Bartlomiej Sieka | 582f1a3 | 2006-03-05 18:57:33 +0100 | [diff] [blame] | 1 | /* |
| 2 | * (C) 2006 Denx |
| 3 | * Driver for NAND support, Rick Bronson |
| 4 | * borrowed heavily from: |
| 5 | * (c) 1999 Machine Vision Holdings, Inc. |
| 6 | * (c) 1999, 2000 David Woodhouse <dwmw2@infradead.org> |
| 7 | * |
| 8 | * Added 16-bit nand support |
| 9 | * (C) 2004 Texas Instruments |
| 10 | */ |
| 11 | |
| 12 | #include <common.h> |
Bartlomiej Sieka | 582f1a3 | 2006-03-05 18:57:33 +0100 | [diff] [blame] | 13 | #include <command.h> |
| 14 | #include <malloc.h> |
| 15 | #include <asm/io.h> |
| 16 | #include <watchdog.h> |
| 17 | |
| 18 | #ifdef CONFIG_SHOW_BOOT_PROGRESS |
| 19 | # include <status_led.h> |
| 20 | # define SHOW_BOOT_PROGRESS(arg) show_boot_progress(arg) |
| 21 | #else |
| 22 | # define SHOW_BOOT_PROGRESS(arg) |
| 23 | #endif |
| 24 | |
Jon Loeliger | 82ecaad | 2007-07-09 17:39:42 -0500 | [diff] [blame] | 25 | #if defined(CONFIG_CMD_NAND) && defined(CFG_NAND_LEGACY) |
Bartlomiej Sieka | 582f1a3 | 2006-03-05 18:57:33 +0100 | [diff] [blame] | 26 | |
| 27 | #include <linux/mtd/nand_legacy.h> |
| 28 | #include <linux/mtd/nand_ids.h> |
| 29 | #include <jffs2/jffs2.h> |
| 30 | |
| 31 | #ifdef CONFIG_OMAP1510 |
| 32 | void archflashwp(void *archdata, int wp); |
| 33 | #endif |
| 34 | |
| 35 | #define ROUND_DOWN(value,boundary) ((value) & (~((boundary)-1))) |
| 36 | |
| 37 | #undef PSYCHO_DEBUG |
| 38 | #undef NAND_DEBUG |
| 39 | |
| 40 | /* ****************** WARNING ********************* |
| 41 | * When ALLOW_ERASE_BAD_DEBUG is non-zero the erase command will |
| 42 | * erase (or at least attempt to erase) blocks that are marked |
| 43 | * bad. This can be very handy if you are _sure_ that the block |
| 44 | * is OK, say because you marked a good block bad to test bad |
| 45 | * block handling and you are done testing, or if you have |
| 46 | * accidentally marked blocks bad. |
| 47 | * |
| 48 | * Erasing factory marked bad blocks is a _bad_ idea. If the |
| 49 | * erase succeeds there is no reliable way to find them again, |
| 50 | * and attempting to program or erase bad blocks can affect |
| 51 | * the data in _other_ (good) blocks. |
| 52 | */ |
| 53 | #define ALLOW_ERASE_BAD_DEBUG 0 |
| 54 | |
| 55 | #define CONFIG_MTD_NAND_ECC /* enable ECC */ |
| 56 | #define CONFIG_MTD_NAND_ECC_JFFS2 |
| 57 | |
| 58 | /* bits for nand_legacy_rw() `cmd'; or together as needed */ |
| 59 | #define NANDRW_READ 0x01 |
| 60 | #define NANDRW_WRITE 0x00 |
| 61 | #define NANDRW_JFFS2 0x02 |
| 62 | #define NANDRW_JFFS2_SKIP 0x04 |
| 63 | |
| 64 | |
| 65 | /* |
| 66 | * Exported variables etc. |
| 67 | */ |
| 68 | |
| 69 | /* Definition of the out of band configuration structure */ |
| 70 | struct nand_oob_config { |
| 71 | /* position of ECC bytes inside oob */ |
| 72 | int ecc_pos[6]; |
| 73 | /* position of bad blk flag inside oob -1 = inactive */ |
| 74 | int badblock_pos; |
| 75 | /* position of ECC valid flag inside oob -1 = inactive */ |
| 76 | int eccvalid_pos; |
| 77 | } oob_config = { {0}, 0, 0}; |
| 78 | |
| 79 | struct nand_chip nand_dev_desc[CFG_MAX_NAND_DEVICE] = {{0}}; |
| 80 | |
| 81 | int curr_device = -1; /* Current NAND Device */ |
| 82 | |
| 83 | |
| 84 | /* |
| 85 | * Exported functionss |
| 86 | */ |
| 87 | int nand_legacy_erase(struct nand_chip* nand, size_t ofs, |
| 88 | size_t len, int clean); |
| 89 | int nand_legacy_rw(struct nand_chip* nand, int cmd, |
| 90 | size_t start, size_t len, |
| 91 | size_t * retlen, u_char * buf); |
| 92 | void nand_print(struct nand_chip *nand); |
| 93 | void nand_print_bad(struct nand_chip *nand); |
| 94 | int nand_read_oob(struct nand_chip* nand, size_t ofs, size_t len, |
| 95 | size_t * retlen, u_char * buf); |
| 96 | int nand_write_oob(struct nand_chip* nand, size_t ofs, size_t len, |
| 97 | size_t * retlen, const u_char * buf); |
| 98 | |
| 99 | /* |
| 100 | * Internals |
| 101 | */ |
| 102 | static int NanD_WaitReady(struct nand_chip *nand, int ale_wait); |
| 103 | static int nand_read_ecc(struct nand_chip *nand, size_t start, size_t len, |
| 104 | size_t * retlen, u_char *buf, u_char *ecc_code); |
