blob: 0140a60c4949bee1486f5acd363420602795fa47 [file] [log] [blame]
Aubrey Li314d22f2007-04-05 18:31:18 +08001/* Copyright (C) 2003-2007 Analog Devices Inc.
Aubrey Li51185db2007-03-20 18:16:24 +08002 *
3 * This file is subject to the terms and conditions of the GNU General Public
4 * License.
5 */
Aubrey Li314d22f2007-04-05 18:31:18 +08006
Aubrey Li51185db2007-03-20 18:16:24 +08007#define ASSEMBLY
8
9#include <asm/linkage.h>
10#include <asm/cplb.h>
11#include <config.h>
12#include <asm/blackfin.h>
13
14.text
15
16/* This is an external function being called by the user
17 * application through __flush_cache_all. Currently this function
18 * serves the purpose of flushing all the pending writes in
19 * in the instruction cache.
20 */
21
22ENTRY(_flush_instruction_cache)
23 [--SP] = ( R7:6, P5:4 );
24 LINK 12;
25 SP += -12;
26 P5.H = (ICPLB_ADDR0 >> 16);
27 P5.L = (ICPLB_ADDR0 & 0xFFFF);
28 P4.H = (ICPLB_DATA0 >> 16);
29 P4.L = (ICPLB_DATA0 & 0xFFFF);
30 R7 = CPLB_VALID | CPLB_L1_CHBL;
31 R6 = 16;
32inext: R0 = [P5++];
33 R1 = [P4++];
34 [--SP] = RETS;
35 CALL _icplb_flush; /* R0 = page, R1 = data*/
36 RETS = [SP++];
37iskip: R6 += -1;
38 CC = R6;
39 IF CC JUMP inext;
40 SSYNC;
41 SP += 12;
42 UNLINK;
43 ( R7:6, P5:4 ) = [SP++];
44 RTS;
45
46/* This is an internal function to flush all pending
47 * writes in the cache associated with a particular ICPLB.
48 *
49 * R0 - page's start address
50 * R1 - CPLB's data field.
51 */
52
53.align 2
54ENTRY(_icplb_flush)
55 [--SP] = ( R7:0, P5:0 );
56 [--SP] = LC0;
57 [--SP] = LT0;
58 [--SP] = LB0;
59 [--SP] = LC1;
60 [--SP] = LT1;
61 [--SP] = LB1;
62
63 /* If it's a 1K or 4K page, then it's quickest to
64 * just systematically flush all the addresses in
65 * the page, regardless of whether they're in the
66 * cache, or dirty. If it's a 1M or 4M page, there
67 * are too many addresses, and we have to search the
68 * cache for lines corresponding to the page.
69 */
70
71 CC = BITTST(R1, 17); /* 1MB or 4MB */
72 IF !CC JUMP iflush_whole_page;
73
74 /* We're only interested in the page's size, so extract
75 * this from the CPLB (bits 17:16), and scale to give an
76 * offset into the page_size and page_prefix tables.
77 */
78
79 R1 <<= 14;
80 R1 >>= 30;
81 R1 <<= 2;
82
83 /* We can also determine the sub-bank used, because this is
84 * taken from bits 13:12 of the address.
85 */
86
87 R3 = ((12<<8)|2); /* Extraction pattern */
88 nop; /*Anamoly 05000209*/
89 R4 = EXTRACT(R0, R3.L) (Z); /* Extract bits*/
90 R3.H = R4.L << 0 ; /* Save in extraction pattern for later deposit.*/
91
92
93 /* So:
94 * R0 = Page start
95 * R1 = Page length (actually, offset into size/prefix tables)
96 * R3 = sub-bank deposit values
97 *
98 * The cache has 2 Ways, and 64 sets, so we iterate through
99 * the sets, accessing the tag for each Way, for our Bank and
100 * sub-bank, looking for dirty, valid tags that match our
101 * address prefix.
