blob: a0bb76da4d1f40f3ed9b6d2e30727f1986138b8c [file] [log] [blame]
wdenk1df49e22002-09-17 21:37:55 +00001/*
2 * (C) Copyright 2002
3 * Wolfgang Denk, DENX Software Engineering, wd@denx.de.
4 *
5 * See file CREDITS for list of people who contributed to this
6 * project.
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License as
10 * published by the Free Software Foundation; either version 2 of
11 * the License, or (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
21 * MA 02111-1307 USA
22 */
23
24#include <common.h>
25#include <malloc.h>
26#include <net.h>
27#include <asm/io.h>
28#include <pci.h>
29
30#undef DEBUG
31
32#if (CONFIG_COMMANDS & CFG_CMD_NET) && defined(CONFIG_NET_MULTI) && \
33 defined(CONFIG_EEPRO100)
34
35 /* Ethernet chip registers.
36 */
37#define SCBStatus 0 /* Rx/Command Unit Status *Word* */
38#define SCBIntAckByte 1 /* Rx/Command Unit STAT/ACK byte */
39#define SCBCmd 2 /* Rx/Command Unit Command *Word* */
40#define SCBIntrCtlByte 3 /* Rx/Command Unit Intr.Control Byte */
41#define SCBPointer 4 /* General purpose pointer. */
42#define SCBPort 8 /* Misc. commands and operands. */
43#define SCBflash 12 /* Flash memory control. */
44#define SCBeeprom 14 /* EEPROM memory control. */
45#define SCBCtrlMDI 16 /* MDI interface control. */
46#define SCBEarlyRx 20 /* Early receive byte count. */
47#define SCBGenControl 28 /* 82559 General Control Register */
48#define SCBGenStatus 29 /* 82559 General Status register */
49
50 /* 82559 SCB status word defnitions
51 */
52#define SCB_STATUS_CX 0x8000 /* CU finished command (transmit) */
53#define SCB_STATUS_FR 0x4000 /* frame received */
54#define SCB_STATUS_CNA 0x2000 /* CU left active state */
55#define SCB_STATUS_RNR 0x1000 /* receiver left ready state */
56#define SCB_STATUS_MDI 0x0800 /* MDI read/write cycle done */
57#define SCB_STATUS_SWI 0x0400 /* software generated interrupt */
58#define SCB_STATUS_FCP 0x0100 /* flow control pause interrupt */
59
60#define SCB_INTACK_MASK 0xFD00 /* all the above */
61
62#define SCB_INTACK_TX (SCB_STATUS_CX | SCB_STATUS_CNA)
63#define SCB_INTACK_RX (SCB_STATUS_FR | SCB_STATUS_RNR)
64
65 /* System control block commands
66 */
67/* CU Commands */
68#define CU_NOP 0x0000
69#define CU_START 0x0010
70#define CU_RESUME 0x0020
71#define CU_STATSADDR 0x0040 /* Load Dump Statistics ctrs addr */
72#define CU_SHOWSTATS 0x0050 /* Dump statistics counters. */
73#define CU_ADDR_LOAD 0x0060 /* Base address to add to CU commands */
74#define CU_DUMPSTATS 0x0070 /* Dump then reset stats counters. */
75
76/* RUC Commands */
77#define RUC_NOP 0x0000
78#define RUC_START 0x0001
79#define RUC_RESUME 0x0002
80#define RUC_ABORT 0x0004
81#define RUC_ADDR_LOAD 0x0006 /* (seems not to clear on acceptance) */
82#define RUC_RESUMENR 0x0007
83
84#define CU_CMD_MASK 0x00f0
85#define RU_CMD_MASK 0x0007
86
87#define SCB_M 0x0100 /* 0 = enable interrupt, 1 = disable */
88#define SCB_SWI 0x0200 /* 1 - cause device to interrupt */
89
90#define CU_STATUS_MASK 0x00C0
91#define RU_STATUS_MASK 0x003C
92
93#define RU_STATUS_IDLE (0<<2)
94#define RU_STATUS_SUS (1<<2)
95#define RU_STATUS_NORES (2<<2)
96#define RU_STATUS_READY (4<<2)
97#define RU_STATUS_NO_RBDS_SUS ((1<<2)|(8<<2))
98#define RU_STATUS_NO_RBDS_NORES ((2<<2)|(8<<2))
99#define RU_STATUS_NO_RBDS_READY ((4<<2)|(8<<2))
100
101 /* 82559 Port interface commands.