| 105 | static int nand_write_ecc (struct nand_chip* nand, size_t to, size_t len, |
| 106 | size_t * retlen, const u_char * buf, |
| 107 | u_char * ecc_code); |
| 108 | #ifdef CONFIG_MTD_NAND_ECC |
| 109 | static int nand_correct_data (u_char *dat, u_char *read_ecc, u_char *calc_ecc); |
| 110 | static void nand_calculate_ecc (const u_char *dat, u_char *ecc_code); |
| 111 | #endif |
| 112 | |
| 113 | |
| 114 | /* |
| 115 | * |
| 116 | * Function definitions |
| 117 | * |
| 118 | */ |
| 119 | |
| 120 | /* returns 0 if block containing pos is OK: |
| 121 | * valid erase block and |
| 122 | * not marked bad, or no bad mark position is specified |
| 123 | * returns 1 if marked bad or otherwise invalid |
| 124 | */ |
| 125 | static int check_block (struct nand_chip *nand, unsigned long pos) |
| 126 | { |
| 127 | size_t retlen; |
| 128 | uint8_t oob_data; |
| 129 | uint16_t oob_data16[6]; |
| 130 | int page0 = pos & (-nand->erasesize); |
| 131 | int page1 = page0 + nand->oobblock; |
| 132 | int badpos = oob_config.badblock_pos; |
| 133 | |
| 134 | if (pos >= nand->totlen) |
| 135 | return 1; |
| 136 | |
| 137 | if (badpos < 0) |
| 138 | return 0; /* no way to check, assume OK */ |
| 139 | |
| 140 | if (nand->bus16) { |
| 141 | if (nand_read_oob(nand, (page0 + 0), 12, &retlen, (uint8_t *)oob_data16) |
| 142 | || (oob_data16[2] & 0xff00) != 0xff00) |
| 143 | return 1; |
| 144 | if (nand_read_oob(nand, (page1 + 0), 12, &retlen, (uint8_t *)oob_data16) |
| 145 | || (oob_data16[2] & 0xff00) != 0xff00) |
| 146 | return 1; |
| 147 | } else { |
| 148 | /* Note - bad block marker can be on first or second page */ |
| 149 | if (nand_read_oob(nand, page0 + badpos, 1, &retlen, (unsigned char *)&oob_data) |
| 150 | || oob_data != 0xff |
| 151 | || nand_read_oob (nand, page1 + badpos, 1, &retlen, (unsigned char *)&oob_data) |
| 152 | || oob_data != 0xff) |
| 153 | return 1; |
| 154 | } |
| 155 | |
| 156 | return 0; |
| 157 | } |
| 158 | |
| 159 | /* print bad blocks in NAND flash */ |
| 160 | void nand_print_bad(struct nand_chip* nand) |
| 161 | { |
| 162 | unsigned long pos; |
| 163 | |
| 164 | for (pos = 0; pos < nand->totlen; pos += nand->erasesize) { |
| 165 | if (check_block(nand, pos)) |
| 166 | printf(" 0x%8.8lx\n", pos); |
| 167 | } |
| 168 | puts("\n"); |
| 169 | } |
| 170 | |
| 171 | /* cmd: 0: NANDRW_WRITE write, fail on bad block |
| 172 | * 1: NANDRW_READ read, fail on bad block |
| 173 | * 2: NANDRW_WRITE | NANDRW_JFFS2 write, skip bad blocks |
| 174 | * 3: NANDRW_READ | NANDRW_JFFS2 read, data all 0xff for bad blocks |
| 175 | * 7: NANDRW_READ | NANDRW_JFFS2 | NANDRW_JFFS2_SKIP read, skip bad blocks |
| 176 | */ |
| 177 | int nand_legacy_rw (struct nand_chip* nand, int cmd, |
| 178 | size_t start, size_t len, |
| 179 | size_t * retlen, u_char * buf) |
| 180 | { |
| 181 | int ret = 0, n, total = 0; |
| 182 | char eccbuf[6]; |
| 183 | /* eblk (once set) is the start of the erase block containing the |
| 184 | * data being processed. |
| 185 | */ |
| 186 | unsigned long eblk = ~0; /* force mismatch on first pass */ |
| 187 | unsigned long erasesize = nand->erasesize; |
| 188 | |
| 189 | while (len) { |
| 190 | if ((start & (-erasesize)) != eblk) { |
| 191 | /* have crossed into new erase block, deal with |
| 192 | * it if it is sure marked bad. |
| 193 | */ |
| 194 | eblk = start & (-erasesize); /* start of block */ |
| 195 | if (check_block(nand, eblk)) { |
| 196 | if (cmd == (NANDRW_READ | NANDRW_JFFS2)) { |
| 197 | while (len > 0 && |
| 198 | start - eblk < erasesize) { |
| 199 | *(buf++) = 0xff; |
| 200 | ++start; |
| 201 | ++total; |
| 202 | --len; |
| 203 | } |
| 204 | continue; |
| 205 | } else if (cmd == (NANDRW_READ | NANDRW_JFFS2 | NANDRW_JFFS2_SKIP)) { |
| 206 | start += erasesize; |
| 207 | continue; |
| 208 | } else if (cmd == (NANDRW_WRITE | NANDRW_JFFS2)) { |
| 209 | /* skip bad block */ |
| 210 | start += erasesize; |
| 211 | continue; |
| 212 | } else { |
| 213 | ret = 1; |
| 214 | break; |
| 215 | } |
| 216 | } |
| 217 | } |
| 218 | /* The ECC will not be calculated correctly if |
| 219 | less than 512 is written or read */ |
| 220 | /* Is request at least 512 bytes AND it starts on a proper boundry */ |
