_hamming_ecc(host->ctrl, cfg)) {
921 for (i = 0, idx1 = 0, idx2 = 0; i < sectors; i++) {
922 /* First sector of each page may have BBI */
923 if (i == 0) {
924 layout->oobfree[idx2].offset = i * sas + 1;
925 /* Small-page NAND use byte 6 for BBI */
926 if (cfg->page_size == 512)
927 layout->oobfree[idx2].offset--;
928 layout->oobfree[idx2].length = 5;
929 } else {
930 layout->oobfree[idx2].offset = i * sas;
931 layout->oobfree[idx2].length = 6;
932 }
933 idx2++;
934 layout->eccpos[idx1++] = i * sas + 6;
935 layout->eccpos[idx1++] = i * sas + 7;
936 layout->eccpos[idx1++] = i * sas + 8;
937 layout->oobfree[idx2].offset = i * sas + 9;
938 layout->oobfree[idx2].length = 7;
939 idx2++;
940 /* Leave zero-terminated entry for OOBFREE */
941 if (idx1 >= MTD_MAX_ECCPOS_ENTRIES_LARGE ||
942 idx2 >= MTD_MAX_OOBFREE_ENTRIES_LARGE - 1)
943 break;
Philippe Reynes5aa6cfb2019-03-15 15:14:36 +0100944 }
Philippe Reynes5aa6cfb2019-03-15 15:14:36 +0100945
William Zhang1100e492019-09-04 10:51:13 -0700946 return layout;
Philippe Reynes5aa6cfb2019-03-15 15:14:36 +0100947 }
948
William Zhang1100e492019-09-04 10:51:13 -0700949 /*
950 * CONTROLLER_VERSION:
951 * < v5.0: ECC_REQ = ceil(BCH_T * 13/8)
952 * >= v5.0: ECC_REQ = ceil(BCH_T * 14/8)
953 * But we will just be conservative.
954 */
955 req = DIV_ROUND_UP(ecc_level * 14, 8);
956 if (req >= sas) {
957 dev_err(&host->pdev->dev,
958 "error: ECC too large for OOB (ECC bytes %d, spare sector %d)\n",
959 req, sas);
960 return NULL;
961 }
Philippe Reynes5aa6cfb2019-03-15 15:14:36 +0100962
William Zhang1100e492019-09-04 10:51:13 -0700963 layout->eccbytes = req * sectors;
964 for (i = 0, idx1 = 0, idx2 = 0; i < sectors; i++) {
965 for (j = sas - req; j < sas && idx1 <
966 MTD_MAX_ECCPOS_ENTRIES_LARGE; j++, idx1++)
967 layout->eccpos[idx1] = i * sas + j;
Philippe Reynes5aa6cfb2019-03-15 15:14:36 +0100968
William Zhang1100e492019-09-04 10:51:13 -0700969 /* First sector of each page may have BBI */
970 if (i == 0) {
971 if (cfg->page_size == 512 && (sas - req >= 6)) {
972 /* Small-page NAND use byte 6 for BBI */
973 layout->oobfree[idx2].offset = 0;
974 layout->oobfree[idx2].length = 5;
975 idx2++;
976 if (sas - req > 6) {
977 layout->oobfree[idx2].offset = 6;
978 layout->oobfree[idx2].length =
979 sas - req - 6;
980 idx2++;
981 }
982 } else if (sas > req + 1) {
983 layout->oobfree[idx2].offset = i * sas + 1;
984 layout->oobfree[idx2].length = sas - req - 1;
985 idx2++;
986 }
987 } else if (sas > req) {
988 layout->oobfree[idx2].offset = i * sas;
989 layout->oobfree[idx2].length = sas - req;
990 idx2++;
991 }
992 /* Leave zero-terminated entry for OOBFREE */
993 if (idx1 >= MTD_MAX_ECCPOS_ENTRIES_LARGE ||
994 idx2 >= MTD_MAX_OOBFREE_ENTRIES_LARGE - 1)
995 break;
Philippe Reynes5aa6cfb2019-03-15 15:14:36 +0100996 }
997
William Zhang1100e492019-09-04 10:51:13 -0700998 return layout;
Philippe Reynes5aa6cfb2019-03-15 15:14:36 +0100999}
1000
William Zhang1100e492019-09-04 10:51:13 -07001001static struct nand_ecclayout *brcmstb_choose_ecc_layout(
1002 struct brcmnand_host *host)
Philippe Reynes5aa6cfb2019-03-15 15:14:36 +01001003{
William Zhang1100e492019-09-04 10:51:13 -07001004 struct nand_ecclayout *layout;
Philippe Reynes5aa6cfb2019-03-15 15:14:36 +01001005 struct brcmnand_cfg *p = &host->hwcfg;
Philippe Reynes5aa6cfb2019-03-15 15:14:36 +01001006 unsigned int ecc_level = p->ecc_level;
Philippe Reynes5aa6cfb2019-03-15 15:14:36 +01001007
1008 if (p->sector_size_1k)
1009 ecc_level <<= 1;
1010
William Zhang1100e492019-09-04 10:51:13 -07001011 layout = brcmnand_create_layout(ecc_level, host);
1012 if (!layout) {
Philippe Reynes5aa6cfb2019-03-15 15:14:36 +01001013 dev_err(&host->pdev->dev,
William Zhang1100e492019-09-04 10:51:13 -07001014 "no proper ecc_layout for this NAND cfg\n");
1015 return NULL;
Philippe Reynes5aa6cfb2019-03-15 15:14:36 +01001016 }
1017
William Zhang1100e492019-09-04 10:51:13 -07001018 return layout;
Philippe Reynes5aa6cfb2019-03-15 15:14:36 +01001019}
1020
1021static void brcmnand_wp(struct mtd_info *mtd, int wp)
1022{
1023 struct nand_chip *chip = mtd_to_nand(mtd);
1024 struct brcmnand_host *host = nand_get_controller_data(chip);
1025 struct brcmnand_controller *ctrl = host->ctrl;
1026
1027 if ((ctrl->features & BRCMNAND_HAS_WP) && wp_on == 1) {
1028 static int old_wp = -1;
1029 int ret;
1030
1031 if (old_wp != wp) {
1032 dev_dbg(ctrl->dev, "WP %s\n", wp ? "on" : "off");
1033 old_wp = wp;
1034 }
1035
1036 /*
1037 * make sure ctrl/flash ready before and after
1038 * changing state of #WP pin
1039 */
1040 ret = bcmnand_ctrl_poll_status(ctrl, NAND_CTRL_RDY |
1041 NAND_STATUS_READY,
1042 NAND_CTRL_RDY |
1043 NAND_STATUS_READY, 0);
1044 if (ret)
1045 return;
1046
1047 brcmnand_set_wp(ctrl, wp);
1048 nand_status_op(chip, NULL);
1049 /* NAND_STATUS_WP 0x00 = protected, 0x80 = not protected */
1050 ret = bcmnand_ctrl_poll_status(ctrl,
1051 NAND_CTRL_RDY |
1052 NAND_STATUS_READY |
1053 NAND_STATUS_WP,
1054 NAND_CTRL_RDY |
1055 NAND_STATUS_READY |
1056 (wp ? 0 : NAND_STATUS_WP), 0);
1057#ifndef __UBOOT__
1058 if (ret)
1059 dev_err_ratelimited(&host->pdev->dev,
1060 "nand #WP expected %s\n",
1061 wp ? "on" : "off");
1062#else
1063 if (ret)
1064 dev_err(&host->pdev->dev,
1065 "nand #WP expected %s\n",
1066 wp ? "on" : "off");
1067#endif /* __UBOOT__ */
1068 }
1069}
1070
1071/* Helper functions for reading and writing OOB registers */
1072static inline u8 oob_reg_read(struct brcmnand_controller *ctrl, u32 offs)
1073{
1074 u16 offset0, offset10, reg_offs;
1075
1076 offset0 = ctrl->reg_offsets[BRCMNAND_OOB_READ_BASE];
1077 offset10 = ctrl->reg_offsets[BRCMNAND_OOB_READ_10_BASE];
1078
1079 if (offs >= ctrl->max_oob)
1080 return 0x77;
1081
1082 if (offs >= 16 && offset10)
1083 reg_offs = offset10 + ((offs - 0x10) & ~0x03);
1084 else
1085 reg_offs = offset0 + (offs & ~0x03);
1086
1087 return nand_readreg(ctrl, reg_offs) >> (24 - ((offs & 0x03) << 3));
1088}
1089
1090static inline void oob_reg_write(struct brcmnand_controller *ctrl, u32 offs,
1091 u32 data)
1092{
1093 u16 offset0, offset10, reg_offs;
1094
1095 offset0 = ctrl->reg_offsets[BRCMNAND_OOB_WRITE_BASE];
1096 offset10 = ctrl->reg_offsets[BRCMNAND_OOB_WRITE_10_BASE];
1097
1098 if (offs >= ctrl->max_oob)
1099 return;
1100
1101 if (offs >= 16 && offset10)
1102 reg_offs = offset10 + ((offs - 0x10) & ~0x03);
1103 else
1104 reg_offs = offset0 + (offs & ~0x03);
1105
1106 nand_writereg(ctrl, reg_offs, data);
1107}
1108
1109/*
1110 * read_oob_from_regs - read data from OOB registers
1111 * @ctrl: NAND controller
1112 * @i: sub-page sector index
1113 * @oob: buffer to read to
1114 * @sas: spare area sector size (i.e., OOB size per FLASH_CACHE)
1115 * @sector_1k: 1 for 1KiB sectors, 0 for 512B, other values are illegal
1116 */
1117static int read_oob_from_regs(struct brcmnand_controller *ctrl, int i, u8 *oob,
1118 int sas, int sector_1k)
1119{
1120 int tbytes = sas << sector_1k;
1121 int j;
1122
1123 /* Adjust OOB values for 1K sector size */
1124 if (sector_1k && (i & 0x01))
1125 tbytes = max(0, tbytes - (int)ctrl->max_oob);
1126 tbytes = min_t(int, tbytes, ctrl->max_oob);
1127
1128 for (j = 0; j < tbytes; j++)
1129 oob[j] = oob_reg_read(ctrl, j);
1130 return tbytes;
1131}
1132
1133/*
1134 * write_oob_to_regs - write data to OOB registers
1135 * @i: sub-page sector index
1136 * @oob: buffer to write from
1137 * @sas: spare area sector size (i.e., OOB size per FLASH_CACHE)
1138 * @sector_1k: 1 for 1KiB sectors, 0 for 512B, other values are illegal
1139 */
1140static int write_oob_to_regs(struct brcmnand_controller *ctrl, int i,