102 */
103#define I82559_RESET 0x00000000 /* Software reset */
104#define I82559_SELFTEST 0x00000001 /* 82559 Selftest command */
105#define I82559_SELECTIVE_RESET 0x00000002
106#define I82559_DUMP 0x00000003
107#define I82559_DUMP_WAKEUP 0x00000007
108
109 /* 82559 Eeprom interface.
110 */
111#define EE_SHIFT_CLK 0x01 /* EEPROM shift clock. */
112#define EE_CS 0x02 /* EEPROM chip select. */
113#define EE_DATA_WRITE 0x04 /* EEPROM chip data in. */
114#define EE_WRITE_0 0x01
115#define EE_WRITE_1 0x05
116#define EE_DATA_READ 0x08 /* EEPROM chip data out. */
117#define EE_ENB (0x4800 | EE_CS)
118#define EE_CMD_BITS 3
119#define EE_DATA_BITS 16
120
121 /* The EEPROM commands include the alway-set leading bit.
122 */
123#define EE_EWENB_CMD (4 << addr_len)
124#define EE_WRITE_CMD (5 << addr_len)
125#define EE_READ_CMD (6 << addr_len)
126#define EE_ERASE_CMD (7 << addr_len)
127
128 /* Receive frame descriptors.
129 */
130struct RxFD {
131 volatile u16 status;
132 volatile u16 control;
133 volatile u32 link; /* struct RxFD * */
134 volatile u32 rx_buf_addr; /* void * */
135 volatile u32 count;
136
137 volatile u8 data[PKTSIZE_ALIGN];
138};
139
140#define RFD_STATUS_C 0x8000 /* completion of received frame */
141#define RFD_STATUS_OK 0x2000 /* frame received with no errors */
142
143#define RFD_CONTROL_EL 0x8000 /* 1=last RFD in RFA */
144#define RFD_CONTROL_S 0x4000 /* 1=suspend RU after receiving frame */
145#define RFD_CONTROL_H 0x0010 /* 1=RFD is a header RFD */
146#define RFD_CONTROL_SF 0x0008 /* 0=simplified, 1=flexible mode */
147
148#define RFD_COUNT_MASK 0x3fff
149#define RFD_COUNT_F 0x4000
150#define RFD_COUNT_EOF 0x8000
151
152#define RFD_RX_CRC 0x0800 /* crc error */
153#define RFD_RX_ALIGNMENT 0x0400 /* alignment error */
154#define RFD_RX_RESOURCE 0x0200 /* out of space, no resources */
155#define RFD_RX_DMA_OVER 0x0100 /* DMA overrun */
156#define RFD_RX_SHORT 0x0080 /* short frame error */
157#define RFD_RX_LENGTH 0x0020
158#define RFD_RX_ERROR 0x0010 /* receive error */
159#define RFD_RX_NO_ADR_MATCH 0x0004 /* no address match */
160#define RFD_RX_IA_MATCH 0x0002 /* individual address does not match */
161#define RFD_RX_TCO 0x0001 /* TCO indication */
162
163 /* Transmit frame descriptors
164 */
165struct TxFD { /* Transmit frame descriptor set. */
166 volatile u16 status;
167 volatile u16 command;
168 volatile u32 link; /* void * */
169 volatile u32 tx_desc_addr; /* Always points to the tx_buf_addr element. */
170 volatile s32 count;
171
172 volatile u32 tx_buf_addr0; /* void *, frame to be transmitted. */
173 volatile s32 tx_buf_size0; /* Length of Tx frame. */
174 volatile u32 tx_buf_addr1; /* void *, frame to be transmitted. */
175 volatile s32 tx_buf_size1; /* Length of Tx frame. */
176};
177
178#define TxCB_CMD_TRANSMIT 0x0004 /* transmit command */
179#define TxCB_CMD_SF 0x0008 /* 0=simplified, 1=flexible mode */
180#define TxCB_CMD_NC 0x0010 /* 0=CRC insert by controller */
181#define TxCB_CMD_I 0x2000 /* generate interrupt on completion */
182#define TxCB_CMD_S 0x4000 /* suspend on completion */
183#define TxCB_CMD_EL 0x8000 /* last command block in CBL */
184
185#define TxCB_COUNT_MASK 0x3fff
186#define TxCB_COUNT_EOF 0x8000
187
188 /* The Speedo3 Rx and Tx frame/buffer descriptors.
