Larry Johnson | 3c253e9 | 2007-12-27 10:54:48 -0500 | [diff] [blame] | 1 | /* |
| 2 | * cpu/ppc4xx/denali_spd_ddr2.c |
| 3 | * This SPD SDRAM detection code supports AMCC PPC44x CPUs with a Denali-core |
| 4 | * DDR2 controller, specifically the 440EPx/GRx. |
| 5 | * |
Larry Johnson | 67a8301 | 2008-01-22 08:51:59 -0500 | [diff] [blame] | 6 | * (C) Copyright 2007-2008 |
Larry Johnson | 3c253e9 | 2007-12-27 10:54:48 -0500 | [diff] [blame] | 7 | * Larry Johnson, lrj@acm.org. |
| 8 | * |
| 9 | * Based primarily on cpu/ppc4xx/4xx_spd_ddr2.c, which is... |
| 10 | * |
| 11 | * (C) Copyright 2007 |
| 12 | * Stefan Roese, DENX Software Engineering, sr@denx.de. |
| 13 | * |
| 14 | * COPYRIGHT AMCC CORPORATION 2004 |
| 15 | * |
| 16 | * See file CREDITS for list of people who contributed to this |
| 17 | * project. |
| 18 | * |
| 19 | * This program is free software; you can redistribute it and/or |
| 20 | * modify it under the terms of the GNU General Public License as |
| 21 | * published by the Free Software Foundation; either version 2 of |
| 22 | * the License, or (at your option) any later version. |
| 23 | * |
| 24 | * This program is distributed in the hope that it will be useful, |
| 25 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 26 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 27 | * GNU General Public License for more details. |
| 28 | * |
| 29 | * You should have received a copy of the GNU General Public License |
| 30 | * along with this program; if not, write to the Free Software |
| 31 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, |
| 32 | * MA 02111-1307 USA |
| 33 | * |
| 34 | */ |
| 35 | |
| 36 | /* define DEBUG for debugging output (obviously ;-)) */ |
| 37 | #if 0 |
| 38 | #define DEBUG |
| 39 | #endif |
| 40 | |
| 41 | #include <common.h> |
| 42 | #include <command.h> |
| 43 | #include <ppc4xx.h> |
| 44 | #include <i2c.h> |
| 45 | #include <asm/io.h> |
| 46 | #include <asm/processor.h> |
| 47 | #include <asm/mmu.h> |
| 48 | |
| 49 | #if defined(CONFIG_SPD_EEPROM) && \ |
| 50 | (defined(CONFIG_440EPX) || defined(CONFIG_440GRX)) |
| 51 | |
| 52 | /*-----------------------------------------------------------------------------+ |
| 53 | * Defines |
| 54 | *-----------------------------------------------------------------------------*/ |
| 55 | #ifndef TRUE |
| 56 | #define TRUE 1 |
| 57 | #endif |
| 58 | #ifndef FALSE |
| 59 | #define FALSE 0 |
| 60 | #endif |
| 61 | |
| 62 | #define MAXDIMMS 2 |
| 63 | #define MAXRANKS 2 |
| 64 | |
| 65 | #define ONE_BILLION 1000000000 |
| 66 | |
| 67 | #define MULDIV64(m1, m2, d) (u32)(((u64)(m1) * (u64)(m2)) / (u64)(d)) |
| 68 | |
| 69 | #define DLL_DQS_DELAY 0x19 |
| 70 | #define DLL_DQS_BYPASS 0x0B |
| 71 | #define DQS_OUT_SHIFT 0x7F |
| 72 | |
| 73 | /* |
| 74 | * This DDR2 setup code can dynamically setup the TLB entries for the DDR2 memory |
| 75 | * region. Right now the cache should still be disabled in U-Boot because of the |
| 76 | * EMAC driver, that need it's buffer descriptor to be located in non cached |
| 77 | * memory. |
| 78 | * |
| 79 | * If at some time this restriction doesn't apply anymore, just define |
Larry Johnson | 67a8301 | 2008-01-22 08:51:59 -0500 | [diff] [blame] | 80 | * CONFIG_4xx_DCACHE in the board config file and this code should setup |
Larry Johnson | 3c253e9 | 2007-12-27 10:54:48 -0500 | [diff] [blame] | 81 | * everything correctly. |
| 82 | */ |
Larry Johnson | 67a8301 | 2008-01-22 08:51:59 -0500 | [diff] [blame] | 83 | #if defined(CONFIG_4xx_DCACHE) |
Larry Johnson | 3c253e9 | 2007-12-27 10:54:48 -0500 | [diff] [blame] | 84 | #define MY_TLB_WORD2_I_ENABLE 0 /* enable caching on SDRAM */ |
| 85 | #else |
| 86 | #define MY_TLB_WORD2_I_ENABLE TLB_WORD2_I_ENABLE /* disable caching on SDRAM */ |
| 87 | #endif |
| 88 | |
| 89 | /*-----------------------------------------------------------------------------+ |
| 90 | * Prototypes |
| 91 | *-----------------------------------------------------------------------------*/ |
| 92 | extern int denali_wait_for_dlllock(void); |
| 93 | extern void denali_core_search_data_eye(void); |
| 94 | extern void dcbz_area(u32 start_address, u32 num_bytes); |
| 95 | extern void dflush(void); |
| 96 | |
| 97 | /* |
| 98 | * Board-specific Platform code can reimplement spd_ddr_init_hang () if needed |
| 99 | */ |
| 100 | void __spd_ddr_init_hang(void) |
| 101 | { |
| 102 | hang(); |
| 103 | } |
| 104 | void spd_ddr_init_hang(void) |
| 105 | __attribute__ ((weak, alias("__spd_ddr_init_hang"))); |
| 106 | |
| 107 | #if defined(DEBUG) |
| 108 | static void print_mcsr(void) |
| 109 | { |
| 110 | printf("MCSR = 0x%08X\n", mfspr(SPRN_MCSR)); |
| 111 | } |
| 112 | |
| 113 | static void denali_sdram_register_dump(void) |
| 114 | { |
| 115 | unsigned int sdram_data; |
| 116 | |
| 117 | printf("\n Register Dump:\n"); |
| 118 | mfsdram(DDR0_00, sdram_data); |
| 119 | printf(" DDR0_00 = 0x%08X", sdram_data); |
| 120 | mfsdram(DDR0_01, sdram_data); |
| 121 | printf(" DDR0_01 = 0x%08X\n", sdram_data); |
| 122 | mfsdram(DDR0_02, sdram_data); |
| 123 | printf(" DDR0_02 = 0x%08X", sdram_data); |
| 124 | mfsdram(DDR0_03, sdram_data); |
| 125 | printf(" DDR0_03 = 0x%08X\n", sdram_data); |
| 126 | mfsdram(DDR0_04, sdram_data); |
| 127 | printf(" DDR0_04 = 0x%08X", sdram_data); |
| 128 | mfsdram(DDR0_05, sdram_data); |
| 129 | printf(" DDR0_05 = 0x%08X\n", sdram_data); |
| 130 | mfsdram(DDR0_06, sdram_data); |
| 131 | printf(" DDR0_06 = 0x%08X", sdram_data); |
| 132 | mfsdram(DDR0_07, sdram_data); |
| 133 | printf(" DDR0_07 = 0x%08X\n", sdram_data); |
| 134 | mfsdram(DDR0_08, sdram_data); |
| 135 | printf(" DDR0_08 = 0x%08X", sdram_data); |
| 136 | mfsdram(DDR0_09, sdram_data); |
| 137 | printf(" DDR0_09 = 0x%08X\n", sdram_data); |
| 138 | mfsdram(DDR0_10, sdram_data); |
| 139 | printf(" DDR0_10 = 0x%08X", sdram_data); |
| 140 | mfsdram(DDR0_11, sdram_data); |
| 141 | printf(" DDR0_11 = 0x%08X\n", sdram_data); |
| 142 | mfsdram(DDR0_12, sdram_data); |
| 143 | printf(" DDR0_12 = 0x%08X", sdram_data); |
| 144 | mfsdram(DDR0_14, sdram_data); |
| 145 | printf(" DDR0_14 = 0x%08X\n", sdram_data); |
| 146 | mfsdram(DDR0_17, sdram_data); |
| 147 | printf(" DDR0_17 = 0x%08X", sdram_data); |
| 148 | mfsdram(DDR0_18, sdram_data); |
| 149 | printf(" DDR0_18 = 0x%08X\n", sdram_data); |
| 150 | mfsdram(DDR0_19, sdram_data); |
