Tom Rini | 53633a8 | 2024-02-29 12:33:36 -0500 | [diff] [blame] | 1 | # SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause) |
| 2 | %YAML 1.2 |
| 3 | --- |
| 4 | $id: http://devicetree.org/schemas/media/video-interface-devices.yaml# |
| 5 | $schema: http://devicetree.org/meta-schemas/core.yaml# |
| 6 | |
| 7 | title: Common Properties for Video Receiver and Transmitter Devices |
| 8 | |
| 9 | maintainers: |
| 10 | - Jacopo Mondi <jacopo@jmondi.org> |
| 11 | - Sakari Ailus <sakari.ailus@linux.intel.com> |
| 12 | |
| 13 | properties: |
| 14 | flash-leds: |
| 15 | $ref: /schemas/types.yaml#/definitions/phandle-array |
| 16 | description: |
| 17 | An array of phandles, each referring to a flash LED, a sub-node of the LED |
| 18 | driver device node. |
| 19 | |
| 20 | lens-focus: |
| 21 | $ref: /schemas/types.yaml#/definitions/phandle |
| 22 | description: |
| 23 | A phandle to the node of the focus lens controller. |
| 24 | |
| 25 | rotation: |
| 26 | $ref: /schemas/types.yaml#/definitions/uint32 |
| 27 | enum: [ 0, 90, 180, 270 ] |
| 28 | description: | |
| 29 | The camera rotation is expressed as the angular difference in degrees |
| 30 | between two reference systems, one relative to the camera module, and one |
| 31 | defined on the external world scene to be captured when projected on the |
| 32 | image sensor pixel array. |
| 33 | |
| 34 | A camera sensor has a 2-dimensional reference system 'Rc' defined by its |
| 35 | pixel array read-out order. The origin is set to the first pixel being |
| 36 | read out, the X-axis points along the column read-out direction towards |
| 37 | the last columns, and the Y-axis along the row read-out direction towards |
| 38 | the last row. |
| 39 | |
| 40 | A typical example for a sensor with a 2592x1944 pixel array matrix |
| 41 | observed from the front is: |
| 42 | |
| 43 | 2591 X-axis 0 |
| 44 | <------------------------+ 0 |
| 45 | .......... ... ..........! |
| 46 | .......... ... ..........! Y-axis |
| 47 | ... ! |
| 48 | .......... ... ..........! |
| 49 | .......... ... ..........! 1943 |
| 50 | V |
| 51 | |
| 52 | The external world scene reference system 'Rs' is a 2-dimensional |
| 53 | reference system on the focal plane of the camera module. The origin is |
| 54 | placed on the top-left corner of the visible scene, the X-axis points |
| 55 | towards the right, and the Y-axis points towards the bottom of the scene. |
| 56 | The top, bottom, left and right directions are intentionally not defined |
| 57 | and depend on the environment in which the camera is used. |
| 58 | |
| 59 | A typical example of a (very common) picture of a shark swimming from left |
| 60 | to right, as seen from the camera, is: |
| 61 | |
| 62 | 0 X-axis |
| 63 | 0 +-------------------------------------> |
| 64 | ! |
| 65 | ! |
| 66 | ! |
| 67 | ! |\____)\___ |
| 68 | ! ) _____ __`< |
| 69 | ! |/ )/ |
| 70 | ! |
| 71 | ! |
| 72 | ! |
| 73 | V |
| 74 | Y-axis |
| 75 | |
| 76 | with the reference system 'Rs' placed on the camera focal plane: |
| 77 | |
| 78 | ¸.·˙! |
| 79 | ¸.·˙ ! |
| 80 | _ ¸.·˙ ! |
| 81 | +-/ \-+¸.·˙ ! |
| 82 | | (o) | ! Camera focal plane |
| 83 | +-----+˙·.¸ ! |
| 84 | ˙·.¸ ! |
| 85 | ˙·.¸ ! |
| 86 | ˙·.¸! |
| 87 | |
| 88 | When projected on the sensor's pixel array, the image and the associated |
| 89 | reference system 'Rs' are typically (but not always) inverted, due to the |
| 90 | camera module's lens optical inversion effect. |
| 91 | |
| 92 | Assuming the above represented scene of the swimming shark, the lens |
| 93 | inversion projects the scene and its reference system onto the sensor |
| 94 | pixel array, seen from the front of the camera sensor, as follows: |
| 95 | |
| 96 | Y-axis |
| 97 | ^ |
| 98 | ! |
| 99 | ! |
| 100 | ! |
| 101 | ! |\_____)\__ |
| 102 | ! ) ____ ___.< |
| 103 | ! |/ )/ |
| 104 | ! |
| 105 | ! |
| 106 | ! |
| 107 | 0 +-------------------------------------> |
| 108 | 0 X-axis |
| 109 | |
