blob: 60f89c97fc804fdb2e03ff4f320b0bd3b8a9c47e [file] [log] [blame]
Larry Johnson3c253e92007-12-27 10:54:48 -05001/*
2 * cpu/ppc4xx/denali_spd_ddr2.c
3 * This SPD SDRAM detection code supports AMCC PPC44x CPUs with a Denali-core
4 * DDR2 controller, specifically the 440EPx/GRx.
5 *
Larry Johnson67a83012008-01-22 08:51:59 -05006 * (C) Copyright 2007-2008
Larry Johnson3c253e92007-12-27 10:54:48 -05007 * Larry Johnson, lrj@acm.org.
8 *
9 * Based primarily on cpu/ppc4xx/4xx_spd_ddr2.c, which is...
10 *
11 * (C) Copyright 2007
12 * Stefan Roese, DENX Software Engineering, sr@denx.de.
13 *
14 * COPYRIGHT AMCC CORPORATION 2004
15 *
16 * See file CREDITS for list of people who contributed to this
17 * project.
18 *
19 * This program is free software; you can redistribute it and/or
20 * modify it under the terms of the GNU General Public License as
21 * published by the Free Software Foundation; either version 2 of
22 * the License, or (at your option) any later version.
23 *
24 * This program is distributed in the hope that it will be useful,
25 * but WITHOUT ANY WARRANTY; without even the implied warranty of
26 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
27 * GNU General Public License for more details.
28 *
29 * You should have received a copy of the GNU General Public License
30 * along with this program; if not, write to the Free Software
31 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
32 * MA 02111-1307 USA
33 *
34 */
35
36/* define DEBUG for debugging output (obviously ;-)) */
37#if 0
38#define DEBUG
39#endif
40
41#include <common.h>
42#include <command.h>
43#include <ppc4xx.h>
44#include <i2c.h>
45#include <asm/io.h>
46#include <asm/processor.h>
47#include <asm/mmu.h>
48
49#if defined(CONFIG_SPD_EEPROM) && \
50 (defined(CONFIG_440EPX) || defined(CONFIG_440GRX))
51
52/*-----------------------------------------------------------------------------+
53 * Defines
54 *-----------------------------------------------------------------------------*/
55#ifndef TRUE
56#define TRUE 1
57#endif
58#ifndef FALSE
59#define FALSE 0
60#endif
61
62#define MAXDIMMS 2
63#define MAXRANKS 2
64
65#define ONE_BILLION 1000000000
66
67#define MULDIV64(m1, m2, d) (u32)(((u64)(m1) * (u64)(m2)) / (u64)(d))
68
69#define DLL_DQS_DELAY 0x19
70#define DLL_DQS_BYPASS 0x0B
71#define DQS_OUT_SHIFT 0x7F
72
73/*
74 * This DDR2 setup code can dynamically setup the TLB entries for the DDR2 memory
75 * region. Right now the cache should still be disabled in U-Boot because of the
76 * EMAC driver, that need it's buffer descriptor to be located in non cached
77 * memory.
78 *
79 * If at some time this restriction doesn't apply anymore, just define
Larry Johnson67a83012008-01-22 08:51:59 -050080 * CONFIG_4xx_DCACHE in the board config file and this code should setup
Larry Johnson3c253e92007-12-27 10:54:48 -050081 * everything correctly.
82 */
Larry Johnson67a83012008-01-22 08:51:59 -050083#if defined(CONFIG_4xx_DCACHE)
Larry Johnson3c253e92007-12-27 10:54:48 -050084#define MY_TLB_WORD2_I_ENABLE 0 /* enable caching on SDRAM */
85#else
86#define MY_TLB_WORD2_I_ENABLE TLB_WORD2_I_ENABLE /* disable caching on SDRAM */
87#endif
88
89/*-----------------------------------------------------------------------------+
90 * Prototypes
91 *-----------------------------------------------------------------------------*/
92extern int denali_wait_for_dlllock(void);
93extern void denali_core_search_data_eye(void);
94extern void dcbz_area(u32 start_address, u32 num_bytes);
95extern void dflush(void);
96
97/*
98 * Board-specific Platform code can reimplement spd_ddr_init_hang () if needed
99 */
100void __spd_ddr_init_hang(void)
101{
102 hang();
103}
104void spd_ddr_init_hang(void)
105 __attribute__ ((weak, alias("__spd_ddr_init_hang")));
106
107#if defined(DEBUG)
108static void print_mcsr(void)
109{
110 printf("MCSR = 0x%08X\n", mfspr(SPRN_MCSR));
111}
112
113static void denali_sdram_register_dump(void)
114{
115 unsigned int sdram_data;
116
117 printf("\n Register Dump:\n");
118 mfsdram(DDR0_00, sdram_data);
119 printf(" DDR0_00 = 0x%08X", sdram_data);
120 mfsdram(DDR0_01, sdram_data);
121 printf(" DDR0_01 = 0x%08X\n", sdram_data);
122 mfsdram(DDR0_02, sdram_data);
123 printf(" DDR0_02 = 0x%08X", sdram_data);
124 mfsdram(DDR0_03, sdram_data);
125 printf(" DDR0_03 = 0x%08X\n", sdram_data);
126 mfsdram(DDR0_04, sdram_data);
127 printf(" DDR0_04 = 0x%08X", sdram_data);
128 mfsdram(DDR0_05, sdram_data);
129 printf(" DDR0_05 = 0x%08X\n", sdram_data);
130 mfsdram(DDR0_06, sdram_data);
131 printf(" DDR0_06 = 0x%08X", sdram_data);
132 mfsdram(DDR0_07, sdram_data);
133 printf(" DDR0_07 = 0x%08X\n", sdram_data);
134 mfsdram(DDR0_08, sdram_data);
135 printf(" DDR0_08 = 0x%08X", sdram_data);
136 mfsdram(DDR0_09, sdram_data);
137 printf(" DDR0_09 = 0x%08X\n", sdram_data);
138 mfsdram(DDR0_10, sdram_data);
139 printf(" DDR0_10 = 0x%08X", sdram_data);
140 mfsdram(DDR0_11, sdram_data);
141 printf(" DDR0_11 = 0x%08X\n", sdram_data);
142 mfsdram(DDR0_12, sdram_data);
143 printf(" DDR0_12 = 0x%08X", sdram_data);
144 mfsdram(DDR0_14, sdram_data);
145 printf(" DDR0_14 = 0x%08X\n", sdram_data);
146 mfsdram(DDR0_17, sdram_data);
147 printf(" DDR0_17 = 0x%08X", sdram_data);
148 mfsdram(DDR0_18, sdram_data);
149 printf(" DDR0_18 = 0x%08X\n", sdram_data);
150 mfsdram(DDR0_19, sdram_data);
151 printf(" DDR0_19 = 0x%08X", sdram_data);
152 mfsdram(DDR0_20, sdram_data);
153 printf(" DDR0_20 = 0x%08X\n", sdram_data);
154 mfsdram(DDR0_21, sdram_data);
155 printf(" DDR0_21 = 0x%08X", sdram_data);