| 151 | printf(" DDR0_19 = 0x%08X", sdram_data); |
| 152 | mfsdram(DDR0_20, sdram_data); |
| 153 | printf(" DDR0_20 = 0x%08X\n", sdram_data); |
| 154 | mfsdram(DDR0_21, sdram_data); |
| 155 | printf(" DDR0_21 = 0x%08X", sdram_data); |
| 156 | mfsdram(DDR0_22, sdram_data); |
| 157 | printf(" DDR0_22 = 0x%08X\n", sdram_data); |
| 158 | mfsdram(DDR0_23, sdram_data); |
| 159 | printf(" DDR0_23 = 0x%08X", sdram_data); |
| 160 | mfsdram(DDR0_24, sdram_data); |
| 161 | printf(" DDR0_24 = 0x%08X\n", sdram_data); |
| 162 | mfsdram(DDR0_25, sdram_data); |
| 163 | printf(" DDR0_25 = 0x%08X", sdram_data); |
| 164 | mfsdram(DDR0_26, sdram_data); |
| 165 | printf(" DDR0_26 = 0x%08X\n", sdram_data); |
| 166 | mfsdram(DDR0_27, sdram_data); |
| 167 | printf(" DDR0_27 = 0x%08X", sdram_data); |
| 168 | mfsdram(DDR0_28, sdram_data); |
| 169 | printf(" DDR0_28 = 0x%08X\n", sdram_data); |
| 170 | mfsdram(DDR0_31, sdram_data); |
| 171 | printf(" DDR0_31 = 0x%08X", sdram_data); |
| 172 | mfsdram(DDR0_32, sdram_data); |
| 173 | printf(" DDR0_32 = 0x%08X\n", sdram_data); |
| 174 | mfsdram(DDR0_33, sdram_data); |
| 175 | printf(" DDR0_33 = 0x%08X", sdram_data); |
| 176 | mfsdram(DDR0_34, sdram_data); |
| 177 | printf(" DDR0_34 = 0x%08X\n", sdram_data); |
| 178 | mfsdram(DDR0_35, sdram_data); |
| 179 | printf(" DDR0_35 = 0x%08X", sdram_data); |
| 180 | mfsdram(DDR0_36, sdram_data); |
| 181 | printf(" DDR0_36 = 0x%08X\n", sdram_data); |
| 182 | mfsdram(DDR0_37, sdram_data); |
| 183 | printf(" DDR0_37 = 0x%08X", sdram_data); |
| 184 | mfsdram(DDR0_38, sdram_data); |
| 185 | printf(" DDR0_38 = 0x%08X\n", sdram_data); |
| 186 | mfsdram(DDR0_39, sdram_data); |
| 187 | printf(" DDR0_39 = 0x%08X", sdram_data); |
| 188 | mfsdram(DDR0_40, sdram_data); |
| 189 | printf(" DDR0_40 = 0x%08X\n", sdram_data); |
| 190 | mfsdram(DDR0_41, sdram_data); |
| 191 | printf(" DDR0_41 = 0x%08X", sdram_data); |
| 192 | mfsdram(DDR0_42, sdram_data); |
| 193 | printf(" DDR0_42 = 0x%08X\n", sdram_data); |
| 194 | mfsdram(DDR0_43, sdram_data); |
| 195 | printf(" DDR0_43 = 0x%08X", sdram_data); |
| 196 | mfsdram(DDR0_44, sdram_data); |
| 197 | printf(" DDR0_44 = 0x%08X\n", sdram_data); |
| 198 | } |
| 199 | #else |
| 200 | static inline void denali_sdram_register_dump(void) |
| 201 | { |
| 202 | } |
| 203 | |
| 204 | inline static void print_mcsr(void) |
| 205 | { |
| 206 | } |
| 207 | #endif /* defined(DEBUG) */ |
| 208 | |
| 209 | static int is_ecc_enabled(void) |
| 210 | { |
| 211 | u32 val; |
| 212 | |
| 213 | mfsdram(DDR0_22, val); |
| 214 | return 0x3 == DDR0_22_CTRL_RAW_DECODE(val); |
| 215 | } |
| 216 | |
| 217 | static unsigned char spd_read(u8 chip, unsigned int addr) |
| 218 | { |
| 219 | u8 data[2]; |
| 220 | |
| 221 | if (0 != i2c_probe(chip) || 0 != i2c_read(chip, addr, 1, data, 1)) { |
| 222 | debug("spd_read(0x%02X, 0x%02X) failed\n", chip, addr); |
| 223 | return 0; |
| 224 | } |
| 225 | debug("spd_read(0x%02X, 0x%02X) returned 0x%02X\n", |
| 226 | chip, addr, data[0]); |
| 227 | return data[0]; |
| 228 | } |
| 229 | |
| 230 | static unsigned long get_tcyc(unsigned char reg) |
| 231 | { |
| 232 | /* |
| 233 | * Byte 9, et al: Cycle time for CAS Latency=X, is split into two |
| 234 | * nibbles: the higher order nibble (bits 4-7) designates the cycle time |
| 235 | * to a granularity of 1ns; the value presented by the lower order |
| 236 | * nibble (bits 0-3) has a granularity of .1ns and is added to the value |
| 237 | * designated by the higher nibble. In addition, four lines of the lower |
| 238 | * order nibble are assigned to support +.25, +.33, +.66, and +.75. |
| 239 | */ |
| 240 | |
| 241 | unsigned char subfield_b = reg & 0x0F; |
| 242 | |
| 243 | switch (subfield_b & 0x0F) { |
| 244 | case 0x0: |
| 245 | case 0x1: |
| 246 | case 0x2: |
| 247 | case 0x3: |
| 248 | case 0x4: |
| 249 | case 0x5: |
| 250 | case 0x6: |
| 251 | case 0x7: |
| 252 | case 0x8: |
| 253 | case 0x9: |
| 254 | return 1000 * (reg >> 4) + 100 * subfield_b; |
| 255 | case 0xA: |
| 256 | return 1000 * (reg >> 4) + 250; |
| 257 | case 0xB: |
| 258 | return 1000 * (reg >> 4) + 333; |
| 259 | case 0xC: |
| 260 | return 1000 * (reg >> 4) + 667; |
| 261 | case 0xD: |
| 262 | return 1000 * (reg >> 4) + 750; |
| 263 | } |
| 264 | return 0; |
| 265 | } |
| 266 | |
| 267 | /*------------------------------------------------------------------ |
| 268 | * Find the installed DIMMs, make sure that the are DDR2, and fill |
| 269 | * in the dimm_ranks array. Then dimm_ranks[dimm_num] > 0 iff the |
| 270 | * DIMM and dimm_num is present. |
| 271 | * Note: Because there are only two chip-select lines, it is assumed |
| 272 | * that a board with a single socket can support two ranks on that |
| 273 | * socket, while a board with two sockets can support only one rank |
| 274 | * on each socket. |
| 275 | *-----------------------------------------------------------------*/ |
| 276 | static void get_spd_info(unsigned long dimm_ranks[], |
| 277 | unsigned long *ranks, |
| 278 | unsigned char const iic0_dimm_addr[], |
| 279 | unsigned long num_dimm_banks) |
| 280 | { |
| 281 | unsigned long dimm_num; |
| 282 | unsigned long dimm_found = FALSE; |
| 283 | unsigned long const max_ranks_per_dimm = (1 == num_dimm_banks) ? 2 : 1; |
| 284 | unsigned char num_of_bytes; |
| 285 | unsigned char total_size; |
| 286 | |
| 287 | *ranks = 0; |
| 288 | for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) { |
| 289 | num_of_bytes = 0; |
| 290 | total_size = 0; |
| 291 | |
| 292 | num_of_bytes = spd_read(iic0_dimm_addr[dimm_num], 0); |
| 293 | total_size = spd_read(iic0_dimm_addr[dimm_num], 1); |
| 294 | if ((num_of_bytes != 0) && (total_size != 0)) { |
| 295 | unsigned char const dimm_type = |
| 296 | spd_read(iic0_dimm_addr[dimm_num], 2); |
| 297 | |
| 298 | unsigned long ranks_on_dimm = |
| 299 | (spd_read(iic0_dimm_addr[dimm_num], 5) & 0x07) + 1; |
| 300 | |
| 301 | if (8 != dimm_type) { |
| 302 | switch (dimm_type) { |
| 303 | case 1: |
| 304 | printf("ERROR: Standard Fast Page Mode " |
| 305 | "DRAM DIMM"); |
| 306 | break; |
| 307 | case 2: |
| 308 | printf("ERROR: EDO DIMM"); |
| 309 | break; |
| 310 | case 3: |
| 311 | printf("ERROR: Pipelined Nibble DIMM"); |
| 312 | break; |
| 313 | case 4: |
| 314 | printf("ERROR: SDRAM DIMM"); |
| 315 | break; |
| 316 | case 5: |
| 317 | printf("ERROR: Multiplexed ROM DIMM"); |