102 */
103
104 P5.L = (ITEST_COMMAND & 0xFFFF);
105 P5.H = (ITEST_COMMAND >> 16);
106 P4.L = (ITEST_DATA0 & 0xFFFF);
107 P4.H = (ITEST_DATA0 >> 16);
108
109 P0.L = page_prefix_table;
110 P0.H = page_prefix_table;
111 P1 = R1;
112 R5 = 0; /* Set counter*/
113 P0 = P1 + P0;
114 R4 = [P0]; /* This is the address prefix*/
115
116 /* We're reading (bit 1==0) the tag (bit 2==0), and we
117 * don't care about which double-word, since we're only
118 * fetching tags, so we only have to set Set, Bank,
119 * Sub-bank and Way.
120 */
121
122 P2 = 4;
123 LSETUP (ifs1, ife1) LC1 = P2;
124ifs1: P0 = 32; /* iterate over all sets*/
125 LSETUP (ifs0, ife0) LC0 = P0;
126ifs0: R6 = R5 << 5; /* Combine set*/
127 R6.H = R3.H << 0 ; /* and sub-bank*/
128 [P5] = R6; /* Issue Command*/
129 SSYNC; /* CSYNC will not work here :(*/
130 R7 = [P4]; /* and read Tag.*/
131 CC = BITTST(R7, 0); /* Check if valid*/
132 IF !CC JUMP ifskip; /* and skip if not.*/
133
134 /* Compare against the page address. First, plant bits 13:12
135 * into the tag, since those aren't part of the returned data.
136 */
137
138 R7 = DEPOSIT(R7, R3); /* set 13:12*/
139 R1 = R7 & R4; /* Mask off lower bits*/
140 CC = R1 == R0; /* Compare against page start.*/
141 IF !CC JUMP ifskip; /* Skip it if it doesn't match.*/
142
143 /* Tag address matches against page, so this is an entry
144 * we must flush.
145 */
146
147 R7 >>= 10; /* Mask off the non-address bits*/
148 R7 <<= 10;
149 P3 = R7;
150 IFLUSH [P3]; /* And flush the entry*/
151ifskip:
152ife0: R5 += 1; /* Advance to next Set*/
153ife1: NOP;
154
155ifinished:
156 SSYNC; /* Ensure the data gets out to mem.*/
157
158 /*Finished. Restore context.*/
159 LB1 = [SP++];
160 LT1 = [SP++];
161 LC1 = [SP++];
162 LB0 = [SP++];
163 LT0 = [SP++];
164 LC0 = [SP++];
165 ( R7:0, P5:0 ) = [SP++];
166 RTS;
167
168iflush_whole_page:
169 /* It's a 1K or 4K page, so quicker to just flush the
170 * entire page.
171 */
172
173 P1 = 32; /* For 1K pages*/
174 P2 = P1 << 2; /* For 4K pages*/
175 P0 = R0; /* Start of page*/
176 CC = BITTST(R1, 16); /* Whether 1K or 4K*/
177 IF CC P1 = P2;
178 P1 += -1; /* Unroll one iteration*/
179 SSYNC;
180 IFLUSH [P0++]; /* because CSYNC can't end loops.*/
181 LSETUP (isall, ieall) LC0 = P1;
182isall:IFLUSH [P0++];
183ieall: NOP;
184 SSYNC;
185 JUMP ifinished;
186
187/* This is an external function being called by the user
188 * application through __flush_cache_all. Currently this function
189 * serves the purpose of flushing all the pending writes in
190 * in the data cache.