156 mfsdram(DDR0_22, sdram_data);
157 printf(" DDR0_22 = 0x%08X\n", sdram_data);
158 mfsdram(DDR0_23, sdram_data);
159 printf(" DDR0_23 = 0x%08X", sdram_data);
160 mfsdram(DDR0_24, sdram_data);
161 printf(" DDR0_24 = 0x%08X\n", sdram_data);
162 mfsdram(DDR0_25, sdram_data);
163 printf(" DDR0_25 = 0x%08X", sdram_data);
164 mfsdram(DDR0_26, sdram_data);
165 printf(" DDR0_26 = 0x%08X\n", sdram_data);
166 mfsdram(DDR0_27, sdram_data);
167 printf(" DDR0_27 = 0x%08X", sdram_data);
168 mfsdram(DDR0_28, sdram_data);
169 printf(" DDR0_28 = 0x%08X\n", sdram_data);
170 mfsdram(DDR0_31, sdram_data);
171 printf(" DDR0_31 = 0x%08X", sdram_data);
172 mfsdram(DDR0_32, sdram_data);
173 printf(" DDR0_32 = 0x%08X\n", sdram_data);
174 mfsdram(DDR0_33, sdram_data);
175 printf(" DDR0_33 = 0x%08X", sdram_data);
176 mfsdram(DDR0_34, sdram_data);
177 printf(" DDR0_34 = 0x%08X\n", sdram_data);
178 mfsdram(DDR0_35, sdram_data);
179 printf(" DDR0_35 = 0x%08X", sdram_data);
180 mfsdram(DDR0_36, sdram_data);
181 printf(" DDR0_36 = 0x%08X\n", sdram_data);
182 mfsdram(DDR0_37, sdram_data);
183 printf(" DDR0_37 = 0x%08X", sdram_data);
184 mfsdram(DDR0_38, sdram_data);
185 printf(" DDR0_38 = 0x%08X\n", sdram_data);
186 mfsdram(DDR0_39, sdram_data);
187 printf(" DDR0_39 = 0x%08X", sdram_data);
188 mfsdram(DDR0_40, sdram_data);
189 printf(" DDR0_40 = 0x%08X\n", sdram_data);
190 mfsdram(DDR0_41, sdram_data);
191 printf(" DDR0_41 = 0x%08X", sdram_data);
192 mfsdram(DDR0_42, sdram_data);
193 printf(" DDR0_42 = 0x%08X\n", sdram_data);
194 mfsdram(DDR0_43, sdram_data);
195 printf(" DDR0_43 = 0x%08X", sdram_data);
196 mfsdram(DDR0_44, sdram_data);
197 printf(" DDR0_44 = 0x%08X\n", sdram_data);
198}
199#else
200static inline void denali_sdram_register_dump(void)
201{
202}
203
204inline static void print_mcsr(void)
205{
206}
207#endif /* defined(DEBUG) */
208
209static int is_ecc_enabled(void)
210{
211 u32 val;
212
213 mfsdram(DDR0_22, val);
214 return 0x3 == DDR0_22_CTRL_RAW_DECODE(val);
215}
216
217static unsigned char spd_read(u8 chip, unsigned int addr)
218{
219 u8 data[2];
220
221 if (0 != i2c_probe(chip) || 0 != i2c_read(chip, addr, 1, data, 1)) {
222 debug("spd_read(0x%02X, 0x%02X) failed\n", chip, addr);
223 return 0;
224 }
225 debug("spd_read(0x%02X, 0x%02X) returned 0x%02X\n",
226 chip, addr, data[0]);
227 return data[0];
228}
229
230static unsigned long get_tcyc(unsigned char reg)
231{
232 /*
233 * Byte 9, et al: Cycle time for CAS Latency=X, is split into two
234 * nibbles: the higher order nibble (bits 4-7) designates the cycle time
235 * to a granularity of 1ns; the value presented by the lower order
236 * nibble (bits 0-3) has a granularity of .1ns and is added to the value
237 * designated by the higher nibble. In addition, four lines of the lower
238 * order nibble are assigned to support +.25, +.33, +.66, and +.75.
239 */
240
241 unsigned char subfield_b = reg & 0x0F;
242
243 switch (subfield_b & 0x0F) {
244 case 0x0:
245 case 0x1:
246 case 0x2:
247 case 0x3:
248 case 0x4:
249 case 0x5:
250 case 0x6:
251 case 0x7:
252 case 0x8:
253 case 0x9:
254 return 1000 * (reg >> 4) + 100 * subfield_b;
255 case 0xA:
256 return 1000 * (reg >> 4) + 250;
257 case 0xB:
258 return 1000 * (reg >> 4) + 333;
259 case 0xC:
260 return 1000 * (reg >> 4) + 667;
261 case 0xD:
262 return 1000 * (reg >> 4) + 750;
263 }
264 return 0;
265}
266
267/*------------------------------------------------------------------
268 * Find the installed DIMMs, make sure that the are DDR2, and fill
269 * in the dimm_ranks array. Then dimm_ranks[dimm_num] > 0 iff the
270 * DIMM and dimm_num is present.
271 * Note: Because there are only two chip-select lines, it is assumed
272 * that a board with a single socket can support two ranks on that
273 * socket, while a board with two sockets can support only one rank
274 * on each socket.
275 *-----------------------------------------------------------------*/
276static void get_spd_info(unsigned long dimm_ranks[],
277 unsigned long *ranks,
278 unsigned char const iic0_dimm_addr[],
279 unsigned long num_dimm_banks)
280{
281 unsigned long dimm_num;
282 unsigned long dimm_found = FALSE;
283 unsigned long const max_ranks_per_dimm = (1 == num_dimm_banks) ? 2 : 1;
284 unsigned char num_of_bytes;
285 unsigned char total_size;
286
287 *ranks = 0;
288 for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
289 num_of_bytes = 0;
290 total_size = 0;
291
292 num_of_bytes = spd_read(iic0_dimm_addr[dimm_num], 0);
293 total_size = spd_read(iic0_dimm_addr[dimm_num], 1);
294 if ((num_of_bytes != 0) && (total_size != 0)) {
295 unsigned char const dimm_type =
296 spd_read(iic0_dimm_addr[dimm_num], 2);
297
298 unsigned long ranks_on_dimm =
299 (spd_read(iic0_dimm_addr[dimm_num], 5) & 0x07) + 1;
300
301 if (8 != dimm_type) {
302 switch (dimm_type) {
303 case 1:
304 printf("ERROR: Standard Fast Page Mode "
305 "DRAM DIMM");
306 break;
307 case 2:
308 printf("ERROR: EDO DIMM");
309 break;
310 case 3:
311 printf("ERROR: Pipelined Nibble DIMM");
312 break;
313 case 4:
314 printf("ERROR: SDRAM DIMM");
315 break;
316 case 5:
317 printf("ERROR: Multiplexed ROM DIMM");
318 break;
319 case 6:
320 printf("ERROR: SGRAM DIMM");
321 break;
322 case 7:
323 printf("ERROR: DDR1 DIMM");
324 break;
325 default:
326 printf("ERROR: Unknown DIMM (type %d)",
327 (unsigned int)dimm_type);
328 break;
329 }
330 printf(" detected in slot %lu.\n", dimm_num);
331 printf("Only DDR2 SDRAM DIMMs are supported."
332 "\n");
333 printf("Replace the module with a DDR2 DIMM."