| 221 | if((start != ROUND_DOWN(start, 0x200)) || (len < 0x200)) |
| 222 | printf("Warning block writes should be at least 512 bytes and start on a 512 byte boundry\n"); |
| 223 | |
| 224 | if (cmd & NANDRW_READ) { |
| 225 | ret = nand_read_ecc(nand, start, |
| 226 | min(len, eblk + erasesize - start), |
| 227 | (size_t *)&n, (u_char*)buf, (u_char *)eccbuf); |
| 228 | } else { |
| 229 | ret = nand_write_ecc(nand, start, |
| 230 | min(len, eblk + erasesize - start), |
| 231 | (size_t *)&n, (u_char*)buf, (u_char *)eccbuf); |
| 232 | } |
| 233 | |
| 234 | if (ret) |
| 235 | break; |
| 236 | |
| 237 | start += n; |
| 238 | buf += n; |
| 239 | total += n; |
| 240 | len -= n; |
| 241 | } |
| 242 | if (retlen) |
| 243 | *retlen = total; |
| 244 | |
| 245 | return ret; |
| 246 | } |
| 247 | |
| 248 | void nand_print(struct nand_chip *nand) |
| 249 | { |
| 250 | if (nand->numchips > 1) { |
| 251 | printf("%s at 0x%lx,\n" |
| 252 | "\t %d chips %s, size %d MB, \n" |
| 253 | "\t total size %ld MB, sector size %ld kB\n", |
| 254 | nand->name, nand->IO_ADDR, nand->numchips, |
| 255 | nand->chips_name, 1 << (nand->chipshift - 20), |
| 256 | nand->totlen >> 20, nand->erasesize >> 10); |
| 257 | } |
| 258 | else { |
| 259 | printf("%s at 0x%lx (", nand->chips_name, nand->IO_ADDR); |
| 260 | print_size(nand->totlen, ", "); |
| 261 | print_size(nand->erasesize, " sector)\n"); |
| 262 | } |
| 263 | } |
| 264 | |
| 265 | /* ------------------------------------------------------------------------- */ |
| 266 | |
| 267 | static int NanD_WaitReady(struct nand_chip *nand, int ale_wait) |
| 268 | { |
| 269 | /* This is inline, to optimise the common case, where it's ready instantly */ |
| 270 | int ret = 0; |
| 271 | |
| 272 | #ifdef NAND_NO_RB /* in config file, shorter delays currently wrap accesses */ |
| 273 | if(ale_wait) |
| 274 | NAND_WAIT_READY(nand); /* do the worst case 25us wait */ |
| 275 | else |
| 276 | udelay(10); |
| 277 | #else /* has functional r/b signal */ |
| 278 | NAND_WAIT_READY(nand); |
| 279 | #endif |
| 280 | return ret; |
| 281 | } |
| 282 | |
| 283 | /* NanD_Command: Send a flash command to the flash chip */ |
| 284 | |
| 285 | static inline int NanD_Command(struct nand_chip *nand, unsigned char command) |
| 286 | { |
| 287 | unsigned long nandptr = nand->IO_ADDR; |
| 288 | |
| 289 | /* Assert the CLE (Command Latch Enable) line to the flash chip */ |
| 290 | NAND_CTL_SETCLE(nandptr); |
| 291 | |
| 292 | /* Send the command */ |
| 293 | WRITE_NAND_COMMAND(command, nandptr); |
| 294 | |
| 295 | /* Lower the CLE line */ |
| 296 | NAND_CTL_CLRCLE(nandptr); |
| 297 | |
| 298 | #ifdef NAND_NO_RB |
| 299 | if(command == NAND_CMD_RESET){ |
| 300 | u_char ret_val; |
| 301 | NanD_Command(nand, NAND_CMD_STATUS); |
| 302 | do { |
| 303 | ret_val = READ_NAND(nandptr);/* wait till ready */ |
| 304 | } while((ret_val & 0x40) != 0x40); |
| 305 | } |
| 306 | #endif |
| 307 | return NanD_WaitReady(nand, 0); |
| 308 | } |
| 309 | |
| 310 | /* NanD_Address: Set the current address for the flash chip */ |
| 311 | |
| 312 | static int NanD_Address(struct nand_chip *nand, int numbytes, unsigned long ofs) |
| 313 | { |
| 314 | unsigned long nandptr; |
| 315 | int i; |
| 316 | |
| 317 | nandptr = nand->IO_ADDR; |
| 318 | |
| 319 | /* Assert the ALE (Address Latch Enable) line to the flash chip */ |
| 320 | NAND_CTL_SETALE(nandptr); |
| 321 | |
| 322 | /* Send the address */ |
| 323 | /* Devices with 256-byte page are addressed as: |
| 324 | * Column (bits 0-7), Page (bits 8-15, 16-23, 24-31) |
| 325 | * there is no device on the market with page256 |
| 326 | * and more than 24 bits. |
| 327 | * Devices with 512-byte page are addressed as: |
| 328 | * Column (bits 0-7), Page (bits 9-16, 17-24, 25-31) |
| 329 | * 25-31 is sent only if the chip support it. |
| 330 | * bit 8 changes the read command to be sent |
| 331 | * (NAND_CMD_READ0 or NAND_CMD_READ1). |
| 332 | */ |
| 333 | |
| 334 | if (numbytes == ADDR_COLUMN || numbytes == ADDR_COLUMN_PAGE) |
| 335 | WRITE_NAND_ADDRESS(ofs, nandptr); |
| 336 | |
| 337 | ofs = ofs >> nand->page_shift; |
| 338 | |