1141 const u8 *oob, int sas, int sector_1k)
1142{
1143 int tbytes = sas << sector_1k;
1144 int j;
1145
1146 /* Adjust OOB values for 1K sector size */
1147 if (sector_1k && (i & 0x01))
1148 tbytes = max(0, tbytes - (int)ctrl->max_oob);
1149 tbytes = min_t(int, tbytes, ctrl->max_oob);
1150
1151 for (j = 0; j < tbytes; j += 4)
1152 oob_reg_write(ctrl, j,
1153 (oob[j + 0] << 24) |
1154 (oob[j + 1] << 16) |
1155 (oob[j + 2] << 8) |
1156 (oob[j + 3] << 0));
1157 return tbytes;
1158}
1159
1160#ifndef __UBOOT__
1161static irqreturn_t brcmnand_ctlrdy_irq(int irq, void *data)
1162{
1163 struct brcmnand_controller *ctrl = data;
1164
1165 /* Discard all NAND_CTLRDY interrupts during DMA */
1166 if (ctrl->dma_pending)
1167 return IRQ_HANDLED;
1168
1169 complete(&ctrl->done);
1170 return IRQ_HANDLED;
1171}
1172
1173/* Handle SoC-specific interrupt hardware */
1174static irqreturn_t brcmnand_irq(int irq, void *data)
1175{
1176 struct brcmnand_controller *ctrl = data;
1177
1178 if (ctrl->soc->ctlrdy_ack(ctrl->soc))
1179 return brcmnand_ctlrdy_irq(irq, data);
1180
1181 return IRQ_NONE;
1182}
1183
1184static irqreturn_t brcmnand_dma_irq(int irq, void *data)
1185{
1186 struct brcmnand_controller *ctrl = data;
1187
1188 complete(&ctrl->dma_done);
1189
1190 return IRQ_HANDLED;
1191}
1192#endif /* __UBOOT__ */
1193
1194static void brcmnand_send_cmd(struct brcmnand_host *host, int cmd)
1195{
1196 struct brcmnand_controller *ctrl = host->ctrl;
1197 int ret;
1198
1199 dev_dbg(ctrl->dev, "send native cmd %d addr_lo 0x%x\n", cmd,
1200 brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS));
1201 BUG_ON(ctrl->cmd_pending != 0);
1202 ctrl->cmd_pending = cmd;
1203
1204 ret = bcmnand_ctrl_poll_status(ctrl, NAND_CTRL_RDY, NAND_CTRL_RDY, 0);
1205 WARN_ON(ret);
1206
1207 mb(); /* flush previous writes */
1208 brcmnand_write_reg(ctrl, BRCMNAND_CMD_START,
1209 cmd << brcmnand_cmd_shift(ctrl));
1210}
1211
1212/***********************************************************************
1213 * NAND MTD API: read/program/erase
1214 ***********************************************************************/
1215
1216static void brcmnand_cmd_ctrl(struct mtd_info *mtd, int dat,
1217 unsigned int ctrl)
1218{
1219 /* intentionally left blank */
1220}
1221
1222static int brcmnand_waitfunc(struct mtd_info *mtd, struct nand_chip *this)
1223{
1224 struct nand_chip *chip = mtd_to_nand(mtd);
1225 struct brcmnand_host *host = nand_get_controller_data(chip);
1226 struct brcmnand_controller *ctrl = host->ctrl;
1227
1228#ifndef __UBOOT__
1229 unsigned long timeo = msecs_to_jiffies(100);
1230
1231 dev_dbg(ctrl->dev, "wait on native cmd %d\n", ctrl->cmd_pending);
1232 if (ctrl->cmd_pending &&
1233 wait_for_completion_timeout(&ctrl->done, timeo) <= 0) {
1234 u32 cmd = brcmnand_read_reg(ctrl, BRCMNAND_CMD_START)
1235 >> brcmnand_cmd_shift(ctrl);
1236
1237 dev_err_ratelimited(ctrl->dev,
1238 "timeout waiting for command %#02x\n", cmd);
1239 dev_err_ratelimited(ctrl->dev, "intfc status %08x\n",
1240 brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS));
1241 }
1242#else
1243 unsigned long timeo = 100; /* 100 msec */
1244 int ret;
1245
1246 dev_dbg(ctrl->dev, "wait on native cmd %d\n", ctrl->cmd_pending);
1247
1248 ret = bcmnand_ctrl_poll_status(ctrl, NAND_CTRL_RDY, NAND_CTRL_RDY, timeo);
1249 WARN_ON(ret);
1250#endif /* __UBOOT__ */
1251
1252 ctrl->cmd_pending = 0;
1253 return brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS) &
1254 INTFC_FLASH_STATUS;
1255}
1256
1257enum {
1258 LLOP_RE = BIT(16),
1259 LLOP_WE = BIT(17),
1260 LLOP_ALE = BIT(18),
1261 LLOP_CLE = BIT(19),
1262 LLOP_RETURN_IDLE = BIT(31),
1263
1264 LLOP_DATA_MASK = GENMASK(15, 0),
1265};
1266
1267static int brcmnand_low_level_op(struct brcmnand_host *host,
1268 enum brcmnand_llop_type type, u32 data,
1269 bool last_op)
1270{
1271 struct mtd_info *mtd = nand_to_mtd(&host->chip);
1272 struct nand_chip *chip = &host->chip;
1273 struct brcmnand_controller *ctrl = host->ctrl;
1274 u32 tmp;
1275
1276 tmp = data & LLOP_DATA_MASK;
1277 switch (type) {
1278 case LL_OP_CMD:
1279 tmp |= LLOP_WE | LLOP_CLE;
1280 break;
1281 case LL_OP_ADDR:
1282 /* WE | ALE */
1283 tmp |= LLOP_WE | LLOP_ALE;
1284 break;
1285 case LL_OP_WR:
1286 /* WE */
1287 tmp |= LLOP_WE;
1288 break;
1289 case LL_OP_RD:
1290 /* RE */
1291 tmp |= LLOP_RE;
1292 break;
1293 }
1294 if (last_op)
1295 /* RETURN_IDLE */
1296 tmp |= LLOP_RETURN_IDLE;
1297
1298 dev_dbg(ctrl->dev, "ll_op cmd %#x\n", tmp);
1299
1300 brcmnand_write_reg(ctrl, BRCMNAND_LL_OP, tmp);
1301 (void)brcmnand_read_reg(ctrl, BRCMNAND_LL_OP);
1302
1303 brcmnand_send_cmd(host, CMD_LOW_LEVEL_OP);
1304 return brcmnand_waitfunc(mtd, chip);
1305}
1306
1307static void brcmnand_cmdfunc(struct mtd_info *mtd, unsigned command,
1308 int column, int page_addr)
1309{
1310 struct nand_chip *chip = mtd_to_nand(mtd);
1311 struct brcmnand_host *host = nand_get_controller_data(chip);
1312 struct brcmnand_controller *ctrl = host->ctrl;
1313 u64 addr = (u64)page_addr << chip->page_shift;
1314 int native_cmd = 0;
1315
1316 if (command == NAND_CMD_READID || command == NAND_CMD_PARAM ||
1317 command == NAND_CMD_RNDOUT)
1318 addr = (u64)column;
1319 /* Avoid propagating a negative, don't-care address */
1320 else if (page_addr < 0)
1321 addr = 0;
1322
1323 dev_dbg(ctrl->dev, "cmd 0x%x addr 0x%llx\n", command,
1324 (unsigned long long)addr);
1325
1326 host->last_cmd = command;
1327 host->last_byte = 0;
1328 host->last_addr = addr;
1329
1330 switch (command) {
1331 case NAND_CMD_RESET:
1332 native_cmd = CMD_FLASH_RESET;
1333 break;
1334 case NAND_CMD_STATUS:
1335 native_cmd = CMD_STATUS_READ;
1336 break;
1337 case NAND_CMD_READID:
1338 native_cmd = CMD_DEVICE_ID_READ;
1339 break;
1340 case NAND_CMD_READOOB:
1341 native_cmd = CMD_SPARE_AREA_READ;
1342 break;
1343 case NAND_CMD_ERASE1:
1344 native_cmd = CMD_BLOCK_ERASE;
1345 brcmnand_wp(mtd, 0);
1346 break;
1347 case NAND_CMD_PARAM:
1348 native_cmd = CMD_PARAMETER_READ;
1349 break;
1350 case NAND_CMD_SET_FEATURES:
1351 case NAND_CMD_GET_FEATURES:
1352 brcmnand_low_level_op(host, LL_OP_CMD, command, false);
1353 brcmnand_low_level_op(host, LL_OP_ADDR, column, false);
1354 break;
1355 case NAND_CMD_RNDOUT:
1356 native_cmd = CMD_PARAMETER_CHANGE_COL;
1357 addr &= ~((u64)(FC_BYTES - 1));
1358 /*
1359 * HW quirk: PARAMETER_CHANGE_COL requires SECTOR_SIZE_1K=0
1360 * NB: hwcfg.sector_size_1k may not be initialized yet
1361 */
1362 if (brcmnand_get_sector_size_1k(host)) {
1363 host->hwcfg.sector_size_1k =
1364 brcmnand_get_sector_size_1k(host);
1365 brcmnand_set_sector_size_1k(host, 0);
1366 }
1367 break;
1368 }
1369
1370 if (!native_cmd)
1371 return;
1372
1373 brcmnand_write_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS,
1374 (host->cs << 16) | ((addr >> 32) & 0xffff));
1375 (void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS);
1376 brcmnand_write_reg(ctrl, BRCMNAND_CMD_ADDRESS, lower_32_bits(addr));
1377 (void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS);
1378
1379 brcmnand_send_cmd(host, native_cmd);
1380 brcmnand_waitfunc(mtd, chip);
1381
1382 if (native_cmd == CMD_PARAMETER_READ ||
1383 native_cmd == CMD_PARAMETER_CHANGE_COL) {
1384 /* Copy flash cache word-wise */
1385 u32 *flash_cache = (u32 *)ctrl->flash_cache;
1386 int i;
1387
1388 brcmnand_soc_data_bus_prepare(ctrl->soc, true);
1389
1390 /*
1391 * Must cache the FLASH_CACHE now, since changes in
1392 * SECTOR_SIZE_1K may invalidate it
1393 */
Philippe Reynes7f28cf62019-03-15 15:14:37 +01001394 for (i = 0; i < FC_WORDS; i++) {
