blob: d8999c3c6824954601e559f7c685a594cf08dfbf [file] [log] [blame]
Simon Glass3ef2a722015-04-14 21:03:42 -06001/*
2 * Copyright 2014 Google Inc.
3 *
4 * SPDX-License-Identifier: GPL-2.0+
5 *
6 * Extracted from Chromium coreboot commit 3f59b13d
7 */
8
9#include <common.h>
10#include <dm.h>
11#include <edid.h>
12#include <errno.h>
Simon Glass7d3d7762016-01-21 19:45:00 -070013#include <display.h>
Simon Glass3ef2a722015-04-14 21:03:42 -060014#include <edid.h>
15#include <fdtdec.h>
16#include <lcd.h>
Simon Glassfad72182016-01-30 16:37:50 -070017#include <video.h>
Simon Glass3ef2a722015-04-14 21:03:42 -060018#include <asm/gpio.h>
19#include <asm/io.h>
20#include <asm/arch/clock.h>
21#include <asm/arch/pwm.h>
22#include <asm/arch-tegra/dc.h>
Simon Glassfad72182016-01-30 16:37:50 -070023#include <dm/uclass-internal.h>
Simon Glass3ef2a722015-04-14 21:03:42 -060024#include "displayport.h"
25
26DECLARE_GLOBAL_DATA_PTR;
27
28/* return in 1000ths of a Hertz */
29static int tegra_dc_calc_refresh(const struct display_timing *timing)
30{
31 int h_total, v_total, refresh;
32 int pclk = timing->pixelclock.typ;
33
34 h_total = timing->hactive.typ + timing->hfront_porch.typ +
35 timing->hback_porch.typ + timing->hsync_len.typ;
36 v_total = timing->vactive.typ + timing->vfront_porch.typ +
37 timing->vback_porch.typ + timing->vsync_len.typ;
38 if (!pclk || !h_total || !v_total)
39 return 0;
40 refresh = pclk / h_total;
41 refresh *= 1000;
42 refresh /= v_total;
43
44 return refresh;
45}
46
47static void print_mode(const struct display_timing *timing)
48{
49 int refresh = tegra_dc_calc_refresh(timing);
50
51 debug("MODE:%dx%d@%d.%03uHz pclk=%d\n",
52 timing->hactive.typ, timing->vactive.typ, refresh / 1000,
53 refresh % 1000, timing->pixelclock.typ);
54}
55
56static int update_display_mode(struct dc_ctlr *disp_ctrl,
57 const struct display_timing *timing,
58 int href_to_sync, int vref_to_sync)
59{
60 print_mode(timing);
61
62 writel(0x1, &disp_ctrl->disp.disp_timing_opt);
63
64 writel(vref_to_sync << 16 | href_to_sync,
65 &disp_ctrl->disp.ref_to_sync);
66
67 writel(timing->vsync_len.typ << 16 | timing->hsync_len.typ,
68 &disp_ctrl->disp.sync_width);
69
70 writel(((timing->vback_porch.typ - vref_to_sync) << 16) |
71 timing->hback_porch.typ, &disp_ctrl->disp.back_porch);
72
73 writel(((timing->vfront_porch.typ + vref_to_sync) << 16) |
74 timing->hfront_porch.typ, &disp_ctrl->disp.front_porch);
75
76 writel(timing->hactive.typ | (timing->vactive.typ << 16),
77 &disp_ctrl->disp.disp_active);
78
79 /**
80 * We want to use PLLD_out0, which is PLLD / 2:
81 * PixelClock = (PLLD / 2) / ShiftClockDiv / PixelClockDiv.
82 *
83 * Currently most panels work inside clock range 50MHz~100MHz, and PLLD
84 * has some requirements to have VCO in range 500MHz~1000MHz (see
85 * clock.c for more detail). To simplify calculation, we set
86 * PixelClockDiv to 1 and ShiftClockDiv to 1. In future these values
87 * may be calculated by clock_display, to allow wider frequency range.
88 *
89 * Note ShiftClockDiv is a 7.1 format value.