| 339 | if (numbytes == ADDR_PAGE || numbytes == ADDR_COLUMN_PAGE) { |
| 340 | for (i = 0; i < nand->pageadrlen; i++, ofs = ofs >> 8) { |
| 341 | WRITE_NAND_ADDRESS(ofs, nandptr); |
| 342 | } |
| 343 | } |
| 344 | |
| 345 | /* Lower the ALE line */ |
| 346 | NAND_CTL_CLRALE(nandptr); |
| 347 | |
| 348 | /* Wait for the chip to respond */ |
| 349 | return NanD_WaitReady(nand, 1); |
| 350 | } |
| 351 | |
| 352 | /* NanD_SelectChip: Select a given flash chip within the current floor */ |
| 353 | |
| 354 | static inline int NanD_SelectChip(struct nand_chip *nand, int chip) |
| 355 | { |
| 356 | /* Wait for it to be ready */ |
| 357 | return NanD_WaitReady(nand, 0); |
| 358 | } |
| 359 | |
| 360 | /* NanD_IdentChip: Identify a given NAND chip given {floor,chip} */ |
| 361 | |
| 362 | static int NanD_IdentChip(struct nand_chip *nand, int floor, int chip) |
| 363 | { |
| 364 | int mfr, id, i; |
| 365 | |
| 366 | NAND_ENABLE_CE(nand); /* set pin low */ |
| 367 | /* Reset the chip */ |
| 368 | if (NanD_Command(nand, NAND_CMD_RESET)) { |
| 369 | #ifdef NAND_DEBUG |
| 370 | printf("NanD_Command (reset) for %d,%d returned true\n", |
| 371 | floor, chip); |
| 372 | #endif |
| 373 | NAND_DISABLE_CE(nand); /* set pin high */ |
| 374 | return 0; |
| 375 | } |
| 376 | |
| 377 | /* Read the NAND chip ID: 1. Send ReadID command */ |
| 378 | if (NanD_Command(nand, NAND_CMD_READID)) { |
| 379 | #ifdef NAND_DEBUG |
| 380 | printf("NanD_Command (ReadID) for %d,%d returned true\n", |
| 381 | floor, chip); |
| 382 | #endif |
| 383 | NAND_DISABLE_CE(nand); /* set pin high */ |
| 384 | return 0; |
| 385 | } |
| 386 | |
| 387 | /* Read the NAND chip ID: 2. Send address byte zero */ |
| 388 | NanD_Address(nand, ADDR_COLUMN, 0); |
| 389 | |
| 390 | /* Read the manufacturer and device id codes from the device */ |
| 391 | |
| 392 | mfr = READ_NAND(nand->IO_ADDR); |
| 393 | |
| 394 | id = READ_NAND(nand->IO_ADDR); |
| 395 | |
| 396 | NAND_DISABLE_CE(nand); /* set pin high */ |
| 397 | |
| 398 | #ifdef NAND_DEBUG |
| 399 | printf("NanD_Command (ReadID) got %x %x\n", mfr, id); |
| 400 | #endif |
| 401 | if (mfr == 0xff || mfr == 0) { |
| 402 | /* No response - return failure */ |
| 403 | return 0; |
| 404 | } |
| 405 | |
| 406 | /* Check it's the same as the first chip we identified. |
| 407 | * M-Systems say that any given nand_chip device should only |
| 408 | * contain _one_ type of flash part, although that's not a |
| 409 | * hardware restriction. */ |
| 410 | if (nand->mfr) { |
| 411 | if (nand->mfr == mfr && nand->id == id) { |
| 412 | return 1; /* This is another the same the first */ |
| 413 | } else { |
| 414 | printf("Flash chip at floor %d, chip %d is different:\n", |
| 415 | floor, chip); |
| 416 | } |
| 417 | } |
| 418 | |
| 419 | /* Print and store the manufacturer and ID codes. */ |
| 420 | for (i = 0; nand_flash_ids[i].name != NULL; i++) { |
| 421 | if (mfr == nand_flash_ids[i].manufacture_id && |
| 422 | id == nand_flash_ids[i].model_id) { |
| 423 | #ifdef NAND_DEBUG |
| 424 | printf("Flash chip found:\n\t Manufacturer ID: 0x%2.2X, " |
| 425 | "Chip ID: 0x%2.2X (%s)\n", mfr, id, |
| 426 | nand_flash_ids[i].name); |
| 427 | #endif |
| 428 | if (!nand->mfr) { |
| 429 | nand->mfr = mfr; |
| 430 | nand->id = id; |
| 431 | nand->chipshift = |
| 432 | nand_flash_ids[i].chipshift; |
| 433 | nand->page256 = nand_flash_ids[i].page256; |
| 434 | nand->eccsize = 256; |
| 435 | if (nand->page256) { |
| 436 | nand->oobblock = 256; |
| 437 | nand->oobsize = 8; |
| 438 | nand->page_shift = 8; |
| 439 | } else { |
| 440 | nand->oobblock = 512; |
| 441 | nand->oobsize = 16; |
| 442 | nand->page_shift = 9; |
| 443 | } |
| 444 | nand->pageadrlen = nand_flash_ids[i].pageadrlen; |
| 445 | nand->erasesize = nand_flash_ids[i].erasesize; |
| 446 | nand->chips_name = nand_flash_ids[i].name; |
| 447 | nand->bus16 = nand_flash_ids[i].bus16; |
| 448 | return 1; |
| 449 | } |
| 450 | return 0; |
| 451 | } |
| 452 | } |
| 453 | |
| 454 | |
| 455 | #ifdef NAND_DEBUG |
| 456 | /* We haven't fully identified the chip. Print as much as we know. */ |
| 457 | printf("Unknown flash chip found: %2.2X %2.2X\n", |
| 458 | id, mfr); |
| 459 | #endif |
| 460 | |
| 461 | return 0; |
| 462 | } |
| 463 | |
| 464 | /* NanD_ScanChips: Find all NAND chips present in a nand_chip, and identify them */ |
| 465 | |
| 466 | static void NanD_ScanChips(struct nand_chip *nand) |
| 467 | { |
| 468 | int floor, chip; |
| 469 | int numchips[NAND_MAX_FLOORS]; |
| 470 | int maxchips = NAND_MAX_CHIPS; |
| 471 | int ret = 1; |
| 472 | |
| 473 | nand->numchips = 0; |
| 474 | nand->mfr = 0; |
| 475 | nand->id = 0; |
| 476 | |
| 477 | |
| 478 | /* For each floor, find the number of valid chips it contains */ |
| 479 | for (floor = 0; floor < NAND_MAX_FLOORS; floor++) { |
| 480 | ret = 1; |
| 481 | numchips[floor] = 0; |
| 482 | for (chip = 0; chip < maxchips && ret != 0; chip++) { |
| 483 | |
| 484 | ret = NanD_IdentChip(nand, floor, chip); |
| 485 | if (ret) { |
| 486 | numchips[floor]++; |
| 487 | nand->numchips++; |
| 488 | } |
| 489 | } |
| 490 | } |
| 491 | |
| 492 | /* If there are none at all that we recognise, bail */ |
| 493 | if (!nand->numchips) { |
| 494 | #ifdef NAND_DEBUG |
| 495 | puts ("No NAND flash chips recognised.\n"); |
| 496 | #endif |
| 497 | return; |
| 498 | } |
| 499 | |
| 500 | /* Allocate an array to hold the information for each chip */ |
| 501 | nand->chips = malloc(sizeof(struct Nand) * nand->numchips); |
| 502 | if (!nand->chips) { |
| 503 | puts ("No memory for allocating chip info structures\n"); |
| 504 | return; |
| 505 | } |
| 506 | |
| 507 | ret = 0; |
| 508 | |
| 509 | /* Fill out the chip array with {floor, chipno} for each |
| 510 | * detected chip in the device. */ |
| 511 | for (floor = 0; floor < NAND_MAX_FLOORS; floor++) { |
| 512 | for (chip = 0; chip < numchips[floor]; chip++) { |
| 513 | nand->chips[ret].floor = floor; |
| 514 | nand->chips[ret].chip = chip; |
| 515 | nand->chips[ret].curadr = 0; |
| 516 | nand->chips[ret].curmode = 0x50; |
| 517 | ret++; |
| 518 | } |
| 519 | } |
| 520 | |
| 521 | /* Calculate and print the total size of the device */ |
| 522 | nand->totlen = nand->numchips * (1 << nand->chipshift); |
| 523 | |
| 524 | #ifdef NAND_DEBUG |
| 525 | printf("%d flash chips found. Total nand_chip size: %ld MB\n", |
| 526 | nand->numchips, nand->totlen >> 20); |
| 527 | #endif |
| 528 | } |
| 529 | |
| 530 | /* we need to be fast here, 1 us per read translates to 1 second per meg */ |
| 531 | static void NanD_ReadBuf (struct nand_chip *nand, u_char * data_buf, int cntr) |
| 532 | { |
| 533 | unsigned long nandptr = nand->IO_ADDR; |
| 534 | |
| 535 | NanD_Command (nand, NAND_CMD_READ0); |
| 536 | |
| 537 | if (nand->bus16) { |
| 538 | u16 val; |
| 539 | |
| 540 | while (cntr >= 16) { |
| 541 | val = READ_NAND (nandptr); |
| 542 | *data_buf++ = val & 0xff; |
| 543 | *data_buf++ = val >> 8; |
| 544 | val = READ_NAND (nandptr); |
| 545 | *data_buf++ = val & 0xff; |
| 546 | *data_buf++ = val >> 8; |
| 547 | val = READ_NAND (nandptr); |
| 548 | *data_buf++ = val & 0xff; |
| 549 | *data_buf++ = val >> 8; |
| 550 | val = READ_NAND (nandptr); |
| 551 | *data_buf++ = val & 0xff; |
| 552 | *data_buf++ = val >> 8; |
| 553 | val = READ_NAND (nandptr); |
| 554 | *data_buf++ = val & 0xff; |
| 555 | *data_buf++ = val >> 8; |
| 556 | val = READ_NAND (nandptr); |
| 557 | *data_buf++ = val & 0xff; |
| 558 | *data_buf++ = val >> 8; |
| 559 | val = READ_NAND (nandptr); |
| 560 | *data_buf++ = val & 0xff; |
| 561 | *data_buf++ = val >> 8; |
| 562 | val = READ_NAND (nandptr); |
| 563 | *data_buf++ = val & 0xff; |
| 564 | *data_buf++ = val >> 8; |
| 565 | cntr -= 16; |
| 566 | } |
| 567 | |
| 568 | while (cntr > 0) { |
| 569 | val = READ_NAND (nandptr); |
| 570 | *data_buf++ = val & 0xff; |
| 571 | *data_buf++ = val >> 8; |
| 572 | cntr -= 2; |
| 573 | } |
| 574 | } else { |
| 575 | while (cntr >= 16) { |
| 576 | *data_buf++ = READ_NAND (nandptr); |
| 577 | *data_buf++ = READ_NAND (nandptr); |
| 578 | *data_buf++ = READ_NAND (nandptr); |
| 579 | *data_buf++ = READ_NAND (nandptr); |
| 580 | *data_buf++ = READ_NAND (nandptr); |
| 581 | *data_buf++ = READ_NAND (nandptr); |
| 582 | *data_buf++ = READ_NAND (nandptr); |
| 583 | *data_buf++ = READ_NAND (nandptr); |
| 584 | *data_buf++ = READ_NAND (nandptr); |
| 585 | *data_buf++ = READ_NAND (nandptr); |
| 586 | *data_buf++ = READ_NAND (nandptr); |
| 587 | *data_buf++ = READ_NAND (nandptr); |
| 588 | *data_buf++ = READ_NAND (nandptr); |
| 589 | *data_buf++ = READ_NAND (nandptr); |
| 590 | *data_buf++ = READ_NAND (nandptr); |
| 591 | *data_buf++ = READ_NAND (nandptr); |
| 592 | cntr -= 16; |
| 593 | } |
| 594 | |
| 595 | while (cntr > 0) { |
| 596 | *data_buf++ = READ_NAND (nandptr); |
| 597 | cntr--; |
| 598 | } |
| 599 | } |
| 600 | } |
| 601 | |
| 602 | /* |
| 603 | * NAND read with ECC |
| 604 | */ |
| 605 | static int nand_read_ecc(struct nand_chip *nand, size_t start, size_t len, |
| 606 | size_t * retlen, u_char *buf, u_char *ecc_code) |
| 607 | { |
| 608 | int col, page; |
| 609 | int ecc_status = 0; |
| 610 | #ifdef CONFIG_MTD_NAND_ECC |
| 611 | int j; |
| 612 | int ecc_failed = 0; |
| 613 | u_char *data_poi; |
| 614 | u_char ecc_calc[6]; |
| 615 | #endif |
| 616 | |
| 617 | /* Do not allow reads past end of device */ |
| 618 | if ((start + len) > nand->totlen) { |
| 619 | printf ("%s: Attempt read beyond end of device %x %x %x\n", |
| 620 | __FUNCTION__, (uint) start, (uint) len, (uint) nand->totlen); |
| 621 | *retlen = 0; |
| 622 | return -1; |
| 623 | } |
| 624 | |
| 625 | /* First we calculate the starting page */ |
| 626 | /*page = shr(start, nand->page_shift);*/ |
| 627 | page = start >> nand->page_shift; |
| 628 | |
| 629 | /* Get raw starting column */ |
| 630 | col = start & (nand->oobblock - 1); |
| 631 | |
| 632 | /* Initialize return value */ |
| 633 | *retlen = 0; |
| 634 | |
| 635 | /* Select the NAND device */ |
| 636 | NAND_ENABLE_CE(nand); /* set pin low */ |
| 637 | |
| 638 | /* Loop until all data read */ |
| 639 | while (*retlen < len) { |
| 640 | |
| 641 | #ifdef CONFIG_MTD_NAND_ECC |
| 642 | /* Do we have this page in cache ? */ |
| 643 | if (nand->cache_page == page) |
| 644 | goto readdata; |
| 645 | /* Send the read command */ |
| 646 | NanD_Command(nand, NAND_CMD_READ0); |
| 647 | if (nand->bus16) { |
| 648 | NanD_Address(nand, ADDR_COLUMN_PAGE, |
| 649 | (page << nand->page_shift) + (col >> 1)); |
| 650 | } else { |
| 651 | NanD_Address(nand, ADDR_COLUMN_PAGE, |
| 652 | (page << nand->page_shift) + col); |
| 653 | } |
| 654 | |
| 655 | /* Read in a page + oob data */ |
| 656 | NanD_ReadBuf(nand, nand->data_buf, nand->oobblock + nand->oobsize); |
| 657 | |
| 658 | /* copy data into cache, for read out of cache and if ecc fails */ |
| 659 | if (nand->data_cache) { |
| 660 | memcpy (nand->data_cache, nand->data_buf, |
| 661 | nand->oobblock + nand->oobsize); |
| 662 | } |
| 663 | |
| 664 | /* Pick the ECC bytes out of the oob data */ |
| 665 | for (j = 0; j < 6; j++) { |
| 666 | ecc_code[j] = nand->data_buf[(nand->oobblock + oob_config.ecc_pos[j])]; |
| 667 | } |
| 668 | |
| 669 | /* Calculate the ECC and verify it */ |
| 670 | /* If block was not written with ECC, skip ECC */ |
| 671 | if (oob_config.eccvalid_pos != -1 && |
| 672 | (nand->data_buf[nand->oobblock + oob_config.eccvalid_pos] & 0x0f) != 0x0f) { |
| 673 | |
| 674 | nand_calculate_ecc (&nand->data_buf[0], &ecc_calc[0]); |
| 675 | switch (nand_correct_data (&nand->data_buf[0], &ecc_code[0], &ecc_calc[0])) { |
| 676 | case -1: |
| 677 | printf ("%s: Failed ECC read, page 0x%08x\n", __FUNCTION__, page); |
| 678 | ecc_failed++; |
| 679 | break; |
| 680 | case 1: |
| 681 | case 2: /* transfer ECC corrected data to cache */ |
| 682 | if (nand->data_cache) |
| 683 | memcpy (nand->data_cache, nand->data_buf, 256); |
| 684 | break; |
| 685 | } |
| 686 | } |
| 687 | |
| 688 | if (oob_config.eccvalid_pos != -1 && |
| 689 | nand->oobblock == 512 && (nand->data_buf[nand->oobblock + oob_config.eccvalid_pos] & 0xf0) != 0xf0) { |
| 690 | |
| 691 | nand_calculate_ecc (&nand->data_buf[256], &ecc_calc[3]); |
| 692 | switch (nand_correct_data (&nand->data_buf[256], &ecc_code[3], &ecc_calc[3])) { |
| 693 | case -1: |
| 694 | printf ("%s: Failed ECC read, page 0x%08x\n", __FUNCTION__, page); |
| 695 | ecc_failed++; |
| 696 | break; |
| 697 | case 1: |
| 698 | case 2: /* transfer ECC corrected data to cache */ |
| 699 | if (nand->data_cache) |