| 318 | break; |
| 319 | case 6: |
| 320 | printf("ERROR: SGRAM DIMM"); |
| 321 | break; |
| 322 | case 7: |
| 323 | printf("ERROR: DDR1 DIMM"); |
| 324 | break; |
| 325 | default: |
| 326 | printf("ERROR: Unknown DIMM (type %d)", |
| 327 | (unsigned int)dimm_type); |
| 328 | break; |
| 329 | } |
| 330 | printf(" detected in slot %lu.\n", dimm_num); |
| 331 | printf("Only DDR2 SDRAM DIMMs are supported." |
| 332 | "\n"); |
| 333 | printf("Replace the module with a DDR2 DIMM." |
| 334 | "\n\n"); |
| 335 | spd_ddr_init_hang(); |
| 336 | } |
| 337 | dimm_found = TRUE; |
| 338 | debug("DIMM slot %lu: populated with %lu-rank DDR2 DIMM" |
| 339 | "\n", dimm_num, ranks_on_dimm); |
| 340 | if (ranks_on_dimm > max_ranks_per_dimm) { |
| 341 | printf("WARNING: DRAM DIMM in slot %lu has %lu " |
| 342 | "ranks.\n"); |
| 343 | if (1 == max_ranks_per_dimm) { |
| 344 | printf("Only one rank will be used.\n"); |
| 345 | } else { |
| 346 | printf |
| 347 | ("Only two ranks will be used.\n"); |
| 348 | } |
| 349 | ranks_on_dimm = max_ranks_per_dimm; |
| 350 | } |
| 351 | dimm_ranks[dimm_num] = ranks_on_dimm; |
| 352 | *ranks += ranks_on_dimm; |
| 353 | } else { |
| 354 | dimm_ranks[dimm_num] = 0; |
| 355 | debug("DIMM slot %lu: Not populated\n", dimm_num); |
| 356 | } |
| 357 | } |
| 358 | if (dimm_found == FALSE) { |
| 359 | printf("ERROR: No memory installed.\n"); |
| 360 | printf("Install at least one DDR2 DIMM.\n\n"); |
| 361 | spd_ddr_init_hang(); |
| 362 | } |
| 363 | debug("Total number of ranks = %d\n", *ranks); |
| 364 | } |
| 365 | |
| 366 | /*------------------------------------------------------------------ |
| 367 | * For the memory DIMMs installed, this routine verifies that |
| 368 | * frequency previously calculated is supported. |
| 369 | *-----------------------------------------------------------------*/ |
| 370 | static void check_frequency(unsigned long *dimm_ranks, |
| 371 | unsigned char const iic0_dimm_addr[], |
| 372 | unsigned long num_dimm_banks, |
| 373 | unsigned long sdram_freq) |
| 374 | { |
| 375 | unsigned long dimm_num; |
| 376 | unsigned long cycle_time; |
| 377 | unsigned long calc_cycle_time; |
| 378 | |
| 379 | /* |
| 380 | * calc_cycle_time is calculated from DDR frequency set by board/chip |
| 381 | * and is expressed in picoseconds to match the way DIMM cycle time is |
| 382 | * calculated below. |
| 383 | */ |
| 384 | calc_cycle_time = MULDIV64(ONE_BILLION, 1000, sdram_freq); |
| 385 | |
| 386 | for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) { |
| 387 | if (dimm_ranks[dimm_num]) { |
| 388 | cycle_time = |
| 389 | get_tcyc(spd_read(iic0_dimm_addr[dimm_num], 9)); |
| 390 | debug("cycle_time=%d ps\n", cycle_time); |
| 391 | |
| 392 | if (cycle_time > (calc_cycle_time + 10)) { |
| 393 | /* |
| 394 | * the provided sdram cycle_time is too small |
| 395 | * for the available DIMM cycle_time. The |
| 396 | * additionnal 10ps is here to accept a small |
| 397 | * incertainty. |
| 398 | */ |
| 399 | printf |
| 400 | ("ERROR: DRAM DIMM detected with cycle_time %d ps in " |
| 401 | "slot %d \n while calculated cycle time is %d ps.\n", |
| 402 | (unsigned int)cycle_time, |
| 403 | (unsigned int)dimm_num, |
| 404 | (unsigned int)calc_cycle_time); |
| 405 | printf |
| 406 | ("Replace the DIMM, or change DDR frequency via " |
| 407 | "strapping bits.\n\n"); |
| 408 | spd_ddr_init_hang(); |
| 409 | } |
| 410 | } |
| 411 | } |
| 412 | } |
| 413 | |
| 414 | /*------------------------------------------------------------------ |
| 415 | * This routine gets size information for the installed memory |
| 416 | * DIMMs. |
| 417 | *-----------------------------------------------------------------*/ |
| 418 | static void get_dimm_size(unsigned long dimm_ranks[], |
| 419 | unsigned char const iic0_dimm_addr[], |
| 420 | unsigned long num_dimm_banks, |
| 421 | unsigned long *const rows, |
| 422 | unsigned long *const banks, |
| 423 | unsigned long *const cols, unsigned long *const width) |
| 424 | { |
| 425 | unsigned long dimm_num; |
| 426 | |
| 427 | *rows = 0; |
| 428 | *banks = 0; |
| 429 | *cols = 0; |
| 430 | *width = 0; |
| 431 | for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) { |
| 432 | if (dimm_ranks[dimm_num]) { |
| 433 | unsigned long t; |
| 434 | |
| 435 | /* Rows */ |
| 436 | t = spd_read(iic0_dimm_addr[dimm_num], 3); |
| 437 | if (0 == *rows) { |
| 438 | *rows = t; |
| 439 | } else if (t != *rows) { |
| 440 | printf("ERROR: DRAM DIMM modules do not all " |
| 441 | "have the same number of rows.\n\n"); |
| 442 | spd_ddr_init_hang(); |
| 443 | } |
| 444 | /* Banks */ |
| 445 | t = spd_read(iic0_dimm_addr[dimm_num], 17); |
| 446 | if (0 == *banks) { |
| 447 | *banks = t; |
| 448 | } else if (t != *banks) { |
| 449 | printf("ERROR: DRAM DIMM modules do not all " |
| 450 | "have the same number of banks.\n\n"); |
| 451 | spd_ddr_init_hang(); |
| 452 | } |
| 453 | /* Columns */ |
| 454 | t = spd_read(iic0_dimm_addr[dimm_num], 4); |
| 455 | if (0 == *cols) { |
| 456 | *cols = t; |
| 457 | } else if (t != *cols) { |
| 458 | printf("ERROR: DRAM DIMM modules do not all " |
| 459 | "have the same number of columns.\n\n"); |
| 460 | spd_ddr_init_hang(); |
| 461 | } |
| 462 | /* Data width */ |
| 463 | t = spd_read(iic0_dimm_addr[dimm_num], 6); |
| 464 | if (0 == *width) { |
| 465 | *width = t; |
| 466 | } else if (t != *width) { |
| 467 | printf("ERROR: DRAM DIMM modules do not all " |
| 468 | "have the same data width.\n\n"); |
| 469 | spd_ddr_init_hang(); |
| 470 | } |
| 471 | } |
| 472 | } |
| 473 | debug("Number of rows = %d\n", *rows); |
| 474 | debug("Number of columns = %d\n", *cols); |
| 475 | debug("Number of banks = %d\n", *banks); |
| 476 | debug("Data width = %d\n", *width); |
| 477 | if (*rows > 14) { |
| 478 | printf("ERROR: DRAM DIMM modules have %lu address rows.\n", |
| 479 | *rows); |
| 480 | printf("Only modules with 14 or fewer rows are supported.\n\n"); |
| 481 | spd_ddr_init_hang(); |
| 482 | } |
| 483 | if (4 != *banks && 8 != *banks) { |
| 484 | printf("ERROR: DRAM DIMM modules have %lu banks.\n", *banks); |
| 485 | printf("Only modules with 4 or 8 banks are supported.\n\n"); |
| 486 | spd_ddr_init_hang(); |
| 487 | } |
| 488 | if (*cols > 12) { |
| 489 | printf("ERROR: DRAM DIMM modules have %lu address columns.\n", |
| 490 | *cols); |