| 110 | Note the shark being upside-down. |
| 111 | |
| 112 | The resulting projected reference system is named 'Rp'. |
| 113 | |
| 114 | The camera rotation property is then defined as the angular difference in |
| 115 | the counter-clockwise direction between the camera reference system 'Rc' |
| 116 | and the projected scene reference system 'Rp'. It is expressed in degrees |
| 117 | as a number in the range [0, 360[. |
| 118 | |
| 119 | Examples |
| 120 | |
| 121 | 0 degrees camera rotation: |
| 122 | |
| 123 | |
| 124 | Y-Rp |
| 125 | ^ |
| 126 | Y-Rc ! |
| 127 | ^ ! |
| 128 | ! ! |
| 129 | ! ! |
| 130 | ! ! |
| 131 | ! ! |
| 132 | ! ! |
| 133 | ! ! |
| 134 | ! ! |
| 135 | ! 0 +-------------------------------------> |
| 136 | ! 0 X-Rp |
| 137 | 0 +-------------------------------------> |
| 138 | 0 X-Rc |
| 139 | |
| 140 | |
| 141 | X-Rc 0 |
| 142 | <------------------------------------+ 0 |
| 143 | X-Rp 0 ! |
| 144 | <------------------------------------+ 0 ! |
| 145 | ! ! |
| 146 | ! ! |
| 147 | ! ! |
| 148 | ! ! |
| 149 | ! ! |
| 150 | ! ! |
| 151 | ! ! |
| 152 | ! V |
| 153 | ! Y-Rc |
| 154 | V |
| 155 | Y-Rp |
| 156 | |
| 157 | 90 degrees camera rotation: |
| 158 | |
| 159 | 0 Y-Rc |
| 160 | 0 +--------------------> |
| 161 | ! Y-Rp |
| 162 | ! ^ |
| 163 | ! ! |
| 164 | ! ! |
| 165 | ! ! |
| 166 | ! ! |
| 167 | ! ! |
| 168 | ! ! |
| 169 | ! ! |
| 170 | ! ! |
| 171 | ! ! |
| 172 | ! 0 +-------------------------------------> |
| 173 | ! 0 X-Rp |
| 174 | ! |
| 175 | ! |
| 176 | ! |
| 177 | ! |
| 178 | V |
| 179 | X-Rc |
| 180 | |
| 181 | 180 degrees camera rotation: |
| 182 | |
| 183 | 0 |
| 184 | <------------------------------------+ 0 |
| 185 | X-Rc ! |
| 186 | Y-Rp ! |
| 187 | ^ ! |
| 188 | ! ! |
| 189 | ! ! |
| 190 | ! ! |
| 191 | ! ! |
| 192 | ! ! |
| 193 | ! ! |
| 194 | ! V |
| 195 | ! Y-Rc |
| 196 | 0 +-------------------------------------> |
| 197 | 0 X-Rp |
| 198 | |
| 199 | 270 degrees camera rotation: |
| 200 | |
| 201 | 0 Y-Rc |
| 202 | 0 +--------------------> |
| 203 | ! 0 |
| 204 | ! <-----------------------------------+ 0 |
| 205 | ! X-Rp ! |
| 206 | ! ! |
| 207 | ! ! |
| 208 | ! ! |
| 209 | ! ! |
| 210 | ! ! |
| 211 | ! ! |
| 212 | ! ! |
| 213 | ! ! |
| 214 | ! V |
| 215 | ! Y-Rp |
| 216 | ! |
| 217 | ! |
| 218 | ! |
| 219 | ! |
| 220 | V |
| 221 | X-Rc |
| 222 | |
| 223 | |
| 224 | Example one - Webcam |
| 225 | |
| 226 | A camera module installed on the user facing part of a laptop screen |
| 227 | casing used for video calls. The captured images are meant to be displayed |
| 228 | in landscape mode (width > height) on the laptop screen. |
| 229 | |
| 230 | The camera is typically mounted upside-down to compensate the lens optical |
| 231 | inversion effect: |
| 232 | |
| 233 | Y-Rp |
| 234 | Y-Rc ^ |
| 235 | ^ ! |
| 236 | ! ! |
| 237 | ! ! |\_____)\__ |
| 238 | ! ! ) ____ ___.< |
| 239 | ! ! |/ )/ |
| 240 | ! ! |
| 241 | ! ! |
| 242 | ! ! |
| 243 | ! 0 +-------------------------------------> |
| 244 | ! 0 X-Rp |
| 245 | 0 +-------------------------------------> |
| 246 | 0 X-Rc |
| 247 | |
| 248 | The two reference systems are aligned, the resulting camera rotation is |
| 249 | 0 degrees, no rotation correction needs to be applied to the resulting |
| 250 | image once captured to memory buffers to correctly display it to users: |
| 251 | |
| 252 | +--------------------------------------+ |
| 253 | ! ! |
| 254 | ! ! |
| 255 | ! ! |
| 256 | ! |\____)\___ ! |
| 257 | ! ) _____ __`< ! |
| 258 | ! |/ )/ ! |
| 259 | ! ! |
| 260 | ! ! |
| 261 | ! ! |
| 262 | +--------------------------------------+ |
| 263 | |
| 264 | If the camera sensor is not mounted upside-down to compensate for the lens |
| 265 | optical inversion, the two reference systems will not be aligned, with |
| 266 | 'Rp' being rotated 180 degrees relatively to 'Rc': |
| 267 | |
| 268 | |
| 269 | X-Rc 0 |
| 270 | <------------------------------------+ 0 |
| 271 | ! |
| 272 | Y-Rp ! |
| 273 | ^ ! |