| 700 | memcpy (&nand->data_cache[256], &nand->data_buf[256], 256); |
| 701 | break; |
| 702 | } |
| 703 | } |
| 704 | readdata: |
| 705 | /* Read the data from ECC data buffer into return buffer */ |
| 706 | data_poi = (nand->data_cache) ? nand->data_cache : nand->data_buf; |
| 707 | data_poi += col; |
| 708 | if ((*retlen + (nand->oobblock - col)) >= len) { |
| 709 | memcpy (buf + *retlen, data_poi, len - *retlen); |
| 710 | *retlen = len; |
| 711 | } else { |
| 712 | memcpy (buf + *retlen, data_poi, nand->oobblock - col); |
| 713 | *retlen += nand->oobblock - col; |
| 714 | } |
| 715 | /* Set cache page address, invalidate, if ecc_failed */ |
| 716 | nand->cache_page = (nand->data_cache && !ecc_failed) ? page : -1; |
| 717 | |
| 718 | ecc_status += ecc_failed; |
| 719 | ecc_failed = 0; |
| 720 | |
| 721 | #else |
| 722 | /* Send the read command */ |
| 723 | NanD_Command(nand, NAND_CMD_READ0); |
| 724 | if (nand->bus16) { |
| 725 | NanD_Address(nand, ADDR_COLUMN_PAGE, |
| 726 | (page << nand->page_shift) + (col >> 1)); |
| 727 | } else { |
| 728 | NanD_Address(nand, ADDR_COLUMN_PAGE, |
| 729 | (page << nand->page_shift) + col); |
| 730 | } |
| 731 | |
| 732 | /* Read the data directly into the return buffer */ |
| 733 | if ((*retlen + (nand->oobblock - col)) >= len) { |
| 734 | NanD_ReadBuf(nand, buf + *retlen, len - *retlen); |
| 735 | *retlen = len; |
| 736 | /* We're done */ |
| 737 | continue; |
| 738 | } else { |
| 739 | NanD_ReadBuf(nand, buf + *retlen, nand->oobblock - col); |
| 740 | *retlen += nand->oobblock - col; |
| 741 | } |
| 742 | #endif |
| 743 | /* For subsequent reads align to page boundary. */ |
| 744 | col = 0; |
| 745 | /* Increment page address */ |
| 746 | page++; |
| 747 | } |
| 748 | |
| 749 | /* De-select the NAND device */ |
| 750 | NAND_DISABLE_CE(nand); /* set pin high */ |
| 751 | |
| 752 | /* |
| 753 | * Return success, if no ECC failures, else -EIO |
| 754 | * fs driver will take care of that, because |
| 755 | * retlen == desired len and result == -EIO |
| 756 | */ |
| 757 | return ecc_status ? -1 : 0; |
| 758 | } |
| 759 | |
| 760 | /* |
| 761 | * Nand_page_program function is used for write and writev ! |
| 762 | */ |
| 763 | static int nand_write_page (struct nand_chip *nand, |
| 764 | int page, int col, int last, u_char * ecc_code) |
| 765 | { |
| 766 | |
| 767 | int i; |
| 768 | unsigned long nandptr = nand->IO_ADDR; |
| 769 | |
| 770 | #ifdef CONFIG_MTD_NAND_ECC |
| 771 | #ifdef CONFIG_MTD_NAND_VERIFY_WRITE |
| 772 | int ecc_bytes = (nand->oobblock == 512) ? 6 : 3; |
| 773 | #endif |
| 774 | #endif |
| 775 | /* pad oob area */ |
| 776 | for (i = nand->oobblock; i < nand->oobblock + nand->oobsize; i++) |
| 777 | nand->data_buf[i] = 0xff; |
| 778 | |
| 779 | #ifdef CONFIG_MTD_NAND_ECC |
| 780 | /* Zero out the ECC array */ |
| 781 | for (i = 0; i < 6; i++) |
| 782 | ecc_code[i] = 0x00; |
| 783 | |
| 784 | /* Read back previous written data, if col > 0 */ |
| 785 | if (col) { |
| 786 | NanD_Command (nand, NAND_CMD_READ0); |
| 787 | if (nand->bus16) { |
| 788 | NanD_Address (nand, ADDR_COLUMN_PAGE, |
| 789 | (page << nand->page_shift) + (col >> 1)); |
| 790 | } else { |
| 791 | NanD_Address (nand, ADDR_COLUMN_PAGE, |
| 792 | (page << nand->page_shift) + col); |
| 793 | } |
| 794 | |
| 795 | if (nand->bus16) { |
| 796 | u16 val; |
| 797 | |
| 798 | for (i = 0; i < col; i += 2) { |
| 799 | val = READ_NAND (nandptr); |
| 800 | nand->data_buf[i] = val & 0xff; |
| 801 | nand->data_buf[i + 1] = val >> 8; |
| 802 | } |
| 803 | } else { |
| 804 | for (i = 0; i < col; i++) |
| 805 | nand->data_buf[i] = READ_NAND (nandptr); |
| 806 | } |
| 807 | } |
| 808 | |
| 809 | /* Calculate and write the ECC if we have enough data */ |
| 810 | if ((col < nand->eccsize) && (last >= nand->eccsize)) { |
| 811 | nand_calculate_ecc (&nand->data_buf[0], &(ecc_code[0])); |
| 812 | for (i = 0; i < 3; i++) { |
| 813 | nand->data_buf[(nand->oobblock + |
| 814 | oob_config.ecc_pos[i])] = ecc_code[i]; |
| 815 | } |
| 816 | if (oob_config.eccvalid_pos != -1) { |
| 817 | nand->data_buf[nand->oobblock + |
| 818 | oob_config.eccvalid_pos] = 0xf0; |
| 819 | } |
| 820 | } |
| 821 | |