191 */
192
193ENTRY(_flush_data_cache)
194 [--SP] = ( R7:6, P5:4 );
195 LINK 12;
196 SP += -12;
197 P5.H = (DCPLB_ADDR0 >> 16);
198 P5.L = (DCPLB_ADDR0 & 0xFFFF);
199 P4.H = (DCPLB_DATA0 >> 16);
200 P4.L = (DCPLB_DATA0 & 0xFFFF);
201 R7 = CPLB_VALID | CPLB_L1_CHBL | CPLB_DIRTY (Z);
202 R6 = 16;
203next: R0 = [P5++];
204 R1 = [P4++];
205 CC = BITTST(R1, 14); /* Is it write-through?*/
206 IF CC JUMP skip; /* If so, ignore it.*/
207 R2 = R1 & R7; /* Is it a dirty, cached page?*/
208 CC = R2;
209 IF !CC JUMP skip; /* If not, ignore it.*/
210 [--SP] = RETS;
211 CALL _dcplb_flush; /* R0 = page, R1 = data*/
212 RETS = [SP++];
213skip: R6 += -1;
214 CC = R6;
215 IF CC JUMP next;
216 SSYNC;
217 SP += 12;
218 UNLINK;
219 ( R7:6, P5:4 ) = [SP++];
220 RTS;
221
222/* This is an internal function to flush all pending
223 * writes in the cache associated with a particular DCPLB.
224 *
225 * R0 - page's start address
226 * R1 - CPLB's data field.
227 */
228
229.align 2
230ENTRY(_dcplb_flush)
231 [--SP] = ( R7:0, P5:0 );
232 [--SP] = LC0;
233 [--SP] = LT0;
234 [--SP] = LB0;
235 [--SP] = LC1;
236 [--SP] = LT1;
237 [--SP] = LB1;
238
239 /* If it's a 1K or 4K page, then it's quickest to
240 * just systematically flush all the addresses in
241 * the page, regardless of whether they're in the
242 * cache, or dirty. If it's a 1M or 4M page, there
243 * are too many addresses, and we have to search the
244 * cache for lines corresponding to the page.
245 */
246
247 CC = BITTST(R1, 17); /* 1MB or 4MB */
248 IF !CC JUMP dflush_whole_page;
249
250 /* We're only interested in the page's size, so extract
251 * this from the CPLB (bits 17:16), and scale to give an
252 * offset into the page_size and page_prefix tables.
253 */
254
255 R1 <<= 14;
256 R1 >>= 30;
257 R1 <<= 2;
258
259 /* The page could be mapped into Bank A or Bank B, depending
260 * on (a) whether both banks are configured as cache, and
261 * (b) on whether address bit A[x] is set. x is determined
262 * by DCBS in DMEM_CONTROL
263 */
264
265 R2 = 0; /* Default to Bank A (Bank B would be 1)*/
266
267 P0.L = (DMEM_CONTROL & 0xFFFF);
268 P0.H = (DMEM_CONTROL >> 16);
269
270 R3 = [P0]; /* If Bank B is not enabled as cache*/
271 CC = BITTST(R3, 2); /* then Bank A is our only option.*/
272 IF CC JUMP bank_chosen;
273
274 R4 = 1<<14; /* If DCBS==0, use A[14].*/
275 R5 = R4 << 7; /* If DCBS==1, use A[23];*/
276 CC = BITTST(R3, 4);
277 IF CC R4 = R5; /* R4 now has either bit 14 or bit 23 set.*/
278 R5 = R0 & R4; /* Use it to test the Page address*/
279 CC = R5; /* and if that bit is set, we use Bank B,*/
280 R2 = CC; /* else we use Bank A.*/
281 R2 <<= 23; /* The Bank selection's at posn 23.*/
282
283bank_chosen:
284
285 /* We can also determine the sub-bank used, because this is
286 * taken from bits 13:12 of the address.
287 */
288
289 R3 = ((12<<8)|2); /* Extraction pattern */
290 nop; /*Anamoly 05000209*/
291 R4 = EXTRACT(R0, R3.L) (Z); /* Extract bits*/
292 /* Save in extraction pattern for later deposit.*/
293 R3.H = R4.L << 0;
294
295 /* So:
296 * R0 = Page start
297 * R1 = Page length (actually, offset into size/prefix tables)
298 * R2 = Bank select mask
299 * R3 = sub-bank deposit values
300 *
301 * The cache has 2 Ways, and 64 sets, so we iterate through
302 * the sets, accessing the tag for each Way, for our Bank and
303 * sub-bank, looking for dirty, valid tags that match our
304 * address prefix.