189 */
190struct descriptor { /* A generic descriptor. */
191 volatile u16 status;
192 volatile u16 command;
193 volatile u32 link; /* struct descriptor * */
194
195 unsigned char params[0];
196};
197
198#define CFG_CMD_EL 0x8000
199#define CFG_CMD_SUSPEND 0x4000
200#define CFG_CMD_INT 0x2000
201#define CFG_CMD_IAS 0x0001 /* individual address setup */
202#define CFG_CMD_CONFIGURE 0x0002 /* configure */
203
204#define CFG_STATUS_C 0x8000
205#define CFG_STATUS_OK 0x2000
206
207 /* Misc.
208 */
209#define NUM_RX_DESC PKTBUFSRX
210#define NUM_TX_DESC 1 /* Number of TX descriptors */
211
212#define TOUT_LOOP 1000000
213
214#define ETH_ALEN 6
215
216static struct RxFD rx_ring[NUM_RX_DESC]; /* RX descriptor ring */
217static struct TxFD tx_ring[NUM_TX_DESC]; /* TX descriptor ring */
218static int rx_next; /* RX descriptor ring pointer */
219static int tx_next; /* TX descriptor ring pointer */
220static int tx_threshold;
221
222/*
223 * The parameters for a CmdConfigure operation.
224 * There are so many options that it would be difficult to document
225 * each bit. We mostly use the default or recommended settings.
226 */
227static const char i82557_config_cmd[] = {
228 22, 0x08, 0, 0, 0, 0, 0x32, 0x03, 1, /* 1=Use MII 0=Use AUI */
229 0, 0x2E, 0, 0x60, 0,
230 0xf2, 0x48, 0, 0x40, 0xf2, 0x80, /* 0x40=Force full-duplex */
231 0x3f, 0x05,
232};
233static const char i82558_config_cmd[] = {
234 22, 0x08, 0, 1, 0, 0, 0x22, 0x03, 1, /* 1=Use MII 0=Use AUI */
235 0, 0x2E, 0, 0x60, 0x08, 0x88,
236 0x68, 0, 0x40, 0xf2, 0x84, /* Disable FC */
237 0x31, 0x05,
238};
239
240static void init_rx_ring (struct eth_device *dev);
241static void purge_tx_ring (struct eth_device *dev);
242
243static void read_hw_addr (struct eth_device *dev, bd_t * bis);
244
245static int eepro100_init (struct eth_device *dev, bd_t * bis);
246static int eepro100_send (struct eth_device *dev, volatile void *packet,
247 int length);
248static int eepro100_recv (struct eth_device *dev);
249static void eepro100_halt (struct eth_device *dev);
250
251#define bus_to_phys(a) pci_mem_to_phys((pci_dev_t)dev->priv, a)
252#define phys_to_bus(a) pci_phys_to_mem((pci_dev_t)dev->priv, a)
253
254static inline int INW (struct eth_device *dev, u_long addr)
255{
256 return le16_to_cpu (*(volatile u16 *) (addr + dev->iobase));
257}
258
259static inline void OUTW (struct eth_device *dev, int command, u_long addr)
260{
261 *(volatile u16 *) ((addr + dev->iobase)) = cpu_to_le16 (command);
262}
263
264static inline void OUTL (struct eth_device *dev, int command, u_long addr)
265{
266 *(volatile u32 *) ((addr + dev->iobase)) = cpu_to_le32 (command);
267}
268
269 /* Wait for the chip get the command.