90 */
91 const u32 shift_clock_div = 1;
92 writel((PIXEL_CLK_DIVIDER_PCD1 << PIXEL_CLK_DIVIDER_SHIFT) |
93 ((shift_clock_div - 1) * 2) << SHIFT_CLK_DIVIDER_SHIFT,
94 &disp_ctrl->disp.disp_clk_ctrl);
95 debug("%s: PixelClock=%u, ShiftClockDiv=%u\n", __func__,
96 timing->pixelclock.typ, shift_clock_div);
97 return 0;
98}
99
Simon Glass662f2aa2015-04-14 21:03:44 -0600100static u32 tegra_dc_poll_register(void *reg,
101 u32 mask, u32 exp_val, u32 poll_interval_us, u32 timeout_us)
102{
103 u32 temp = timeout_us;
104 u32 reg_val = 0;
105
106 do {
107 udelay(poll_interval_us);
108 reg_val = readl(reg);
109 if (timeout_us > poll_interval_us)
110 timeout_us -= poll_interval_us;
111 else
112 break;
113 } while ((reg_val & mask) != exp_val);
114
115 if ((reg_val & mask) == exp_val)
116 return 0; /* success */
117
118 return temp;
119}
120
121int tegra_dc_sor_general_act(struct dc_ctlr *disp_ctrl)
122{
123 writel(GENERAL_ACT_REQ, &disp_ctrl->cmd.state_ctrl);
124
125 if (tegra_dc_poll_register(&disp_ctrl->cmd.state_ctrl,
126 GENERAL_ACT_REQ, 0, 100,
127 DC_POLL_TIMEOUT_MS * 1000)) {
128 debug("dc timeout waiting for DC to stop\n");
129 return -ETIMEDOUT;
130 }
131
132 return 0;
133}
134
135static struct display_timing min_mode = {
136 .hsync_len = { .typ = 1 },
137 .vsync_len = { .typ = 1 },
138 .hback_porch = { .typ = 20 },
139 .vback_porch = { .typ = 0 },
140 .hactive = { .typ = 16 },
141 .vactive = { .typ = 16 },
142 .hfront_porch = { .typ = 1 },
143 .vfront_porch = { .typ = 2 },
144};
145
146/* Disable windows and set minimum raster timings */
147void tegra_dc_sor_disable_win_short_raster(struct dc_ctlr *disp_ctrl,
148 int *dc_reg_ctx)
149{
150 const int href_to_sync = 0, vref_to_sync = 1;
151 int selected_windows, i;
152
153 selected_windows = readl(&disp_ctrl->cmd.disp_win_header);
154
155 /* Store and clear window options */
156 for (i = 0; i < DC_N_WINDOWS; ++i) {
157 writel(WINDOW_A_SELECT << i, &disp_ctrl->cmd.disp_win_header);
158 dc_reg_ctx[i] = readl(&disp_ctrl->win.win_opt);
159 writel(0, &disp_ctrl->win.win_opt);
160 writel(WIN_A_ACT_REQ << i, &disp_ctrl->cmd.state_ctrl);
161 }
162
163 writel(selected_windows, &disp_ctrl->cmd.disp_win_header);
164
165 /* Store current raster timings and set minimum timings */
166 dc_reg_ctx[i++] = readl(&disp_ctrl->disp.ref_to_sync);
167 writel(href_to_sync | (vref_to_sync << 16),
168 &disp_ctrl->disp.ref_to_sync);
169
170 dc_reg_ctx[i++] = readl(&disp_ctrl->disp.sync_width);
171 writel(min_mode.hsync_len.typ | (min_mode.vsync_len.typ << 16),
172 &disp_ctrl->disp.sync_width);
173
174 dc_reg_ctx[i++] = readl(&disp_ctrl->disp.back_porch);
175 writel(min_mode.hback_porch.typ | (min_mode.vback_porch.typ << 16),
176 &disp_ctrl->disp.back_porch);
177
178 dc_reg_ctx[i++] = readl(&disp_ctrl->disp.front_porch);
179 writel(min_mode.hfront_porch.typ | (min_mode.vfront_porch.typ << 16),
180 &disp_ctrl->disp.front_porch);
181
182 dc_reg_ctx[i++] = readl(&disp_ctrl->disp.disp_active);
183 writel(min_mode.hactive.typ | (min_mode.vactive.typ << 16),
184 &disp_ctrl->disp.disp_active);