334 "\n\n");
335 spd_ddr_init_hang();
336 }
337 dimm_found = TRUE;
338 debug("DIMM slot %lu: populated with %lu-rank DDR2 DIMM"
339 "\n", dimm_num, ranks_on_dimm);
340 if (ranks_on_dimm > max_ranks_per_dimm) {
341 printf("WARNING: DRAM DIMM in slot %lu has %lu "
342 "ranks.\n");
343 if (1 == max_ranks_per_dimm) {
344 printf("Only one rank will be used.\n");
345 } else {
346 printf
347 ("Only two ranks will be used.\n");
348 }
349 ranks_on_dimm = max_ranks_per_dimm;
350 }
351 dimm_ranks[dimm_num] = ranks_on_dimm;
352 *ranks += ranks_on_dimm;
353 } else {
354 dimm_ranks[dimm_num] = 0;
355 debug("DIMM slot %lu: Not populated\n", dimm_num);
356 }
357 }
358 if (dimm_found == FALSE) {
359 printf("ERROR: No memory installed.\n");
360 printf("Install at least one DDR2 DIMM.\n\n");
361 spd_ddr_init_hang();
362 }
363 debug("Total number of ranks = %d\n", *ranks);
364}
365
366/*------------------------------------------------------------------
367 * For the memory DIMMs installed, this routine verifies that
368 * frequency previously calculated is supported.
369 *-----------------------------------------------------------------*/
370static void check_frequency(unsigned long *dimm_ranks,
371 unsigned char const iic0_dimm_addr[],
372 unsigned long num_dimm_banks,
373 unsigned long sdram_freq)
374{
375 unsigned long dimm_num;
376 unsigned long cycle_time;
377 unsigned long calc_cycle_time;
378
379 /*
380 * calc_cycle_time is calculated from DDR frequency set by board/chip
381 * and is expressed in picoseconds to match the way DIMM cycle time is
382 * calculated below.
383 */
384 calc_cycle_time = MULDIV64(ONE_BILLION, 1000, sdram_freq);
385
386 for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
387 if (dimm_ranks[dimm_num]) {
388 cycle_time =
389 get_tcyc(spd_read(iic0_dimm_addr[dimm_num], 9));
390 debug("cycle_time=%d ps\n", cycle_time);
391
392 if (cycle_time > (calc_cycle_time + 10)) {
393 /*
394 * the provided sdram cycle_time is too small
395 * for the available DIMM cycle_time. The
396 * additionnal 10ps is here to accept a small
397 * incertainty.
398 */
399 printf
400 ("ERROR: DRAM DIMM detected with cycle_time %d ps in "
401 "slot %d \n while calculated cycle time is %d ps.\n",
402 (unsigned int)cycle_time,
403 (unsigned int)dimm_num,
404 (unsigned int)calc_cycle_time);
405 printf
406 ("Replace the DIMM, or change DDR frequency via "
407 "strapping bits.\n\n");
408 spd_ddr_init_hang();
409 }
410 }
411 }
412}
413
414/*------------------------------------------------------------------
415 * This routine gets size information for the installed memory
416 * DIMMs.
417 *-----------------------------------------------------------------*/
418static void get_dimm_size(unsigned long dimm_ranks[],
419 unsigned char const iic0_dimm_addr[],
420 unsigned long num_dimm_banks,
421 unsigned long *const rows,
422 unsigned long *const banks,
423 unsigned long *const cols, unsigned long *const width)
424{
425 unsigned long dimm_num;
426
427 *rows = 0;
428 *banks = 0;
429 *cols = 0;
430 *width = 0;
431 for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
432 if (dimm_ranks[dimm_num]) {
433 unsigned long t;
434
435 /* Rows */
436 t = spd_read(iic0_dimm_addr[dimm_num], 3);
437 if (0 == *rows) {
438 *rows = t;
439 } else if (t != *rows) {
440 printf("ERROR: DRAM DIMM modules do not all "
441 "have the same number of rows.\n\n");
442 spd_ddr_init_hang();
443 }
444 /* Banks */
445 t = spd_read(iic0_dimm_addr[dimm_num], 17);
446 if (0 == *banks) {
447 *banks = t;
448 } else if (t != *banks) {
449 printf("ERROR: DRAM DIMM modules do not all "
450 "have the same number of banks.\n\n");
451 spd_ddr_init_hang();
452 }
453 /* Columns */
454 t = spd_read(iic0_dimm_addr[dimm_num], 4);
455 if (0 == *cols) {
456 *cols = t;
457 } else if (t != *cols) {
458 printf("ERROR: DRAM DIMM modules do not all "
459 "have the same number of columns.\n\n");
460 spd_ddr_init_hang();
461 }
462 /* Data width */
463 t = spd_read(iic0_dimm_addr[dimm_num], 6);
464 if (0 == *width) {
465 *width = t;
466 } else if (t != *width) {
467 printf("ERROR: DRAM DIMM modules do not all "
468 "have the same data width.\n\n");
469 spd_ddr_init_hang();
470 }
471 }
472 }
473 debug("Number of rows = %d\n", *rows);
474 debug("Number of columns = %d\n", *cols);
475 debug("Number of banks = %d\n", *banks);
476 debug("Data width = %d\n", *width);
477 if (*rows > 14) {
478 printf("ERROR: DRAM DIMM modules have %lu address rows.\n",
479 *rows);
480 printf("Only modules with 14 or fewer rows are supported.\n\n");
481 spd_ddr_init_hang();
482 }
483 if (4 != *banks && 8 != *banks) {
484 printf("ERROR: DRAM DIMM modules have %lu banks.\n", *banks);
485 printf("Only modules with 4 or 8 banks are supported.\n\n");
486 spd_ddr_init_hang();
487 }
488 if (*cols > 12) {
489 printf("ERROR: DRAM DIMM modules have %lu address columns.\n",
490 *cols);
491 printf("Only modules with 12 or fewer columns are "
492 "supported.\n\n");
493 spd_ddr_init_hang();
494 }
495 if (32 != *width && 40 != *width && 64 != *width && 72 != *width) {
496 printf("ERROR: DRAM DIMM modules have a width of %lu bit.\n",
497 *width);
498 printf("Only modules with widths of 32, 40, 64, and 72 bits "
499 "are supported.\n\n");
500 spd_ddr_init_hang();
501 }
502}
503
504/*------------------------------------------------------------------
505 * Only 1.8V modules are supported. This routine verifies this.