270 */
271static int wait_for_eepro100 (struct eth_device *dev)
272{
273 int i;
274
275 for (i = 0; INW (dev, SCBCmd) & (CU_CMD_MASK | RU_CMD_MASK); i++) {
276 if (i >= TOUT_LOOP) {
277 return 0;
278 }
279 }
280
281 return 1;
282}
283
284static struct pci_device_id supported[] = {
285 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82557},
286 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82559},
287 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82559ER},
288 {}
289};
290
291int eepro100_initialize (bd_t * bis)
292{
293 pci_dev_t devno;
294 int card_number = 0;
295 struct eth_device *dev;
296 u32 iobase, status;
297 int idx = 0;
298
299 while (1) {
300 /* Find PCI device
301 */
302 if ((devno = pci_find_devices (supported, idx++)) < 0) {
303 break;
304 }
305
306 pci_read_config_dword (devno, PCI_BASE_ADDRESS_0, &iobase);
307 iobase &= ~0xf;
308
309#ifdef DEBUG
310 printf ("eepro100: Intel i82559 PCI EtherExpressPro @0x%x\n",
311 iobase);
312#endif
313
314 pci_write_config_dword (devno,
315 PCI_COMMAND,
316 PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER);
317
318 /* Check if I/O accesses and Bus Mastering are enabled.
319 */
320 pci_read_config_dword (devno, PCI_COMMAND, &status);
321 if (!(status & PCI_COMMAND_MEMORY)) {
322 printf ("Error: Can not enable MEM access.\n");
323 continue;
324 }
325
326 if (!(status & PCI_COMMAND_MASTER)) {
327 printf ("Error: Can not enable Bus Mastering.\n");
328 continue;
329 }
330
331 dev = (struct eth_device *) malloc (sizeof *dev);
332
333 sprintf (dev->name, "i82559#%d", card_number);
wdenkabda5ca2003-05-31 18:35:21 +0000334 dev->priv = (void *) devno; /* this have to come before bus_to_phys() */
wdenk1df49e22002-09-17 21:37:55 +0000335 dev->iobase = bus_to_phys (iobase);
wdenk1df49e22002-09-17 21:37:55 +0000336 dev->init = eepro100_init;
337 dev->halt = eepro100_halt;
338 dev->send = eepro100_send;
339 dev->recv = eepro100_recv;
340
341 eth_register (dev);
342
343 card_number++;
344
345 /* Set the latency timer for value.
346 */
347 pci_write_config_byte (devno, PCI_LATENCY_TIMER, 0x20);
348
349 udelay (10 * 1000);
350
351 read_hw_addr (dev, bis);
352 }
353
354 return card_number;
355}
356
357
358static int eepro100_init (struct eth_device *dev, bd_t * bis)
359{
360 int i, status = 0;
361 int tx_cur;
362 struct descriptor *ias_cmd, *cfg_cmd;
363
364 /* Reset the ethernet controller
365 */
366 OUTL (dev, I82559_SELECTIVE_RESET, SCBPort);
367 udelay (20);
368
369 OUTL (dev, I82559_RESET, SCBPort);
370 udelay (20);
371
372 if (!wait_for_eepro100 (dev)) {
373 printf ("Error: Can not reset ethernet controller.\n");
374 goto Done;
375 }
376 OUTL (dev, 0, SCBPointer);
377 OUTW (dev, SCB_M | RUC_ADDR_LOAD, SCBCmd);
378
379 if (!wait_for_eepro100 (dev)) {
380 printf ("Error: Can not reset ethernet controller.\n");
381 goto Done;
382 }
383 OUTL (dev, 0, SCBPointer);
384 OUTW (dev, SCB_M | CU_ADDR_LOAD, SCBCmd);
385
386 /* Initialize Rx and Tx rings.
387 */
388 init_rx_ring (dev);
389 purge_tx_ring (dev);
390
391 /* Tell the adapter where the RX ring is located.