185
186 writel(GENERAL_ACT_REQ, &disp_ctrl->cmd.state_ctrl);
187}
188
189/* Restore previous windows status and raster timings */
190void tegra_dc_sor_restore_win_and_raster(struct dc_ctlr *disp_ctrl,
191 int *dc_reg_ctx)
192{
193 int selected_windows, i;
194
195 selected_windows = readl(&disp_ctrl->cmd.disp_win_header);
196
197 for (i = 0; i < DC_N_WINDOWS; ++i) {
198 writel(WINDOW_A_SELECT << i, &disp_ctrl->cmd.disp_win_header);
199 writel(dc_reg_ctx[i], &disp_ctrl->win.win_opt);
200 writel(WIN_A_ACT_REQ << i, &disp_ctrl->cmd.state_ctrl);
201 }
202
203 writel(selected_windows, &disp_ctrl->cmd.disp_win_header);
204
205 writel(dc_reg_ctx[i++], &disp_ctrl->disp.ref_to_sync);
206 writel(dc_reg_ctx[i++], &disp_ctrl->disp.sync_width);
207 writel(dc_reg_ctx[i++], &disp_ctrl->disp.back_porch);
208 writel(dc_reg_ctx[i++], &disp_ctrl->disp.front_porch);
209 writel(dc_reg_ctx[i++], &disp_ctrl->disp.disp_active);
210
211 writel(GENERAL_UPDATE, &disp_ctrl->cmd.state_ctrl);
212}
213
Simon Glass3ef2a722015-04-14 21:03:42 -0600214static int tegra_depth_for_bpp(int bpp)
215{
216 switch (bpp) {
217 case 32:
218 return COLOR_DEPTH_R8G8B8A8;
219 case 16:
220 return COLOR_DEPTH_B5G6R5;
221 default:
222 debug("Unsupported LCD bit depth");
223 return -1;
224 }
225}
226
227static int update_window(struct dc_ctlr *disp_ctrl,
228 u32 frame_buffer, int fb_bits_per_pixel,
229 const struct display_timing *timing)
230{
231 const u32 colour_white = 0xffffff;
232 int colour_depth;
233 u32 val;
234
235 writel(WINDOW_A_SELECT, &disp_ctrl->cmd.disp_win_header);
236
237 writel(((timing->vactive.typ << 16) | timing->hactive.typ),
238 &disp_ctrl->win.size);
239 writel(((timing->vactive.typ << 16) |
240 (timing->hactive.typ * fb_bits_per_pixel / 8)),
241 &disp_ctrl->win.prescaled_size);
242 writel(((timing->hactive.typ * fb_bits_per_pixel / 8 + 31) /
243 32 * 32), &disp_ctrl->win.line_stride);
244
245 colour_depth = tegra_depth_for_bpp(fb_bits_per_pixel);
246 if (colour_depth == -1)
247 return -EINVAL;
248
249 writel(colour_depth, &disp_ctrl->win.color_depth);
250
251 writel(frame_buffer, &disp_ctrl->winbuf.start_addr);
252 writel(0x1000 << V_DDA_INC_SHIFT | 0x1000 << H_DDA_INC_SHIFT,
253 &disp_ctrl->win.dda_increment);
254
255 writel(colour_white, &disp_ctrl->disp.blend_background_color);
256 writel(CTRL_MODE_C_DISPLAY << CTRL_MODE_SHIFT,
257 &disp_ctrl->cmd.disp_cmd);
258
259 writel(WRITE_MUX_ACTIVE, &disp_ctrl->cmd.state_access);
260
261 val = GENERAL_ACT_REQ | WIN_A_ACT_REQ;
262 val |= GENERAL_UPDATE | WIN_A_UPDATE;
263 writel(val, &disp_ctrl->cmd.state_ctrl);
264
265 /* Enable win_a */
266 val = readl(&disp_ctrl->win.win_opt);
267 writel(val | WIN_ENABLE, &disp_ctrl->win.win_opt);
268
269 return 0;
270}
271
272static int tegra_dc_init(struct dc_ctlr *disp_ctrl)
273{
274 /* do not accept interrupts during initialization */
275 writel(0x00000000, &disp_ctrl->cmd.int_mask);
276 writel(WRITE_MUX_ASSEMBLY | READ_MUX_ASSEMBLY,
277 &disp_ctrl->cmd.state_access);
278 writel(WINDOW_A_SELECT, &disp_ctrl->cmd.disp_win_header);