506 *-----------------------------------------------------------------*/
507static void check_voltage_type(unsigned long dimm_ranks[],
508 unsigned char const iic0_dimm_addr[],
509 unsigned long num_dimm_banks)
510{
511 unsigned long dimm_num;
512 unsigned long voltage_type;
513
514 for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
515 if (dimm_ranks[dimm_num]) {
516 voltage_type = spd_read(iic0_dimm_addr[dimm_num], 8);
517 if (0x05 != voltage_type) { /* 1.8V for DDR2 */
518 printf("ERROR: Slot %lu provides 1.8V for DDR2 "
519 "DIMMs.\n", dimm_num);
520 switch (voltage_type) {
521 case 0x00:
522 printf("This DIMM is 5.0 Volt/TTL.\n");
523 break;
524 case 0x01:
525 printf("This DIMM is LVTTL.\n");
526 break;
527 case 0x02:
528 printf("This DIMM is 1.5 Volt.\n");
529 break;
530 case 0x03:
531 printf("This DIMM is 3.3 Volt/TTL.\n");
532 break;
533 case 0x04:
534 printf("This DIMM is 2.5 Volt.\n");
535 break;
536 default:
537 printf("This DIMM is an unknown "
538 "voltage.\n");
539 break;
540 }
541 printf("Replace it with a 1.8V DDR2 DIMM.\n\n");
542 spd_ddr_init_hang();
543 }
544 }
545 }
546}
547
548static void program_ddr0_03(unsigned long dimm_ranks[],
549 unsigned char const iic0_dimm_addr[],
550 unsigned long num_dimm_banks,
551 unsigned long sdram_freq,
552 unsigned long rows, unsigned long *cas_latency)
553{
554 unsigned long dimm_num;
555 unsigned long cas_index;
556 unsigned long cycle_2_0_clk;
557 unsigned long cycle_3_0_clk;
558 unsigned long cycle_4_0_clk;
559 unsigned long cycle_5_0_clk;
560 unsigned long max_2_0_tcyc_ps = 100;
561 unsigned long max_3_0_tcyc_ps = 100;
562 unsigned long max_4_0_tcyc_ps = 100;
563 unsigned long max_5_0_tcyc_ps = 100;
564 unsigned char cas_available = 0x3C; /* value for DDR2 */
565 u32 ddr0_03 = DDR0_03_BSTLEN_ENCODE(0x2) | DDR0_03_INITAREF_ENCODE(0x2);
566 unsigned int const tcyc_addr[3] = { 9, 23, 25 };
567
568 /*------------------------------------------------------------------
569 * Get the board configuration info.
570 *-----------------------------------------------------------------*/
571 debug("sdram_freq = %d\n", sdram_freq);
572
573 /*------------------------------------------------------------------
574 * Handle the timing. We need to find the worst case timing of all
575 * the dimm modules installed.
576 *-----------------------------------------------------------------*/
577 /* loop through all the DIMM slots on the board */
578 for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
579 /* If a dimm is installed in a particular slot ... */
580 if (dimm_ranks[dimm_num]) {
581 unsigned char const cas_bit =
582 spd_read(iic0_dimm_addr[dimm_num], 18);
583 unsigned char cas_mask;
584
585 cas_available &= cas_bit;
586 for (cas_mask = 0x80; cas_mask; cas_mask >>= 1) {
587 if (cas_bit & cas_mask)
588 break;
589 }
590 debug("cas_bit (SPD byte 18) = %02X, cas_mask = %02X\n",
591 cas_bit, cas_mask);
592
593 for (cas_index = 0; cas_index < 3;
594 cas_mask >>= 1, cas_index++) {
595 unsigned long cycle_time_ps;
596
597 if (!(cas_available & cas_mask)) {
598 continue;
599 }
600 cycle_time_ps =
601 get_tcyc(spd_read(iic0_dimm_addr[dimm_num],
602 tcyc_addr[cas_index]));
603
604 debug("cas_index = %d: cycle_time_ps = %d\n",
605 cas_index, cycle_time_ps);
606 /*
607 * DDR2 devices use the following bitmask for CAS latency:
608 * Bit 7 6 5 4 3 2 1 0
609 * TBD 6.0 5.0 4.0 3.0 2.0 TBD TBD
610 */
611 switch (cas_mask) {
612 case 0x20:
613 max_5_0_tcyc_ps =
614 max(max_5_0_tcyc_ps, cycle_time_ps);
615 break;
616 case 0x10:
617 max_4_0_tcyc_ps =
618 max(max_4_0_tcyc_ps, cycle_time_ps);
619 break;
620 case 0x08:
621 max_3_0_tcyc_ps =
622 max(max_3_0_tcyc_ps, cycle_time_ps);
623 break;
624 case 0x04:
625 max_2_0_tcyc_ps =
626 max(max_2_0_tcyc_ps, cycle_time_ps);
627 break;
628 }
629 }
630 }
631 }
632 debug("cas_available (bit map) = 0x%02X\n", cas_available);
633
634 /*------------------------------------------------------------------
635 * Set the SDRAM mode, SDRAM_MMODE
636 *-----------------------------------------------------------------*/
637
638 /* add 10 here because of rounding problems */
639 cycle_2_0_clk = MULDIV64(ONE_BILLION, 1000, max_2_0_tcyc_ps) + 10;
640 cycle_3_0_clk = MULDIV64(ONE_BILLION, 1000, max_3_0_tcyc_ps) + 10;
641 cycle_4_0_clk = MULDIV64(ONE_BILLION, 1000, max_4_0_tcyc_ps) + 10;
642 cycle_5_0_clk = MULDIV64(ONE_BILLION, 1000, max_5_0_tcyc_ps) + 10;
643 debug("cycle_2_0_clk = %d\n", cycle_2_0_clk);
644 debug("cycle_3_0_clk = %d\n", cycle_3_0_clk);
645 debug("cycle_4_0_clk = %d\n", cycle_4_0_clk);
646 debug("cycle_5_0_clk = %d\n", cycle_5_0_clk);
647
648 if ((cas_available & 0x04) && (sdram_freq <= cycle_2_0_clk)) {
649 *cas_latency = 2;
650 ddr0_03 |= DDR0_03_CASLAT_ENCODE(0x2) |
651 DDR0_03_CASLAT_LIN_ENCODE(0x4);
652 } else if ((cas_available & 0x08) && (sdram_freq <= cycle_3_0_clk)) {
653 *cas_latency = 3;
654 ddr0_03 |= DDR0_03_CASLAT_ENCODE(0x3) |
655 DDR0_03_CASLAT_LIN_ENCODE(0x6);
656 } else if ((cas_available & 0x10) && (sdram_freq <= cycle_4_0_clk)) {
657 *cas_latency = 4;
658 ddr0_03 |= DDR0_03_CASLAT_ENCODE(0x4) |
659 DDR0_03_CASLAT_LIN_ENCODE(0x8);
660 } else if ((cas_available & 0x20) && (sdram_freq <= cycle_5_0_clk)) {
661 *cas_latency = 5;
662 ddr0_03 |= DDR0_03_CASLAT_ENCODE(0x5) |
663 DDR0_03_CASLAT_LIN_ENCODE(0xA);
664 } else {
665 printf("ERROR: Cannot find a supported CAS latency with the "
666 "installed DIMMs.\n");
667 printf("Only DDR2 DIMMs with CAS latencies of 2.0, 3.0, 4.0, "
668 "and 5.0 are supported.\n");
669 printf("Make sure the PLB speed is within the supported range "
670 "of the DIMMs.\n");
671 printf("sdram_freq=%d cycle2=%d cycle3=%d cycle4=%d "
672 "cycle5=%d\n\n", sdram_freq, cycle_2_0_clk,
673 cycle_3_0_clk, cycle_4_0_clk, cycle_5_0_clk);
674 spd_ddr_init_hang();
675 }
676 debug("CAS latency = %d\n", *cas_latency);
677 mtsdram(DDR0_03, ddr0_03);
678}
679
680static void program_ddr0_04(unsigned long dimm_ranks[],
681 unsigned char const iic0_dimm_addr[],
682 unsigned long num_dimm_banks,
683 unsigned long sdram_freq)
684{
685 unsigned long dimm_num;
686 unsigned long t_rc_ps = 0;
687 unsigned long t_rrd_ps = 0;
688 unsigned long t_rtp_ps = 0;
689 unsigned long t_rc_clk;
690 unsigned long t_rrd_clk;
691 unsigned long t_rtp_clk;
692
693 /*------------------------------------------------------------------
694 * Handle the timing. We need to find the worst case timing of all
695 * the dimm modules installed.
