blob: 9fed26cd94b726233b0724a3a3d7148d1e9db1b1 [file] [log] [blame]
Gregory CLEMENTeca26c82019-01-17 17:07:13 +01001// SPDX-License-Identifier: (GPL-2.0+ OR MIT)
2/*
3 * Copyright (c) 2018 Microsemi Corporation
4 */
5
6#include <common.h>
7#include <config.h>
8#include <dm.h>
9#include <dm/of_access.h>
10#include <dm/of_addr.h>
11#include <fdt_support.h>
12#include <linux/io.h>
13#include <linux/ioport.h>
14#include <miiphy.h>
15#include <net.h>
16#include <wait_bit.h>
17
18#define MIIM_STATUS 0x0
19#define MIIM_STAT_BUSY BIT(3)
20#define MIIM_CMD 0x8
21#define MIIM_CMD_SCAN BIT(0)
22#define MIIM_CMD_OPR_WRITE BIT(1)
23#define MIIM_CMD_OPR_READ BIT(2)
24#define MIIM_CMD_SINGLE_SCAN BIT(3)
25#define MIIM_CMD_WRDATA(x) ((x) << 4)
26#define MIIM_CMD_REGAD(x) ((x) << 20)
27#define MIIM_CMD_PHYAD(x) ((x) << 25)
28#define MIIM_CMD_VLD BIT(31)
29#define MIIM_DATA 0xC
30#define MIIM_DATA_ERROR (0x2 << 16)
31
32#define PHY_CFG 0x0
33#define PHY_CFG_ENA 0xF
34#define PHY_CFG_COMMON_RST BIT(4)
35#define PHY_CFG_RST (0xF << 5)
36#define PHY_STAT 0x4
37#define PHY_STAT_SUPERVISOR_COMPLETE BIT(0)
38
39#define ANA_PORT_VLAN_CFG(x) (0x7000 + 0x100 * (x))
40#define ANA_PORT_VLAN_CFG_AWARE_ENA BIT(20)
41#define ANA_PORT_VLAN_CFG_POP_CNT(x) ((x) << 18)
42#define ANA_PORT_PORT_CFG(x) (0x7070 + 0x100 * (x))
43#define ANA_PORT_PORT_CFG_RECV_ENA BIT(6)
44#define ANA_TABLES_MACHDATA 0x8b34
45#define ANA_TABLES_MACLDATA 0x8b38
46#define ANA_TABLES_MACACCESS 0x8b3c
47#define ANA_TABLES_MACACCESS_VALID BIT(11)
48#define ANA_TABLES_MACACCESS_ENTRYTYPE(x) ((x) << 9)
49#define ANA_TABLES_MACACCESS_DEST_IDX(x) ((x) << 3)
50#define ANA_TABLES_MACACCESS_MAC_TABLE_CMD(x) (x)
51#define ANA_TABLES_MACACCESS_MAC_TABLE_CMD_M GENMASK(2, 0)
52#define MACACCESS_CMD_IDLE 0
53#define MACACCESS_CMD_LEARN 1
54#define MACACCESS_CMD_GET_NEXT 4
55#define ANA_PGID(x) (0x8c00 + 4 * (x))
56
57#define SYS_FRM_AGING 0x574
58#define SYS_FRM_AGING_ENA BIT(20)
59
60#define SYS_SYSTEM_RST_CFG 0x508
61#define SYS_SYSTEM_RST_MEM_INIT BIT(0)
62#define SYS_SYSTEM_RST_MEM_ENA BIT(1)
63#define SYS_SYSTEM_RST_CORE_ENA BIT(2)
64#define SYS_PORT_MODE(x) (0x514 + 0x4 * (x))
65#define SYS_PORT_MODE_INCL_INJ_HDR(x) ((x) << 3)
66#define SYS_PORT_MODE_INCL_INJ_HDR_M GENMASK(4, 3)
67#define SYS_PORT_MODE_INCL_XTR_HDR(x) ((x) << 1)
68#define SYS_PORT_MODE_INCL_XTR_HDR_M GENMASK(2, 1)
69#define SYS_PAUSE_CFG(x) (0x608 + 0x4 * (x))
70#define SYS_PAUSE_CFG_PAUSE_ENA BIT(0)
71
72#define QSYS_SWITCH_PORT_MODE(x) (0x11234 + 0x4 * (x))
73#define QSYS_SWITCH_PORT_MODE_PORT_ENA BIT(14)
74#define QSYS_QMAP 0x112d8
75#define QSYS_EGR_NO_SHARING 0x1129c
76
77/* Port registers */
78#define DEV_CLOCK_CFG 0x0
79#define DEV_CLOCK_CFG_LINK_SPEED_1000 1
80#define DEV_MAC_ENA_CFG 0x1c
81#define DEV_MAC_ENA_CFG_RX_ENA BIT(4)
82#define DEV_MAC_ENA_CFG_TX_ENA BIT(0)
83
84#define DEV_MAC_IFG_CFG 0x30
85#define DEV_MAC_IFG_CFG_TX_IFG(x) ((x) << 8)
86#define DEV_MAC_IFG_CFG_RX_IFG2(x) ((x) << 4)
87#define DEV_MAC_IFG_CFG_RX_IFG1(x) (x)
88
89#define PCS1G_CFG 0x48
90#define PCS1G_MODE_CFG_SGMII_MODE_ENA BIT(0)
91#define PCS1G_MODE_CFG 0x4c
92#define PCS1G_MODE_CFG_UNIDIR_MODE_ENA BIT(4)
93#define PCS1G_MODE_CFG_SGMII_MODE_ENA BIT(0)
94#define PCS1G_SD_CFG 0x50
95#define PCS1G_ANEG_CFG 0x54
96#define PCS1G_ANEG_CFG_ADV_ABILITY(x) ((x) << 16)
97
98#define QS_XTR_GRP_CFG(x) (4 * (x))
99#define QS_XTR_GRP_CFG_MODE(x) ((x) << 2)
100#define QS_XTR_GRP_CFG_STATUS_WORD_POS BIT(1)
101#define QS_XTR_GRP_CFG_BYTE_SWAP BIT(0)
102#define QS_XTR_RD(x) (0x8 + 4 * (x))
103#define QS_XTR_FLUSH 0x18
104#define QS_XTR_FLUSH_FLUSH GENMASK(1, 0)
105#define QS_XTR_DATA_PRESENT 0x1c
106#define QS_INJ_GRP_CFG(x) (0x24 + (x) * 4)
107#define QS_INJ_GRP_CFG_MODE(x) ((x) << 2)
108#define QS_INJ_GRP_CFG_BYTE_SWAP BIT(0)
109#define QS_INJ_WR(x) (0x2c + 4 * (x))
110#define QS_INJ_CTRL(x) (0x34 + 4 * (x))
111#define QS_INJ_CTRL_GAP_SIZE(x) ((x) << 21)
112#define QS_INJ_CTRL_EOF BIT(19)
113#define QS_INJ_CTRL_SOF BIT(18)
114#define QS_INJ_CTRL_VLD_BYTES(x) ((x) << 16)
115
116#define XTR_EOF_0 ntohl(0x80000000u)
117#define XTR_EOF_1 ntohl(0x80000001u)
118#define XTR_EOF_2 ntohl(0x80000002u)
119#define XTR_EOF_3 ntohl(0x80000003u)
120#define XTR_PRUNED ntohl(0x80000004u)
121#define XTR_ABORT ntohl(0x80000005u)
122#define XTR_ESCAPE ntohl(0x80000006u)
123#define XTR_NOT_READY ntohl(0x80000007u)
124
125#define IFH_INJ_BYPASS BIT(31)
126#define IFH_TAG_TYPE_C 0
127#define XTR_VALID_BYTES(x) (4 - ((x) & 3))
128#define MAC_VID 1
129#define CPU_PORT 11
130#define INTERNAL_PORT_MSK 0xF
131#define IFH_LEN 4
132#define OCELOT_BUF_CELL_SZ 60
133#define ETH_ALEN 6
134#define PGID_BROADCAST 13
135#define PGID_UNICAST 14
136#define PGID_SRC 80
137
138enum ocelot_target {
139 ANA,
140 QS,
141 QSYS,
142 REW,
143 SYS,
144 HSIO,
145 PORT0,
146 PORT1,
147 PORT2,
148 PORT3,
149 TARGET_MAX,
150};
151
152#define MAX_PORT (PORT3 - PORT0)
153
154/* MAC table entry types.
155 * ENTRYTYPE_NORMAL is subject to aging.
156 * ENTRYTYPE_LOCKED is not subject to aging.
157 * ENTRYTYPE_MACv4 is not subject to aging. For IPv4 multicast.
158 * ENTRYTYPE_MACv6 is not subject to aging. For IPv6 multicast.
159 */
160enum macaccess_entry_type {
161 ENTRYTYPE_NORMAL = 0,
162 ENTRYTYPE_LOCKED,
163 ENTRYTYPE_MACv4,
164 ENTRYTYPE_MACv6,
165};
166
167enum ocelot_mdio_target {
168 MIIM,
169 PHY,
170 TARGET_MDIO_MAX,
171};
172
173enum ocelot_phy_id {
174 INTERNAL,
175 EXTERNAL,
176 NUM_PHY,
177};
178
179struct ocelot_private {
180 void __iomem *regs[TARGET_MAX];
181
182 struct mii_dev *bus[NUM_PHY];
183 struct phy_device *phydev;
184 int phy_mode;
185 int max_speed;
186
187 int rx_pos;
188 int rx_siz;
189 int rx_off;
190 int tx_num;
191
192 u8 tx_adj_packetbuf[PKTSIZE_ALIGN + PKTALIGN];
193 void *tx_adj_buf;
194};
195
196struct mscc_miim_dev {
197 void __iomem *regs;
198 void __iomem *phy_regs;
199};
200
201struct mscc_miim_dev miim[NUM_PHY];
202
203static int mscc_miim_wait_ready(struct mscc_miim_dev *miim)
204{
205 return wait_for_bit_le32(miim->regs + MIIM_STATUS, MIIM_STAT_BUSY,
206 false, 250, false);
207}
208
209static int mscc_miim_reset(struct mii_dev *bus)
210{
211 struct mscc_miim_dev *miim = (struct mscc_miim_dev *)bus->priv;
212
213 if (miim->phy_regs) {
214 writel(0, miim->phy_regs + PHY_CFG);
215 writel(PHY_CFG_RST | PHY_CFG_COMMON_RST
216 | PHY_CFG_ENA, miim->phy_regs + PHY_CFG);
217 mdelay(500);
218 }
219
220 return 0;
221}
222
223static int mscc_miim_read(struct mii_dev *bus, int addr, int devad, int reg)
224{
225 struct mscc_miim_dev *miim = (struct mscc_miim_dev *)bus->priv;
226 u32 val;
227 int ret;
228
229 ret = mscc_miim_wait_ready(miim);
230 if (ret)
231 goto out;
232
233 writel(MIIM_CMD_VLD | MIIM_CMD_PHYAD(addr) |
234 MIIM_CMD_REGAD(reg) | MIIM_CMD_OPR_READ,
235 miim->regs + MIIM_CMD);
236
237 ret = mscc_miim_wait_ready(miim);
238 if (ret)
239 goto out;
240
241 val = readl(miim->regs + MIIM_DATA);
242 if (val & MIIM_DATA_ERROR) {
243 ret = -EIO;
244 goto out;
245 }
246
247 ret = val & 0xFFFF;
248 out:
249 return ret;
250}
251
252static int mscc_miim_write(struct mii_dev *bus, int addr, int devad, int reg,
253 u16 val)
254{
255 struct mscc_miim_dev *miim = (struct mscc_miim_dev *)bus->priv;
256 int ret;
257
258 ret = mscc_miim_wait_ready(miim);
259 if (ret < 0)
260 goto out;
261
262 writel(MIIM_CMD_VLD | MIIM_CMD_PHYAD(addr) |
263 MIIM_CMD_REGAD(reg) | MIIM_CMD_WRDATA(val) |
264 MIIM_CMD_OPR_WRITE, miim->regs + MIIM_CMD);
265 out:
266 return ret;
267}
268
269/* For now only setup the internal mdio bus */
270static struct mii_dev *ocelot_mdiobus_init(struct udevice *dev)
271{
272 unsigned long phy_size[TARGET_MAX];
273 phys_addr_t phy_base[TARGET_MAX];
274 struct ofnode_phandle_args phandle;
275 ofnode eth_node, node, mdio_node;
276 struct resource res;
277 struct mii_dev *bus;
278 fdt32_t faddr;
279 int i;
280
281 bus = mdio_alloc();
282
283 if (!bus)
284 return NULL;
285
286 /* gathered only the first mdio bus */
287 eth_node = dev_read_first_subnode(dev);
288 node = ofnode_first_subnode(eth_node);
289 ofnode_parse_phandle_with_args(node, "phy-handle", NULL, 0, 0,
290 &phandle);
291 mdio_node = ofnode_get_parent(phandle.node);
292
293 for (i = 0; i < TARGET_MDIO_MAX; i++) {
294 if (ofnode_read_resource(mdio_node, i, &res)) {
295 pr_err("%s: get OF resource failed\n", __func__);
296 return NULL;
297 }
298 faddr = cpu_to_fdt32(res.start);
299 phy_base[i] = ofnode_translate_address(mdio_node, &faddr);
300 phy_size[i] = res.end - res.start;
301 }
302
303 strcpy(bus->name, "miim-internal");
304 miim[INTERNAL].phy_regs = ioremap(phy_base[PHY], phy_size[PHY]);
305 miim[INTERNAL].regs = ioremap(phy_base[MIIM], phy_size[MIIM]);
306 bus->priv = &miim[INTERNAL];
307 bus->reset = mscc_miim_reset;
308 bus->read = mscc_miim_read;
309 bus->write = mscc_miim_write;
310
311 if (mdio_register(bus))
312 return NULL;
313 else
314 return bus;
315}
316
317__weak void mscc_switch_reset(void)
318{
319}
320
321static void ocelot_stop(struct udevice *dev)
322{
323 struct ocelot_private *priv = dev_get_priv(dev);
324 int i;
325
326 mscc_switch_reset();
327 for (i = 0; i < NUM_PHY; i++)
328 if (priv->bus[i])
329 mscc_miim_reset(priv->bus[i]);
330}
331
332static void ocelot_cpu_capture_setup(struct ocelot_private *priv)
333{
334 int i;
335
336 /* map the 8 CPU extraction queues to CPU port 11 */
337 writel(0, priv->regs[QSYS] + QSYS_QMAP);
338
339 for (i = 0; i <= 1; i++) {
340 /*
341 * Do byte-swap and expect status after last data word
342 * Extraction: Mode: manual extraction) | Byte_swap
343 */
344 writel(QS_XTR_GRP_CFG_MODE(1) | QS_XTR_GRP_CFG_BYTE_SWAP,
345 priv->regs[QS] + QS_XTR_GRP_CFG(i));
346 /*
347 * Injection: Mode: manual extraction | Byte_swap
348 */
349 writel(QS_INJ_GRP_CFG_MODE(1) | QS_INJ_GRP_CFG_BYTE_SWAP,
350 priv->regs[QS] + QS_INJ_GRP_CFG(i));
351 }
352
353 for (i = 0; i <= 1; i++)
354 /* Enable IFH insertion/parsing on CPU ports */
355 writel(SYS_PORT_MODE_INCL_INJ_HDR(1) |
356 SYS_PORT_MODE_INCL_XTR_HDR(1),
357 priv->regs[SYS] + SYS_PORT_MODE(CPU_PORT + i));
358 /*
359 * Setup the CPU port as VLAN aware to support switching frames
360 * based on tags
361 */
362 writel(ANA_PORT_VLAN_CFG_AWARE_ENA | ANA_PORT_VLAN_CFG_POP_CNT(1) |
363 MAC_VID, priv->regs[ANA] + ANA_PORT_VLAN_CFG(CPU_PORT));
364
365 /* Disable learning (only RECV_ENA must be set) */
366 writel(ANA_PORT_PORT_CFG_RECV_ENA,
367 priv->regs[ANA] + ANA_PORT_PORT_CFG(CPU_PORT));
368
369 /* Enable switching to/from cpu port */
370 setbits_le32(priv->regs[QSYS] + QSYS_SWITCH_PORT_MODE(CPU_PORT),
371 QSYS_SWITCH_PORT_MODE_PORT_ENA);
372
373 /* No pause on CPU port - not needed (off by default) */
374 clrbits_le32(priv->regs[SYS] + SYS_PAUSE_CFG(CPU_PORT),
375 SYS_PAUSE_CFG_PAUSE_ENA);
376
377 setbits_le32(priv->regs[QSYS] + QSYS_EGR_NO_SHARING, BIT(CPU_PORT));
378}
379
380static void ocelot_port_init(struct ocelot_private *priv, int port)
381{
382 void __iomem *regs = priv->regs[port];
383
384 /* Enable PCS */
385 writel(PCS1G_MODE_CFG_SGMII_MODE_ENA, regs + PCS1G_CFG);
386
387 /* Disable Signal Detect */
388 writel(0, regs + PCS1G_SD_CFG);
389
390 /* Enable MAC RX and TX */
391 writel(DEV_MAC_ENA_CFG_RX_ENA | DEV_MAC_ENA_CFG_TX_ENA,
392 regs + DEV_MAC_ENA_CFG);
393
394 /* Clear sgmii_mode_ena */
395 writel(0, regs + PCS1G_MODE_CFG);
396
397 /*
398 * Clear sw_resolve_ena(bit 0) and set adv_ability to
399 * something meaningful just in case
400 */
401 writel(PCS1G_ANEG_CFG_ADV_ABILITY(0x20), regs + PCS1G_ANEG_CFG);
402
403 /* Set MAC IFG Gaps */
404 writel(DEV_MAC_IFG_CFG_TX_IFG(5) | DEV_MAC_IFG_CFG_RX_IFG1(5) |
405 DEV_MAC_IFG_CFG_RX_IFG2(1), regs + DEV_MAC_IFG_CFG);
406
407 /* Set link speed and release all resets */
408 writel(DEV_CLOCK_CFG_LINK_SPEED_1000, regs + DEV_CLOCK_CFG);
409
410 /* Make VLAN aware for CPU traffic */
411 writel(ANA_PORT_VLAN_CFG_AWARE_ENA | ANA_PORT_VLAN_CFG_POP_CNT(1) |
412 MAC_VID, priv->regs[ANA] + ANA_PORT_VLAN_CFG(port - PORT0));
413
414 /* Enable the port in the core */
415 setbits_le32(priv->regs[QSYS] + QSYS_SWITCH_PORT_MODE(port - PORT0),
416 QSYS_SWITCH_PORT_MODE_PORT_ENA);
417}
418
419static int ocelot_switch_init(struct ocelot_private *priv)
420{
421 /* Reset switch & memories */
422 writel(SYS_SYSTEM_RST_MEM_ENA | SYS_SYSTEM_RST_MEM_INIT,
423 priv->regs[SYS] + SYS_SYSTEM_RST_CFG);
424
425 /* Wait to complete */
426 if (wait_for_bit_le32(priv->regs[SYS] + SYS_SYSTEM_RST_CFG,
427 SYS_SYSTEM_RST_MEM_INIT, false, 2000, false)) {
428 pr_err("Timeout in memory reset\n");
429 return -EIO;
430 }
431
432 /* Enable switch core */
433 setbits_le32(priv->regs[SYS] + SYS_SYSTEM_RST_CFG,
434 SYS_SYSTEM_RST_CORE_ENA);
435
436 return 0;
437}
438
439static void ocelot_switch_flush(struct ocelot_private *priv)
440{
441 /* All Queues flush */
442 setbits_le32(priv->regs[QS] + QS_XTR_FLUSH, QS_XTR_FLUSH_FLUSH);
443 /* Allow to drain */
444 mdelay(1);
445 /* All Queues normal */
446 clrbits_le32(priv->regs[QS] + QS_XTR_FLUSH, QS_XTR_FLUSH_FLUSH);
447}
448
449static int ocelot_initialize(struct ocelot_private *priv)
450{
451 int ret, i;
452
453 /* Initialize switch memories, enable core */
454 ret = ocelot_switch_init(priv);
455 if (ret)
456 return ret;
457 /*
458 * Disable port-to-port by switching
459 * Put fron ports in "port isolation modes" - i.e. they cant send
460 * to other ports - via the PGID sorce masks.
461 */
462 for (i = 0; i <= MAX_PORT; i++)
463 writel(0, priv->regs[ANA] + ANA_PGID(PGID_SRC + i));
464
465 /* Flush queues */
466 ocelot_switch_flush(priv);
467
468 /* Setup frame ageing - "2 sec" - The unit is 6.5us on Ocelot */
469 writel(SYS_FRM_AGING_ENA | (20000000 / 65),
470 priv->regs[SYS] + SYS_FRM_AGING);
471
472 for (i = PORT0; i <= PORT3; i++)
473 ocelot_port_init(priv, i);
474
475 ocelot_cpu_capture_setup(priv);
476
477 debug("Ports enabled\n");
478
479 return 0;
480}
481
482static inline int ocelot_vlant_wait_for_completion(struct ocelot_private *priv)
483{
484 unsigned int val, timeout = 10;
485
486 /* Wait for the issued mac table command to be completed, or timeout.
487 * When the command read from ANA_TABLES_MACACCESS is
488 * MACACCESS_CMD_IDLE, the issued command completed successfully.
489 */
490 do {
491 val = readl(priv->regs[ANA] + ANA_TABLES_MACACCESS);
492 val &= ANA_TABLES_MACACCESS_MAC_TABLE_CMD_M;
493 } while (val != MACACCESS_CMD_IDLE && timeout--);
494
495 if (!timeout)
496 return -ETIMEDOUT;
497
498 return 0;
499}
500
501static int ocelot_mac_table_add(struct ocelot_private *priv,
502 const unsigned char mac[ETH_ALEN], int pgid)
503{
504 u32 macl = 0, mach = 0;
505 int ret;
506
507 /* Set the MAC address to handle and the vlan associated in a format
508 * understood by the hardware.
509 */
510 mach |= MAC_VID << 16;
511 mach |= ((u32)mac[0]) << 8;
512 mach |= ((u32)mac[1]) << 0;
513 macl |= ((u32)mac[2]) << 24;
514 macl |= ((u32)mac[3]) << 16;
515 macl |= ((u32)mac[4]) << 8;
516 macl |= ((u32)mac[5]) << 0;
517
518 writel(macl, priv->regs[ANA] + ANA_TABLES_MACLDATA);
519 writel(mach, priv->regs[ANA] + ANA_TABLES_MACHDATA);
520
521 writel(ANA_TABLES_MACACCESS_VALID |
522 ANA_TABLES_MACACCESS_DEST_IDX(pgid) |
523 ANA_TABLES_MACACCESS_ENTRYTYPE(ENTRYTYPE_LOCKED) |
524 ANA_TABLES_MACACCESS_MAC_TABLE_CMD(MACACCESS_CMD_LEARN),
525 priv->regs[ANA] + ANA_TABLES_MACACCESS);
526
527 ret = ocelot_vlant_wait_for_completion(priv);
528
529 return ret;
530}
531
532static int ocelot_write_hwaddr(struct udevice *dev)
533{
534 struct ocelot_private *priv = dev_get_priv(dev);
535 struct eth_pdata *pdata = dev_get_platdata(dev);
536
537 ocelot_mac_table_add(priv, pdata->enetaddr, PGID_UNICAST);
538
539 writel(BIT(CPU_PORT), priv->regs[ANA] + ANA_PGID(PGID_UNICAST));
540
541 return 0;
542}
543
544static int ocelot_start(struct udevice *dev)
545{
546 struct ocelot_private *priv = dev_get_priv(dev);
547 struct eth_pdata *pdata = dev_get_platdata(dev);
548 const unsigned char mac[ETH_ALEN] = { 0xff, 0xff, 0xff, 0xff, 0xff,
549 0xff };
550 int ret;
551
552 ret = ocelot_initialize(priv);
553 if (ret)
554 return ret;
555
556 /* Set MAC address tables entries for CPU redirection */
557 ocelot_mac_table_add(priv, mac, PGID_BROADCAST);
558
559 writel(BIT(CPU_PORT) | INTERNAL_PORT_MSK,
560 priv->regs[ANA] + ANA_PGID(PGID_BROADCAST));
561
562 /* It should be setup latter in ocelot_write_hwaddr */
563 ocelot_mac_table_add(priv, pdata->enetaddr, PGID_UNICAST);
564
565 writel(BIT(CPU_PORT), priv->regs[ANA] + ANA_PGID(PGID_UNICAST));
566
567 return 0;
568}
569
570static int ocelot_send(struct udevice *dev, void *packet, int length)
571{
572 struct ocelot_private *priv = dev_get_priv(dev);
573 u32 ifh[IFH_LEN];
574 int port = BIT(0); /* use port 0 */
575 u8 grp = 0; /* Send everything on CPU group 0 */
576 int i, count = (length + 3) / 4, last = length % 4;
577 u32 *buf = packet;
578
579 writel(QS_INJ_CTRL_GAP_SIZE(1) | QS_INJ_CTRL_SOF,
580 priv->regs[QS] + QS_INJ_CTRL(grp));
581
582 /*
583 * Generate the IFH for frame injection
584 *
585 * The IFH is a 128bit-value
586 * bit 127: bypass the analyzer processing
587 * bit 56-67: destination mask
588 * bit 28-29: pop_cnt: 3 disables all rewriting of the frame
589 * bit 20-27: cpu extraction queue mask
590 * bit 16: tag type 0: C-tag, 1: S-tag
591 * bit 0-11: VID
592 */
593 ifh[0] = IFH_INJ_BYPASS;
594 ifh[1] = (0xf00 & port) >> 8;
595 ifh[2] = (0xff & port) << 24;
596 ifh[3] = (IFH_TAG_TYPE_C << 16);
597
598 for (i = 0; i < IFH_LEN; i++)
599 writel(ifh[i], priv->regs[QS] + QS_INJ_WR(grp));
600
601 for (i = 0; i < count; i++)
602 writel(buf[i], priv->regs[QS] + QS_INJ_WR(grp));
603
604 /* Add padding */
605 while (i < (OCELOT_BUF_CELL_SZ / 4)) {
606 writel(0, priv->regs[QS] + QS_INJ_WR(grp));
607 i++;
608 }
609
610 /* Indicate EOF and valid bytes in last word */
611 writel(QS_INJ_CTRL_GAP_SIZE(1) |
612 QS_INJ_CTRL_VLD_BYTES(length < OCELOT_BUF_CELL_SZ ? 0 : last) |
613 QS_INJ_CTRL_EOF, priv->regs[QS] + QS_INJ_CTRL(grp));
614
615 /* Add dummy CRC */
616 writel(0, priv->regs[QS] + QS_INJ_WR(grp));
617
618 return 0;
619}
620
621static int ocelot_recv(struct udevice *dev, int flags, uchar **packetp)
622{
623 struct ocelot_private *priv = dev_get_priv(dev);
624 u8 grp = 0; /* Send everything on CPU group 0 */
625 u32 *rxbuf = (u32 *)net_rx_packets[0];
626 int i, byte_cnt = 0;
627 bool eof_flag = false, pruned_flag = false, abort_flag = false;
628
629 if (!(readl(priv->regs[QS] + QS_XTR_DATA_PRESENT) & BIT(grp)))
630 return -EAGAIN;
631
632 /* skip IFH */
633 for (i = 0; i < IFH_LEN; i++)
634 readl(priv->regs[QS] + QS_XTR_RD(grp));
635
636 while (!eof_flag) {
637 u32 val = readl(priv->regs[QS] + QS_XTR_RD(grp));
638
639 switch (val) {
640 case XTR_NOT_READY:
641 debug("%d NOT_READY...?\n", byte_cnt);
642 break;
643 case XTR_ABORT:
644 /* really nedeed?? not done in linux */
645 *rxbuf = readl(priv->regs[QS] + QS_XTR_RD(grp));
646 abort_flag = true;
647 eof_flag = true;
648 debug("XTR_ABORT\n");
649 break;
650 case XTR_EOF_0:
651 case XTR_EOF_1:
652 case XTR_EOF_2:
653 case XTR_EOF_3:
654 byte_cnt += XTR_VALID_BYTES(val);
655 *rxbuf = readl(priv->regs[QS] + QS_XTR_RD(grp));
656 eof_flag = true;
657 debug("EOF\n");
658 break;
659 case XTR_PRUNED:
660 /* But get the last 4 bytes as well */
661 eof_flag = true;
662 pruned_flag = true;
663 debug("PRUNED\n");
664 /* fallthrough */
665 case XTR_ESCAPE:
666 *rxbuf = readl(priv->regs[QS] + QS_XTR_RD(grp));
667 byte_cnt += 4;
668 rxbuf++;
669 debug("ESCAPED\n");
670 break;
671 default:
672 *rxbuf = val;
673 byte_cnt += 4;
674 rxbuf++;
675 }
676 }
677
678 if (abort_flag || pruned_flag || !eof_flag) {
679 debug("Discarded frame: abort:%d pruned:%d eof:%d\n",
680 abort_flag, pruned_flag, eof_flag);
681 return -EAGAIN;
682 }
683
684 *packetp = net_rx_packets[0];
685
686 return byte_cnt;
687}
688
689static int ocelot_probe(struct udevice *dev)
690{
691 struct ocelot_private *priv = dev_get_priv(dev);
692 int ret, i;
693
694 struct {
695 enum ocelot_target id;
696 char *name;
697 } reg[] = {
698 { SYS, "sys" },
699 { REW, "rew" },
700 { QSYS, "qsys" },
701 { ANA, "ana" },
702 { QS, "qs" },
703 { HSIO, "hsio" },
704 { PORT0, "port0" },
705 { PORT1, "port1" },
706 { PORT2, "port2" },
707 { PORT3, "port3" },
708 };
709
710 for (i = 0; i < ARRAY_SIZE(reg); i++) {
711 priv->regs[reg[i].id] = dev_remap_addr_name(dev, reg[i].name);
712 if (!priv->regs[reg[i].id]) {
713 pr_err
714 ("Error %d: can't get regs base addresses for %s\n",
715 ret, reg[i].name);
716 return -ENOMEM;
717 }
718 }
719
720 priv->bus[INTERNAL] = ocelot_mdiobus_init(dev);
721
722 for (i = 0; i < 4; i++) {
723 phy_connect(priv->bus[INTERNAL], i, dev,
724 PHY_INTERFACE_MODE_NONE);
725 }
726
727 return 0;
728}
729
730static int ocelot_remove(struct udevice *dev)
731{
732 struct ocelot_private *priv = dev_get_priv(dev);
733 int i;
734
735 for (i = 0; i < NUM_PHY; i++) {
736 mdio_unregister(priv->bus[i]);
737 mdio_free(priv->bus[i]);
738 }
739
740 return 0;
741}
742
743static const struct eth_ops ocelot_ops = {
744 .start = ocelot_start,
745 .stop = ocelot_stop,
746 .send = ocelot_send,
747 .recv = ocelot_recv,
748 .write_hwaddr = ocelot_write_hwaddr,
749};
750
751static const struct udevice_id mscc_ocelot_ids[] = {
752 {.compatible = "mscc,vsc7514-switch"},
753 { /* Sentinel */ }
754};
755
756U_BOOT_DRIVER(ocelot) = {
757 .name = "ocelot-switch",
758 .id = UCLASS_ETH,
759 .of_match = mscc_ocelot_ids,
760 .probe = ocelot_probe,
761 .remove = ocelot_remove,
762 .ops = &ocelot_ops,
763 .priv_auto_alloc_size = sizeof(struct ocelot_private),
764 .platdata_auto_alloc_size = sizeof(struct eth_pdata),
765};