| 274 | ! ! |
| 275 | ! |\_____)\__ ! |
| 276 | ! ) ____ ___.< ! |
| 277 | ! |/ )/ ! |
| 278 | ! ! |
| 279 | ! ! |
| 280 | ! V |
| 281 | ! Y-Rc |
| 282 | 0 +-------------------------------------> |
| 283 | 0 X-Rp |
| 284 | |
| 285 | The image once captured to memory will then be rotated by 180 degrees: |
| 286 | |
| 287 | +--------------------------------------+ |
| 288 | ! ! |
| 289 | ! ! |
| 290 | ! ! |
| 291 | ! __/(_____/| ! |
| 292 | ! >.___ ____ ( ! |
| 293 | ! \( \| ! |
| 294 | ! ! |
| 295 | ! ! |
| 296 | ! ! |
| 297 | +--------------------------------------+ |
| 298 | |
| 299 | A software rotation correction of 180 degrees should be applied to |
| 300 | correctly display the image: |
| 301 | |
| 302 | +--------------------------------------+ |
| 303 | ! ! |
| 304 | ! ! |
| 305 | ! ! |
| 306 | ! |\____)\___ ! |
| 307 | ! ) _____ __`< ! |
| 308 | ! |/ )/ ! |
| 309 | ! ! |
| 310 | ! ! |
| 311 | ! ! |
| 312 | +--------------------------------------+ |
| 313 | |
| 314 | Example two - Phone camera |
| 315 | |
| 316 | A camera installed on the back side of a mobile device facing away from |
| 317 | the user. The captured images are meant to be displayed in portrait mode |
| 318 | (height > width) to match the device screen orientation and the device |
| 319 | usage orientation used when taking the picture. |
| 320 | |
| 321 | The camera sensor is typically mounted with its pixel array longer side |
| 322 | aligned to the device longer side, upside-down mounted to compensate for |
| 323 | the lens optical inversion effect: |
| 324 | |
| 325 | 0 Y-Rc |
| 326 | 0 +--------------------> |
| 327 | ! Y-Rp |
| 328 | ! ^ |
| 329 | ! ! |
| 330 | ! ! |
| 331 | ! ! |
| 332 | ! ! |\_____)\__ |
| 333 | ! ! ) ____ ___.< |
| 334 | ! ! |/ )/ |
| 335 | ! ! |
| 336 | ! ! |
| 337 | ! ! |
| 338 | ! 0 +-------------------------------------> |
| 339 | ! 0 X-Rp |
| 340 | ! |
| 341 | ! |
| 342 | ! |
| 343 | ! |
| 344 | V |
| 345 | X-Rc |
| 346 | |
| 347 | The two reference systems are not aligned and the 'Rp' reference system is |
| 348 | rotated by 90 degrees in the counter-clockwise direction relatively to the |
| 349 | 'Rc' reference system. |
| 350 | |
| 351 | The image once captured to memory will be rotated: |
| 352 | |
| 353 | +-------------------------------------+ |
| 354 | | _ _ | |
| 355 | | \ / | |
| 356 | | | | | |
| 357 | | | | | |
| 358 | | | > | |
| 359 | | < | | |
| 360 | | | | | |
| 361 | | . | |
| 362 | | V | |
| 363 | +-------------------------------------+ |
| 364 | |
| 365 | A correction of 90 degrees in counter-clockwise direction has to be |
| 366 | applied to correctly display the image in portrait mode on the device |
| 367 | screen: |
| 368 | |
| 369 | +--------------------+ |
| 370 | | | |
| 371 | | | |
| 372 | | | |
| 373 | | | |
| 374 | | | |
| 375 | | | |
| 376 | | |\____)\___ | |
| 377 | | ) _____ __`< | |
| 378 | | |/ )/ | |
| 379 | | | |
| 380 | | | |
| 381 | | | |
| 382 | | | |
| 383 | | | |
| 384 | +--------------------+ |
| 385 | |
| 386 | orientation: |
| 387 | description: |
| 388 | The orientation of a device (typically an image sensor or a flash LED) |
| 389 | describing its mounting position relative to the usage orientation of the |
| 390 | system where the device is installed on. |
| 391 | $ref: /schemas/types.yaml#/definitions/uint32 |
| 392 | enum: |
| 393 | # Front. The device is mounted on the front facing side of the system. For |
| 394 | # mobile devices such as smartphones, tablets and laptops the front side |
| 395 | # is the user facing side. |
| 396 | - 0 |
| 397 | # Back. The device is mounted on the back side of the system, which is |
| 398 | # defined as the opposite side of the front facing one. |
| 399 | - 1 |
| 400 | # External. The device is not attached directly to the system but is |
| 401 | # attached in a way that allows it to move freely. |
| 402 | - 2 |
| 403 | |
| 404 | additionalProperties: true |
| 405 | |
| 406 | ... |