696 *-----------------------------------------------------------------*/
697 /* loop through all the DIMM slots on the board */
698 for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
699 /* If a dimm is installed in a particular slot ... */
700 if (dimm_ranks[dimm_num]) {
701 unsigned long ps;
702
703 /* tRC */
704 ps = 1000 * spd_read(iic0_dimm_addr[dimm_num], 41);
705 switch (spd_read(iic0_dimm_addr[dimm_num], 40) >> 4) {
706 case 0x1:
707 ps += 250;
708 break;
709 case 0x2:
710 ps += 333;
711 break;
712 case 0x3:
713 ps += 500;
714 break;
715 case 0x4:
716 ps += 667;
717 break;
718 case 0x5:
719 ps += 750;
720 break;
721 }
722 t_rc_ps = max(t_rc_ps, ps);
723 /* tRRD */
724 ps = 250 * spd_read(iic0_dimm_addr[dimm_num], 28);
725 t_rrd_ps = max(t_rrd_ps, ps);
726 /* tRTP */
727 ps = 250 * spd_read(iic0_dimm_addr[dimm_num], 38);
728 t_rtp_ps = max(t_rtp_ps, ps);
729 }
730 }
731 debug("t_rc_ps = %d\n", t_rc_ps);
732 t_rc_clk = (MULDIV64(sdram_freq, t_rc_ps, ONE_BILLION) + 999) / 1000;
733 debug("t_rrd_ps = %d\n", t_rrd_ps);
734 t_rrd_clk = (MULDIV64(sdram_freq, t_rrd_ps, ONE_BILLION) + 999) / 1000;
735 debug("t_rtp_ps = %d\n", t_rtp_ps);
736 t_rtp_clk = (MULDIV64(sdram_freq, t_rtp_ps, ONE_BILLION) + 999) / 1000;
737 mtsdram(DDR0_04, DDR0_04_TRC_ENCODE(t_rc_clk) |
738 DDR0_04_TRRD_ENCODE(t_rrd_clk) |
739 DDR0_04_TRTP_ENCODE(t_rtp_clk));
740}
741
742static void program_ddr0_05(unsigned long dimm_ranks[],
743 unsigned char const iic0_dimm_addr[],
744 unsigned long num_dimm_banks,
745 unsigned long sdram_freq)
746{
747 unsigned long dimm_num;
748 unsigned long t_rp_ps = 0;
749 unsigned long t_ras_ps = 0;
750 unsigned long t_rp_clk;
751 unsigned long t_ras_clk;
752 u32 ddr0_05 = DDR0_05_TMRD_ENCODE(0x2) | DDR0_05_TEMRS_ENCODE(0x2);
753
754 /*------------------------------------------------------------------
755 * Handle the timing. We need to find the worst case timing of all
756 * the dimm modules installed.
757 *-----------------------------------------------------------------*/
758 /* loop through all the DIMM slots on the board */
759 for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
760 /* If a dimm is installed in a particular slot ... */
761 if (dimm_ranks[dimm_num]) {
762 unsigned long ps;
763
764 /* tRP */
765 ps = 250 * spd_read(iic0_dimm_addr[dimm_num], 27);
766 t_rp_ps = max(t_rp_ps, ps);
767 /* tRAS */
768 ps = 1000 * spd_read(iic0_dimm_addr[dimm_num], 30);
769 t_ras_ps = max(t_ras_ps, ps);
770 }
771 }
772 debug("t_rp_ps = %d\n", t_rp_ps);
773 t_rp_clk = (MULDIV64(sdram_freq, t_rp_ps, ONE_BILLION) + 999) / 1000;
774 debug("t_ras_ps = %d\n", t_ras_ps);
775 t_ras_clk = (MULDIV64(sdram_freq, t_ras_ps, ONE_BILLION) + 999) / 1000;
776 mtsdram(DDR0_05, ddr0_05 | DDR0_05_TRP_ENCODE(t_rp_clk) |
777 DDR0_05_TRAS_MIN_ENCODE(t_ras_clk));
778}
779
780static void program_ddr0_06(unsigned long dimm_ranks[],
781 unsigned char const iic0_dimm_addr[],
782 unsigned long num_dimm_banks,
783 unsigned long sdram_freq)
784{
785 unsigned long dimm_num;
786 unsigned char spd_40;
787 unsigned long t_wtr_ps = 0;
788 unsigned long t_rfc_ps = 0;
789 unsigned long t_wtr_clk;
790 unsigned long t_rfc_clk;
791 u32 ddr0_06 =
792 DDR0_06_WRITEINTERP_ENCODE(0x1) | DDR0_06_TDLL_ENCODE(200);
793
794 /*------------------------------------------------------------------
795 * Handle the timing. We need to find the worst case timing of all
796 * the dimm modules installed.
797 *-----------------------------------------------------------------*/
798 /* loop through all the DIMM slots on the board */
799 for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
800 /* If a dimm is installed in a particular slot ... */
801 if (dimm_ranks[dimm_num]) {
802 unsigned long ps;
803
804 /* tWTR */
805 ps = 250 * spd_read(iic0_dimm_addr[dimm_num], 37);
806 t_wtr_ps = max(t_wtr_ps, ps);
807 /* tRFC */
808 ps = 1000 * spd_read(iic0_dimm_addr[dimm_num], 42);
809 spd_40 = spd_read(iic0_dimm_addr[dimm_num], 40);
810 ps += 256000 * (spd_40 & 0x01);
811 switch ((spd_40 & 0x0E) >> 1) {
812 case 0x1:
813 ps += 250;
814 break;
815 case 0x2:
816 ps += 333;
817 break;
818 case 0x3:
819 ps += 500;
820 break;
821 case 0x4:
822 ps += 667;
823 break;
824 case 0x5:
825 ps += 750;
826 break;
827 }
828 t_rfc_ps = max(t_rfc_ps, ps);
829 }
830 }
831 debug("t_wtr_ps = %d\n", t_wtr_ps);
832 t_wtr_clk = (MULDIV64(sdram_freq, t_wtr_ps, ONE_BILLION) + 999) / 1000;
833 debug("t_rfc_ps = %d\n", t_rfc_ps);
834 t_rfc_clk = (MULDIV64(sdram_freq, t_rfc_ps, ONE_BILLION) + 999) / 1000;
835 mtsdram(DDR0_06, ddr0_06 | DDR0_06_TWTR_ENCODE(t_wtr_clk) |
836 DDR0_06_TRFC_ENCODE(t_rfc_clk));
837}
838
839static void program_ddr0_10(unsigned long dimm_ranks[], unsigned long ranks)
840{
841 unsigned long csmap;
842
843 if (2 == ranks) {
844 /* Both chip selects in use */
845 csmap = 0x03;
846 } else {
847 /* One chip select in use */
848 csmap = (1 == dimm_ranks[0]) ? 0x1 : 0x2;
849 }
850 mtsdram(DDR0_10, DDR0_10_WRITE_MODEREG_ENCODE(0x0) |
851 DDR0_10_CS_MAP_ENCODE(csmap) |
852 DDR0_10_OCD_ADJUST_PUP_CS_0_ENCODE(0));
853}
854
855static void program_ddr0_11(unsigned long sdram_freq)
856{
857 unsigned long const t_xsnr_ps = 200000; /* 200 ns */
858 unsigned long t_xsnr_clk;
859
860 debug("t_xsnr_ps = %d\n", t_xsnr_ps);
861 t_xsnr_clk =
862 (MULDIV64(sdram_freq, t_xsnr_ps, ONE_BILLION) + 999) / 1000;
863 mtsdram(DDR0_11, DDR0_11_SREFRESH_ENCODE(0) |
864 DDR0_11_TXSNR_ENCODE(t_xsnr_clk) | DDR0_11_TXSR_ENCODE(200));
865}
866
867static void program_ddr0_22(unsigned long dimm_ranks[],
868 unsigned char const iic0_dimm_addr[],
869 unsigned long num_dimm_banks, unsigned long width)
870{
871#if defined(CONFIG_DDR_ECC)
872 unsigned long dimm_num;
873 unsigned long ecc_available = width >= 64;
874 u32 ddr0_22 = DDR0_22_DQS_OUT_SHIFT_BYPASS_ENCODE(0x26) |
875 DDR0_22_DQS_OUT_SHIFT_ENCODE(DQS_OUT_SHIFT) |
876 DDR0_22_DLL_DQS_BYPASS_8_ENCODE(DLL_DQS_BYPASS);
877
878 /* loop through all the DIMM slots on the board */
879 for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
880 /* If a dimm is installed in a particular slot ... */
881 if (dimm_ranks[dimm_num]) {
882 /* Check for ECC */
883 if (0 == (spd_read(iic0_dimm_addr[dimm_num], 11) &
884 0x02)) {
885 ecc_available = FALSE;
886 }
887 }
888 }
889 if (ecc_available) {
890 debug("ECC found on all DIMMs present\n");
891 mtsdram(DDR0_22, ddr0_22 | DDR0_22_CTRL_RAW_ENCODE(0x3));
892 } else {
893 debug("ECC not found on some or all DIMMs present\n");
894 mtsdram(DDR0_22, ddr0_22 | DDR0_22_CTRL_RAW_ENCODE(0x0));
895 }
896#else
897 mtsdram(DDR0_22, DDR0_22_CTRL_RAW_ENCODE(0x0) |
898 DDR0_22_DQS_OUT_SHIFT_BYPASS_ENCODE(0x26) |
899 DDR0_22_DQS_OUT_SHIFT_ENCODE(DQS_OUT_SHIFT) |
900 DDR0_22_DLL_DQS_BYPASS_8_ENCODE(DLL_DQS_BYPASS));
901#endif /* defined(CONFIG_DDR_ECC) */
902}
903
904static void program_ddr0_24(unsigned long ranks)
905{
906 u32 ddr0_24 = DDR0_24_RTT_PAD_TERMINATION_ENCODE(0x1) | /* 75 ohm */
907 DDR0_24_ODT_RD_MAP_CS1_ENCODE(0x0);
908
909 if (2 == ranks) {
910 /* Both chip selects in use */
911 ddr0_24 |= DDR0_24_ODT_WR_MAP_CS1_ENCODE(0x1) |
912 DDR0_24_ODT_WR_MAP_CS0_ENCODE(0x2);
913 } else {
914 /* One chip select in use */
915 /* One of the two fields added to ddr0_24 is a "don't care" */
916 ddr0_24 |= DDR0_24_ODT_WR_MAP_CS1_ENCODE(0x2) |
917 DDR0_24_ODT_WR_MAP_CS0_ENCODE(0x1);
918 }
919 mtsdram(DDR0_24, ddr0_24);
920}
921
922static void program_ddr0_26(unsigned long sdram_freq)
923{
924 unsigned long const t_ref_ps = 7800000; /* 7.8 us. refresh */
925 /* TODO: check definition of tRAS_MAX */
926 unsigned long const t_ras_max_ps = 9 * t_ref_ps;
927 unsigned long t_ras_max_clk;
928 unsigned long t_ref_clk;
929
930 /* Round down t_ras_max_clk and t_ref_clk */
931 debug("t_ras_max_ps = %d\n", t_ras_max_ps);
932 t_ras_max_clk = MULDIV64(sdram_freq, t_ras_max_ps, ONE_BILLION) / 1000;
933 debug("t_ref_ps = %d\n", t_ref_ps);
934 t_ref_clk = MULDIV64(sdram_freq, t_ref_ps, ONE_BILLION) / 1000;
935 mtsdram(DDR0_26, DDR0_26_TRAS_MAX_ENCODE(t_ras_max_clk) |
936 DDR0_26_TREF_ENCODE(t_ref_clk));
937}
938
939static void program_ddr0_27(unsigned long sdram_freq)
940{
941 unsigned long const t_init_ps = 200000000; /* 200 us. init */
942 unsigned long t_init_clk;
943
944 debug("t_init_ps = %d\n", t_init_ps);
945 t_init_clk =
946 (MULDIV64(sdram_freq, t_init_ps, ONE_BILLION) + 999) / 1000;
947 mtsdram(DDR0_27, DDR0_27_EMRS_DATA_ENCODE(0x0000) |
948 DDR0_27_TINIT_ENCODE(t_init_clk));
949}
950
951static void program_ddr0_43(unsigned long dimm_ranks[],
952 unsigned char const iic0_dimm_addr[],
953 unsigned long num_dimm_banks,
954 unsigned long sdram_freq,
955 unsigned long cols, unsigned long banks)
956{
957 unsigned long dimm_num;
958 unsigned long t_wr_ps = 0;
959 unsigned long t_wr_clk;
960 u32 ddr0_43 = DDR0_43_APREBIT_ENCODE(10) |
961 DDR0_43_COLUMN_SIZE_ENCODE(12 - cols) |
962 DDR0_43_EIGHT_BANK_MODE_ENCODE(8 == banks ? 1 : 0);
963
964 /*------------------------------------------------------------------
965 * Handle the timing. We need to find the worst case timing of all
966 * the dimm modules installed.
967 *-----------------------------------------------------------------*/
968 /* loop through all the DIMM slots on the board */
969 for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
970 /* If a dimm is installed in a particular slot ... */
971 if (dimm_ranks[dimm_num]) {
972 unsigned long ps;
973
974 ps = 250 * spd_read(iic0_dimm_addr[dimm_num], 36);
975 t_wr_ps = max(t_wr_ps, ps);
976 }
977 }
978 debug("t_wr_ps = %d\n", t_wr_ps);
979 t_wr_clk = (MULDIV64(sdram_freq, t_wr_ps, ONE_BILLION) + 999) / 1000;
980 mtsdram(DDR0_43, ddr0_43 | DDR0_43_TWR_ENCODE(t_wr_clk));
981}
982
983static void program_ddr0_44(unsigned long dimm_ranks[],
984 unsigned char const iic0_dimm_addr[],
985 unsigned long num_dimm_banks,
986 unsigned long sdram_freq)
987{
988 unsigned long dimm_num;
989 unsigned long t_rcd_ps = 0;
990 unsigned long t_rcd_clk;
991
992 /*------------------------------------------------------------------
993 * Handle the timing. We need to find the worst case timing of all
994 * the dimm modules installed.
995 *-----------------------------------------------------------------*/
996 /* loop through all the DIMM slots on the board */
997 for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
998 /* If a dimm is installed in a particular slot ... */
999 if (dimm_ranks[dimm_num]) {
1000 unsigned long ps;
1001
1002 ps = 250 * spd_read(iic0_dimm_addr[dimm_num], 29);
1003 t_rcd_ps = max(t_rcd_ps, ps);
1004 }
1005 }
1006 debug("t_rcd_ps = %d\n", t_rcd_ps);
1007 t_rcd_clk = (MULDIV64(sdram_freq, t_rcd_ps, ONE_BILLION) + 999) / 1000;
1008 mtsdram(DDR0_44, DDR0_44_TRCD_ENCODE(t_rcd_clk));
1009}
1010
1011/*-----------------------------------------------------------------------------+
1012 * initdram. Initializes the 440EPx/GPx DDR SDRAM controller.
1013 * Note: This routine runs from flash with a stack set up in the chip's
1014 * sram space. It is important that the routine does not require .sbss, .bss or
1015 * .data sections. It also cannot call routines that require these sections.
1016 *-----------------------------------------------------------------------------*/
1017/*-----------------------------------------------------------------------------
1018 * Function: initdram
1019 * Description: Configures SDRAM memory banks for DDR operation.
1020 * Auto Memory Configuration option reads the DDR SDRAM EEPROMs
1021 * via the IIC bus and then configures the DDR SDRAM memory
1022 * banks appropriately. If Auto Memory Configuration is
1023 * not used, it is assumed that no DIMM is plugged
1024 *-----------------------------------------------------------------------------*/
1025long int initdram(int board_type)
1026{
1027 unsigned char const iic0_dimm_addr[] = SPD_EEPROM_ADDRESS;
1028 unsigned long dimm_ranks[MAXDIMMS];
1029 unsigned long ranks;
1030 unsigned long rows;
1031 unsigned long banks;
1032 unsigned long cols;
1033 unsigned long width;
1034 unsigned long const sdram_freq = get_bus_freq(0);
1035 unsigned long const num_dimm_banks = sizeof(iic0_dimm_addr); /* on board dimm banks */
1036 unsigned long cas_latency = 0; /* to quiet initialization warning */
1037 unsigned long dram_size;
1038
1039 debug("\nEntering initdram()\n");
1040
1041 /*------------------------------------------------------------------
1042 * Stop the DDR-SDRAM controller.
1043 *-----------------------------------------------------------------*/
1044 mtsdram(DDR0_02, DDR0_02_START_ENCODE(0));
1045
1046 /*
1047 * Make sure I2C controller is initialized
1048 * before continuing.
1049 */
1050 /* switch to correct I2C bus */
1051 I2C_SET_BUS(CFG_SPD_BUS_NUM);
1052 i2c_init(CFG_I2C_SPEED, CFG_I2C_SLAVE);
1053
1054 /*------------------------------------------------------------------
1055 * Clear out the serial presence detect buffers.
1056 * Perform IIC reads from the dimm. Fill in the spds.
1057 * Check to see if the dimm slots are populated
1058 *-----------------------------------------------------------------*/
1059 get_spd_info(dimm_ranks, &ranks, iic0_dimm_addr, num_dimm_banks);
1060
1061 /*------------------------------------------------------------------
1062 * Check the frequency supported for the dimms plugged.
1063 *-----------------------------------------------------------------*/
1064 check_frequency(dimm_ranks, iic0_dimm_addr, num_dimm_banks, sdram_freq);
1065
1066 /*------------------------------------------------------------------
1067 * Check and get size information.
1068 *-----------------------------------------------------------------*/
1069 get_dimm_size(dimm_ranks, iic0_dimm_addr, num_dimm_banks, &rows, &banks,
1070 &cols, &width);
1071
1072 /*------------------------------------------------------------------
1073 * Check the voltage type for the dimms plugged.
1074 *-----------------------------------------------------------------*/
1075 check_voltage_type(dimm_ranks, iic0_dimm_addr, num_dimm_banks);
1076
1077 /*------------------------------------------------------------------
1078 * Program registers for SDRAM controller.
1079 *-----------------------------------------------------------------*/
1080 mtsdram(DDR0_00, DDR0_00_DLL_INCREMENT_ENCODE(0x19) |
1081 DDR0_00_DLL_START_POINT_DECODE(0x0A));
1082
1083 mtsdram(DDR0_01, DDR0_01_PLB0_DB_CS_LOWER_ENCODE(0x01) |
1084 DDR0_01_PLB0_DB_CS_UPPER_ENCODE(0x00) |
1085 DDR0_01_INT_MASK_ENCODE(0xFF));
1086
1087 program_ddr0_03(dimm_ranks, iic0_dimm_addr, num_dimm_banks, sdram_freq,
1088 rows, &cas_latency);
1089
1090 program_ddr0_04(dimm_ranks, iic0_dimm_addr, num_dimm_banks, sdram_freq);
1091
1092 program_ddr0_05(dimm_ranks, iic0_dimm_addr, num_dimm_banks, sdram_freq);
1093
1094 program_ddr0_06(dimm_ranks, iic0_dimm_addr, num_dimm_banks, sdram_freq);
1095
1096 /*------------------------------------------------------------------
1097 * TODO: tFAW not found in SPD. Value of 13 taken from Sequoia
1098 * board SDRAM, but may be overly concervate.