| 491 | printf("Only modules with 12 or fewer columns are " |
| 492 | "supported.\n\n"); |
| 493 | spd_ddr_init_hang(); |
| 494 | } |
| 495 | if (32 != *width && 40 != *width && 64 != *width && 72 != *width) { |
| 496 | printf("ERROR: DRAM DIMM modules have a width of %lu bit.\n", |
| 497 | *width); |
| 498 | printf("Only modules with widths of 32, 40, 64, and 72 bits " |
| 499 | "are supported.\n\n"); |
| 500 | spd_ddr_init_hang(); |
| 501 | } |
| 502 | } |
| 503 | |
| 504 | /*------------------------------------------------------------------ |
| 505 | * Only 1.8V modules are supported. This routine verifies this. |
| 506 | *-----------------------------------------------------------------*/ |
| 507 | static void check_voltage_type(unsigned long dimm_ranks[], |
| 508 | unsigned char const iic0_dimm_addr[], |
| 509 | unsigned long num_dimm_banks) |
| 510 | { |
| 511 | unsigned long dimm_num; |
| 512 | unsigned long voltage_type; |
| 513 | |
| 514 | for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) { |
| 515 | if (dimm_ranks[dimm_num]) { |
| 516 | voltage_type = spd_read(iic0_dimm_addr[dimm_num], 8); |
| 517 | if (0x05 != voltage_type) { /* 1.8V for DDR2 */ |
| 518 | printf("ERROR: Slot %lu provides 1.8V for DDR2 " |
| 519 | "DIMMs.\n", dimm_num); |
| 520 | switch (voltage_type) { |
| 521 | case 0x00: |
| 522 | printf("This DIMM is 5.0 Volt/TTL.\n"); |
| 523 | break; |
| 524 | case 0x01: |
| 525 | printf("This DIMM is LVTTL.\n"); |
| 526 | break; |
| 527 | case 0x02: |
| 528 | printf("This DIMM is 1.5 Volt.\n"); |
| 529 | break; |
| 530 | case 0x03: |
| 531 | printf("This DIMM is 3.3 Volt/TTL.\n"); |
| 532 | break; |
| 533 | case 0x04: |
| 534 | printf("This DIMM is 2.5 Volt.\n"); |
| 535 | break; |
| 536 | default: |
| 537 | printf("This DIMM is an unknown " |
| 538 | "voltage.\n"); |
| 539 | break; |
| 540 | } |
| 541 | printf("Replace it with a 1.8V DDR2 DIMM.\n\n"); |
| 542 | spd_ddr_init_hang(); |
| 543 | } |
| 544 | } |
| 545 | } |
| 546 | } |
| 547 | |
| 548 | static void program_ddr0_03(unsigned long dimm_ranks[], |
| 549 | unsigned char const iic0_dimm_addr[], |
| 550 | unsigned long num_dimm_banks, |
| 551 | unsigned long sdram_freq, |
| 552 | unsigned long rows, unsigned long *cas_latency) |
| 553 | { |
| 554 | unsigned long dimm_num; |
| 555 | unsigned long cas_index; |
| 556 | unsigned long cycle_2_0_clk; |
| 557 | unsigned long cycle_3_0_clk; |
| 558 | unsigned long cycle_4_0_clk; |
| 559 | unsigned long cycle_5_0_clk; |
| 560 | unsigned long max_2_0_tcyc_ps = 100; |
| 561 | unsigned long max_3_0_tcyc_ps = 100; |
| 562 | unsigned long max_4_0_tcyc_ps = 100; |
| 563 | unsigned long max_5_0_tcyc_ps = 100; |
| 564 | unsigned char cas_available = 0x3C; /* value for DDR2 */ |
| 565 | u32 ddr0_03 = DDR0_03_BSTLEN_ENCODE(0x2) | DDR0_03_INITAREF_ENCODE(0x2); |
| 566 | unsigned int const tcyc_addr[3] = { 9, 23, 25 }; |
| 567 | |
| 568 | /*------------------------------------------------------------------ |
| 569 | * Get the board configuration info. |
| 570 | *-----------------------------------------------------------------*/ |
| 571 | debug("sdram_freq = %d\n", sdram_freq); |
| 572 | |
| 573 | /*------------------------------------------------------------------ |
| 574 | * Handle the timing. We need to find the worst case timing of all |
| 575 | * the dimm modules installed. |
| 576 | *-----------------------------------------------------------------*/ |
| 577 | /* loop through all the DIMM slots on the board */ |
| 578 | for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) { |
| 579 | /* If a dimm is installed in a particular slot ... */ |
| 580 | if (dimm_ranks[dimm_num]) { |
| 581 | unsigned char const cas_bit = |
| 582 | spd_read(iic0_dimm_addr[dimm_num], 18); |
| 583 | unsigned char cas_mask; |
| 584 | |
| 585 | cas_available &= cas_bit; |
| 586 | for (cas_mask = 0x80; cas_mask; cas_mask >>= 1) { |
| 587 | if (cas_bit & cas_mask) |
| 588 | break; |
| 589 | } |
| 590 | debug("cas_bit (SPD byte 18) = %02X, cas_mask = %02X\n", |
| 591 | cas_bit, cas_mask); |
| 592 | |
| 593 | for (cas_index = 0; cas_index < 3; |
| 594 | cas_mask >>= 1, cas_index++) { |
| 595 | unsigned long cycle_time_ps; |
| 596 | |
| 597 | if (!(cas_available & cas_mask)) { |
| 598 | continue; |
| 599 | } |
| 600 | cycle_time_ps = |
| 601 | get_tcyc(spd_read(iic0_dimm_addr[dimm_num], |
| 602 | tcyc_addr[cas_index])); |
| 603 | |
| 604 | debug("cas_index = %d: cycle_time_ps = %d\n", |
| 605 | cas_index, cycle_time_ps); |
| 606 | /* |
| 607 | * DDR2 devices use the following bitmask for CAS latency: |
| 608 | * Bit 7 6 5 4 3 2 1 0 |
| 609 | * TBD 6.0 5.0 4.0 3.0 2.0 TBD TBD |
| 610 | */ |
| 611 | switch (cas_mask) { |
| 612 | case 0x20: |
| 613 | max_5_0_tcyc_ps = |
| 614 | max(max_5_0_tcyc_ps, cycle_time_ps); |
| 615 | break; |
| 616 | case 0x10: |
| 617 | max_4_0_tcyc_ps = |
| 618 | max(max_4_0_tcyc_ps, cycle_time_ps); |
| 619 | break; |
| 620 | case 0x08: |
| 621 | max_3_0_tcyc_ps = |
| 622 | max(max_3_0_tcyc_ps, cycle_time_ps); |
| 623 | break; |
| 624 | case 0x04: |
| 625 | max_2_0_tcyc_ps = |
| 626 | max(max_2_0_tcyc_ps, cycle_time_ps); |
| 627 | break; |
| 628 | } |
| 629 | } |
| 630 | } |
| 631 | } |
| 632 | debug("cas_available (bit map) = 0x%02X\n", cas_available); |
| 633 | |
| 634 | /*------------------------------------------------------------------ |
| 635 | * Set the SDRAM mode, SDRAM_MMODE |
| 636 | *-----------------------------------------------------------------*/ |
| 637 | |
| 638 | /* add 10 here because of rounding problems */ |
| 639 | cycle_2_0_clk = MULDIV64(ONE_BILLION, 1000, max_2_0_tcyc_ps) + 10; |
| 640 | cycle_3_0_clk = MULDIV64(ONE_BILLION, 1000, max_3_0_tcyc_ps) + 10; |
| 641 | cycle_4_0_clk = MULDIV64(ONE_BILLION, 1000, max_4_0_tcyc_ps) + 10; |
| 642 | cycle_5_0_clk = MULDIV64(ONE_BILLION, 1000, max_5_0_tcyc_ps) + 10; |
| 643 | debug("cycle_2_0_clk = %d\n", cycle_2_0_clk); |
| 644 | debug("cycle_3_0_clk = %d\n", cycle_3_0_clk); |
| 645 | debug("cycle_4_0_clk = %d\n", cycle_4_0_clk); |
| 646 | debug("cycle_5_0_clk = %d\n", cycle_5_0_clk); |
| 647 | |
| 648 | if ((cas_available & 0x04) && (sdram_freq <= cycle_2_0_clk)) { |
| 649 | *cas_latency = 2; |
| 650 | ddr0_03 |= DDR0_03_CASLAT_ENCODE(0x2) | |
| 651 | DDR0_03_CASLAT_LIN_ENCODE(0x4); |
| 652 | } else if ((cas_available & 0x08) && (sdram_freq <= cycle_3_0_clk)) { |