392 */
393 if (!wait_for_eepro100 (dev)) {
394 printf ("Error: Can not reset ethernet controller.\n");
395 goto Done;
396 }
397
398 OUTL (dev, phys_to_bus ((u32) & rx_ring[rx_next]), SCBPointer);
399 OUTW (dev, SCB_M | RUC_START, SCBCmd);
400
401 /* Send the Configure frame */
402 tx_cur = tx_next;
403 tx_next = ((tx_next + 1) % NUM_TX_DESC);
404
405 cfg_cmd = (struct descriptor *) &tx_ring[tx_cur];
406 cfg_cmd->command = cpu_to_le16 ((CFG_CMD_SUSPEND | CFG_CMD_CONFIGURE));
407 cfg_cmd->status = 0;
408 cfg_cmd->link = cpu_to_le32 (phys_to_bus ((u32) & tx_ring[tx_next]));
409
410 memcpy (cfg_cmd->params, i82558_config_cmd,
411 sizeof (i82558_config_cmd));
412
413 if (!wait_for_eepro100 (dev)) {
414 printf ("Error---CFG_CMD_CONFIGURE: Can not reset ethernet controller.\n");
415 goto Done;
416 }
417
418 OUTL (dev, phys_to_bus ((u32) & tx_ring[tx_cur]), SCBPointer);
419 OUTW (dev, SCB_M | CU_START, SCBCmd);
420
421 for (i = 0;
422 !(le16_to_cpu (tx_ring[tx_cur].status) & CFG_STATUS_C);
423 i++) {
424 if (i >= TOUT_LOOP) {
425 printf ("%s: Tx error buffer not ready\n", dev->name);
426 goto Done;
427 }
428 }
429
430 if (!(le16_to_cpu (tx_ring[tx_cur].status) & CFG_STATUS_OK)) {
431 printf ("TX error status = 0x%08X\n",
432 le16_to_cpu (tx_ring[tx_cur].status));
433 goto Done;
434 }
435
436 /* Send the Individual Address Setup frame
437 */
438 tx_cur = tx_next;
439 tx_next = ((tx_next + 1) % NUM_TX_DESC);
440
441 ias_cmd = (struct descriptor *) &tx_ring[tx_cur];
442 ias_cmd->command = cpu_to_le16 ((CFG_CMD_SUSPEND | CFG_CMD_IAS));
443 ias_cmd->status = 0;
444 ias_cmd->link = cpu_to_le32 (phys_to_bus ((u32) & tx_ring[tx_next]));
445
446 memcpy (ias_cmd->params, dev->enetaddr, 6);
447
448 /* Tell the adapter where the TX ring is located.
449 */
450 if (!wait_for_eepro100 (dev)) {
451 printf ("Error: Can not reset ethernet controller.\n");
452 goto Done;
453 }
454
455 OUTL (dev, phys_to_bus ((u32) & tx_ring[tx_cur]), SCBPointer);
456 OUTW (dev, SCB_M | CU_START, SCBCmd);
457
458 for (i = 0; !(le16_to_cpu (tx_ring[tx_cur].status) & CFG_STATUS_C);
459 i++) {
460 if (i >= TOUT_LOOP) {
461 printf ("%s: Tx error buffer not ready\n",
462 dev->name);
463 goto Done;
464 }
465 }
466
467 if (!(le16_to_cpu (tx_ring[tx_cur].status) & CFG_STATUS_OK)) {
468 printf ("TX error status = 0x%08X\n",
469 le16_to_cpu (tx_ring[tx_cur].status));
470 goto Done;
471 }
472
473 status = 1;
474
475 Done:
476 return status;
477}
478
479static int eepro100_send (struct eth_device *dev, volatile void *packet, int length)
480{
481 int i, status = -1;
482 int tx_cur;
483
484 if (length <= 0) {
485 printf ("%s: bad packet size: %d\n", dev->name, length);
486 goto Done;
487 }
488
489 tx_cur = tx_next;
490 tx_next = (tx_next + 1) % NUM_TX_DESC;
491
492 tx_ring[tx_cur].command = cpu_to_le16 ( TxCB_CMD_TRANSMIT |
493 TxCB_CMD_SF |
494 TxCB_CMD_S |
495 TxCB_CMD_EL );
496 tx_ring[tx_cur].status = 0;
497 tx_ring[tx_cur].count = cpu_to_le32 (tx_threshold);
498 tx_ring[tx_cur].link =
499 cpu_to_le32 (phys_to_bus ((u32) & tx_ring[tx_next]));
500 tx_ring[tx_cur].tx_desc_addr =
501 cpu_to_le32 (phys_to_bus ((u32) & tx_ring[tx_cur].tx_buf_addr0));
502 tx_ring[tx_cur].tx_buf_addr0 =
503 cpu_to_le32 (phys_to_bus ((u_long) packet));
504 tx_ring[tx_cur].tx_buf_size0 = cpu_to_le32 (length);
505
506 if (!wait_for_eepro100 (dev)) {
507 printf ("%s: Tx error ethernet controller not ready.\n",
508 dev->name);
509 goto Done;
510 }
511
512 /* Send the packet.