279 writel(0x00000000, &disp_ctrl->win.win_opt);
280 writel(0x00000000, &disp_ctrl->win.byte_swap);
281 writel(0x00000000, &disp_ctrl->win.buffer_ctrl);
282
283 writel(0x00000000, &disp_ctrl->win.pos);
284 writel(0x00000000, &disp_ctrl->win.h_initial_dda);
285 writel(0x00000000, &disp_ctrl->win.v_initial_dda);
286 writel(0x00000000, &disp_ctrl->win.dda_increment);
287 writel(0x00000000, &disp_ctrl->win.dv_ctrl);
288
289 writel(0x01000000, &disp_ctrl->win.blend_layer_ctrl);
290 writel(0x00000000, &disp_ctrl->win.blend_match_select);
291 writel(0x00000000, &disp_ctrl->win.blend_nomatch_select);
292 writel(0x00000000, &disp_ctrl->win.blend_alpha_1bit);
293
294 writel(0x00000000, &disp_ctrl->winbuf.start_addr_hi);
295 writel(0x00000000, &disp_ctrl->winbuf.addr_h_offset);
296 writel(0x00000000, &disp_ctrl->winbuf.addr_v_offset);
297
298 writel(0x00000000, &disp_ctrl->com.crc_checksum);
299 writel(0x00000000, &disp_ctrl->com.pin_output_enb[0]);
300 writel(0x00000000, &disp_ctrl->com.pin_output_enb[1]);
301 writel(0x00000000, &disp_ctrl->com.pin_output_enb[2]);
302 writel(0x00000000, &disp_ctrl->com.pin_output_enb[3]);
303 writel(0x00000000, &disp_ctrl->disp.disp_signal_opt0);
304
305 return 0;
306}
307
308static void dump_config(int panel_bpp, struct display_timing *timing)
309{
310 printf("timing->hactive.typ = %d\n", timing->hactive.typ);
311 printf("timing->vactive.typ = %d\n", timing->vactive.typ);
312 printf("timing->pixelclock.typ = %d\n", timing->pixelclock.typ);
313
314 printf("timing->hfront_porch.typ = %d\n", timing->hfront_porch.typ);
315 printf("timing->hsync_len.typ = %d\n", timing->hsync_len.typ);
316 printf("timing->hback_porch.typ = %d\n", timing->hback_porch.typ);
317
318 printf("timing->vfront_porch.typ %d\n", timing->vfront_porch.typ);
319 printf("timing->vsync_len.typ = %d\n", timing->vsync_len.typ);
320 printf("timing->vback_porch.typ = %d\n", timing->vback_porch.typ);
321
322 printf("panel_bits_per_pixel = %d\n", panel_bpp);
323}
324
325static int display_update_config_from_edid(struct udevice *dp_dev,
326 int *panel_bppp,
327 struct display_timing *timing)
328{
Masahiro Yamadabf528cd2016-09-06 22:17:33 +0900329 return display_read_timing(dp_dev, timing);
Simon Glass3ef2a722015-04-14 21:03:42 -0600330}
331
Simon Glassfad72182016-01-30 16:37:50 -0700332static int display_init(struct udevice *dev, void *lcdbase,
333 int fb_bits_per_pixel, struct display_timing *timing)
Simon Glass3ef2a722015-04-14 21:03:42 -0600334{
Simon Glassfad72182016-01-30 16:37:50 -0700335 struct display_plat *disp_uc_plat;
Simon Glass3ef2a722015-04-14 21:03:42 -0600336 struct dc_ctlr *dc_ctlr;
337 const void *blob = gd->fdt_blob;
338 struct udevice *dp_dev;
339 const int href_to_sync = 1, vref_to_sync = 1;
340 int panel_bpp = 18; /* default 18 bits per pixel */
341 u32 plld_rate;
Simon Glass3ef2a722015-04-14 21:03:42 -0600342 int ret;
343
Simon Glassfad72182016-01-30 16:37:50 -0700344 /*
345 * Before we probe the display device (eDP), tell it that this device
346 * is are the source of the display data.