| 653 | *cas_latency = 3; |
| 654 | ddr0_03 |= DDR0_03_CASLAT_ENCODE(0x3) | |
| 655 | DDR0_03_CASLAT_LIN_ENCODE(0x6); |
| 656 | } else if ((cas_available & 0x10) && (sdram_freq <= cycle_4_0_clk)) { |
| 657 | *cas_latency = 4; |
| 658 | ddr0_03 |= DDR0_03_CASLAT_ENCODE(0x4) | |
| 659 | DDR0_03_CASLAT_LIN_ENCODE(0x8); |
| 660 | } else if ((cas_available & 0x20) && (sdram_freq <= cycle_5_0_clk)) { |
| 661 | *cas_latency = 5; |
| 662 | ddr0_03 |= DDR0_03_CASLAT_ENCODE(0x5) | |
| 663 | DDR0_03_CASLAT_LIN_ENCODE(0xA); |
| 664 | } else { |
| 665 | printf("ERROR: Cannot find a supported CAS latency with the " |
| 666 | "installed DIMMs.\n"); |
| 667 | printf("Only DDR2 DIMMs with CAS latencies of 2.0, 3.0, 4.0, " |
| 668 | "and 5.0 are supported.\n"); |
| 669 | printf("Make sure the PLB speed is within the supported range " |
| 670 | "of the DIMMs.\n"); |
| 671 | printf("sdram_freq=%d cycle2=%d cycle3=%d cycle4=%d " |
| 672 | "cycle5=%d\n\n", sdram_freq, cycle_2_0_clk, |
| 673 | cycle_3_0_clk, cycle_4_0_clk, cycle_5_0_clk); |
| 674 | spd_ddr_init_hang(); |
| 675 | } |
| 676 | debug("CAS latency = %d\n", *cas_latency); |
| 677 | mtsdram(DDR0_03, ddr0_03); |
| 678 | } |
| 679 | |
| 680 | static void program_ddr0_04(unsigned long dimm_ranks[], |
| 681 | unsigned char const iic0_dimm_addr[], |
| 682 | unsigned long num_dimm_banks, |
| 683 | unsigned long sdram_freq) |
| 684 | { |
| 685 | unsigned long dimm_num; |
| 686 | unsigned long t_rc_ps = 0; |
| 687 | unsigned long t_rrd_ps = 0; |
| 688 | unsigned long t_rtp_ps = 0; |
| 689 | unsigned long t_rc_clk; |
| 690 | unsigned long t_rrd_clk; |
| 691 | unsigned long t_rtp_clk; |
| 692 | |
| 693 | /*------------------------------------------------------------------ |
| 694 | * Handle the timing. We need to find the worst case timing of all |
| 695 | * the dimm modules installed. |
| 696 | *-----------------------------------------------------------------*/ |
| 697 | /* loop through all the DIMM slots on the board */ |
| 698 | for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) { |
| 699 | /* If a dimm is installed in a particular slot ... */ |
| 700 | if (dimm_ranks[dimm_num]) { |
| 701 | unsigned long ps; |
| 702 | |
| 703 | /* tRC */ |
| 704 | ps = 1000 * spd_read(iic0_dimm_addr[dimm_num], 41); |
| 705 | switch (spd_read(iic0_dimm_addr[dimm_num], 40) >> 4) { |
| 706 | case 0x1: |
| 707 | ps += 250; |
| 708 | break; |
| 709 | case 0x2: |
| 710 | ps += 333; |
| 711 | break; |
| 712 | case 0x3: |
| 713 | ps += 500; |
| 714 | break; |
| 715 | case 0x4: |
| 716 | ps += 667; |
| 717 | break; |
| 718 | case 0x5: |
| 719 | ps += 750; |
| 720 | break; |
| 721 | } |
| 722 | t_rc_ps = max(t_rc_ps, ps); |
| 723 | /* tRRD */ |
| 724 | ps = 250 * spd_read(iic0_dimm_addr[dimm_num], 28); |
| 725 | t_rrd_ps = max(t_rrd_ps, ps); |
| 726 | /* tRTP */ |
| 727 | ps = 250 * spd_read(iic0_dimm_addr[dimm_num], 38); |
| 728 | t_rtp_ps = max(t_rtp_ps, ps); |
| 729 | } |
| 730 | } |
| 731 | debug("t_rc_ps = %d\n", t_rc_ps); |
| 732 | t_rc_clk = (MULDIV64(sdram_freq, t_rc_ps, ONE_BILLION) + 999) / 1000; |
| 733 | debug("t_rrd_ps = %d\n", t_rrd_ps); |
| 734 | t_rrd_clk = (MULDIV64(sdram_freq, t_rrd_ps, ONE_BILLION) + 999) / 1000; |
| 735 | debug("t_rtp_ps = %d\n", t_rtp_ps); |
| 736 | t_rtp_clk = (MULDIV64(sdram_freq, t_rtp_ps, ONE_BILLION) + 999) / 1000; |
| 737 | mtsdram(DDR0_04, DDR0_04_TRC_ENCODE(t_rc_clk) | |
| 738 | DDR0_04_TRRD_ENCODE(t_rrd_clk) | |
| 739 | DDR0_04_TRTP_ENCODE(t_rtp_clk)); |
| 740 | } |
| 741 | |
| 742 | static void program_ddr0_05(unsigned long dimm_ranks[], |
| 743 | unsigned char const iic0_dimm_addr[], |
| 744 | unsigned long num_dimm_banks, |
| 745 | unsigned long sdram_freq) |
| 746 | { |
| 747 | unsigned long dimm_num; |
| 748 | unsigned long t_rp_ps = 0; |
| 749 | unsigned long t_ras_ps = 0; |
| 750 | unsigned long t_rp_clk; |
| 751 | unsigned long t_ras_clk; |
| 752 | u32 ddr0_05 = DDR0_05_TMRD_ENCODE(0x2) | DDR0_05_TEMRS_ENCODE(0x2); |
| 753 | |
| 754 | /*------------------------------------------------------------------ |
| 755 | * Handle the timing. We need to find the worst case timing of all |
| 756 | * the dimm modules installed. |
| 757 | *-----------------------------------------------------------------*/ |
| 758 | /* loop through all the DIMM slots on the board */ |
| 759 | for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) { |
| 760 | /* If a dimm is installed in a particular slot ... */ |
| 761 | if (dimm_ranks[dimm_num]) { |
| 762 | unsigned long ps; |
| 763 | |
| 764 | /* tRP */ |
| 765 | ps = 250 * spd_read(iic0_dimm_addr[dimm_num], 27); |
| 766 | t_rp_ps = max(t_rp_ps, ps); |
| 767 | /* tRAS */ |
| 768 | ps = 1000 * spd_read(iic0_dimm_addr[dimm_num], 30); |
| 769 | t_ras_ps = max(t_ras_ps, ps); |
| 770 | } |
| 771 | } |
| 772 | debug("t_rp_ps = %d\n", t_rp_ps); |
| 773 | t_rp_clk = (MULDIV64(sdram_freq, t_rp_ps, ONE_BILLION) + 999) / 1000; |
| 774 | debug("t_ras_ps = %d\n", t_ras_ps); |
| 775 | t_ras_clk = (MULDIV64(sdram_freq, t_ras_ps, ONE_BILLION) + 999) / 1000; |
| 776 | mtsdram(DDR0_05, ddr0_05 | DDR0_05_TRP_ENCODE(t_rp_clk) | |
| 777 | DDR0_05_TRAS_MIN_ENCODE(t_ras_clk)); |
| 778 | } |
| 779 | |
| 780 | static void program_ddr0_06(unsigned long dimm_ranks[], |
| 781 | unsigned char const iic0_dimm_addr[], |
| 782 | unsigned long num_dimm_banks, |
| 783 | unsigned long sdram_freq) |
| 784 | { |
| 785 | unsigned long dimm_num; |
| 786 | unsigned char spd_40; |
| 787 | unsigned long t_wtr_ps = 0; |
| 788 | unsigned long t_rfc_ps = 0; |
| 789 | unsigned long t_wtr_clk; |
| 790 | unsigned long t_rfc_clk; |
| 791 | u32 ddr0_06 = |
| 792 | DDR0_06_WRITEINTERP_ENCODE(0x1) | DDR0_06_TDLL_ENCODE(200); |
| 793 | |
| 794 | /*------------------------------------------------------------------ |
| 795 | * Handle the timing. We need to find the worst case timing of all |
| 796 | * the dimm modules installed. |
| 797 | *-----------------------------------------------------------------*/ |
| 798 | /* loop through all the DIMM slots on the board */ |
| 799 | for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) { |
| 800 | /* If a dimm is installed in a particular slot ... */ |
| 801 | if (dimm_ranks[dimm_num]) { |
| 802 | unsigned long ps; |
| 803 | |
| 804 | /* tWTR */ |
| 805 | ps = 250 * spd_read(iic0_dimm_addr[dimm_num], 37); |
| 806 | t_wtr_ps = max(t_wtr_ps, ps); |