305 */
306
307 P5.L = (DTEST_COMMAND & 0xFFFF);
308 P5.H = (DTEST_COMMAND >> 16);
309 P4.L = (DTEST_DATA0 & 0xFFFF);
310 P4.H = (DTEST_DATA0 >> 16);
311
312 P0.L = page_prefix_table;
313 P0.H = page_prefix_table;
314 P1 = R1;
315 R5 = 0; /* Set counter*/
316 P0 = P1 + P0;
317 R4 = [P0]; /* This is the address prefix*/
318
319
320 /* We're reading (bit 1==0) the tag (bit 2==0), and we
321 * don't care about which double-word, since we're only
322 * fetching tags, so we only have to set Set, Bank,
323 * Sub-bank and Way.
324 */
325
326 P2 = 2;
327 LSETUP (fs1, fe1) LC1 = P2;
328fs1: P0 = 64; /* iterate over all sets*/
329 LSETUP (fs0, fe0) LC0 = P0;
330fs0: R6 = R5 << 5; /* Combine set*/
331 R6.H = R3.H << 0 ; /* and sub-bank*/
332 R6 = R6 | R2; /* and Bank. Leave Way==0 at first.*/
333 BITSET(R6,14);
334 [P5] = R6; /* Issue Command*/
335 SSYNC;
336 R7 = [P4]; /* and read Tag.*/
337 CC = BITTST(R7, 0); /* Check if valid*/
338 IF !CC JUMP fskip; /* and skip if not.*/
339 CC = BITTST(R7, 1); /* Check if dirty*/
340 IF !CC JUMP fskip; /* and skip if not.*/
341
342 /* Compare against the page address. First, plant bits 13:12
343 * into the tag, since those aren't part of the returned data.
344 */
345
346 R7 = DEPOSIT(R7, R3); /* set 13:12*/
347 R1 = R7 & R4; /* Mask off lower bits*/
348 CC = R1 == R0; /* Compare against page start.*/
349 IF !CC JUMP fskip; /* Skip it if it doesn't match.*/
350
351 /* Tag address matches against page, so this is an entry
352 * we must flush.
353 */
354
355 R7 >>= 10; /* Mask off the non-address bits*/
356 R7 <<= 10;
357 P3 = R7;
358 SSYNC;
359 FLUSHINV [P3]; /* And flush the entry*/
360fskip:
361fe0: R5 += 1; /* Advance to next Set*/
362fe1: BITSET(R2, 26); /* Go to next Way.*/
363
364dfinished:
365 SSYNC; /* Ensure the data gets out to mem.*/
366
367 /*Finished. Restore context.*/
368 LB1 = [SP++];
369 LT1 = [SP++];
370 LC1 = [SP++];
371 LB0 = [SP++];
372 LT0 = [SP++];
373 LC0 = [SP++];
374 ( R7:0, P5:0 ) = [SP++];
375 RTS;
376
377dflush_whole_page:
378
379 /* It's a 1K or 4K page, so quicker to just flush the
380 * entire page.
381 */
382
383 P1 = 32; /* For 1K pages*/
384 P2 = P1 << 2; /* For 4K pages*/
385 P0 = R0; /* Start of page*/
386 CC = BITTST(R1, 16); /* Whether 1K or 4K*/
387 IF CC P1 = P2;
388 P1 += -1; /* Unroll one iteration*/
389 SSYNC;
390 FLUSHINV [P0++]; /* because CSYNC can't end loops.*/
391 LSETUP (eall, eall) LC0 = P1;
392eall: FLUSHINV [P0++];
393 SSYNC;
394 JUMP dfinished;
395
396.align 4;
397page_prefix_table:
398.byte4 0xFFFFFC00; /* 1K */
399.byte4 0xFFFFF000; /* 4K */
400.byte4 0xFFF00000; /* 1M */
401.byte4 0xFFC00000; /* 4M */
402.page_prefix_table.end: