Tom Rini | 10e4779 | 2018-05-06 17:58:06 -0400 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0+ |
Albert ARIBAUD \(3ADEV\) | 7c97f70 | 2015-03-31 11:40:44 +0200 | [diff] [blame] | 2 | /* |
| 3 | * LPC32xx MLC NAND flash controller driver |
| 4 | * |
| 5 | * (C) Copyright 2014 3ADEV <http://3adev.com> |
| 6 | * Written by Albert ARIBAUD <albert.aribaud@3adev.fr> |
| 7 | * |
Albert ARIBAUD \(3ADEV\) | 7c97f70 | 2015-03-31 11:40:44 +0200 | [diff] [blame] | 8 | * NOTE: |
| 9 | * |
| 10 | * The MLC NAND flash controller provides hardware Reed-Solomon ECC |
| 11 | * covering in- and out-of-band data together. Therefore, in- and out- |
| 12 | * of-band data must be written together in order to have a valid ECC. |
| 13 | * |
| 14 | * Consequently, pages with meaningful in-band data are written with |
| 15 | * blank (all-ones) out-of-band data and a valid ECC, and any later |
| 16 | * out-of-band data write will void the ECC. |
| 17 | * |
| 18 | * Therefore, code which reads such late-written out-of-band data |
| 19 | * should not rely on the ECC validity. |
| 20 | */ |
| 21 | |
| 22 | #include <common.h> |
| 23 | #include <nand.h> |
Simon Glass | dbd7954 | 2020-05-10 11:40:11 -0600 | [diff] [blame] | 24 | #include <linux/delay.h> |
Masahiro Yamada | 56a931c | 2016-09-21 11:28:55 +0900 | [diff] [blame] | 25 | #include <linux/errno.h> |
Tom Rini | 3bde7e2 | 2021-09-22 14:50:35 -0400 | [diff] [blame] | 26 | #include <linux/mtd/rawnand.h> |
Albert ARIBAUD \(3ADEV\) | 7c97f70 | 2015-03-31 11:40:44 +0200 | [diff] [blame] | 27 | #include <asm/io.h> |
| 28 | #include <nand.h> |
| 29 | #include <asm/arch/clk.h> |
| 30 | #include <asm/arch/sys_proto.h> |
| 31 | |
| 32 | /* |
| 33 | * MLC NAND controller registers. |
| 34 | */ |
| 35 | struct lpc32xx_nand_mlc_registers { |
| 36 | u8 buff[32768]; /* controller's serial data buffer */ |
| 37 | u8 data[32768]; /* NAND's raw data buffer */ |
| 38 | u32 cmd; |
| 39 | u32 addr; |
| 40 | u32 ecc_enc_reg; |
| 41 | u32 ecc_dec_reg; |
| 42 | u32 ecc_auto_enc_reg; |
| 43 | u32 ecc_auto_dec_reg; |
| 44 | u32 rpr; |
| 45 | u32 wpr; |
| 46 | u32 rubp; |
| 47 | u32 robp; |
| 48 | u32 sw_wp_add_low; |
| 49 | u32 sw_wp_add_hig; |
| 50 | u32 icr; |
| 51 | u32 time_reg; |
| 52 | u32 irq_mr; |
| 53 | u32 irq_sr; |
| 54 | u32 lock_pr; |
| 55 | u32 isr; |
| 56 | u32 ceh; |
| 57 | }; |
| 58 | |
| 59 | /* LOCK_PR register defines */ |
| 60 | #define LOCK_PR_UNLOCK_KEY 0x0000A25E /* Magic unlock value */ |
| 61 | |
| 62 | /* ICR defines */ |
| 63 | #define ICR_LARGE_BLOCKS 0x00000004 /* configure for 2KB blocks */ |
| 64 | #define ICR_ADDR4 0x00000002 /* configure for 4-word addrs */ |
| 65 | |
| 66 | /* CEH defines */ |
| 67 | #define CEH_NORMAL_CE 0x00000001 /* do not force CE ON */ |
| 68 | |
| 69 | /* ISR register defines */ |
| 70 | #define ISR_NAND_READY 0x00000001 |
| 71 | #define ISR_CONTROLLER_READY 0x00000002 |
| 72 | #define ISR_ECC_READY 0x00000004 |
| 73 | #define ISR_DECODER_ERRORS(s) ((((s) >> 4) & 3)+1) |
| 74 | #define ISR_DECODER_FAILURE 0x00000040 |
| 75 | #define ISR_DECODER_ERROR 0x00000008 |
| 76 | |
| 77 | /* time-out for NAND chip / controller loops, in us */ |
| 78 | #define LPC32X_NAND_TIMEOUT 5000 |
| 79 | |
| 80 | /* |
| 81 | * There is a single instance of the NAND MLC controller |
| 82 | */ |
| 83 | |
| 84 | static struct lpc32xx_nand_mlc_registers __iomem *lpc32xx_nand_mlc_registers |
| 85 | = (struct lpc32xx_nand_mlc_registers __iomem *)MLC_NAND_BASE; |
| 86 | |
Tom Rini | 6a5dccc | 2022-11-16 13:10:41 -0500 | [diff] [blame] | 87 | #if !defined(CFG_SYS_MAX_NAND_CHIPS) |
| 88 | #define CFG_SYS_MAX_NAND_CHIPS 1 |
Vladimir Zapolskiy | 5670237 | 2018-10-19 03:21:05 +0300 | [diff] [blame] | 89 | #endif |
| 90 | |
Albert ARIBAUD \(3ADEV\) | 7c97f70 | 2015-03-31 11:40:44 +0200 | [diff] [blame] | 91 | #define clkdiv(v, w, o) (((1+(clk/v)) & w) << o) |
| 92 | |
| 93 | /** |
| 94 | * OOB data in each small page are 6 'free' then 10 ECC bytes. |
| 95 | * To make things easier, when reading large pages, the four pages' |
| 96 | * 'free' OOB bytes are grouped in the first 24 bytes of the OOB buffer, |
| 97 | * while the the four ECC bytes are groupe in its last 40 bytes. |
| 98 | * |
| 99 | * The struct below represents how free vs ecc oob bytes are stored |
| 100 | * in the buffer. |
| 101 | * |
| 102 | * Note: the OOB bytes contain the bad block marker at offsets 0 and 1. |
| 103 | */ |
| 104 | |
| 105 | struct lpc32xx_oob { |
| 106 | struct { |
| 107 | uint8_t free_oob_bytes[6]; |
| 108 | } free[4]; |
| 109 | struct { |
| 110 | uint8_t ecc_oob_bytes[10]; |
| 111 | } ecc[4]; |
| 112 | }; |
| 113 | |
| 114 | /* |
| 115 | * Initialize the controller |
| 116 | */ |
| 117 | |
| 118 | static void lpc32xx_nand_init(void) |
| 119 | { |
| 120 | unsigned int clk; |
| 121 | |
| 122 | /* Configure controller for no software write protection, x8 bus |
| 123 | width, large block device, and 4 address words */ |
| 124 | |
| 125 | /* unlock controller registers with magic key */ |
| 126 | writel(LOCK_PR_UNLOCK_KEY, |
| 127 | &lpc32xx_nand_mlc_registers->lock_pr); |
| 128 | |
| 129 | /* enable large blocks and large NANDs */ |
| 130 | writel(ICR_LARGE_BLOCKS | ICR_ADDR4, |
| 131 | &lpc32xx_nand_mlc_registers->icr); |
| 132 | |
| 133 | /* Make sure MLC interrupts are disabled */ |
| 134 | writel(0, &lpc32xx_nand_mlc_registers->irq_mr); |
| 135 | |
| 136 | /* Normal chip enable operation */ |
| 137 | writel(CEH_NORMAL_CE, |
| 138 | &lpc32xx_nand_mlc_registers->ceh); |
| 139 | |
| 140 | /* Setup NAND timing */ |
| 141 | clk = get_hclk_clk_rate(); |
| 142 | |
| 143 | writel( |
| 144 | clkdiv(CONFIG_LPC32XX_NAND_MLC_TCEA_DELAY, 0x03, 24) | |
Tom Rini | 326ca48 | 2022-12-04 10:04:34 -0500 | [diff] [blame] | 145 | clkdiv(CFG_LPC32XX_NAND_MLC_BUSY_DELAY, 0x1F, 19) | |
Tom Rini | ac8d571 | 2022-12-04 10:04:35 -0500 | [diff] [blame^] | 146 | clkdiv(CFG_LPC32XX_NAND_MLC_NAND_TA, 0x07, 16) | |
Albert ARIBAUD \(3ADEV\) | 7c97f70 | 2015-03-31 11:40:44 +0200 | [diff] [blame] | 147 | clkdiv(CONFIG_LPC32XX_NAND_MLC_RD_HIGH, 0x0F, 12) | |
| 148 | clkdiv(CONFIG_LPC32XX_NAND_MLC_RD_LOW, 0x0F, 8) | |
| 149 | clkdiv(CONFIG_LPC32XX_NAND_MLC_WR_HIGH, 0x0F, 4) | |
| 150 | clkdiv(CONFIG_LPC32XX_NAND_MLC_WR_LOW, 0x0F, 0), |
| 151 | &lpc32xx_nand_mlc_registers->time_reg); |
| 152 | } |
| 153 | |
| 154 | #if !defined(CONFIG_SPL_BUILD) |
| 155 | |
| 156 | /** |
| 157 | * lpc32xx_cmd_ctrl - write command to either cmd or data register |
| 158 | */ |
| 159 | |
| 160 | static void lpc32xx_cmd_ctrl(struct mtd_info *mtd, int cmd, |
| 161 | unsigned int ctrl) |
| 162 | { |
| 163 | if (cmd == NAND_CMD_NONE) |
| 164 | return; |
| 165 | |
| 166 | if (ctrl & NAND_CLE) |
| 167 | writeb(cmd & 0Xff, &lpc32xx_nand_mlc_registers->cmd); |
| 168 | else if (ctrl & NAND_ALE) |
| 169 | writeb(cmd & 0Xff, &lpc32xx_nand_mlc_registers->addr); |
| 170 | } |
| 171 | |
| 172 | /** |
| 173 | * lpc32xx_read_byte - read a byte from the NAND |
| 174 | * @mtd: MTD device structure |
| 175 | */ |
| 176 | |
| 177 | static uint8_t lpc32xx_read_byte(struct mtd_info *mtd) |
| 178 | { |
| 179 | return readb(&lpc32xx_nand_mlc_registers->data); |
| 180 | } |
| 181 | |
| 182 | /** |
| 183 | * lpc32xx_dev_ready - test if NAND device (actually controller) is ready |
| 184 | * @mtd: MTD device structure |
| 185 | * @mode: mode to set the ECC HW to. |
| 186 | */ |
| 187 | |
| 188 | static int lpc32xx_dev_ready(struct mtd_info *mtd) |
| 189 | { |
| 190 | /* means *controller* ready for us */ |
| 191 | int status = readl(&lpc32xx_nand_mlc_registers->isr); |
| 192 | return status & ISR_CONTROLLER_READY; |
| 193 | } |
| 194 | |
| 195 | /** |
| 196 | * ECC layout -- this is needed whatever ECC mode we are using. |
| 197 | * In a 2KB (4*512B) page, R/S codes occupy 40 (4*10) bytes. |
| 198 | * To make U-Boot's life easier, we pack 'useable' OOB at the |
| 199 | * front and R/S ECC at the back. |
| 200 | */ |
| 201 | |
| 202 | static struct nand_ecclayout lpc32xx_largepage_ecclayout = { |
| 203 | .eccbytes = 40, |
| 204 | .eccpos = {24, 25, 26, 27, 28, 29, 30, 31, 32, 33, |