513 */
514 OUTL (dev, phys_to_bus ((u32) & tx_ring[tx_cur]), SCBPointer);
515 OUTW (dev, SCB_M | CU_START, SCBCmd);
516
517 for (i = 0; !(le16_to_cpu (tx_ring[tx_cur].status) & CFG_STATUS_C);
518 i++) {
519 if (i >= TOUT_LOOP) {
520 printf ("%s: Tx error buffer not ready\n", dev->name);
521 goto Done;
522 }
523 }
524
525 if (!(le16_to_cpu (tx_ring[tx_cur].status) & CFG_STATUS_OK)) {
526 printf ("TX error status = 0x%08X\n",
527 le16_to_cpu (tx_ring[tx_cur].status));
528 goto Done;
529 }
530
531 status = length;
532
533 Done:
534 return status;
535}
536
537static int eepro100_recv (struct eth_device *dev)
538{
539 u16 status, stat;
540 int rx_prev, length = 0;
541
542 stat = INW (dev, SCBStatus);
543 OUTW (dev, stat & SCB_STATUS_RNR, SCBStatus);
544
545 for (;;) {
546 status = le16_to_cpu (rx_ring[rx_next].status);
547
548 if (!(status & RFD_STATUS_C)) {
549 break;
550 }
551
552 /* Valid frame status.
553 */
554 if ((status & RFD_STATUS_OK)) {
555 /* A valid frame received.
556 */
557 length = le32_to_cpu (rx_ring[rx_next].count) & 0x3fff;
558
559 /* Pass the packet up to the protocol
560 * layers.
561 */
562 NetReceive (rx_ring[rx_next].data, length);
563 } else {
564 /* There was an error.
565 */
566 printf ("RX error status = 0x%08X\n", status);
567 }
568
569 rx_ring[rx_next].control = cpu_to_le16 (RFD_CONTROL_S);
570 rx_ring[rx_next].status = 0;
571 rx_ring[rx_next].count = cpu_to_le32 (PKTSIZE_ALIGN << 16);
572
573 rx_prev = (rx_next + NUM_RX_DESC - 1) % NUM_RX_DESC;
574 rx_ring[rx_prev].control = 0;
575
576 /* Update entry information.
577 */
578 rx_next = (rx_next + 1) % NUM_RX_DESC;
579 }
580
581 if (stat & SCB_STATUS_RNR) {
582
583 printf ("%s: Receiver is not ready, restart it !\n", dev->name);
584
585 /* Reinitialize Rx ring.