| 807 | /* tRFC */ |
| 808 | ps = 1000 * spd_read(iic0_dimm_addr[dimm_num], 42); |
| 809 | spd_40 = spd_read(iic0_dimm_addr[dimm_num], 40); |
| 810 | ps += 256000 * (spd_40 & 0x01); |
| 811 | switch ((spd_40 & 0x0E) >> 1) { |
| 812 | case 0x1: |
| 813 | ps += 250; |
| 814 | break; |
| 815 | case 0x2: |
| 816 | ps += 333; |
| 817 | break; |
| 818 | case 0x3: |
| 819 | ps += 500; |
| 820 | break; |
| 821 | case 0x4: |
| 822 | ps += 667; |
| 823 | break; |
| 824 | case 0x5: |
| 825 | ps += 750; |
| 826 | break; |
| 827 | } |
| 828 | t_rfc_ps = max(t_rfc_ps, ps); |
| 829 | } |
| 830 | } |
| 831 | debug("t_wtr_ps = %d\n", t_wtr_ps); |
| 832 | t_wtr_clk = (MULDIV64(sdram_freq, t_wtr_ps, ONE_BILLION) + 999) / 1000; |
| 833 | debug("t_rfc_ps = %d\n", t_rfc_ps); |
| 834 | t_rfc_clk = (MULDIV64(sdram_freq, t_rfc_ps, ONE_BILLION) + 999) / 1000; |
| 835 | mtsdram(DDR0_06, ddr0_06 | DDR0_06_TWTR_ENCODE(t_wtr_clk) | |
| 836 | DDR0_06_TRFC_ENCODE(t_rfc_clk)); |
| 837 | } |
| 838 | |
| 839 | static void program_ddr0_10(unsigned long dimm_ranks[], unsigned long ranks) |
| 840 | { |
| 841 | unsigned long csmap; |
| 842 | |
| 843 | if (2 == ranks) { |
| 844 | /* Both chip selects in use */ |
| 845 | csmap = 0x03; |
| 846 | } else { |
| 847 | /* One chip select in use */ |
| 848 | csmap = (1 == dimm_ranks[0]) ? 0x1 : 0x2; |
| 849 | } |
| 850 | mtsdram(DDR0_10, DDR0_10_WRITE_MODEREG_ENCODE(0x0) | |
| 851 | DDR0_10_CS_MAP_ENCODE(csmap) | |
| 852 | DDR0_10_OCD_ADJUST_PUP_CS_0_ENCODE(0)); |
| 853 | } |
| 854 | |
| 855 | static void program_ddr0_11(unsigned long sdram_freq) |
| 856 | { |
| 857 | unsigned long const t_xsnr_ps = 200000; /* 200 ns */ |
| 858 | unsigned long t_xsnr_clk; |
| 859 | |
| 860 | debug("t_xsnr_ps = %d\n", t_xsnr_ps); |
| 861 | t_xsnr_clk = |
| 862 | (MULDIV64(sdram_freq, t_xsnr_ps, ONE_BILLION) + 999) / 1000; |
| 863 | mtsdram(DDR0_11, DDR0_11_SREFRESH_ENCODE(0) | |
| 864 | DDR0_11_TXSNR_ENCODE(t_xsnr_clk) | DDR0_11_TXSR_ENCODE(200)); |
| 865 | } |
| 866 | |
| 867 | static void program_ddr0_22(unsigned long dimm_ranks[], |
| 868 | unsigned char const iic0_dimm_addr[], |
| 869 | unsigned long num_dimm_banks, unsigned long width) |
| 870 | { |
| 871 | #if defined(CONFIG_DDR_ECC) |
| 872 | unsigned long dimm_num; |
| 873 | unsigned long ecc_available = width >= 64; |
| 874 | u32 ddr0_22 = DDR0_22_DQS_OUT_SHIFT_BYPASS_ENCODE(0x26) | |
| 875 | DDR0_22_DQS_OUT_SHIFT_ENCODE(DQS_OUT_SHIFT) | |
| 876 | DDR0_22_DLL_DQS_BYPASS_8_ENCODE(DLL_DQS_BYPASS); |
| 877 | |
| 878 | /* loop through all the DIMM slots on the board */ |
| 879 | for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) { |
| 880 | /* If a dimm is installed in a particular slot ... */ |
| 881 | if (dimm_ranks[dimm_num]) { |
| 882 | /* Check for ECC */ |
| 883 | if (0 == (spd_read(iic0_dimm_addr[dimm_num], 11) & |
| 884 | 0x02)) { |
| 885 | ecc_available = FALSE; |
| 886 | } |
| 887 | } |
| 888 | } |
| 889 | if (ecc_available) { |
| 890 | debug("ECC found on all DIMMs present\n"); |
| 891 | mtsdram(DDR0_22, ddr0_22 | DDR0_22_CTRL_RAW_ENCODE(0x3)); |
| 892 | } else { |
| 893 | debug("ECC not found on some or all DIMMs present\n"); |
| 894 | mtsdram(DDR0_22, ddr0_22 | DDR0_22_CTRL_RAW_ENCODE(0x0)); |
| 895 | } |
| 896 | #else |
| 897 | mtsdram(DDR0_22, DDR0_22_CTRL_RAW_ENCODE(0x0) | |
| 898 | DDR0_22_DQS_OUT_SHIFT_BYPASS_ENCODE(0x26) | |
| 899 | DDR0_22_DQS_OUT_SHIFT_ENCODE(DQS_OUT_SHIFT) | |
| 900 | DDR0_22_DLL_DQS_BYPASS_8_ENCODE(DLL_DQS_BYPASS)); |
| 901 | #endif /* defined(CONFIG_DDR_ECC) */ |
| 902 | } |
| 903 | |
| 904 | static void program_ddr0_24(unsigned long ranks) |
| 905 | { |
| 906 | u32 ddr0_24 = DDR0_24_RTT_PAD_TERMINATION_ENCODE(0x1) | /* 75 ohm */ |
| 907 | DDR0_24_ODT_RD_MAP_CS1_ENCODE(0x0); |
| 908 | |
| 909 | if (2 == ranks) { |
| 910 | /* Both chip selects in use */ |
| 911 | ddr0_24 |= DDR0_24_ODT_WR_MAP_CS1_ENCODE(0x1) | |
| 912 | DDR0_24_ODT_WR_MAP_CS0_ENCODE(0x2); |
| 913 | } else { |
| 914 | /* One chip select in use */ |
| 915 | /* One of the two fields added to ddr0_24 is a "don't care" */ |
| 916 | ddr0_24 |= DDR0_24_ODT_WR_MAP_CS1_ENCODE(0x2) | |
| 917 | DDR0_24_ODT_WR_MAP_CS0_ENCODE(0x1); |
| 918 | } |
| 919 | mtsdram(DDR0_24, ddr0_24); |
| 920 | } |
| 921 | |
| 922 | static void program_ddr0_26(unsigned long sdram_freq) |
| 923 | { |
| 924 | unsigned long const t_ref_ps = 7800000; /* 7.8 us. refresh */ |
| 925 | /* TODO: check definition of tRAS_MAX */ |
| 926 | unsigned long const t_ras_max_ps = 9 * t_ref_ps; |
| 927 | unsigned long t_ras_max_clk; |
| 928 | unsigned long t_ref_clk; |
| 929 | |
| 930 | /* Round down t_ras_max_clk and t_ref_clk */ |
| 931 | debug("t_ras_max_ps = %d\n", t_ras_max_ps); |
| 932 | t_ras_max_clk = MULDIV64(sdram_freq, t_ras_max_ps, ONE_BILLION) / 1000; |
| 933 | debug("t_ref_ps = %d\n", t_ref_ps); |
| 934 | t_ref_clk = MULDIV64(sdram_freq, t_ref_ps, ONE_BILLION) / 1000; |
| 935 | mtsdram(DDR0_26, DDR0_26_TRAS_MAX_ENCODE(t_ras_max_clk) | |
| 936 | DDR0_26_TREF_ENCODE(t_ref_clk)); |
| 937 | } |
| 938 | |
| 939 | static void program_ddr0_27(unsigned long sdram_freq) |
| 940 | { |
| 941 | unsigned long const t_init_ps = 200000000; /* 200 us. init */ |
| 942 | unsigned long t_init_clk; |
| 943 | |
| 944 | debug("t_init_ps = %d\n", t_init_ps); |
| 945 | t_init_clk = |
| 946 | (MULDIV64(sdram_freq, t_init_ps, ONE_BILLION) + 999) / 1000; |
| 947 | mtsdram(DDR0_27, DDR0_27_EMRS_DATA_ENCODE(0x0000) | |
| 948 | DDR0_27_TINIT_ENCODE(t_init_clk)); |
| 949 | } |
| 950 | |
| 951 | static void program_ddr0_43(unsigned long dimm_ranks[], |
| 952 | unsigned char const iic0_dimm_addr[], |
| 953 | unsigned long num_dimm_banks, |
| 954 | unsigned long sdram_freq, |
| 955 | unsigned long cols, unsigned long banks) |
| 956 | { |
| 957 | unsigned long dimm_num; |
| 958 | unsigned long t_wr_ps = 0; |
| 959 | unsigned long t_wr_clk; |
| 960 | u32 ddr0_43 = DDR0_43_APREBIT_ENCODE(10) | |
| 961 | DDR0_43_COLUMN_SIZE_ENCODE(12 - cols) | |
| 962 | DDR0_43_EIGHT_BANK_MODE_ENCODE(8 == banks ? 1 : 0); |
| 963 | |
| 964 | /*------------------------------------------------------------------ |
| 965 | * Handle the timing. We need to find the worst case timing of all |
| 966 | * the dimm modules installed. |
| 967 | *-----------------------------------------------------------------*/ |
| 968 | /* loop through all the DIMM slots on the board */ |
| 969 | for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) { |
| 970 | /* If a dimm is installed in a particular slot ... */ |
| 971 | if (dimm_ranks[dimm_num]) { |
| 972 | unsigned long ps; |
| 973 | |
| 974 | ps = 250 * spd_read(iic0_dimm_addr[dimm_num], 36); |
| 975 | t_wr_ps = max(t_wr_ps, ps); |
| 976 | } |
| 977 | } |
| 978 | debug("t_wr_ps = %d\n", t_wr_ps); |
| 979 | t_wr_clk = (MULDIV64(sdram_freq, t_wr_ps, ONE_BILLION) + 999) / 1000; |
| 980 | mtsdram(DDR0_43, ddr0_43 | DDR0_43_TWR_ENCODE(t_wr_clk)); |
| 981 | } |
| 982 | |
| 983 | static void program_ddr0_44(unsigned long dimm_ranks[], |
| 984 | unsigned char const iic0_dimm_addr[], |
| 985 | unsigned long num_dimm_banks, |
| 986 | unsigned long sdram_freq) |
| 987 | { |
| 988 | unsigned long dimm_num; |
| 989 | unsigned long t_rcd_ps = 0; |
| 990 | unsigned long t_rcd_clk; |
| 991 | |
| 992 | /*------------------------------------------------------------------ |
| 993 | * Handle the timing. We need to find the worst case timing of all |
| 994 | * the dimm modules installed. |
| 995 | *-----------------------------------------------------------------*/ |
| 996 | /* loop through all the DIMM slots on the board */ |
| 997 | for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) { |
| 998 | /* If a dimm is installed in a particular slot ... */ |
| 999 | if (dimm_ranks[dimm_num]) { |
| 1000 | unsigned long ps; |
| 1001 | |
| 1002 | ps = 250 * spd_read(iic0_dimm_addr[dimm_num], 29); |
| 1003 | t_rcd_ps = max(t_rcd_ps, ps); |
| 1004 | } |
| 1005 | } |
| 1006 | debug("t_rcd_ps = %d\n", t_rcd_ps); |
| 1007 | t_rcd_clk = (MULDIV64(sdram_freq, t_rcd_ps, ONE_BILLION) + 999) / 1000; |
| 1008 | mtsdram(DDR0_44, DDR0_44_TRCD_ENCODE(t_rcd_clk)); |
| 1009 | } |
| 1010 | |
| 1011 | /*-----------------------------------------------------------------------------+ |
| 1012 | * initdram. Initializes the 440EPx/GPx DDR SDRAM controller. |
| 1013 | * Note: This routine runs from flash with a stack set up in the chip's |
| 1014 | * sram space. It is important that the routine does not require .sbss, .bss or |
| 1015 | * .data sections. It also cannot call routines that require these sections. |
| 1016 | *-----------------------------------------------------------------------------*/ |
| 1017 | /*----------------------------------------------------------------------------- |
| 1018 | * Function: initdram |
| 1019 | * Description: Configures SDRAM memory banks for DDR operation. |
| 1020 | * Auto Memory Configuration option reads the DDR SDRAM EEPROMs |
| 1021 | * via the IIC bus and then configures the DDR SDRAM memory |
| 1022 | * banks appropriately. If Auto Memory Configuration is |
| 1023 | * not used, it is assumed that no DIMM is plugged |
| 1024 | *-----------------------------------------------------------------------------*/ |
| 1025 | long int initdram(int board_type) |
| 1026 | { |
| 1027 | unsigned char const iic0_dimm_addr[] = SPD_EEPROM_ADDRESS; |
| 1028 | unsigned long dimm_ranks[MAXDIMMS]; |
| 1029 | unsigned long ranks; |
| 1030 | unsigned long rows; |
| 1031 | unsigned long banks; |
| 1032 | unsigned long cols; |
| 1033 | unsigned long width; |
| 1034 | unsigned long const sdram_freq = get_bus_freq(0); |
| 1035 | unsigned long const num_dimm_banks = sizeof(iic0_dimm_addr); /* on board dimm banks */ |
| 1036 | unsigned long cas_latency = 0; /* to quiet initialization warning */ |
| 1037 | unsigned long dram_size; |
| 1038 | |
| 1039 | debug("\nEntering initdram()\n"); |
| 1040 | |
| 1041 | /*------------------------------------------------------------------ |
| 1042 | * Stop the DDR-SDRAM controller. |
| 1043 | *-----------------------------------------------------------------*/ |
| 1044 | mtsdram(DDR0_02, DDR0_02_START_ENCODE(0)); |
| 1045 | |
| 1046 | /* |
| 1047 | * Make sure I2C controller is initialized |
| 1048 | * before continuing. |
| 1049 | */ |
| 1050 | /* switch to correct I2C bus */ |
| 1051 | I2C_SET_BUS(CFG_SPD_BUS_NUM); |
| 1052 | i2c_init(CFG_I2C_SPEED, CFG_I2C_SLAVE); |
| 1053 | |
| 1054 | /*------------------------------------------------------------------ |
| 1055 | * Clear out the serial presence detect buffers. |
| 1056 | * Perform IIC reads from the dimm. Fill in the spds. |
| 1057 | * Check to see if the dimm slots are populated |
| 1058 | *-----------------------------------------------------------------*/ |
| 1059 | get_spd_info(dimm_ranks, &ranks, iic0_dimm_addr, num_dimm_banks); |
| 1060 | |
| 1061 | /*------------------------------------------------------------------ |
| 1062 | * Check the frequency supported for the dimms plugged. |
| 1063 | *-----------------------------------------------------------------*/ |
| 1064 | check_frequency(dimm_ranks, iic0_dimm_addr, num_dimm_banks, sdram_freq); |
| 1065 | |
| 1066 | /*------------------------------------------------------------------ |
| 1067 | * Check and get size information. |
| 1068 | *-----------------------------------------------------------------*/ |
| 1069 | get_dimm_size(dimm_ranks, iic0_dimm_addr, num_dimm_banks, &rows, &banks, |
| 1070 | &cols, &width); |
| 1071 | |
| 1072 | /*------------------------------------------------------------------ |
| 1073 | * Check the voltage type for the dimms plugged. |
| 1074 | *-----------------------------------------------------------------*/ |
| 1075 | check_voltage_type(dimm_ranks, iic0_dimm_addr, num_dimm_banks); |
| 1076 | |
| 1077 | /*------------------------------------------------------------------ |
| 1078 | * Program registers for SDRAM controller. |
| 1079 | *-----------------------------------------------------------------*/ |
| 1080 | mtsdram(DDR0_00, DDR0_00_DLL_INCREMENT_ENCODE(0x19) | |
| 1081 | DDR0_00_DLL_START_POINT_DECODE(0x0A)); |
| 1082 | |
| 1083 | mtsdram(DDR0_01, DDR0_01_PLB0_DB_CS_LOWER_ENCODE(0x01) | |
| 1084 | DDR0_01_PLB0_DB_CS_UPPER_ENCODE(0x00) | |
| 1085 | DDR0_01_INT_MASK_ENCODE(0xFF)); |
| 1086 | |
| 1087 | program_ddr0_03(dimm_ranks, iic0_dimm_addr, num_dimm_banks, sdram_freq, |
| 1088 | rows, &cas_latency); |
| 1089 | |
| 1090 | program_ddr0_04(dimm_ranks, iic0_dimm_addr, num_dimm_banks, sdram_freq); |
| 1091 | |
| 1092 | program_ddr0_05(dimm_ranks, iic0_dimm_addr, num_dimm_banks, sdram_freq); |
| 1093 | |
| 1094 | program_ddr0_06(dimm_ranks, iic0_dimm_addr, num_dimm_banks, sdram_freq); |