1099 *-----------------------------------------------------------------*/
1100 mtsdram(DDR0_07, DDR0_07_NO_CMD_INIT_ENCODE(0) |
1101 DDR0_07_TFAW_ENCODE(13) |
1102 DDR0_07_AUTO_REFRESH_MODE_ENCODE(1) |
1103 DDR0_07_AREFRESH_ENCODE(0));
1104
1105 mtsdram(DDR0_08, DDR0_08_WRLAT_ENCODE(cas_latency - 1) |
1106 DDR0_08_TCPD_ENCODE(200) | DDR0_08_DQS_N_EN_ENCODE(0) |
1107 DDR0_08_DDRII_ENCODE(1));
1108
1109 mtsdram(DDR0_09, DDR0_09_OCD_ADJUST_PDN_CS_0_ENCODE(0x00) |
1110 DDR0_09_RTT_0_ENCODE(0x1) |
1111 DDR0_09_WR_DQS_SHIFT_BYPASS_ENCODE(0x1D) |
1112 DDR0_09_WR_DQS_SHIFT_ENCODE(DQS_OUT_SHIFT - 0x20));
1113
1114 program_ddr0_10(dimm_ranks, ranks);
1115
1116 program_ddr0_11(sdram_freq);
1117
1118 mtsdram(DDR0_12, DDR0_12_TCKE_ENCODE(3));
1119
1120 mtsdram(DDR0_14, DDR0_14_DLL_BYPASS_MODE_ENCODE(0) |
1121 DDR0_14_REDUC_ENCODE(width <= 40 ? 1 : 0) |
1122 DDR0_14_REG_DIMM_ENABLE_ENCODE(0));
1123
1124 mtsdram(DDR0_17, DDR0_17_DLL_DQS_DELAY_0_ENCODE(DLL_DQS_DELAY));
1125
1126 mtsdram(DDR0_18, DDR0_18_DLL_DQS_DELAY_4_ENCODE(DLL_DQS_DELAY) |
1127 DDR0_18_DLL_DQS_DELAY_3_ENCODE(DLL_DQS_DELAY) |
1128 DDR0_18_DLL_DQS_DELAY_2_ENCODE(DLL_DQS_DELAY) |
1129 DDR0_18_DLL_DQS_DELAY_1_ENCODE(DLL_DQS_DELAY));
1130
1131 mtsdram(DDR0_19, DDR0_19_DLL_DQS_DELAY_8_ENCODE(DLL_DQS_DELAY) |
1132 DDR0_19_DLL_DQS_DELAY_7_ENCODE(DLL_DQS_DELAY) |
1133 DDR0_19_DLL_DQS_DELAY_6_ENCODE(DLL_DQS_DELAY) |
1134 DDR0_19_DLL_DQS_DELAY_5_ENCODE(DLL_DQS_DELAY));
1135
1136 mtsdram(DDR0_20, DDR0_20_DLL_DQS_BYPASS_3_ENCODE(DLL_DQS_BYPASS) |
1137 DDR0_20_DLL_DQS_BYPASS_2_ENCODE(DLL_DQS_BYPASS) |
1138 DDR0_20_DLL_DQS_BYPASS_1_ENCODE(DLL_DQS_BYPASS) |
1139 DDR0_20_DLL_DQS_BYPASS_0_ENCODE(DLL_DQS_BYPASS));
1140
1141 mtsdram(DDR0_21, DDR0_21_DLL_DQS_BYPASS_7_ENCODE(DLL_DQS_BYPASS) |
1142 DDR0_21_DLL_DQS_BYPASS_6_ENCODE(DLL_DQS_BYPASS) |
1143 DDR0_21_DLL_DQS_BYPASS_5_ENCODE(DLL_DQS_BYPASS) |
1144 DDR0_21_DLL_DQS_BYPASS_4_ENCODE(DLL_DQS_BYPASS));
1145
1146 program_ddr0_22(dimm_ranks, iic0_dimm_addr, num_dimm_banks, width);
1147
1148 mtsdram(DDR0_23, DDR0_23_ODT_RD_MAP_CS0_ENCODE(0x0) |
1149 DDR0_23_FWC_ENCODE(0));
1150
1151 program_ddr0_24(ranks);
1152
1153 program_ddr0_26(sdram_freq);
1154
1155 program_ddr0_27(sdram_freq);
1156
1157 mtsdram(DDR0_28, DDR0_28_EMRS3_DATA_ENCODE(0x0000) |
1158 DDR0_28_EMRS2_DATA_ENCODE(0x0000));
1159
1160 mtsdram(DDR0_31, DDR0_31_XOR_CHECK_BITS_ENCODE(0x0000));
1161
1162 mtsdram(DDR0_42, DDR0_42_ADDR_PINS_DECODE(14 - rows) |
1163 DDR0_42_CASLAT_LIN_GATE_ENCODE(2 * cas_latency));
1164
1165 program_ddr0_43(dimm_ranks, iic0_dimm_addr, num_dimm_banks, sdram_freq,
1166 cols, banks);
1167
1168 program_ddr0_44(dimm_ranks, iic0_dimm_addr, num_dimm_banks, sdram_freq);
1169
1170 denali_sdram_register_dump();
1171
1172 dram_size = (width >= 64) ? 8 : 4;
1173 dram_size *= 1 << cols;
1174 dram_size *= banks;
1175 dram_size *= 1 << rows;
1176 dram_size *= ranks;
1177 debug("dram_size = %lu\n", dram_size);
1178
1179 /* Start the SDRAM controler */
1180 mtsdram(DDR0_02, DDR0_02_START_ENCODE(1));
1181 denali_wait_for_dlllock();
1182
1183#if defined(CONFIG_DDR_DATA_EYE)
1184 /* -----------------------------------------------------------+
1185 * Perform data eye search if requested.
1186 * ----------------------------------------------------------*/
1187 program_tlb(0, CFG_SDRAM_BASE, dram_size, TLB_WORD2_I_ENABLE);
1188 denali_core_search_data_eye();
1189 denali_sdram_register_dump();
1190 remove_tlb(CFG_SDRAM_BASE, dram_size);
1191#endif
1192
1193#if defined(CONFIG_ZERO_SDRAM) || defined(CONFIG_DDR_ECC)
1194 program_tlb(0, CFG_SDRAM_BASE, dram_size, 0);
1195 sync();
1196 eieio();
1197 /* Zero the memory */
1198 debug("Zeroing SDRAM...");
1199 dcbz_area(CFG_SDRAM_BASE, dram_size);
1200 dflush();
1201 debug("Completed\n");
1202 sync();
1203 eieio();
1204 remove_tlb(CFG_SDRAM_BASE, dram_size);
1205
1206#if defined(CONFIG_DDR_ECC)
1207 /*
1208 * If ECC is enabled, clear and enable interrupts
1209 */
1210 if (is_ecc_enabled()) {
1211 u32 val;
1212
1213 sync();
1214 eieio();
1215 /* Clear error status */
1216 mfsdram(DDR0_00, val);
1217 mtsdram(DDR0_00, val | DDR0_00_INT_ACK_ALL);
1218 /* Set 'int_mask' parameter to functionnal value */
1219 mfsdram(DDR0_01, val);
1220 mtsdram(DDR0_01, (val & ~DDR0_01_INT_MASK_MASK) |
1221 DDR0_01_INT_MASK_ALL_OFF);
1222#if defined(CONFIG_DDR_DATA_EYE)
1223 /*
1224 * Running denali_core_search_data_eye() when ECC is enabled
1225 * causes non-ECC machine checks. This clears them.
1226 */
1227 print_mcsr();
1228 mtspr(SPRN_MCSR, mfspr(SPRN_MCSR));
1229 print_mcsr();
1230#endif
1231 sync();
1232 eieio();
1233 }
1234#endif /* defined(CONFIG_DDR_ECC) */
1235#endif /* defined(CONFIG_ZERO_SDRAM) || defined(CONFIG_DDR_ECC) */
1236
1237 program_tlb(0, CFG_SDRAM_BASE, dram_size, MY_TLB_WORD2_I_ENABLE);
1238 return dram_size;
1239}
1240
1241void board_add_ram_info(int use_default)
1242{
1243 u32 val;
1244
1245 printf(" (ECC");
1246 if (!is_ecc_enabled()) {
1247 printf(" not");
1248 }
1249 printf(" enabled, %d MHz", (2 * get_bus_freq(0)) / 1000000);
1250
1251 mfsdram(DDR0_03, val);
1252 printf(", CL%d)", DDR0_03_CASLAT_LIN_DECODE(val) >> 1);
1253}
1254#endif /* CONFIG_SPD_EEPROM */