| 205 | 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, |
| 206 | 44, 45, 46, 47, 48, 48, 50, 51, 52, 53, |
| 207 | 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, |
| 208 | }, |
| 209 | .oobfree = { |
| 210 | /* bytes 0 and 1 are used for the bad block marker */ |
| 211 | { |
| 212 | .offset = 2, |
| 213 | .length = 22 |
| 214 | }, |
| 215 | } |
| 216 | }; |
| 217 | |
| 218 | /** |
| 219 | * lpc32xx_read_page_hwecc - read in- and out-of-band data with ECC |
| 220 | * @mtd: mtd info structure |
| 221 | * @chip: nand chip info structure |
| 222 | * @buf: buffer to store read data |
| 223 | * @oob_required: caller requires OOB data read to chip->oob_poi |
| 224 | * @page: page number to read |
| 225 | * |
| 226 | * Use large block Auto Decode Read Mode(1) as described in User Manual |
| 227 | * section 8.6.2.1. |
| 228 | * |
| 229 | * The initial Read Mode and Read Start commands are sent by the caller. |
| 230 | * |
| 231 | * ECC will be false if out-of-band data has been updated since in-band |
| 232 | * data was initially written. |
| 233 | */ |
| 234 | |
| 235 | static int lpc32xx_read_page_hwecc(struct mtd_info *mtd, |
| 236 | struct nand_chip *chip, uint8_t *buf, int oob_required, |
| 237 | int page) |
| 238 | { |
| 239 | unsigned int i, status, timeout, err, max_bitflips = 0; |
| 240 | struct lpc32xx_oob *oob = (struct lpc32xx_oob *)chip->oob_poi; |
| 241 | |
| 242 | /* go through all four small pages */ |
| 243 | for (i = 0; i < 4; i++) { |
| 244 | /* start auto decode (reads 528 NAND bytes) */ |
| 245 | writel(0, &lpc32xx_nand_mlc_registers->ecc_auto_dec_reg); |
| 246 | /* wait for controller to return to ready state */ |
| 247 | for (timeout = LPC32X_NAND_TIMEOUT; timeout; timeout--) { |
| 248 | status = readl(&lpc32xx_nand_mlc_registers->isr); |
| 249 | if (status & ISR_CONTROLLER_READY) |
| 250 | break; |
| 251 | udelay(1); |
| 252 | } |
| 253 | /* if decoder failed, return failure */ |
| 254 | if (status & ISR_DECODER_FAILURE) |
| 255 | return -1; |
| 256 | /* keep count of maximum bitflips performed */ |
| 257 | if (status & ISR_DECODER_ERROR) { |
| 258 | err = ISR_DECODER_ERRORS(status); |
| 259 | if (err > max_bitflips) |
| 260 | max_bitflips = err; |
| 261 | } |
| 262 | /* copy first 512 bytes into buffer */ |
| 263 | memcpy(buf+512*i, lpc32xx_nand_mlc_registers->buff, 512); |
| 264 | /* copy next 6 bytes at front of OOB buffer */ |
| 265 | memcpy(&oob->free[i], lpc32xx_nand_mlc_registers->buff, 6); |
| 266 | /* copy last 10 bytes (R/S ECC) at back of OOB buffer */ |
| 267 | memcpy(&oob->ecc[i], lpc32xx_nand_mlc_registers->buff, 10); |
| 268 | } |
| 269 | return max_bitflips; |
| 270 | } |
| 271 | |
| 272 | /** |
| 273 | * lpc32xx_read_page_raw - read raw (in-band, out-of-band and ECC) data |
| 274 | * @mtd: mtd info structure |
| 275 | * @chip: nand chip info structure |
| 276 | * @buf: buffer to store read data |
| 277 | * @oob_required: caller requires OOB data read to chip->oob_poi |
| 278 | * @page: page number to read |
| 279 | * |
| 280 | * Read NAND directly; can read pages with invalid ECC. |
| 281 | */ |
| 282 | |
| 283 | static int lpc32xx_read_page_raw(struct mtd_info *mtd, |
| 284 | struct nand_chip *chip, uint8_t *buf, int oob_required, |
| 285 | int page) |
| 286 | { |
| 287 | unsigned int i, status, timeout; |
| 288 | struct lpc32xx_oob *oob = (struct lpc32xx_oob *)chip->oob_poi; |
| 289 | |
| 290 | /* when we get here we've already had the Read Mode(1) */ |
| 291 | |
| 292 | /* go through all four small pages */ |
| 293 | for (i = 0; i < 4; i++) { |
| 294 | /* wait for NAND to return to ready state */ |
| 295 | for (timeout = LPC32X_NAND_TIMEOUT; timeout; timeout--) { |
| 296 | status = readl(&lpc32xx_nand_mlc_registers->isr); |
| 297 | if (status & ISR_NAND_READY) |
| 298 | break; |
| 299 | udelay(1); |
| 300 | } |
| 301 | /* if NAND stalled, return failure */ |
| 302 | if (!(status & ISR_NAND_READY)) |
| 303 | return -1; |
| 304 | /* copy first 512 bytes into buffer */ |
| 305 | memcpy(buf+512*i, lpc32xx_nand_mlc_registers->data, 512); |
| 306 | /* copy next 6 bytes at front of OOB buffer */ |
| 307 | memcpy(&oob->free[i], lpc32xx_nand_mlc_registers->data, 6); |
| 308 | /* copy last 10 bytes (R/S ECC) at back of OOB buffer */ |
| 309 | memcpy(&oob->ecc[i], lpc32xx_nand_mlc_registers->data, 10); |
| 310 | } |
| 311 | return 0; |
| 312 | } |
| 313 | |
| 314 | /** |
| 315 | * lpc32xx_read_oob - read out-of-band data |
| 316 | * @mtd: mtd info structure |
| 317 | * @chip: nand chip info structure |
| 318 | * @page: page number to read |
| 319 | * |
| 320 | * Read out-of-band data. User Manual section 8.6.4 suggests using Read |
| 321 | * Mode(3) which the controller will turn into a Read Mode(1) internally |
| 322 | * but nand_base.c will turn Mode(3) into Mode(0), so let's use Mode(0) |
| 323 | * directly. |
| 324 | * |
| 325 | * ECC covers in- and out-of-band data and was written when out-of-band |
| 326 | * data was blank. Therefore, if the out-of-band being read here is not |
| 327 | * blank, then the ECC will be false and the read will return bitflips, |
| 328 | * even in case of ECC failure where we will return 5 bitflips. The |
| 329 | * caller should be prepared to handle this. |
| 330 | */ |
| 331 | |
| 332 | static int lpc32xx_read_oob(struct mtd_info *mtd, struct nand_chip *chip, |
| 333 | int page) |
| 334 | { |
| 335 | unsigned int i, status, timeout, err, max_bitflips = 0; |
| 336 | struct lpc32xx_oob *oob = (struct lpc32xx_oob *)chip->oob_poi; |
| 337 | |
| 338 | /* No command was sent before calling read_oob() so send one */ |
| 339 | |
| 340 | chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page); |
| 341 | |
| 342 | /* go through all four small pages */ |
| 343 | for (i = 0; i < 4; i++) { |
| 344 | /* start auto decode (reads 528 NAND bytes) */ |
| 345 | writel(0, &lpc32xx_nand_mlc_registers->ecc_auto_dec_reg); |
| 346 | /* wait for controller to return to ready state */ |
| 347 | for (timeout = LPC32X_NAND_TIMEOUT; timeout; timeout--) { |
| 348 | status = readl(&lpc32xx_nand_mlc_registers->isr); |
| 349 | if (status & ISR_CONTROLLER_READY) |
| 350 | break; |
| 351 | udelay(1); |
| 352 | } |
| 353 | /* if decoder failure, count 'one too many' bitflips */ |
| 354 | if (status & ISR_DECODER_FAILURE) |
| 355 | max_bitflips = 5; |
| 356 | /* keep count of maximum bitflips performed */ |
| 357 | if (status & ISR_DECODER_ERROR) { |
| 358 | err = ISR_DECODER_ERRORS(status); |
| 359 | if (err > max_bitflips) |
| 360 | max_bitflips = err; |
| 361 | } |
| 362 | /* set read pointer to OOB area */ |
| 363 | writel(0, &lpc32xx_nand_mlc_registers->robp); |
| 364 | /* copy next 6 bytes at front of OOB buffer */ |
| 365 | memcpy(&oob->free[i], lpc32xx_nand_mlc_registers->buff, 6); |
| 366 | /* copy next 10 bytes (R/S ECC) at back of OOB buffer */ |
| 367 | memcpy(&oob->ecc[i], lpc32xx_nand_mlc_registers->buff, 10); |
| 368 | } |
| 369 | return max_bitflips; |
| 370 | } |
| 371 | |
| 372 | /** |
| 373 | * lpc32xx_write_page_hwecc - write in- and out-of-band data with ECC |
| 374 | * @mtd: mtd info structure |
| 375 | * @chip: nand chip info structure |
| 376 | * @buf: data buffer |
| 377 | * @oob_required: must write chip->oob_poi to OOB |
| 378 | * |
| 379 | * Use large block Auto Encode as per User Manual section 8.6.4. |
| 380 | * |
| 381 | * The initial Write Serial Input and final Auto Program commands are |
| 382 | * sent by the caller. |
| 383 | */ |
| 384 | |
| 385 | static int lpc32xx_write_page_hwecc(struct mtd_info *mtd, |
Scott Wood | 46e1310 | 2016-05-30 13:57:57 -0500 | [diff] [blame] | 386 | struct nand_chip *chip, const uint8_t *buf, int oob_required, |
| 387 | int page) |
Albert ARIBAUD \(3ADEV\) | 7c97f70 | 2015-03-31 11:40:44 +0200 | [diff] [blame] | 388 | { |
| 389 | unsigned int i, status, timeout; |
| 390 | struct lpc32xx_oob *oob = (struct lpc32xx_oob *)chip->oob_poi; |
| 391 | |
| 392 | /* when we get here we've already had the SEQIN */ |
| 393 | for (i = 0; i < 4; i++) { |
| 394 | /* start encode (expects 518 writes to buff) */ |
| 395 | writel(0, &lpc32xx_nand_mlc_registers->ecc_enc_reg); |
| 396 | /* copy first 512 bytes from buffer */ |
| 397 | memcpy(&lpc32xx_nand_mlc_registers->buff, buf+512*i, 512); |
| 398 | /* copy next 6 bytes from OOB buffer -- excluding ECC */ |
| 399 | memcpy(&lpc32xx_nand_mlc_registers->buff, &oob->free[i], 6); |
| 400 | /* wait for ECC to return to ready state */ |
| 401 | for (timeout = LPC32X_NAND_TIMEOUT; timeout; timeout--) { |
| 402 | status = readl(&lpc32xx_nand_mlc_registers->isr); |
| 403 | if (status & ISR_ECC_READY) |
| 404 | break; |
| 405 | udelay(1); |
| 406 | } |
| 407 | /* if ECC stalled, return failure */ |
| 408 | if (!(status & ISR_ECC_READY)) |
| 409 | return -1; |
| 410 | /* Trigger auto encode (writes 528 bytes to NAND) */ |
| 411 | writel(0, &lpc32xx_nand_mlc_registers->ecc_auto_enc_reg); |
| 412 | /* wait for controller to return to ready state */ |
| 413 | for (timeout = LPC32X_NAND_TIMEOUT; timeout; timeout--) { |
| 414 | status = readl(&lpc32xx_nand_mlc_registers->isr); |
| 415 | if (status & ISR_CONTROLLER_READY) |
| 416 | break; |
| 417 | udelay(1); |
| 418 | } |
| 419 | /* if controller stalled, return error */ |
| 420 | if (!(status & ISR_CONTROLLER_READY)) |
| 421 | return -1; |
| 422 | } |
| 423 | return 0; |
| 424 | } |
| 425 | |
| 426 | /** |
| 427 | * lpc32xx_write_page_raw - write raw (in-band, out-of-band and ECC) data |
| 428 | * @mtd: mtd info structure |
| 429 | * @chip: nand chip info structure |
| 430 | * @buf: buffer to store read data |
| 431 | * @oob_required: caller requires OOB data read to chip->oob_poi |
| 432 | * @page: page number to read |
| 433 | * |
| 434 | * Use large block write but without encode. |
| 435 | * |
| 436 | * The initial Write Serial Input and final Auto Program commands are |
| 437 | * sent by the caller. |
| 438 | * |
| 439 | * This function will write the full out-of-band data, including the |
| 440 | * ECC area. Therefore, it can write pages with valid *or* invalid ECC. |
| 441 | */ |
| 442 | |
| 443 | static int lpc32xx_write_page_raw(struct mtd_info *mtd, |
Scott Wood | 46e1310 | 2016-05-30 13:57:57 -0500 | [diff] [blame] | 444 | struct nand_chip *chip, const uint8_t *buf, int oob_required, |
| 445 | int page) |
Albert ARIBAUD \(3ADEV\) | 7c97f70 | 2015-03-31 11:40:44 +0200 | [diff] [blame] | 446 | { |
| 447 | unsigned int i; |
| 448 | struct lpc32xx_oob *oob = (struct lpc32xx_oob *)chip->oob_poi; |
| 449 | |
| 450 | /* when we get here we've already had the Read Mode(1) */ |
| 451 | for (i = 0; i < 4; i++) { |
| 452 | /* copy first 512 bytes from buffer */ |
| 453 | memcpy(lpc32xx_nand_mlc_registers->buff, buf+512*i, 512); |
| 454 | /* copy next 6 bytes into OOB buffer -- excluding ECC */ |
| 455 | memcpy(lpc32xx_nand_mlc_registers->buff, &oob->free[i], 6); |
| 456 | /* copy next 10 bytes into OOB buffer -- that is 'ECC' */ |
| 457 | memcpy(lpc32xx_nand_mlc_registers->buff, &oob->ecc[i], 10); |
| 458 | } |
| 459 | return 0; |
| 460 | } |
| 461 | |
| 462 | /** |
| 463 | * lpc32xx_write_oob - write out-of-band data |
| 464 | * @mtd: mtd info structure |
| 465 | * @chip: nand chip info structure |
| 466 | * @page: page number to read |
| 467 | * |
| 468 | * Since ECC covers in- and out-of-band data, writing out-of-band data |
| 469 | * with ECC will render the page ECC wrong -- or, if the page was blank, |
| 470 | * then it will produce a good ECC but a later in-band data write will |
| 471 | * render it wrong. |
| 472 | * |
| 473 | * Therefore, do not compute or write any ECC, and always return success. |
| 474 | * |
| 475 | * This implies that we do four writes, since non-ECC out-of-band data |
| 476 | * are not contiguous in a large page. |
| 477 | */ |
| 478 | |
| 479 | static int lpc32xx_write_oob(struct mtd_info *mtd, struct nand_chip *chip, |
| 480 | int page) |
| 481 | { |
| 482 | /* update oob on all 4 subpages in sequence */ |
| 483 | unsigned int i, status, timeout; |
| 484 | struct lpc32xx_oob *oob = (struct lpc32xx_oob *)chip->oob_poi; |
| 485 | |
| 486 | for (i = 0; i < 4; i++) { |
| 487 | /* start data input */ |
| 488 | chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x200+0x210*i, page); |
| 489 | /* copy 6 non-ECC out-of-band bytes directly into NAND */ |
| 490 | memcpy(lpc32xx_nand_mlc_registers->data, &oob->free[i], 6); |
| 491 | /* program page */ |
| 492 | chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1); |
| 493 | /* wait for NAND to return to ready state */ |
| 494 | for (timeout = LPC32X_NAND_TIMEOUT; timeout; timeout--) { |
| 495 | status = readl(&lpc32xx_nand_mlc_registers->isr); |
| 496 | if (status & ISR_NAND_READY) |
| 497 | break; |
| 498 | udelay(1); |
| 499 | } |
| 500 | /* if NAND stalled, return error */ |
| 501 | if (!(status & ISR_NAND_READY)) |
| 502 | return -1; |
| 503 | } |
| 504 | return 0; |
| 505 | } |
| 506 | |
| 507 | /** |
| 508 | * lpc32xx_waitfunc - wait until a command is done |
| 509 | * @mtd: MTD device structure |
| 510 | * @chip: NAND chip structure |
| 511 | * |
| 512 | * Wait for controller and FLASH to both be ready. |
| 513 | */ |
| 514 | |
| 515 | static int lpc32xx_waitfunc(struct mtd_info *mtd, struct nand_chip *chip) |
| 516 | { |
| 517 | int status; |
| 518 | unsigned int timeout; |
| 519 | /* wait until both controller and NAND are ready */ |
| 520 | for (timeout = LPC32X_NAND_TIMEOUT; timeout; timeout--) { |
| 521 | status = readl(&lpc32xx_nand_mlc_registers->isr); |
| 522 | if ((status & (ISR_CONTROLLER_READY || ISR_NAND_READY)) |
| 523 | == (ISR_CONTROLLER_READY || ISR_NAND_READY)) |
| 524 | break; |
| 525 | udelay(1); |
| 526 | } |
| 527 | /* if controller or NAND stalled, return error */ |
| 528 | if ((status & (ISR_CONTROLLER_READY || ISR_NAND_READY)) |
| 529 | != (ISR_CONTROLLER_READY || ISR_NAND_READY)) |
| 530 | return -1; |
| 531 | /* write NAND status command */ |
| 532 | writel(NAND_CMD_STATUS, &lpc32xx_nand_mlc_registers->cmd); |
| 533 | /* read back status and return it */ |
| 534 | return readb(&lpc32xx_nand_mlc_registers->data); |
| 535 | } |
| 536 | |
| 537 | /* |
| 538 | * We are self-initializing, so we need our own chip struct |
| 539 | */ |
| 540 | |
| 541 | static struct nand_chip lpc32xx_chip; |
| 542 | |
| 543 | /* |
| 544 | * Initialize the controller |
| 545 | */ |
| 546 | |
| 547 | void board_nand_init(void) |
| 548 | { |
Boris Brezillon | 3b5f884 | 2016-06-15 20:56:10 +0200 | [diff] [blame] | 549 | struct mtd_info *mtd = nand_to_mtd(&lpc32xx_chip); |
Albert ARIBAUD \(3ADEV\) | 7c97f70 | 2015-03-31 11:40:44 +0200 | [diff] [blame] | 550 | int ret; |
| 551 | |
| 552 | /* Set all BOARDSPECIFIC (actually core-specific) fields */ |
| 553 | |
| 554 | lpc32xx_chip.IO_ADDR_R = &lpc32xx_nand_mlc_registers->buff; |
| 555 | lpc32xx_chip.IO_ADDR_W = &lpc32xx_nand_mlc_registers->buff; |
| 556 | lpc32xx_chip.cmd_ctrl = lpc32xx_cmd_ctrl; |
| 557 | /* do not set init_size: nand_base.c will read sizes from chip */ |
| 558 | lpc32xx_chip.dev_ready = lpc32xx_dev_ready; |
| 559 | /* do not set setup_read_retry: this is NAND-chip-specific */ |
| 560 | /* do not set chip_delay: we have dev_ready defined. */ |
| 561 | lpc32xx_chip.options |= NAND_NO_SUBPAGE_WRITE; |
| 562 | |
| 563 | /* Set needed ECC fields */ |
| 564 | |
| 565 | lpc32xx_chip.ecc.mode = NAND_ECC_HW; |
| 566 | lpc32xx_chip.ecc.layout = &lpc32xx_largepage_ecclayout; |
| 567 | lpc32xx_chip.ecc.size = 512; |
| 568 | lpc32xx_chip.ecc.bytes = 10; |
| 569 | lpc32xx_chip.ecc.strength = 4; |
| 570 | lpc32xx_chip.ecc.read_page = lpc32xx_read_page_hwecc; |
| 571 | lpc32xx_chip.ecc.read_page_raw = lpc32xx_read_page_raw; |
| 572 | lpc32xx_chip.ecc.write_page = lpc32xx_write_page_hwecc; |
| 573 | lpc32xx_chip.ecc.write_page_raw = lpc32xx_write_page_raw; |
| 574 | lpc32xx_chip.ecc.read_oob = lpc32xx_read_oob; |
| 575 | lpc32xx_chip.ecc.write_oob = lpc32xx_write_oob; |
| 576 | lpc32xx_chip.waitfunc = lpc32xx_waitfunc; |
| 577 | |
| 578 | lpc32xx_chip.read_byte = lpc32xx_read_byte; /* FIXME: NEEDED? */ |
| 579 | |
| 580 | /* BBT options: read from last two pages */ |
| 581 | lpc32xx_chip.bbt_options |= NAND_BBT_USE_FLASH | NAND_BBT_LASTBLOCK |
| 582 | | NAND_BBT_SCANLASTPAGE | NAND_BBT_SCAN2NDPAGE |
| 583 | | NAND_BBT_WRITE; |
| 584 | |
| 585 | /* Initialize NAND interface */ |
| 586 | lpc32xx_nand_init(); |
| 587 | |
| 588 | /* identify chip */ |
Tom Rini | 6a5dccc | 2022-11-16 13:10:41 -0500 | [diff] [blame] | 589 | ret = nand_scan_ident(mtd, CFG_SYS_MAX_NAND_CHIPS, NULL); |
Albert ARIBAUD \(3ADEV\) | 7c97f70 | 2015-03-31 11:40:44 +0200 | [diff] [blame] | 590 | if (ret) { |
Masahiro Yamada | 81e1042 | 2017-09-16 14:10:41 +0900 | [diff] [blame] | 591 | pr_err("nand_scan_ident returned %i", ret); |
Albert ARIBAUD \(3ADEV\) | 7c97f70 | 2015-03-31 11:40:44 +0200 | [diff] [blame] | 592 | return; |
| 593 | } |
| 594 | |
| 595 | /* finish scanning the chip */ |
| 596 | ret = nand_scan_tail(mtd); |
| 597 | if (ret) { |
Masahiro Yamada | 81e1042 | 2017-09-16 14:10:41 +0900 | [diff] [blame] | 598 | pr_err("nand_scan_tail returned %i", ret); |
Albert ARIBAUD \(3ADEV\) | 7c97f70 | 2015-03-31 11:40:44 +0200 | [diff] [blame] | 599 | return; |
| 600 | } |
| 601 | |
| 602 | /* chip is good, register it */ |
Scott Wood | 2c1b7e1 | 2016-05-30 13:57:55 -0500 | [diff] [blame] | 603 | ret = nand_register(0, mtd); |
Albert ARIBAUD \(3ADEV\) | 7c97f70 | 2015-03-31 11:40:44 +0200 | [diff] [blame] | 604 | if (ret) |
Masahiro Yamada | 81e1042 | 2017-09-16 14:10:41 +0900 | [diff] [blame] | 605 | pr_err("nand_register returned %i", ret); |
Albert ARIBAUD \(3ADEV\) | 7c97f70 | 2015-03-31 11:40:44 +0200 | [diff] [blame] | 606 | } |
| 607 | |
| 608 | #else /* defined(CONFIG_SPL_BUILD) */ |
| 609 | |
| 610 | void nand_init(void) |
| 611 | { |
| 612 | /* enable NAND controller */ |
| 613 | lpc32xx_mlc_nand_init(); |
| 614 | /* initialize NAND controller */ |
| 615 | lpc32xx_nand_init(); |
| 616 | } |
| 617 | |
| 618 | void nand_deselect(void) |
| 619 | { |
| 620 | /* nothing to do, but SPL requires this function */ |
| 621 | } |
| 622 | |
| 623 | static int read_single_page(uint8_t *dest, int page, |
| 624 | struct lpc32xx_oob *oob) |
| 625 | { |
| 626 | int status, i, timeout, err, max_bitflips = 0; |
| 627 | |
| 628 | /* enter read mode */ |
| 629 | writel(NAND_CMD_READ0, &lpc32xx_nand_mlc_registers->cmd); |
| 630 | /* send column (lsb then MSB) and page (lsb to MSB) */ |
| 631 | writel(0, &lpc32xx_nand_mlc_registers->addr); |
| 632 | writel(0, &lpc32xx_nand_mlc_registers->addr); |
| 633 | writel(page & 0xff, &lpc32xx_nand_mlc_registers->addr); |
| 634 | writel((page>>8) & 0xff, &lpc32xx_nand_mlc_registers->addr); |
| 635 | writel((page>>16) & 0xff, &lpc32xx_nand_mlc_registers->addr); |
| 636 | /* start reading */ |
| 637 | writel(NAND_CMD_READSTART, &lpc32xx_nand_mlc_registers->cmd); |
| 638 | |
| 639 | /* large page auto decode read */ |
| 640 | for (i = 0; i < 4; i++) { |
| 641 | /* start auto decode (reads 528 NAND bytes) */ |
| 642 | writel(0, &lpc32xx_nand_mlc_registers->ecc_auto_dec_reg); |
| 643 | /* wait for controller to return to ready state */ |
| 644 | for (timeout = LPC32X_NAND_TIMEOUT; timeout; timeout--) { |
| 645 | status = readl(&lpc32xx_nand_mlc_registers->isr); |
| 646 | if (status & ISR_CONTROLLER_READY) |
| 647 | break; |
| 648 | udelay(1); |
| 649 | } |
| 650 | /* if controller stalled, return error */ |
| 651 | if (!(status & ISR_CONTROLLER_READY)) |
| 652 | return -1; |
| 653 | /* if decoder failure, return error */ |
| 654 | if (status & ISR_DECODER_FAILURE) |
| 655 | return -1; |
| 656 | /* keep count of maximum bitflips performed */ |
| 657 | if (status & ISR_DECODER_ERROR) { |
| 658 | err = ISR_DECODER_ERRORS(status); |
| 659 | if (err > max_bitflips) |
| 660 | max_bitflips = err; |
| 661 | } |
| 662 | /* copy first 512 bytes into buffer */ |
| 663 | memcpy(dest+i*512, lpc32xx_nand_mlc_registers->buff, 512); |
| 664 | /* copy next 6 bytes bytes into OOB buffer */ |
| 665 | memcpy(&oob->free[i], lpc32xx_nand_mlc_registers->buff, 6); |
| 666 | } |
| 667 | return max_bitflips; |
| 668 | } |
| 669 | |
| 670 | /* |
| 671 | * Load U-Boot signed image. |
| 672 | * This loads an image from NAND, skipping bad blocks. |
| 673 | * A block is declared bad if at least one of its readable pages has |
| 674 | * a bad block marker in its OOB at position 0. |
| 675 | * If all pages ion a block are unreadable, the block is considered |
| 676 | * bad (i.e., assumed not to be part of the image) and skipped. |
| 677 | * |
| 678 | * IMPORTANT NOTE: |
| 679 | * |
| 680 | * If the first block of the image is fully unreadable, it will be |
| 681 | * ignored and skipped as if it had been marked bad. If it was not |
| 682 | * actually marked bad at the time of writing the image, the resulting |
| 683 | * image loaded will lack a header and magic number. It could thus be |
| 684 | * considered as a raw, headerless, image and SPL might erroneously |
| 685 | * jump into it. |
| 686 | * |
| 687 | * In order to avoid this risk, LPC32XX-based boards which use this |
| 688 | * driver MUST define CONFIG_SPL_PANIC_ON_RAW_IMAGE. |
| 689 | */ |
| 690 | |
| 691 | #define BYTES_PER_PAGE 2048 |
| 692 | #define PAGES_PER_BLOCK 64 |
| 693 | #define BYTES_PER_BLOCK (BYTES_PER_PAGE * PAGES_PER_BLOCK) |
| 694 | #define PAGES_PER_CHIP_MAX 524288 |
| 695 | |
| 696 | int nand_spl_load_image(uint32_t offs, unsigned int size, void *dst) |
| 697 | { |
| 698 | int bytes_left = size; |
| 699 | int pages_left = DIV_ROUND_UP(size, BYTES_PER_PAGE); |
| 700 | int blocks_left = DIV_ROUND_UP(size, BYTES_PER_BLOCK); |
| 701 | int block = 0; |
| 702 | int page = offs / BYTES_PER_PAGE; |
| 703 | /* perform reads block by block */ |
| 704 | while (blocks_left) { |
| 705 | /* compute first page number to read */ |
| 706 | void *block_page_dst = dst; |
| 707 | /* read at most one block, possibly less */ |
| 708 | int block_bytes_left = bytes_left; |
| 709 | if (block_bytes_left > BYTES_PER_BLOCK) |
| 710 | block_bytes_left = BYTES_PER_BLOCK; |
| 711 | /* keep track of good, failed, and "bad" pages */ |
| 712 | int block_pages_good = 0; |
| 713 | int block_pages_bad = 0; |
| 714 | int block_pages_err = 0; |
| 715 | /* we shall read a full block of pages, maybe less */ |
| 716 | int block_pages_left = pages_left; |
| 717 | if (block_pages_left > PAGES_PER_BLOCK) |
| 718 | block_pages_left = PAGES_PER_BLOCK; |
| 719 | int block_pages = block_pages_left; |
| 720 | int block_page = page; |
| 721 | /* while pages are left and the block is not known as bad */ |
| 722 | while ((block_pages > 0) && (block_pages_bad == 0)) { |
| 723 | /* we will read OOB, too, for bad block markers */ |
| 724 | struct lpc32xx_oob oob; |
| 725 | /* read page */ |
| 726 | int res = read_single_page(block_page_dst, block_page, |
| 727 | &oob); |
| 728 | /* count readable pages */ |
| 729 | if (res >= 0) { |
| 730 | /* this page is good */ |
| 731 | block_pages_good++; |
| 732 | /* this page is bad */ |
| 733 | if ((oob.free[0].free_oob_bytes[0] != 0xff) |
| 734 | | (oob.free[0].free_oob_bytes[1] != 0xff)) |
| 735 | block_pages_bad++; |
| 736 | } else |
| 737 | /* count errors */ |
| 738 | block_pages_err++; |
| 739 | /* we're done with this page */ |
| 740 | block_page++; |
| 741 | block_page_dst += BYTES_PER_PAGE; |
| 742 | if (block_pages) |
| 743 | block_pages--; |
| 744 | } |
| 745 | /* a fully unreadable block is considered bad */ |
| 746 | if (block_pages_good == 0) |
| 747 | block_pages_bad = block_pages_err; |
| 748 | /* errors are fatal only in good blocks */ |
| 749 | if ((block_pages_err > 0) && (block_pages_bad == 0)) |
| 750 | return -1; |
| 751 | /* we keep reads only of good blocks */ |
| 752 | if (block_pages_bad == 0) { |
| 753 | dst += block_bytes_left; |
| 754 | bytes_left -= block_bytes_left; |
| 755 | pages_left -= block_pages_left; |
| 756 | blocks_left--; |
| 757 | } |
| 758 | /* good or bad, we're done with this block */ |
| 759 | block++; |
| 760 | page += PAGES_PER_BLOCK; |
| 761 | } |
| 762 | |
| 763 | /* report success */ |
| 764 | return 0; |
| 765 | } |
| 766 | |
| 767 | #endif /* CONFIG_SPL_BUILD */ |