| 1095 | |
| 1096 | /*------------------------------------------------------------------ |
| 1097 | * TODO: tFAW not found in SPD. Value of 13 taken from Sequoia |
| 1098 | * board SDRAM, but may be overly concervate. |
| 1099 | *-----------------------------------------------------------------*/ |
| 1100 | mtsdram(DDR0_07, DDR0_07_NO_CMD_INIT_ENCODE(0) | |
| 1101 | DDR0_07_TFAW_ENCODE(13) | |
| 1102 | DDR0_07_AUTO_REFRESH_MODE_ENCODE(1) | |
| 1103 | DDR0_07_AREFRESH_ENCODE(0)); |
| 1104 | |
| 1105 | mtsdram(DDR0_08, DDR0_08_WRLAT_ENCODE(cas_latency - 1) | |
| 1106 | DDR0_08_TCPD_ENCODE(200) | DDR0_08_DQS_N_EN_ENCODE(0) | |
| 1107 | DDR0_08_DDRII_ENCODE(1)); |
| 1108 | |
| 1109 | mtsdram(DDR0_09, DDR0_09_OCD_ADJUST_PDN_CS_0_ENCODE(0x00) | |
| 1110 | DDR0_09_RTT_0_ENCODE(0x1) | |
| 1111 | DDR0_09_WR_DQS_SHIFT_BYPASS_ENCODE(0x1D) | |
| 1112 | DDR0_09_WR_DQS_SHIFT_ENCODE(DQS_OUT_SHIFT - 0x20)); |
| 1113 | |
| 1114 | program_ddr0_10(dimm_ranks, ranks); |
| 1115 | |
| 1116 | program_ddr0_11(sdram_freq); |
| 1117 | |
| 1118 | mtsdram(DDR0_12, DDR0_12_TCKE_ENCODE(3)); |
| 1119 | |
| 1120 | mtsdram(DDR0_14, DDR0_14_DLL_BYPASS_MODE_ENCODE(0) | |
| 1121 | DDR0_14_REDUC_ENCODE(width <= 40 ? 1 : 0) | |
| 1122 | DDR0_14_REG_DIMM_ENABLE_ENCODE(0)); |
| 1123 | |
| 1124 | mtsdram(DDR0_17, DDR0_17_DLL_DQS_DELAY_0_ENCODE(DLL_DQS_DELAY)); |
| 1125 | |
| 1126 | mtsdram(DDR0_18, DDR0_18_DLL_DQS_DELAY_4_ENCODE(DLL_DQS_DELAY) | |
| 1127 | DDR0_18_DLL_DQS_DELAY_3_ENCODE(DLL_DQS_DELAY) | |
| 1128 | DDR0_18_DLL_DQS_DELAY_2_ENCODE(DLL_DQS_DELAY) | |
| 1129 | DDR0_18_DLL_DQS_DELAY_1_ENCODE(DLL_DQS_DELAY)); |
| 1130 | |
| 1131 | mtsdram(DDR0_19, DDR0_19_DLL_DQS_DELAY_8_ENCODE(DLL_DQS_DELAY) | |
| 1132 | DDR0_19_DLL_DQS_DELAY_7_ENCODE(DLL_DQS_DELAY) | |
| 1133 | DDR0_19_DLL_DQS_DELAY_6_ENCODE(DLL_DQS_DELAY) | |
| 1134 | DDR0_19_DLL_DQS_DELAY_5_ENCODE(DLL_DQS_DELAY)); |
| 1135 | |
| 1136 | mtsdram(DDR0_20, DDR0_20_DLL_DQS_BYPASS_3_ENCODE(DLL_DQS_BYPASS) | |
| 1137 | DDR0_20_DLL_DQS_BYPASS_2_ENCODE(DLL_DQS_BYPASS) | |
| 1138 | DDR0_20_DLL_DQS_BYPASS_1_ENCODE(DLL_DQS_BYPASS) | |
| 1139 | DDR0_20_DLL_DQS_BYPASS_0_ENCODE(DLL_DQS_BYPASS)); |
| 1140 | |
| 1141 | mtsdram(DDR0_21, DDR0_21_DLL_DQS_BYPASS_7_ENCODE(DLL_DQS_BYPASS) | |
| 1142 | DDR0_21_DLL_DQS_BYPASS_6_ENCODE(DLL_DQS_BYPASS) | |
| 1143 | DDR0_21_DLL_DQS_BYPASS_5_ENCODE(DLL_DQS_BYPASS) | |
| 1144 | DDR0_21_DLL_DQS_BYPASS_4_ENCODE(DLL_DQS_BYPASS)); |
| 1145 | |
| 1146 | program_ddr0_22(dimm_ranks, iic0_dimm_addr, num_dimm_banks, width); |
| 1147 | |
| 1148 | mtsdram(DDR0_23, DDR0_23_ODT_RD_MAP_CS0_ENCODE(0x0) | |
| 1149 | DDR0_23_FWC_ENCODE(0)); |
| 1150 | |
| 1151 | program_ddr0_24(ranks); |
| 1152 | |
| 1153 | program_ddr0_26(sdram_freq); |
| 1154 | |
| 1155 | program_ddr0_27(sdram_freq); |
| 1156 | |
| 1157 | mtsdram(DDR0_28, DDR0_28_EMRS3_DATA_ENCODE(0x0000) | |
| 1158 | DDR0_28_EMRS2_DATA_ENCODE(0x0000)); |
| 1159 | |
| 1160 | mtsdram(DDR0_31, DDR0_31_XOR_CHECK_BITS_ENCODE(0x0000)); |
| 1161 | |
| 1162 | mtsdram(DDR0_42, DDR0_42_ADDR_PINS_DECODE(14 - rows) | |
| 1163 | DDR0_42_CASLAT_LIN_GATE_ENCODE(2 * cas_latency)); |
| 1164 | |
| 1165 | program_ddr0_43(dimm_ranks, iic0_dimm_addr, num_dimm_banks, sdram_freq, |
| 1166 | cols, banks); |
| 1167 | |
| 1168 | program_ddr0_44(dimm_ranks, iic0_dimm_addr, num_dimm_banks, sdram_freq); |
| 1169 | |
| 1170 | denali_sdram_register_dump(); |
| 1171 | |
| 1172 | dram_size = (width >= 64) ? 8 : 4; |
| 1173 | dram_size *= 1 << cols; |
| 1174 | dram_size *= banks; |
| 1175 | dram_size *= 1 << rows; |
| 1176 | dram_size *= ranks; |
| 1177 | debug("dram_size = %lu\n", dram_size); |
| 1178 | |
| 1179 | /* Start the SDRAM controler */ |
| 1180 | mtsdram(DDR0_02, DDR0_02_START_ENCODE(1)); |
| 1181 | denali_wait_for_dlllock(); |
| 1182 | |
| 1183 | #if defined(CONFIG_DDR_DATA_EYE) |
| 1184 | /* -----------------------------------------------------------+ |
| 1185 | * Perform data eye search if requested. |
| 1186 | * ----------------------------------------------------------*/ |
| 1187 | program_tlb(0, CFG_SDRAM_BASE, dram_size, TLB_WORD2_I_ENABLE); |
| 1188 | denali_core_search_data_eye(); |
| 1189 | denali_sdram_register_dump(); |
| 1190 | remove_tlb(CFG_SDRAM_BASE, dram_size); |
| 1191 | #endif |
| 1192 | |
| 1193 | #if defined(CONFIG_ZERO_SDRAM) || defined(CONFIG_DDR_ECC) |
| 1194 | program_tlb(0, CFG_SDRAM_BASE, dram_size, 0); |
| 1195 | sync(); |
| 1196 | eieio(); |
| 1197 | /* Zero the memory */ |
| 1198 | debug("Zeroing SDRAM..."); |
| 1199 | dcbz_area(CFG_SDRAM_BASE, dram_size); |
| 1200 | dflush(); |
| 1201 | debug("Completed\n"); |
| 1202 | sync(); |
| 1203 | eieio(); |
| 1204 | remove_tlb(CFG_SDRAM_BASE, dram_size); |
| 1205 | |
| 1206 | #if defined(CONFIG_DDR_ECC) |
| 1207 | /* |
| 1208 | * If ECC is enabled, clear and enable interrupts |
| 1209 | */ |
| 1210 | if (is_ecc_enabled()) { |
| 1211 | u32 val; |
| 1212 | |
| 1213 | sync(); |
| 1214 | eieio(); |
| 1215 | /* Clear error status */ |
| 1216 | mfsdram(DDR0_00, val); |
| 1217 | mtsdram(DDR0_00, val | DDR0_00_INT_ACK_ALL); |
| 1218 | /* Set 'int_mask' parameter to functionnal value */ |
| 1219 | mfsdram(DDR0_01, val); |
| 1220 | mtsdram(DDR0_01, (val & ~DDR0_01_INT_MASK_MASK) | |
| 1221 | DDR0_01_INT_MASK_ALL_OFF); |
| 1222 | #if defined(CONFIG_DDR_DATA_EYE) |
| 1223 | /* |
| 1224 | * Running denali_core_search_data_eye() when ECC is enabled |
| 1225 | * causes non-ECC machine checks. This clears them. |
| 1226 | */ |
| 1227 | print_mcsr(); |
| 1228 | mtspr(SPRN_MCSR, mfspr(SPRN_MCSR)); |
| 1229 | print_mcsr(); |
| 1230 | #endif |
| 1231 | sync(); |
| 1232 | eieio(); |
| 1233 | } |
| 1234 | #endif /* defined(CONFIG_DDR_ECC) */ |
| 1235 | #endif /* defined(CONFIG_ZERO_SDRAM) || defined(CONFIG_DDR_ECC) */ |
| 1236 | |
| 1237 | program_tlb(0, CFG_SDRAM_BASE, dram_size, MY_TLB_WORD2_I_ENABLE); |
| 1238 | return dram_size; |
| 1239 | } |
| 1240 | |
| 1241 | void board_add_ram_info(int use_default) |
| 1242 | { |
| 1243 | u32 val; |
| 1244 | |
| 1245 | printf(" (ECC"); |
| 1246 | if (!is_ecc_enabled()) { |
| 1247 | printf(" not"); |
| 1248 | } |
| 1249 | printf(" enabled, %d MHz", (2 * get_bus_freq(0)) / 1000000); |
| 1250 | |
| 1251 | mfsdram(DDR0_03, val); |
| 1252 | printf(", CL%d)", DDR0_03_CASLAT_LIN_DECODE(val) >> 1); |
| 1253 | } |
| 1254 | #endif /* CONFIG_SPD_EEPROM */ |