586 */
587 init_rx_ring (dev);
588
589 if (!wait_for_eepro100 (dev)) {
590 printf ("Error: Can not restart ethernet controller.\n");
591 goto Done;
592 }
593
594 OUTL (dev, phys_to_bus ((u32) & rx_ring[rx_next]), SCBPointer);
595 OUTW (dev, SCB_M | RUC_START, SCBCmd);
596 }
597
598 Done:
599 return length;
600}
601
602static void eepro100_halt (struct eth_device *dev)
603{
604 /* Reset the ethernet controller
605 */
606 OUTL (dev, I82559_SELECTIVE_RESET, SCBPort);
607 udelay (20);
608
609 OUTL (dev, I82559_RESET, SCBPort);
610 udelay (20);
611
612 if (!wait_for_eepro100 (dev)) {
613 printf ("Error: Can not reset ethernet controller.\n");
614 goto Done;
615 }
616 OUTL (dev, 0, SCBPointer);
617 OUTW (dev, SCB_M | RUC_ADDR_LOAD, SCBCmd);
618
619 if (!wait_for_eepro100 (dev)) {
620 printf ("Error: Can not reset ethernet controller.\n");
621 goto Done;
622 }
623 OUTL (dev, 0, SCBPointer);
624 OUTW (dev, SCB_M | CU_ADDR_LOAD, SCBCmd);
625
626 Done:
627 return;
628}
629
630 /* SROM Read.
631 */
632static int read_eeprom (struct eth_device *dev, int location, int addr_len)
633{
634 unsigned short retval = 0;
635 int read_cmd = location | EE_READ_CMD;
636 int i;
637
638 OUTW (dev, EE_ENB & ~EE_CS, SCBeeprom);
639 OUTW (dev, EE_ENB, SCBeeprom);
640
641 /* Shift the read command bits out. */
642 for (i = 12; i >= 0; i--) {
643 short dataval = (read_cmd & (1 << i)) ? EE_DATA_WRITE : 0;
644
645 OUTW (dev, EE_ENB | dataval, SCBeeprom);
646 udelay (1);
647 OUTW (dev, EE_ENB | dataval | EE_SHIFT_CLK, SCBeeprom);
648 udelay (1);
649 }
650 OUTW (dev, EE_ENB, SCBeeprom);
651
652 for (i = 15; i >= 0; i--) {
653 OUTW (dev, EE_ENB | EE_SHIFT_CLK, SCBeeprom);
654 udelay (1);
655 retval = (retval << 1) |
656 ((INW (dev, SCBeeprom) & EE_DATA_READ) ? 1 : 0);
657 OUTW (dev, EE_ENB, SCBeeprom);
658 udelay (1);
659 }
660
661 /* Terminate the EEPROM access. */
662 OUTW (dev, EE_ENB & ~EE_CS, SCBeeprom);
663 return retval;
664}
665
666#ifdef CONFIG_EEPRO100_SROM_WRITE
667int eepro100_write_eeprom (struct eth_device* dev, int location, int addr_len, unsigned short data)
668{
669 unsigned short dataval;
670 int enable_cmd = 0x3f | EE_EWENB_CMD;
671 int write_cmd = location | EE_WRITE_CMD;
672 int i;
673 unsigned long datalong, tmplong;
674
675 OUTW(dev, EE_ENB & ~EE_CS, SCBeeprom);
676 udelay(1);
677 OUTW(dev, EE_ENB, SCBeeprom);
678
679 /* Shift the enable command bits out. */
680 for (i = (addr_len+EE_CMD_BITS-1); i >= 0; i--)
681 {
682 dataval = (enable_cmd & (1 << i)) ? EE_DATA_WRITE : 0;
683 OUTW(dev, EE_ENB | dataval, SCBeeprom);
684 udelay(1);
685 OUTW(dev, EE_ENB | dataval | EE_SHIFT_CLK, SCBeeprom);
686 udelay(1);
687 }
688
689 OUTW(dev, EE_ENB, SCBeeprom);
690 udelay(1);
691 OUTW(dev, EE_ENB & ~EE_CS, SCBeeprom);
692 udelay(1);
693 OUTW(dev, EE_ENB, SCBeeprom);
694
695
696 /* Shift the write command bits out. */
697 for (i = (addr_len+EE_CMD_BITS-1); i >= 0; i--)
698 {
699 dataval = (write_cmd & (1 << i)) ? EE_DATA_WRITE : 0;
700 OUTW(dev, EE_ENB | dataval, SCBeeprom);
701 udelay(1);
702 OUTW(dev, EE_ENB | dataval | EE_SHIFT_CLK, SCBeeprom);
703 udelay(1);
704 }
705
706 /* Write the data */
707 datalong= (unsigned long) ((((data) & 0x00ff) << 8) | ( (data) >> 8));
708
709 for (i = 0; i< EE_DATA_BITS; i++)
710 {
711 /* Extract and move data bit to bit DI */
712 dataval = ((datalong & 0x8000)>>13) ? EE_DATA_WRITE : 0;
713
714 OUTW(dev, EE_ENB | dataval, SCBeeprom);
715 udelay(1);
716 OUTW(dev, EE_ENB | dataval | EE_SHIFT_CLK, SCBeeprom);
717 udelay(1);
718 OUTW(dev, EE_ENB | dataval, SCBeeprom);
719 udelay(1);
720
721 datalong = datalong << 1; /* Adjust significant data bit*/
722 }
723
724 /* Finish up command (toggle CS) */
725 OUTW(dev, EE_ENB & ~EE_CS, SCBeeprom);
726 udelay(1); /* delay for more than 250 ns */
727 OUTW(dev, EE_ENB, SCBeeprom);
728
729 /* Wait for programming ready (D0 = 1) */
730 tmplong = 10;
731 do
732 {
733 dataval = INW(dev, SCBeeprom);
734 if (dataval & EE_DATA_READ)
735 break;
736 udelay(10000);
737 }
738 while (-- tmplong);
739
740 if (tmplong == 0)
741 {
742 printf ("Write i82559 eeprom timed out (100 ms waiting for data ready.\n");
743 return -1;
744 }
745
746 /* Terminate the EEPROM access. */
747 OUTW(dev, EE_ENB & ~EE_CS, SCBeeprom);
748
749 return 0;
750}
751#endif
752
753static void init_rx_ring (struct eth_device *dev)
754{
755 int i;
756
757 for (i = 0; i < NUM_RX_DESC; i++) {
758 rx_ring[i].status = 0;
759 rx_ring[i].control =
760 (i == NUM_RX_DESC - 1) ? cpu_to_le16 (RFD_CONTROL_S) : 0;
761 rx_ring[i].link =
762 cpu_to_le32 (phys_to_bus
763 ((u32) & rx_ring[(i + 1) % NUM_RX_DESC]));
764 rx_ring[i].rx_buf_addr = 0xffffffff;
765 rx_ring[i].count = cpu_to_le32 (PKTSIZE_ALIGN << 16);
766 }
767
768 rx_next = 0;
769}
770
771static void purge_tx_ring (struct eth_device *dev)
772{
773 int i;
774
775 tx_next = 0;
776 tx_threshold = 0x01208000;
777
778 for (i = 0; i < NUM_TX_DESC; i++) {
779 tx_ring[i].status = 0;
780 tx_ring[i].command = 0;
781 tx_ring[i].link = 0;
782 tx_ring[i].tx_desc_addr = 0;
783 tx_ring[i].count = 0;
784
785 tx_ring[i].tx_buf_addr0 = 0;
786 tx_ring[i].tx_buf_size0 = 0;
787 tx_ring[i].tx_buf_addr1 = 0;
788 tx_ring[i].tx_buf_size1 = 0;
789 }
790}
791
792static void read_hw_addr (struct eth_device *dev, bd_t * bis)
793{
794 u16 eeprom[0x40];
795 u16 sum = 0;
796 int i, j;
797 int addr_len = read_eeprom (dev, 0, 6) == 0xffff ? 8 : 6;
798
799 for (j = 0, i = 0; i < 0x40; i++) {
800 u16 value = read_eeprom (dev, i, addr_len);
801
802 eeprom[i] = value;
803 sum += value;
804 if (i < 3) {
805 dev->enetaddr[j++] = value;
806 dev->enetaddr[j++] = value >> 8;
807 }
808 }
809
810 if (sum != 0xBABA) {
811 memset (dev->enetaddr, 0, ETH_ALEN);
812#ifdef DEBUG
813 printf ("%s: Invalid EEPROM checksum %#4.4x, "
814 "check settings before activating this device!\n",
815 dev->name, sum);
816#endif
817 }
818}
819
820#endif