347 */
348 ret = uclass_find_first_device(UCLASS_DISPLAY, &dp_dev);
349 if (ret) {
350 debug("%s: device '%s' display not found (ret=%d)\n", __func__,
351 dev->name, ret);
352 return ret;
353 }
354
355 disp_uc_plat = dev_get_uclass_platdata(dp_dev);
356 debug("Found device '%s', disp_uc_priv=%p\n", dp_dev->name,
357 disp_uc_plat);
358 disp_uc_plat->src_dev = dev;
359
Simon Glass7d3d7762016-01-21 19:45:00 -0700360 ret = uclass_get_device(UCLASS_DISPLAY, 0, &dp_dev);
Simon Glassfad72182016-01-30 16:37:50 -0700361 if (ret) {
362 debug("%s: Failed to probe eDP, ret=%d\n", __func__, ret);
Simon Glass3ef2a722015-04-14 21:03:42 -0600363 return ret;
Simon Glassfad72182016-01-30 16:37:50 -0700364 }
Simon Glass3ef2a722015-04-14 21:03:42 -0600365
Simon Glassfad72182016-01-30 16:37:50 -0700366 dc_ctlr = (struct dc_ctlr *)fdtdec_get_addr(blob, dev->of_offset,
367 "reg");
368 if (fdtdec_decode_display_timing(blob, dev->of_offset, 0, timing)) {
369 debug("%s: Failed to decode display timing\n", __func__);
Simon Glass3ef2a722015-04-14 21:03:42 -0600370 return -EINVAL;
Simon Glassfad72182016-01-30 16:37:50 -0700371 }
Simon Glass3ef2a722015-04-14 21:03:42 -0600372
373 ret = display_update_config_from_edid(dp_dev, &panel_bpp, timing);
374 if (ret) {
375 debug("%s: Failed to decode EDID, using defaults\n", __func__);
376 dump_config(panel_bpp, timing);
377 }
378
Simon Glass3ef2a722015-04-14 21:03:42 -0600379 /*
380 * The plld is programmed with the assumption of the SHIFT_CLK_DIVIDER
381 * and PIXEL_CLK_DIVIDER are zero (divide by 1). See the
382 * update_display_mode() for detail.
383 */
384 plld_rate = clock_set_display_rate(timing->pixelclock.typ * 2);
385 if (plld_rate == 0) {
386 printf("dc: clock init failed\n");
387 return -EIO;
388 } else if (plld_rate != timing->pixelclock.typ * 2) {
389 debug("dc: plld rounded to %u\n", plld_rate);
390 timing->pixelclock.typ = plld_rate / 2;
391 }
392
393 /* Init dc */
394 ret = tegra_dc_init(dc_ctlr);
395 if (ret) {
396 debug("dc: init failed\n");
397 return ret;
398 }
399
400 /* Configure dc mode */
401 ret = update_display_mode(dc_ctlr, timing, href_to_sync, vref_to_sync);
402 if (ret) {
403 debug("dc: failed to configure display mode\n");
404 return ret;
405 }
406
407 /* Enable dp */
Simon Glass7d3d7762016-01-21 19:45:00 -0700408 ret = display_enable(dp_dev, panel_bpp, timing);
Simon Glassfad72182016-01-30 16:37:50 -0700409 if (ret) {
410 debug("dc: failed to enable display: ret=%d\n", ret);
Simon Glass3ef2a722015-04-14 21:03:42 -0600411 return ret;
Simon Glassfad72182016-01-30 16:37:50 -0700412 }
Simon Glass3ef2a722015-04-14 21:03:42 -0600413
414 ret = update_window(dc_ctlr, (ulong)lcdbase, fb_bits_per_pixel, timing);
Simon Glassfad72182016-01-30 16:37:50 -0700415 if (ret) {
416 debug("dc: failed to update window\n");
Simon Glass3ef2a722015-04-14 21:03:42 -0600417 return ret;
Simon Glass3ef2a722015-04-14 21:03:42 -0600418 }
419
420 return 0;
421}
Simon Glass118d11f2016-01-30 16:37:47 -0700422
423enum {
424 /* Maximum LCD size we support */
425 LCD_MAX_WIDTH = 1920,
426 LCD_MAX_HEIGHT = 1200,