1395 u32 fc;
1396
1397 fc = brcmnand_read_fc(ctrl, i);
1398
Philippe Reynes5aa6cfb2019-03-15 15:14:36 +01001399 /*
1400 * Flash cache is big endian for parameter pages, at
1401 * least on STB SoCs
1402 */
Philippe Reynes7f28cf62019-03-15 15:14:37 +01001403 if (ctrl->parameter_page_big_endian)
1404 flash_cache[i] = be32_to_cpu(fc);
1405 else
1406 flash_cache[i] = le32_to_cpu(fc);
1407 }
Philippe Reynes5aa6cfb2019-03-15 15:14:36 +01001408
1409 brcmnand_soc_data_bus_unprepare(ctrl->soc, true);
1410
1411 /* Cleanup from HW quirk: restore SECTOR_SIZE_1K */
1412 if (host->hwcfg.sector_size_1k)
1413 brcmnand_set_sector_size_1k(host,
1414 host->hwcfg.sector_size_1k);
1415 }
1416
1417 /* Re-enable protection is necessary only after erase */
1418 if (command == NAND_CMD_ERASE1)
1419 brcmnand_wp(mtd, 1);
1420}
1421
1422static uint8_t brcmnand_read_byte(struct mtd_info *mtd)
1423{
1424 struct nand_chip *chip = mtd_to_nand(mtd);
1425 struct brcmnand_host *host = nand_get_controller_data(chip);
1426 struct brcmnand_controller *ctrl = host->ctrl;
1427 uint8_t ret = 0;
1428 int addr, offs;
1429
1430 switch (host->last_cmd) {
1431 case NAND_CMD_READID:
1432 if (host->last_byte < 4)
1433 ret = brcmnand_read_reg(ctrl, BRCMNAND_ID) >>
1434 (24 - (host->last_byte << 3));
1435 else if (host->last_byte < 8)
1436 ret = brcmnand_read_reg(ctrl, BRCMNAND_ID_EXT) >>
1437 (56 - (host->last_byte << 3));
1438 break;
1439
1440 case NAND_CMD_READOOB:
1441 ret = oob_reg_read(ctrl, host->last_byte);
1442 break;
1443
1444 case NAND_CMD_STATUS:
1445 ret = brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS) &
1446 INTFC_FLASH_STATUS;
1447 if (wp_on) /* hide WP status */
1448 ret |= NAND_STATUS_WP;
1449 break;
1450
1451 case NAND_CMD_PARAM:
1452 case NAND_CMD_RNDOUT:
1453 addr = host->last_addr + host->last_byte;
1454 offs = addr & (FC_BYTES - 1);
1455
1456 /* At FC_BYTES boundary, switch to next column */
1457 if (host->last_byte > 0 && offs == 0)
1458 nand_change_read_column_op(chip, addr, NULL, 0, false);
1459
1460 ret = ctrl->flash_cache[offs];
1461 break;
1462 case NAND_CMD_GET_FEATURES:
1463 if (host->last_byte >= ONFI_SUBFEATURE_PARAM_LEN) {
1464 ret = 0;
1465 } else {
1466 bool last = host->last_byte ==
1467 ONFI_SUBFEATURE_PARAM_LEN - 1;
1468 brcmnand_low_level_op(host, LL_OP_RD, 0, last);
1469 ret = brcmnand_read_reg(ctrl, BRCMNAND_LL_RDATA) & 0xff;
1470 }
1471 }
1472
1473 dev_dbg(ctrl->dev, "read byte = 0x%02x\n", ret);
1474 host->last_byte++;
1475
1476 return ret;
1477}
1478
1479static void brcmnand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
1480{
1481 int i;
1482
1483 for (i = 0; i < len; i++, buf++)
1484 *buf = brcmnand_read_byte(mtd);
1485}
1486
1487static void brcmnand_write_buf(struct mtd_info *mtd, const uint8_t *buf,
1488 int len)
1489{
1490 int i;
1491 struct nand_chip *chip = mtd_to_nand(mtd);
1492 struct brcmnand_host *host = nand_get_controller_data(chip);
1493
1494 switch (host->last_cmd) {
1495 case NAND_CMD_SET_FEATURES:
1496 for (i = 0; i < len; i++)
1497 brcmnand_low_level_op(host, LL_OP_WR, buf[i],
1498 (i + 1) == len);
1499 break;
1500 default:
1501 BUG();
1502 break;
1503 }
1504}
1505
1506/**
1507 * Construct a FLASH_DMA descriptor as part of a linked list. You must know the
1508 * following ahead of time:
1509 * - Is this descriptor the beginning or end of a linked list?
1510 * - What is the (DMA) address of the next descriptor in the linked list?
1511 */
1512#ifndef __UBOOT__
1513static int brcmnand_fill_dma_desc(struct brcmnand_host *host,
1514 struct brcm_nand_dma_desc *desc, u64 addr,
1515 dma_addr_t buf, u32 len, u8 dma_cmd,
1516 bool begin, bool end,
1517 dma_addr_t next_desc)
1518{
1519 memset(desc, 0, sizeof(*desc));
1520 /* Descriptors are written in native byte order (wordwise) */
1521 desc->next_desc = lower_32_bits(next_desc);
1522 desc->next_desc_ext = upper_32_bits(next_desc);
1523 desc->cmd_irq = (dma_cmd << 24) |
1524 (end ? (0x03 << 8) : 0) | /* IRQ | STOP */
1525 (!!begin) | ((!!end) << 1); /* head, tail */
1526#ifdef CONFIG_CPU_BIG_ENDIAN
1527 desc->cmd_irq |= 0x01 << 12;
1528#endif
1529 desc->dram_addr = lower_32_bits(buf);
1530 desc->dram_addr_ext = upper_32_bits(buf);
1531 desc->tfr_len = len;
1532 desc->total_len = len;
1533 desc->flash_addr = lower_32_bits(addr);
1534 desc->flash_addr_ext = upper_32_bits(addr);
1535 desc->cs = host->cs;
1536 desc->status_valid = 0x01;
1537 return 0;
1538}
1539
1540/**
1541 * Kick the FLASH_DMA engine, with a given DMA descriptor
1542 */
1543static void brcmnand_dma_run(struct brcmnand_host *host, dma_addr_t desc)
1544{
1545 struct brcmnand_controller *ctrl = host->ctrl;
1546 unsigned long timeo = msecs_to_jiffies(100);
1547
1548 flash_dma_writel(ctrl, FLASH_DMA_FIRST_DESC, lower_32_bits(desc));
1549 (void)flash_dma_readl(ctrl, FLASH_DMA_FIRST_DESC);
1550 flash_dma_writel(ctrl, FLASH_DMA_FIRST_DESC_EXT, upper_32_bits(desc));
1551 (void)flash_dma_readl(ctrl, FLASH_DMA_FIRST_DESC_EXT);
1552
1553 /* Start FLASH_DMA engine */
1554 ctrl->dma_pending = true;
1555 mb(); /* flush previous writes */
1556 flash_dma_writel(ctrl, FLASH_DMA_CTRL, 0x03); /* wake | run */
1557
1558 if (wait_for_completion_timeout(&ctrl->dma_done, timeo) <= 0) {
1559 dev_err(ctrl->dev,
1560 "timeout waiting for DMA; status %#x, error status %#x\n",
1561 flash_dma_readl(ctrl, FLASH_DMA_STATUS),
1562 flash_dma_readl(ctrl, FLASH_DMA_ERROR_STATUS));
1563 }
1564 ctrl->dma_pending = false;
1565 flash_dma_writel(ctrl, FLASH_DMA_CTRL, 0); /* force stop */
1566}
1567
1568static int brcmnand_dma_trans(struct brcmnand_host *host, u64 addr, u32 *buf,
1569 u32 len, u8 dma_cmd)
1570{
1571 struct brcmnand_controller *ctrl = host->ctrl;
1572 dma_addr_t buf_pa;
1573 int dir = dma_cmd == CMD_PAGE_READ ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1574
1575 buf_pa = dma_map_single(ctrl->dev, buf, len, dir);
1576 if (dma_mapping_error(ctrl->dev, buf_pa)) {
1577 dev_err(ctrl->dev, "unable to map buffer for DMA\n");
1578 return -ENOMEM;
1579 }
1580
1581 brcmnand_fill_dma_desc(host, ctrl->dma_desc, addr, buf_pa, len,
1582 dma_cmd, true, true, 0);
1583
1584 brcmnand_dma_run(host, ctrl->dma_pa);
1585
1586 dma_unmap_single(ctrl->dev, buf_pa, len, dir);
1587
1588 if (ctrl->dma_desc->status_valid & FLASH_DMA_ECC_ERROR)
1589 return -EBADMSG;
1590 else if (ctrl->dma_desc->status_valid & FLASH_DMA_CORR_ERROR)
1591 return -EUCLEAN;
1592
1593 return 0;
1594}
1595#endif /* __UBOOT__ */
1596
1597/*
1598 * Assumes proper CS is already set
1599 */
1600static int brcmnand_read_by_pio(struct mtd_info *mtd, struct nand_chip *chip,
1601 u64 addr, unsigned int trans, u32 *buf,
1602 u8 *oob, u64 *err_addr)
1603{
1604 struct brcmnand_host *host = nand_get_controller_data(chip);
1605 struct brcmnand_controller *ctrl = host->ctrl;
1606 int i, j, ret = 0;
1607
1608 /* Clear error addresses */
1609 brcmnand_write_reg(ctrl, BRCMNAND_UNCORR_ADDR, 0);
1610 brcmnand_write_reg(ctrl, BRCMNAND_CORR_ADDR, 0);
1611 brcmnand_write_reg(ctrl, BRCMNAND_UNCORR_EXT_ADDR, 0);
1612 brcmnand_write_reg(ctrl, BRCMNAND_CORR_EXT_ADDR, 0);
1613
1614 brcmnand_write_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS,
1615 (host->cs << 16) | ((addr >> 32) & 0xffff));
1616 (void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS);
1617
1618 for (i = 0; i < trans; i++, addr += FC_BYTES) {
1619 brcmnand_write_reg(ctrl, BRCMNAND_CMD_ADDRESS,
1620 lower_32_bits(addr));
1621 (void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS);
1622 /* SPARE_AREA_READ does not use ECC, so just use PAGE_READ */
1623 brcmnand_send_cmd(host, CMD_PAGE_READ);
1624 brcmnand_waitfunc(mtd, chip);
1625
1626 if (likely(buf)) {
1627 brcmnand_soc_data_bus_prepare(ctrl->soc, false);
1628
1629 for (j = 0; j < FC_WORDS; j++, buf++)
1630 *buf = brcmnand_read_fc(ctrl, j);
1631
1632 brcmnand_soc_data_bus_unprepare(ctrl->soc, false);
1633 }
1634
1635 if (oob)
1636 oob += read_oob_from_regs(ctrl, i, oob,
1637 mtd->oobsize / trans,
1638 host->hwcfg.sector_size_1k);
1639
1640 if (!ret) {
1641 *err_addr = brcmnand_read_reg(ctrl,
1642 BRCMNAND_UNCORR_ADDR) |
1643 ((u64)(brcmnand_read_reg(ctrl,
1644 BRCMNAND_UNCORR_EXT_ADDR)
1645 & 0xffff) << 32);
1646 if (*err_addr)
1647 ret = -EBADMSG;
1648 }
1649
1650 if (!ret) {
1651 *err_addr = brcmnand_read_reg(ctrl,
1652 BRCMNAND_CORR_ADDR) |
1653 ((u64)(brcmnand_read_reg(ctrl,
1654 BRCMNAND_CORR_EXT_ADDR)
1655 & 0xffff) << 32);
1656 if (*err_addr)
1657 ret = -EUCLEAN;
1658 }
1659 }
1660
1661 return ret;
1662}
1663
1664/*
1665 * Check a page to see if it is erased (w/ bitflips) after an uncorrectable ECC
1666 * error
1667 *
1668 * Because the HW ECC signals an ECC error if an erase paged has even a single
1669 * bitflip, we must check each ECC error to see if it is actually an erased
1670 * page with bitflips, not a truly corrupted page.
1671 *
1672 * On a real error, return a negative error code (-EBADMSG for ECC error), and
1673 * buf will contain raw data.
1674 * Otherwise, buf gets filled with 0xffs and return the maximum number of
1675 * bitflips-per-ECC-sector to the caller.
1676 *
1677 */
1678static int brcmstb_nand_verify_erased_page(struct mtd_info *mtd,
1679 struct nand_chip *chip, void *buf, u64 addr)
1680{
1681 int i, sas;
1682 void *oob = chip->oob_poi;
1683 int bitflips = 0;
1684 int page = addr >> chip->page_shift;
1685 int ret;
1686
1687 if (!buf) {
1688#ifndef __UBOOT__
1689 buf = chip->data_buf;
1690#else
1691 buf = chip->buffers->databuf;
1692#endif
1693 /* Invalidate page cache */
1694 chip->pagebuf = -1;
1695 }
1696
1697 sas = mtd->oobsize / chip->ecc.steps;
1698
1699 /* read without ecc for verification */
1700 ret = chip->ecc.read_page_raw(mtd, chip, buf, true, page);
1701 if (ret)
1702 return ret;
1703
1704 for (i = 0; i < chip->ecc.steps; i++, oob += sas) {
1705 ret = nand_check_erased_ecc_chunk(buf, chip->ecc.size,
1706 oob, sas, NULL, 0,
1707 chip->ecc.strength);
1708 if (ret < 0)
1709 return ret;
1710
1711 bitflips = max(bitflips, ret);
1712 }
1713
1714 return bitflips;
1715}
1716
1717static int brcmnand_read(struct mtd_info *mtd, struct nand_chip *chip,
1718 u64 addr, unsigned int trans, u32 *buf, u8 *oob)
1719{
1720 struct brcmnand_host *host = nand_get_controller_data(chip);
1721 struct brcmnand_controller *ctrl = host->ctrl;
1722 u64 err_addr = 0;
1723 int err;
1724 bool retry = true;
1725
1726 dev_dbg(ctrl->dev, "read %llx -> %p\n", (unsigned long long)addr, buf);
1727
1728try_dmaread:
1729 brcmnand_write_reg(ctrl, BRCMNAND_UNCORR_COUNT, 0);
1730
1731#ifndef __UBOOT__
1732 if (has_flash_dma(ctrl) && !oob && flash_dma_buf_ok(buf)) {
1733 err = brcmnand_dma_trans(host, addr, buf, trans * FC_BYTES,
1734 CMD_PAGE_READ);
1735 if (err) {
1736 if (mtd_is_bitflip_or_eccerr(err))
1737 err_addr = addr;
1738 else
1739 return -EIO;
1740 }
1741 } else {
1742 if (oob)
1743 memset(oob, 0x99, mtd->oobsize);
1744
1745 err = brcmnand_read_by_pio(mtd, chip, addr, trans, buf,
1746 oob, &err_addr);
1747 }
1748#else
1749 if (oob)
1750 memset(oob, 0x99, mtd->oobsize);
1751
1752 err = brcmnand_read_by_pio(mtd, chip, addr, trans, buf,
1753 oob, &err_addr);
1754#endif /* __UBOOT__ */
1755
1756 if (mtd_is_eccerr(err)) {
1757 /*
1758 * On controller version and 7.0, 7.1 , DMA read after a
1759 * prior PIO read that reported uncorrectable error,
1760 * the DMA engine captures this error following DMA read
1761 * cleared only on subsequent DMA read, so just retry once
1762 * to clear a possible false error reported for current DMA
1763 * read
1764 */
1765 if ((ctrl->nand_version == 0x0700) ||
1766 (ctrl->nand_version == 0x0701)) {
1767 if (retry) {
1768 retry = false;
1769 goto try_dmaread;
1770 }
1771 }
1772
1773 /*
1774 * Controller version 7.2 has hw encoder to detect erased page
1775 * bitflips, apply sw verification for older controllers only
1776 */
1777 if (ctrl->nand_version < 0x0702) {
1778 err = brcmstb_nand_verify_erased_page(mtd, chip, buf,
1779 addr);
1780 /* erased page bitflips corrected */
1781 if (err >= 0)
1782 return err;
1783 }
1784
1785 dev_dbg(ctrl->dev, "uncorrectable error at 0x%llx\n",
1786 (unsigned long long)err_addr);
1787 mtd->ecc_stats.failed++;
1788 /* NAND layer expects zero on ECC errors */
1789 return 0;
1790 }
1791
1792 if (mtd_is_bitflip(err)) {
1793 unsigned int corrected = brcmnand_count_corrected(ctrl);
1794
1795 dev_dbg(ctrl->dev, "corrected error at 0x%llx\n",
1796 (unsigned long long)err_addr);
1797 mtd->ecc_stats.corrected += corrected;
1798 /* Always exceed the software-imposed threshold */
1799 return max(mtd->bitflip_threshold, corrected);
1800 }
1801
1802 return 0;
1803}
1804
1805static int brcmnand_read_page(struct mtd_info *mtd, struct nand_chip *chip,
1806 uint8_t *buf, int oob_required, int page)
1807{
1808 struct brcmnand_host *host = nand_get_controller_data(chip);
1809 u8 *oob = oob_required ? (u8 *)chip->oob_poi : NULL;
1810
1811 nand_read_page_op(chip, page, 0, NULL, 0);
1812
1813 return brcmnand_read(mtd, chip, host->last_addr,
1814 mtd->writesize >> FC_SHIFT, (u32 *)buf, oob);
1815}
1816
1817static int brcmnand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1818 uint8_t *buf, int oob_required, int page)
1819{
1820 struct brcmnand_host *host = nand_get_controller_data(chip);
1821 u8 *oob = oob_required ? (u8 *)chip->oob_poi : NULL;
1822 int ret;
1823
1824 nand_read_page_op(chip, page, 0, NULL, 0);
1825
1826 brcmnand_set_ecc_enabled(host, 0);
1827 ret = brcmnand_read(mtd, chip, host->last_addr,
1828 mtd->writesize >> FC_SHIFT, (u32 *)buf, oob);
1829 brcmnand_set_ecc_enabled(host, 1);
1830 return ret;
1831}
1832
1833static int brcmnand_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
1834 int page)
1835{
1836 return brcmnand_read(mtd, chip, (u64)page << chip->page_shift,
1837 mtd->writesize >> FC_SHIFT,
1838 NULL, (u8 *)chip->oob_poi);
1839}
1840
1841static int brcmnand_read_oob_raw(struct mtd_info *mtd, struct nand_chip *chip,
1842 int page)
1843{
1844 struct brcmnand_host *host = nand_get_controller_data(chip);
1845
1846 brcmnand_set_ecc_enabled(host, 0);
1847 brcmnand_read(mtd, chip, (u64)page << chip->page_shift,
1848 mtd->writesize >> FC_SHIFT,
1849 NULL, (u8 *)chip->oob_poi);
1850 brcmnand_set_ecc_enabled(host, 1);
1851 return 0;
1852}
1853
1854static int brcmnand_write(struct mtd_info *mtd, struct nand_chip *chip,
1855 u64 addr, const u32 *buf, u8 *oob)
1856{
1857 struct brcmnand_host *host = nand_get_controller_data(chip);
1858 struct brcmnand_controller *ctrl = host->ctrl;
1859 unsigned int i, j, trans = mtd->writesize >> FC_SHIFT;
1860 int status, ret = 0;
1861
1862 dev_dbg(ctrl->dev, "write %llx <- %p\n", (unsigned long long)addr, buf);
1863
1864 if (unlikely((unsigned long)buf & 0x03)) {
1865 dev_warn(ctrl->dev, "unaligned buffer: %p\n", buf);
1866 buf = (u32 *)((unsigned long)buf & ~0x03);
1867 }
1868
1869 brcmnand_wp(mtd, 0);
1870
1871 for (i = 0; i < ctrl->max_oob; i += 4)
1872 oob_reg_write(ctrl, i, 0xffffffff);
1873
1874#ifndef __UBOOT__
1875 if (has_flash_dma(ctrl) && !oob && flash_dma_buf_ok(buf)) {
1876 if (brcmnand_dma_trans(host, addr, (u32 *)buf,
1877 mtd->writesize, CMD_PROGRAM_PAGE))
1878 ret = -EIO;
1879 goto out;
1880 }
1881#endif /* __UBOOT__ */
1882
1883 brcmnand_write_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS,
1884 (host->cs << 16) | ((addr >> 32) & 0xffff));
1885 (void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS);
1886
1887 for (i = 0; i < trans; i++, addr += FC_BYTES) {
1888 /* full address MUST be set before populating FC */
1889 brcmnand_write_reg(ctrl, BRCMNAND_CMD_ADDRESS,
1890 lower_32_bits(addr));
1891 (void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS);
1892
1893 if (buf) {
1894 brcmnand_soc_data_bus_prepare(ctrl->soc, false);
1895
1896 for (j = 0; j < FC_WORDS; j++, buf++)
1897 brcmnand_write_fc(ctrl, j, *buf);
1898
1899 brcmnand_soc_data_bus_unprepare(ctrl->soc, false);
1900 } else if (oob) {
1901 for (j = 0; j < FC_WORDS; j++)
1902 brcmnand_write_fc(ctrl, j, 0xffffffff);
1903 }
1904
1905 if (oob) {
1906 oob += write_oob_to_regs(ctrl, i, oob,
1907 mtd->oobsize / trans,
1908 host->hwcfg.sector_size_1k);
1909 }
1910
1911 /* we cannot use SPARE_AREA_PROGRAM when PARTIAL_PAGE_EN=0 */
1912 brcmnand_send_cmd(host, CMD_PROGRAM_PAGE);
1913 status = brcmnand_waitfunc(mtd, chip);
1914
1915 if (status & NAND_STATUS_FAIL) {
1916 dev_info(ctrl->dev, "program failed at %llx\n",
1917 (unsigned long long)addr);
1918 ret = -EIO;
1919 goto out;
1920 }
1921 }
1922out:
1923 brcmnand_wp(mtd, 1);
1924 return ret;
1925}
1926
1927static int brcmnand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
1928 const uint8_t *buf, int oob_required, int page)
1929{
1930 struct brcmnand_host *host = nand_get_controller_data(chip);
1931 void *oob = oob_required ? chip->oob_poi : NULL;
1932
1933 nand_prog_page_begin_op(chip, page, 0, NULL, 0);
1934 brcmnand_write(mtd, chip, host->last_addr, (const u32 *)buf, oob);
1935
1936 return nand_prog_page_end_op(chip);
1937}
1938
1939static int brcmnand_write_page_raw(struct mtd_info *mtd,
1940 struct nand_chip *chip, const uint8_t *buf,
1941 int oob_required, int page)
1942{
1943 struct brcmnand_host *host = nand_get_controller_data(chip);
1944 void *oob = oob_required ? chip->oob_poi : NULL;
1945
1946 nand_prog_page_begin_op(chip, page, 0, NULL, 0);
1947 brcmnand_set_ecc_enabled(host, 0);
1948 brcmnand_write(mtd, chip, host->last_addr, (const u32 *)buf, oob);
1949 brcmnand_set_ecc_enabled(host, 1);
1950
1951 return nand_prog_page_end_op(chip);
1952}
1953
1954static int brcmnand_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
1955 int page)
1956{
1957 return brcmnand_write(mtd, chip, (u64)page << chip->page_shift,
1958 NULL, chip->oob_poi);
1959}
1960
1961static int brcmnand_write_oob_raw(struct mtd_info *mtd, struct nand_chip *chip,
1962 int page)
1963{
1964 struct brcmnand_host *host = nand_get_controller_data(chip);
1965 int ret;
1966
1967 brcmnand_set_ecc_enabled(host, 0);
1968 ret = brcmnand_write(mtd, chip, (u64)page << chip->page_shift, NULL,
1969 (u8 *)chip->oob_poi);
1970 brcmnand_set_ecc_enabled(host, 1);
1971
1972 return ret;
1973}
1974
1975/***********************************************************************
1976 * Per-CS setup (1 NAND device)
1977 ***********************************************************************/
1978
1979static int brcmnand_set_cfg(struct brcmnand_host *host,
1980 struct brcmnand_cfg *cfg)
1981{
1982 struct brcmnand_controller *ctrl = host->ctrl;
1983 struct nand_chip *chip = &host->chip;
1984 u16 cfg_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_CFG);
1985 u16 cfg_ext_offs = brcmnand_cs_offset(ctrl, host->cs,
1986 BRCMNAND_CS_CFG_EXT);
1987 u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs,
1988 BRCMNAND_CS_ACC_CONTROL);
1989 u8 block_size = 0, page_size = 0, device_size = 0;
1990 u32 tmp;
1991
1992 if (ctrl->block_sizes) {
1993 int i, found;
1994
1995 for (i = 0, found = 0; ctrl->block_sizes[i]; i++)
1996 if (ctrl->block_sizes[i] * 1024 == cfg->block_size) {
1997 block_size = i;
1998 found = 1;
1999 }
2000 if (!found) {
2001 dev_warn(ctrl->dev, "invalid block size %u\n",
2002 cfg->block_size);
2003 return -EINVAL;
2004 }
2005 } else {
2006 block_size = ffs(cfg->block_size) - ffs(BRCMNAND_MIN_BLOCKSIZE);
2007 }
2008
2009 if (cfg->block_size < BRCMNAND_MIN_BLOCKSIZE || (ctrl->max_block_size &&
2010 cfg->block_size > ctrl->max_block_size)) {
2011 dev_warn(ctrl->dev, "invalid block size %u\n",
2012 cfg->block_size);
2013 block_size = 0;
2014 }
2015
2016 if (ctrl->page_sizes) {
2017 int i, found;
2018
2019 for (i = 0, found = 0; ctrl->page_sizes[i]; i++)
2020 if (ctrl->page_sizes[i] == cfg->page_size) {
2021 page_size = i;
2022 found = 1;
2023 }
2024 if (!found) {
2025 dev_warn(ctrl->dev, "invalid page size %u\n",
2026 cfg->page_size);
2027 return -EINVAL;
2028 }
2029 } else {
2030 page_size = ffs(cfg->page_size) - ffs(BRCMNAND_MIN_PAGESIZE);
2031 }
2032
2033 if (cfg->page_size < BRCMNAND_MIN_PAGESIZE || (ctrl->max_page_size &&
2034 cfg->page_size > ctrl->max_page_size)) {
2035 dev_warn(ctrl->dev, "invalid page size %u\n", cfg->page_size);
2036 return -EINVAL;
2037 }
2038
2039 if (fls64(cfg->device_size) < fls64(BRCMNAND_MIN_DEVSIZE)) {
2040 dev_warn(ctrl->dev, "invalid device size 0x%llx\n",
2041 (unsigned long long)cfg->device_size);
2042 return -EINVAL;
2043 }
2044 device_size = fls64(cfg->device_size) - fls64(BRCMNAND_MIN_DEVSIZE);
2045
2046 tmp = (cfg->blk_adr_bytes << CFG_BLK_ADR_BYTES_SHIFT) |
2047 (cfg->col_adr_bytes << CFG_COL_ADR_BYTES_SHIFT) |
2048 (cfg->ful_adr_bytes << CFG_FUL_ADR_BYTES_SHIFT) |
2049 (!!(cfg->device_width == 16) << CFG_BUS_WIDTH_SHIFT) |
2050 (device_size << CFG_DEVICE_SIZE_SHIFT);
2051 if (cfg_offs == cfg_ext_offs) {
2052 tmp |= (page_size << CFG_PAGE_SIZE_SHIFT) |
2053 (block_size << CFG_BLK_SIZE_SHIFT);
2054 nand_writereg(ctrl, cfg_offs, tmp);
2055 } else {
2056 nand_writereg(ctrl, cfg_offs, tmp);
2057 tmp = (page_size << CFG_EXT_PAGE_SIZE_SHIFT) |
2058 (block_size << CFG_EXT_BLK_SIZE_SHIFT);
2059 nand_writereg(ctrl, cfg_ext_offs, tmp);
2060 }
2061
2062 tmp = nand_readreg(ctrl, acc_control_offs);
2063 tmp &= ~brcmnand_ecc_level_mask(ctrl);
2064 tmp |= cfg->ecc_level << NAND_ACC_CONTROL_ECC_SHIFT;
2065 tmp &= ~brcmnand_spare_area_mask(ctrl);
2066 tmp |= cfg->spare_area_size;
2067 nand_writereg(ctrl, acc_control_offs, tmp);
2068
2069 brcmnand_set_sector_size_1k(host, cfg->sector_size_1k);
2070
2071 /* threshold = ceil(BCH-level * 0.75) */
2072 brcmnand_wr_corr_thresh(host, DIV_ROUND_UP(chip->ecc.strength * 3, 4));
2073
2074 return 0;
2075}
2076
2077static void brcmnand_print_cfg(struct brcmnand_host *host,
2078 char *buf, struct brcmnand_cfg *cfg)
2079{
2080 buf += sprintf(buf,
2081 "%lluMiB total, %uKiB blocks, %u%s pages, %uB OOB, %u-bit",
2082 (unsigned long long)cfg->device_size >> 20,
2083 cfg->block_size >> 10,
2084 cfg->page_size >= 1024 ? cfg->page_size >> 10 : cfg->page_size,
2085 cfg->page_size >= 1024 ? "KiB" : "B",
2086 cfg->spare_area_size, cfg->device_width);
2087
2088 /* Account for Hamming ECC and for BCH 512B vs 1KiB sectors */
2089 if (is_hamming_ecc(host->ctrl, cfg))
2090 sprintf(buf, ", Hamming ECC");
2091 else if (cfg->sector_size_1k)
2092 sprintf(buf, ", BCH-%u (1KiB sector)", cfg->ecc_level << 1);
2093 else
2094 sprintf(buf, ", BCH-%u", cfg->ecc_level);
2095}
2096
2097/*
2098 * Minimum number of bytes to address a page. Calculated as:
2099 * roundup(log2(size / page-size) / 8)
2100 *
2101 * NB: the following does not "round up" for non-power-of-2 'size'; but this is
2102 * OK because many other things will break if 'size' is irregular...
2103 */
2104static inline int get_blk_adr_bytes(u64 size, u32 writesize)
2105{
2106 return ALIGN(ilog2(size) - ilog2(writesize), 8) >> 3;
2107}
2108
2109static int brcmnand_setup_dev(struct brcmnand_host *host)
2110{
2111 struct mtd_info *mtd = nand_to_mtd(&host->chip);
2112 struct nand_chip *chip = &host->chip;
2113 struct brcmnand_controller *ctrl = host->ctrl;
2114 struct brcmnand_cfg *cfg = &host->hwcfg;
2115 char msg[128];
2116 u32 offs, tmp, oob_sector;
2117 int ret;
2118
2119 memset(cfg, 0, sizeof(*cfg));
2120
2121#ifndef __UBOOT__
2122 ret = of_property_read_u32(nand_get_flash_node(chip),
2123 "brcm,nand-oob-sector-size",
2124 &oob_sector);
2125#else
2126 ret = ofnode_read_u32(nand_get_flash_node(chip),
2127 "brcm,nand-oob-sector-size",
2128 &oob_sector);
2129#endif /* __UBOOT__ */
2130 if (ret) {
2131 /* Use detected size */
2132 cfg->spare_area_size = mtd->oobsize /
2133 (mtd->writesize >> FC_SHIFT);
2134 } else {
2135 cfg->spare_area_size = oob_sector;
2136 }
2137 if (cfg->spare_area_size > ctrl->max_oob)
2138 cfg->spare_area_size = ctrl->max_oob;
2139 /*
2140 * Set oobsize to be consistent with controller's spare_area_size, as
2141 * the rest is inaccessible.
2142 */
2143 mtd->oobsize = cfg->spare_area_size * (mtd->writesize >> FC_SHIFT);
2144
2145 cfg->device_size = mtd->size;
2146 cfg->block_size = mtd->erasesize;
2147 cfg->page_size = mtd->writesize;
2148 cfg->device_width = (chip->options & NAND_BUSWIDTH_16) ? 16 : 8;
2149 cfg->col_adr_bytes = 2;
2150 cfg->blk_adr_bytes = get_blk_adr_bytes(mtd->size, mtd->writesize);
2151
2152 if (chip->ecc.mode != NAND_ECC_HW) {
2153 dev_err(ctrl->dev, "only HW ECC supported; selected: %d\n",
2154 chip->ecc.mode);
2155 return -EINVAL;
2156 }
2157
2158 if (chip->ecc.algo == NAND_ECC_UNKNOWN) {
2159 if (chip->ecc.strength == 1 && chip->ecc.size == 512)
2160 /* Default to Hamming for 1-bit ECC, if unspecified */
2161 chip->ecc.algo = NAND_ECC_HAMMING;
2162 else
2163 /* Otherwise, BCH */
2164 chip->ecc.algo = NAND_ECC_BCH;
2165 }
2166
2167 if (chip->ecc.algo == NAND_ECC_HAMMING && (chip->ecc.strength != 1 ||
2168 chip->ecc.size != 512)) {
2169 dev_err(ctrl->dev, "invalid Hamming params: %d bits per %d bytes\n",
2170 chip->ecc.strength, chip->ecc.size);
2171 return -EINVAL;
2172 }
2173
2174 switch (chip->ecc.size) {
2175 case 512:
2176 if (chip->ecc.algo == NAND_ECC_HAMMING)
2177 cfg->ecc_level = 15;
2178 else
2179 cfg->ecc_level = chip->ecc.strength;
2180 cfg->sector_size_1k = 0;
2181 break;
2182 case 1024:
2183 if (!(ctrl->features & BRCMNAND_HAS_1K_SECTORS)) {
2184 dev_err(ctrl->dev, "1KB sectors not supported\n");
2185 return -EINVAL;
2186 }
2187 if (chip->ecc.strength & 0x1) {
2188 dev_err(ctrl->dev,
2189 "odd ECC not supported with 1KB sectors\n");
2190 return -EINVAL;
2191 }
2192
2193 cfg->ecc_level = chip->ecc.strength >> 1;
2194 cfg->sector_size_1k = 1;
2195 break;
2196 default:
2197 dev_err(ctrl->dev, "unsupported ECC size: %d\n",
2198 chip->ecc.size);
2199 return -EINVAL;
2200 }
2201
2202 cfg->ful_adr_bytes = cfg->blk_adr_bytes;
2203 if (mtd->writesize > 512)
2204 cfg->ful_adr_bytes += cfg->col_adr_bytes;
2205 else
2206 cfg->ful_adr_bytes += 1;
2207
2208 ret = brcmnand_set_cfg(host, cfg);
2209 if (ret)
2210 return ret;
2211
2212 brcmnand_set_ecc_enabled(host, 1);
2213
2214 brcmnand_print_cfg(host, msg, cfg);
2215 dev_info(ctrl->dev, "detected %s\n", msg);
2216
2217 /* Configure ACC_CONTROL */
2218 offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_ACC_CONTROL);
2219 tmp = nand_readreg(ctrl, offs);
2220 tmp &= ~ACC_CONTROL_PARTIAL_PAGE;
2221 tmp &= ~ACC_CONTROL_RD_ERASED;
2222
2223 /* We need to turn on Read from erased paged protected by ECC */
2224 if (ctrl->nand_version >= 0x0702)
2225 tmp |= ACC_CONTROL_RD_ERASED;
2226 tmp &= ~ACC_CONTROL_FAST_PGM_RDIN;
2227 if (ctrl->features & BRCMNAND_HAS_PREFETCH)
2228 tmp &= ~ACC_CONTROL_PREFETCH;
2229
2230 nand_writereg(ctrl, offs, tmp);
2231
2232 return 0;
2233}
2234
2235#ifndef __UBOOT__
2236static int brcmnand_init_cs(struct brcmnand_host *host, struct device_node *dn)
2237#else
2238static int brcmnand_init_cs(struct brcmnand_host *host, ofnode dn)
2239#endif
2240{
2241 struct brcmnand_controller *ctrl = host->ctrl;
2242#ifndef __UBOOT__
2243 struct platform_device *pdev = host->pdev;
2244#else
2245 struct udevice *pdev = host->pdev;
2246#endif /* __UBOOT__ */
2247 struct mtd_info *mtd;
2248 struct nand_chip *chip;
2249 int ret;
2250 u16 cfg_offs;
2251
2252#ifndef __UBOOT__
2253 ret = of_property_read_u32(dn, "reg", &host->cs);
2254#else
2255 ret = ofnode_read_s32(dn, "reg", &host->cs);
2256#endif
2257 if (ret) {
2258 dev_err(&pdev->dev, "can't get chip-select\n");
2259 return -ENXIO;
2260 }
2261
2262 mtd = nand_to_mtd(&host->chip);
2263 chip = &host->chip;
2264
2265 nand_set_flash_node(chip, dn);
2266 nand_set_controller_data(chip, host);
2267#ifndef __UBOOT__
2268 mtd->name = devm_kasprintf(&pdev->dev, GFP_KERNEL, "brcmnand.%d",
2269 host->cs);
2270#else
2271 mtd->name = devm_kasprintf(pdev, GFP_KERNEL, "brcmnand.%d",
2272 host->cs);
2273#endif /* __UBOOT__ */
2274 if (!mtd->name)
2275 return -ENOMEM;
2276
2277 mtd->owner = THIS_MODULE;
2278#ifndef __UBOOT__
2279 mtd->dev.parent = &pdev->dev;
2280#else
2281 mtd->dev->parent = pdev;
2282#endif /* __UBOOT__ */
2283
2284 chip->IO_ADDR_R = (void __iomem *)0xdeadbeef;
2285 chip->IO_ADDR_W = (void __iomem *)0xdeadbeef;
2286
2287 chip->cmd_ctrl = brcmnand_cmd_ctrl;
2288 chip->cmdfunc = brcmnand_cmdfunc;
2289 chip->waitfunc = brcmnand_waitfunc;
2290 chip->read_byte = brcmnand_read_byte;
2291 chip->read_buf = brcmnand_read_buf;
2292 chip->write_buf = brcmnand_write_buf;
2293
2294 chip->ecc.mode = NAND_ECC_HW;
2295 chip->ecc.read_page = brcmnand_read_page;
2296 chip->ecc.write_page = brcmnand_write_page;
2297 chip->ecc.read_page_raw = brcmnand_read_page_raw;
2298 chip->ecc.write_page_raw = brcmnand_write_page_raw;
2299 chip->ecc.write_oob_raw = brcmnand_write_oob_raw;
2300 chip->ecc.read_oob_raw = brcmnand_read_oob_raw;
2301 chip->ecc.read_oob = brcmnand_read_oob;
2302 chip->ecc.write_oob = brcmnand_write_oob;
2303
2304 chip->controller = &ctrl->controller;
2305
2306 /*
2307 * The bootloader might have configured 16bit mode but
2308 * NAND READID command only works in 8bit mode. We force
2309 * 8bit mode here to ensure that NAND READID commands works.
2310 */
2311 cfg_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_CFG);
2312 nand_writereg(ctrl, cfg_offs,
2313 nand_readreg(ctrl, cfg_offs) & ~CFG_BUS_WIDTH);
2314
2315 ret = nand_scan_ident(mtd, 1, NULL);
2316 if (ret)
2317 return ret;
2318
2319 chip->options |= NAND_NO_SUBPAGE_WRITE;
2320 /*
2321 * Avoid (for instance) kmap()'d buffers from JFFS2, which we can't DMA
2322 * to/from, and have nand_base pass us a bounce buffer instead, as
2323 * needed.
2324 */
2325 chip->options |= NAND_USE_BOUNCE_BUFFER;
2326
2327 if (chip->bbt_options & NAND_BBT_USE_FLASH)
2328 chip->bbt_options |= NAND_BBT_NO_OOB;
2329
2330 if (brcmnand_setup_dev(host))
2331 return -ENXIO;
2332
2333 chip->ecc.size = host->hwcfg.sector_size_1k ? 1024 : 512;
2334 /* only use our internal HW threshold */
2335 mtd->bitflip_threshold = 1;
2336
William Zhang1100e492019-09-04 10:51:13 -07002337 chip->ecc.layout = brcmstb_choose_ecc_layout(host);
2338 if (!chip->ecc.layout)
2339 return -ENXIO;
Philippe Reynes5aa6cfb2019-03-15 15:14:36 +01002340
2341 ret = nand_scan_tail(mtd);
2342 if (ret)
2343 return ret;
2344
2345#ifndef __UBOOT__
2346 ret = mtd_device_register(mtd, NULL, 0);
2347 if (ret)
2348 nand_cleanup(chip);
2349#else
2350 ret = nand_register(0, mtd);
2351#endif /* __UBOOT__ */
2352
2353 return ret;
2354}
2355
2356#ifndef __UBOOT__
2357static void brcmnand_save_restore_cs_config(struct brcmnand_host *host,
2358 int restore)
2359{
2360 struct brcmnand_controller *ctrl = host->ctrl;
2361 u16 cfg_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_CFG);
2362 u16 cfg_ext_offs = brcmnand_cs_offset(ctrl, host->cs,
2363 BRCMNAND_CS_CFG_EXT);
2364 u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs,
2365 BRCMNAND_CS_ACC_CONTROL);
2366 u16 t1_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_TIMING1);
2367 u16 t2_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_TIMING2);
2368
2369 if (restore) {
2370 nand_writereg(ctrl, cfg_offs, host->hwcfg.config);
2371 if (cfg_offs != cfg_ext_offs)
2372 nand_writereg(ctrl, cfg_ext_offs,
2373 host->hwcfg.config_ext);
2374 nand_writereg(ctrl, acc_control_offs, host->hwcfg.acc_control);
2375 nand_writereg(ctrl, t1_offs, host->hwcfg.timing_1);
2376 nand_writereg(ctrl, t2_offs, host->hwcfg.timing_2);
2377 } else {
2378 host->hwcfg.config = nand_readreg(ctrl, cfg_offs);
2379 if (cfg_offs != cfg_ext_offs)
2380 host->hwcfg.config_ext =
2381 nand_readreg(ctrl, cfg_ext_offs);
2382 host->hwcfg.acc_control = nand_readreg(ctrl, acc_control_offs);
2383 host->hwcfg.timing_1 = nand_readreg(ctrl, t1_offs);
2384 host->hwcfg.timing_2 = nand_readreg(ctrl, t2_offs);
2385 }
2386}
2387
2388static int brcmnand_suspend(struct device *dev)
2389{
2390 struct brcmnand_controller *ctrl = dev_get_drvdata(dev);
2391 struct brcmnand_host *host;
2392
2393 list_for_each_entry(host, &ctrl->host_list, node)
2394 brcmnand_save_restore_cs_config(host, 0);
2395
2396 ctrl->nand_cs_nand_select = brcmnand_read_reg(ctrl, BRCMNAND_CS_SELECT);
2397 ctrl->nand_cs_nand_xor = brcmnand_read_reg(ctrl, BRCMNAND_CS_XOR);
2398 ctrl->corr_stat_threshold =
2399 brcmnand_read_reg(ctrl, BRCMNAND_CORR_THRESHOLD);
2400
2401 if (has_flash_dma(ctrl))
2402 ctrl->flash_dma_mode = flash_dma_readl(ctrl, FLASH_DMA_MODE);
2403
2404 return 0;
2405}
2406
2407static int brcmnand_resume(struct device *dev)
2408{
2409 struct brcmnand_controller *ctrl = dev_get_drvdata(dev);
2410 struct brcmnand_host *host;
2411
2412 if (has_flash_dma(ctrl)) {
2413 flash_dma_writel(ctrl, FLASH_DMA_MODE, ctrl->flash_dma_mode);
2414 flash_dma_writel(ctrl, FLASH_DMA_ERROR_STATUS, 0);
2415 }
2416
2417 brcmnand_write_reg(ctrl, BRCMNAND_CS_SELECT, ctrl->nand_cs_nand_select);
2418 brcmnand_write_reg(ctrl, BRCMNAND_CS_XOR, ctrl->nand_cs_nand_xor);
2419 brcmnand_write_reg(ctrl, BRCMNAND_CORR_THRESHOLD,
2420 ctrl->corr_stat_threshold);
2421 if (ctrl->soc) {
2422 /* Clear/re-enable interrupt */
2423 ctrl->soc->ctlrdy_ack(ctrl->soc);
2424 ctrl->soc->ctlrdy_set_enabled(ctrl->soc, true);
2425 }
2426
2427 list_for_each_entry(host, &ctrl->host_list, node) {
2428 struct nand_chip *chip = &host->chip;
2429
2430 brcmnand_save_restore_cs_config(host, 1);
2431
2432 /* Reset the chip, required by some chips after power-up */
2433 nand_reset_op(chip);
2434 }
2435
2436 return 0;
2437}
2438
2439const struct dev_pm_ops brcmnand_pm_ops = {
2440 .suspend = brcmnand_suspend,
2441 .resume = brcmnand_resume,
2442};
2443EXPORT_SYMBOL_GPL(brcmnand_pm_ops);
2444
2445static const struct of_device_id brcmnand_of_match[] = {
2446 { .compatible = "brcm,brcmnand-v4.0" },
2447 { .compatible = "brcm,brcmnand-v5.0" },
2448 { .compatible = "brcm,brcmnand-v6.0" },
2449 { .compatible = "brcm,brcmnand-v6.1" },
2450 { .compatible = "brcm,brcmnand-v6.2" },
2451 { .compatible = "brcm,brcmnand-v7.0" },
2452 { .compatible = "brcm,brcmnand-v7.1" },
2453 { .compatible = "brcm,brcmnand-v7.2" },
2454 {},
2455};
2456MODULE_DEVICE_TABLE(of, brcmnand_of_match);
2457#endif /* __UBOOT__ */
2458
2459/***********************************************************************
2460 * Platform driver setup (per controller)
2461 ***********************************************************************/
2462
2463#ifndef __UBOOT__
2464int brcmnand_probe(struct platform_device *pdev, struct brcmnand_soc *soc)
2465#else
2466int brcmnand_probe(struct udevice *dev, struct brcmnand_soc *soc)
2467#endif /* __UBOOT__ */
2468{
2469#ifndef __UBOOT__
2470 struct device *dev = &pdev->dev;
2471 struct device_node *dn = dev->of_node, *child;
2472#else
2473 ofnode child;
2474 struct udevice *pdev = dev;
2475#endif /* __UBOOT__ */
2476 struct brcmnand_controller *ctrl;
2477#ifndef __UBOOT__
2478 struct resource *res;
2479#else
2480 struct resource res;
2481#endif /* __UBOOT__ */
2482 int ret;
2483
2484#ifndef __UBOOT__
2485 /* We only support device-tree instantiation */
2486 if (!dn)
2487 return -ENODEV;
2488
2489 if (!of_match_node(brcmnand_of_match, dn))
2490 return -ENODEV;
2491#endif /* __UBOOT__ */
2492
2493 ctrl = devm_kzalloc(dev, sizeof(*ctrl), GFP_KERNEL);
2494 if (!ctrl)
2495 return -ENOMEM;
2496
2497#ifndef __UBOOT__
2498 dev_set_drvdata(dev, ctrl);
2499#else
2500 /*
2501 * in u-boot, the data for the driver is allocated before probing
2502 * so to keep the reference to ctrl, we store it in the variable soc
2503 */
2504 soc->ctrl = ctrl;
2505#endif /* __UBOOT__ */
2506 ctrl->dev = dev;
2507
2508 init_completion(&ctrl->done);
2509 init_completion(&ctrl->dma_done);
2510 nand_hw_control_init(&ctrl->controller);
2511 INIT_LIST_HEAD(&ctrl->host_list);
2512
Philippe Reynes7f28cf62019-03-15 15:14:37 +01002513 /* Is parameter page in big endian ? */
2514 ctrl->parameter_page_big_endian =
2515 dev_read_u32_default(dev, "parameter-page-big-endian", 1);
2516
Philippe Reynes5aa6cfb2019-03-15 15:14:36 +01002517 /* NAND register range */
2518#ifndef __UBOOT__
2519 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2520 ctrl->nand_base = devm_ioremap_resource(dev, res);
2521#else
2522 dev_read_resource(pdev, 0, &res);
2523 ctrl->nand_base = devm_ioremap(pdev, res.start, resource_size(&res));
2524#endif
2525 if (IS_ERR(ctrl->nand_base))
2526 return PTR_ERR(ctrl->nand_base);
2527
2528 /* Enable clock before using NAND registers */
2529 ctrl->clk = devm_clk_get(dev, "nand");
2530 if (!IS_ERR(ctrl->clk)) {
2531 ret = clk_prepare_enable(ctrl->clk);
2532 if (ret)
2533 return ret;
2534 } else {
2535 ret = PTR_ERR(ctrl->clk);
2536 if (ret == -EPROBE_DEFER)
2537 return ret;
2538
2539 ctrl->clk = NULL;
2540 }
2541
2542 /* Initialize NAND revision */
2543 ret = brcmnand_revision_init(ctrl);
2544 if (ret)
2545 goto err;
2546
2547 /*
2548 * Most chips have this cache at a fixed offset within 'nand' block.
2549 * Some must specify this region separately.
2550 */
2551#ifndef __UBOOT__
2552 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand-cache");
2553 if (res) {
2554 ctrl->nand_fc = devm_ioremap_resource(dev, res);
2555 if (IS_ERR(ctrl->nand_fc)) {
2556 ret = PTR_ERR(ctrl->nand_fc);
2557 goto err;
2558 }
2559 } else {
2560 ctrl->nand_fc = ctrl->nand_base +
2561 ctrl->reg_offsets[BRCMNAND_FC_BASE];
2562 }
2563#else
2564 if (!dev_read_resource_byname(pdev, "nand-cache", &res)) {
2565 ctrl->nand_fc = devm_ioremap(dev, res.start,
2566 resource_size(&res));
2567 if (IS_ERR(ctrl->nand_fc)) {
2568 ret = PTR_ERR(ctrl->nand_fc);
2569 goto err;
2570 }
2571 } else {
2572 ctrl->nand_fc = ctrl->nand_base +
2573 ctrl->reg_offsets[BRCMNAND_FC_BASE];
2574 }
2575#endif
2576
2577#ifndef __UBOOT__
2578 /* FLASH_DMA */
2579 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "flash-dma");
2580 if (res) {
2581 ctrl->flash_dma_base = devm_ioremap_resource(dev, res);
2582 if (IS_ERR(ctrl->flash_dma_base)) {
2583 ret = PTR_ERR(ctrl->flash_dma_base);
2584 goto err;
2585 }
2586
2587 flash_dma_writel(ctrl, FLASH_DMA_MODE, 1); /* linked-list */
2588 flash_dma_writel(ctrl, FLASH_DMA_ERROR_STATUS, 0);
2589
2590 /* Allocate descriptor(s) */
2591 ctrl->dma_desc = dmam_alloc_coherent(dev,
2592 sizeof(*ctrl->dma_desc),
2593 &ctrl->dma_pa, GFP_KERNEL);
2594 if (!ctrl->dma_desc) {
2595 ret = -ENOMEM;
2596 goto err;
2597 }
2598
2599 ctrl->dma_irq = platform_get_irq(pdev, 1);
2600 if ((int)ctrl->dma_irq < 0) {
2601 dev_err(dev, "missing FLASH_DMA IRQ\n");
2602 ret = -ENODEV;
2603 goto err;
2604 }
2605
2606 ret = devm_request_irq(dev, ctrl->dma_irq,
2607 brcmnand_dma_irq, 0, DRV_NAME,
2608 ctrl);
2609 if (ret < 0) {
2610 dev_err(dev, "can't allocate IRQ %d: error %d\n",
2611 ctrl->dma_irq, ret);
2612 goto err;
2613 }
2614
2615 dev_info(dev, "enabling FLASH_DMA\n");
2616 }
2617#endif /* __UBOOT__ */
2618
2619 /* Disable automatic device ID config, direct addressing */
2620 brcmnand_rmw_reg(ctrl, BRCMNAND_CS_SELECT,
2621 CS_SELECT_AUTO_DEVICE_ID_CFG | 0xff, 0, 0);
2622 /* Disable XOR addressing */
2623 brcmnand_rmw_reg(ctrl, BRCMNAND_CS_XOR, 0xff, 0, 0);
2624
Philippe Reynes77669af2019-03-15 15:14:38 +01002625 /* Read the write-protect configuration in the device tree */
2626 wp_on = dev_read_u32_default(dev, "write-protect", wp_on);
2627
Philippe Reynes5aa6cfb2019-03-15 15:14:36 +01002628 if (ctrl->features & BRCMNAND_HAS_WP) {
2629 /* Permanently disable write protection */
2630 if (wp_on == 2)
2631 brcmnand_set_wp(ctrl, false);
2632 } else {
2633 wp_on = 0;
2634 }
2635
2636#ifndef __UBOOT__
2637 /* IRQ */
2638 ctrl->irq = platform_get_irq(pdev, 0);
2639 if ((int)ctrl->irq < 0) {
2640 dev_err(dev, "no IRQ defined\n");
2641 ret = -ENODEV;
2642 goto err;
2643 }
2644
2645 /*
2646 * Some SoCs integrate this controller (e.g., its interrupt bits) in
2647 * interesting ways
2648 */
2649 if (soc) {
2650 ctrl->soc = soc;
2651
2652 ret = devm_request_irq(dev, ctrl->irq, brcmnand_irq, 0,
2653 DRV_NAME, ctrl);
2654
2655 /* Enable interrupt */
2656 ctrl->soc->ctlrdy_ack(ctrl->soc);
2657 ctrl->soc->ctlrdy_set_enabled(ctrl->soc, true);
2658 } else {
2659 /* Use standard interrupt infrastructure */
2660 ret = devm_request_irq(dev, ctrl->irq, brcmnand_ctlrdy_irq, 0,
2661 DRV_NAME, ctrl);
2662 }
2663 if (ret < 0) {
2664 dev_err(dev, "can't allocate IRQ %d: error %d\n",
2665 ctrl->irq, ret);
2666 goto err;
2667 }
2668#endif /* __UBOOT__ */
2669
2670#ifndef __UBOOT__
2671 for_each_available_child_of_node(dn, child) {
2672 if (of_device_is_compatible(child, "brcm,nandcs")) {
2673 struct brcmnand_host *host;
2674
2675 host = devm_kzalloc(dev, sizeof(*host), GFP_KERNEL);
2676 if (!host) {
2677 of_node_put(child);
2678 ret = -ENOMEM;
2679 goto err;
2680 }
2681 host->pdev = pdev;
2682 host->ctrl = ctrl;
2683
2684 ret = brcmnand_init_cs(host, child);
2685 if (ret) {
2686 devm_kfree(dev, host);
2687 continue; /* Try all chip-selects */
2688 }
2689
2690 list_add_tail(&host->node, &ctrl->host_list);
2691 }
2692 }
2693#else
2694 ofnode_for_each_subnode(child, dev_ofnode(dev)) {
2695 if (ofnode_device_is_compatible(child, "brcm,nandcs")) {
2696 struct brcmnand_host *host;
2697
2698 host = devm_kzalloc(dev, sizeof(*host), GFP_KERNEL);
2699 if (!host) {
2700 ret = -ENOMEM;
2701 goto err;
2702 }
2703 host->pdev = pdev;
2704 host->ctrl = ctrl;
2705
2706 ret = brcmnand_init_cs(host, child);
2707 if (ret) {
2708 devm_kfree(dev, host);
2709 continue; /* Try all chip-selects */
2710 }
2711
2712 list_add_tail(&host->node, &ctrl->host_list);
2713 }
2714 }
2715#endif /* __UBOOT__ */
2716
Álvaro Fernández Rojasd8ae8752020-04-02 10:37:52 +02002717 /* No chip-selects could initialize properly */
2718 if (list_empty(&ctrl->host_list)) {
2719 ret = -ENODEV;
2720 goto err;
2721 }
2722
2723 return 0;
2724
Philippe Reynes5aa6cfb2019-03-15 15:14:36 +01002725err:
2726#ifndef __UBOOT__
2727 clk_disable_unprepare(ctrl->clk);
2728#else
2729 if (ctrl->clk)
2730 clk_disable(ctrl->clk);
2731#endif /* __UBOOT__ */
2732 return ret;
Philippe Reynes5aa6cfb2019-03-15 15:14:36 +01002733}
2734EXPORT_SYMBOL_GPL(brcmnand_probe);
2735
2736#ifndef __UBOOT__
2737int brcmnand_remove(struct platform_device *pdev)
2738{
2739 struct brcmnand_controller *ctrl = dev_get_drvdata(&pdev->dev);
2740 struct brcmnand_host *host;
2741
2742 list_for_each_entry(host, &ctrl->host_list, node)
2743 nand_release(nand_to_mtd(&host->chip));
2744
2745 clk_disable_unprepare(ctrl->clk);
2746
2747 dev_set_drvdata(&pdev->dev, NULL);
2748
2749 return 0;
2750}
2751#else
2752int brcmnand_remove(struct udevice *pdev)
2753{
2754 return 0;
2755}
2756#endif /* __UBOOT__ */
2757EXPORT_SYMBOL_GPL(brcmnand_remove);
2758
2759MODULE_LICENSE("GPL v2");
2760MODULE_AUTHOR("Kevin Cernekee");
2761MODULE_AUTHOR("Brian Norris");
2762MODULE_DESCRIPTION("NAND driver for Broadcom chips");
2763MODULE_ALIAS("platform:brcmnand");