427 LCD_MAX_LOG2_BPP = 4, /* 2^4 = 16 bpp */
428};
429
Simon Glassfad72182016-01-30 16:37:50 -0700430static int tegra124_lcd_init(struct udevice *dev, void *lcdbase,
431 enum video_log2_bpp l2bpp)
Simon Glass118d11f2016-01-30 16:37:47 -0700432{
Simon Glassfad72182016-01-30 16:37:50 -0700433 struct video_priv *uc_priv = dev_get_uclass_priv(dev);
Simon Glass118d11f2016-01-30 16:37:47 -0700434 struct display_timing timing;
435 int ret;
436
437 clock_set_up_plldp();
438 clock_start_periph_pll(PERIPH_ID_HOST1X, CLOCK_ID_PERIPH, 408000000);
439
440 clock_enable(PERIPH_ID_HOST1X);
441 clock_enable(PERIPH_ID_DISP1);
442 clock_enable(PERIPH_ID_PWM);
443 clock_enable(PERIPH_ID_DPAUX);
444 clock_enable(PERIPH_ID_SOR0);
445 udelay(2);
446
447 reset_set_enable(PERIPH_ID_HOST1X, 0);
448 reset_set_enable(PERIPH_ID_DISP1, 0);
449 reset_set_enable(PERIPH_ID_PWM, 0);
450 reset_set_enable(PERIPH_ID_DPAUX, 0);
451 reset_set_enable(PERIPH_ID_SOR0, 0);
452
Simon Glassfad72182016-01-30 16:37:50 -0700453 ret = display_init(dev, lcdbase, 1 << l2bpp, &timing);
Simon Glass118d11f2016-01-30 16:37:47 -0700454 if (ret)
455 return ret;
456
Simon Glassfad72182016-01-30 16:37:50 -0700457 uc_priv->xsize = roundup(timing.hactive.typ, 16);
458 uc_priv->ysize = timing.vactive.typ;
459 uc_priv->bpix = l2bpp;
Simon Glass118d11f2016-01-30 16:37:47 -0700460
Simon Glassfad72182016-01-30 16:37:50 -0700461 video_set_flush_dcache(dev, 1);
462 debug("%s: done\n", __func__);
Simon Glass118d11f2016-01-30 16:37:47 -0700463
464 return 0;
465}
466
Simon Glassfad72182016-01-30 16:37:50 -0700467static int tegra124_lcd_probe(struct udevice *dev)
Simon Glass118d11f2016-01-30 16:37:47 -0700468{
Simon Glassfad72182016-01-30 16:37:50 -0700469 struct video_uc_platdata *plat = dev_get_uclass_platdata(dev);
Simon Glass118d11f2016-01-30 16:37:47 -0700470 ulong start;
471 int ret;
472
473 start = get_timer(0);
Simon Glassfad72182016-01-30 16:37:50 -0700474 ret = tegra124_lcd_init(dev, (void *)plat->base, VIDEO_BPP16);
Simon Glass118d11f2016-01-30 16:37:47 -0700475 debug("LCD init took %lu ms\n", get_timer(start));
476 if (ret)
477 printf("%s: Error %d\n", __func__, ret);
Simon Glassfad72182016-01-30 16:37:50 -0700478
479 return 0;
Simon Glass118d11f2016-01-30 16:37:47 -0700480}
481
Simon Glassfad72182016-01-30 16:37:50 -0700482static int tegra124_lcd_bind(struct udevice *dev)
Simon Glass118d11f2016-01-30 16:37:47 -0700483{
Simon Glassfad72182016-01-30 16:37:50 -0700484 struct video_uc_platdata *uc_plat = dev_get_uclass_platdata(dev);
485
486 uc_plat->size = LCD_MAX_WIDTH * LCD_MAX_HEIGHT *
487 (1 << VIDEO_BPP16) / 8;
488 debug("%s: Frame buffer size %x\n", __func__, uc_plat->size);
489
490 return 0;
Simon Glass118d11f2016-01-30 16:37:47 -0700491}
Simon Glassfad72182016-01-30 16:37:50 -0700492
493static const struct udevice_id tegra124_lcd_ids[] = {
494 { .compatible = "nvidia,tegra124-dc" },
495 { }
496};
497
498U_BOOT_DRIVER(tegra124_dc) = {
499 .name = "tegra124-dc",
500 .id = UCLASS_VIDEO,
501 .of_match = tegra124_lcd_ids,
502 .bind = tegra124_lcd_bind,
503 .probe = tegra124_lcd_probe,
504};