| 822 | /* Calculate and write the second ECC if we have enough data */ |
| 823 | if ((nand->oobblock == 512) && (last == nand->oobblock)) { |
| 824 | nand_calculate_ecc (&nand->data_buf[256], &(ecc_code[3])); |
| 825 | for (i = 3; i < 6; i++) { |
| 826 | nand->data_buf[(nand->oobblock + |
| 827 | oob_config.ecc_pos[i])] = ecc_code[i]; |
| 828 | } |
| 829 | if (oob_config.eccvalid_pos != -1) { |
| 830 | nand->data_buf[nand->oobblock + |
| 831 | oob_config.eccvalid_pos] &= 0x0f; |
| 832 | } |
| 833 | } |
| 834 | #endif |
| 835 | /* Prepad for partial page programming !!! */ |
| 836 | for (i = 0; i < col; i++) |
| 837 | nand->data_buf[i] = 0xff; |
| 838 | |
| 839 | /* Postpad for partial page programming !!! oob is already padded */ |
| 840 | for (i = last; i < nand->oobblock; i++) |
| 841 | nand->data_buf[i] = 0xff; |
| 842 | |
| 843 | /* Send command to begin auto page programming */ |
| 844 | NanD_Command (nand, NAND_CMD_READ0); |
| 845 | NanD_Command (nand, NAND_CMD_SEQIN); |
| 846 | if (nand->bus16) { |
| 847 | NanD_Address (nand, ADDR_COLUMN_PAGE, |
| 848 | (page << nand->page_shift) + (col >> 1)); |
| 849 | } else { |
| 850 | NanD_Address (nand, ADDR_COLUMN_PAGE, |
| 851 | (page << nand->page_shift) + col); |
| 852 | } |
| 853 | |
| 854 | /* Write out complete page of data */ |
| 855 | if (nand->bus16) { |
| 856 | for (i = 0; i < (nand->oobblock + nand->oobsize); i += 2) { |
| 857 | WRITE_NAND (nand->data_buf[i] + |
| 858 | (nand->data_buf[i + 1] << 8), |
| 859 | nand->IO_ADDR); |
| 860 | } |
| 861 | } else { |
| 862 | for (i = 0; i < (nand->oobblock + nand->oobsize); i++) |
| 863 | WRITE_NAND (nand->data_buf[i], nand->IO_ADDR); |
| 864 | } |
| 865 | |
| 866 | /* Send command to actually program the data */ |
| 867 | NanD_Command (nand, NAND_CMD_PAGEPROG); |
| 868 | NanD_Command (nand, NAND_CMD_STATUS); |
| 869 | #ifdef NAND_NO_RB |
| 870 | { |
| 871 | u_char ret_val; |
| 872 | |
| 873 | do { |
| 874 | ret_val = READ_NAND (nandptr); /* wait till ready */ |
| 875 | } while ((ret_val & 0x40) != 0x40); |
| 876 | } |
| 877 | #endif |
| 878 | /* See if device thinks it succeeded */ |
| 879 | if (READ_NAND (nand->IO_ADDR) & 0x01) { |
| 880 | printf ("%s: Failed write, page 0x%08x, ", __FUNCTION__, |
| 881 | page); |
| 882 | return -1; |
| 883 | } |
| 884 | #ifdef CONFIG_MTD_NAND_VERIFY_WRITE |
| 885 | /* |
| 886 | * The NAND device assumes that it is always writing to |
| 887 | * a cleanly erased page. Hence, it performs its internal |
| 888 | * write verification only on bits that transitioned from |
| 889 | * 1 to 0. The device does NOT verify the whole page on a |
| 890 | * byte by byte basis. It is possible that the page was |
| 891 | * not completely erased or the page is becoming unusable |
| 892 | * due to wear. The read with ECC would catch the error |
| 893 | * later when the ECC page check fails, but we would rather |
| 894 | * catch it early in the page write stage. Better to write |
| 895 | * no data than invalid data. |
| 896 | */ |
| 897 | |
| 898 | /* Send command to read back the page */ |
| 899 | if (col < nand->eccsize) |
| 900 | NanD_Command (nand, NAND_CMD_READ0); |
| 901 | else |
| 902 | NanD_Command (nand, NAND_CMD_READ1); |
| 903 | if (nand->bus16) { |
| 904 | NanD_Address (nand, ADDR_COLUMN_PAGE, |
| 905 | (page << nand->page_shift) + (col >> 1)); |
| 906 | } else { |
| 907 | NanD_Address (nand, ADDR_COLUMN_PAGE, |
| 908 | (page << nand->page_shift) + col); |
| 909 | } |
| 910 | |
| 911 | /* Loop through and verify the data */ |
| 912 | if (nand->bus16) { |
| 913 | for (i = col; i < last; i = +2) { |
| 914 | if ((nand->data_buf[i] + |
| 915 | (nand->data_buf[i + 1] << 8)) != READ_NAND (nand->IO_ADDR)) { |
| 916 | printf ("%s: Failed write verify, page 0x%08x ", |
| 917 | __FUNCTION__, page); |
| 918 | return -1; |
| 919 | } |
| 920 | } |
| 921 | } else { |
| 922 | for (i = col; i < last; i++) { |
| 923 | if (nand->data_buf[i] != READ_NAND (nand->IO_ADDR)) { |
| 924 | printf ("%s: Failed write verify, page 0x%08x ", |
| 925 | __FUNCTION__, page); |
| 926 | return -1; |
| 927 | } |
| 928 | } |
| 929 | } |
| 930 | |
| 931 | #ifdef CONFIG_MTD_NAND_ECC |
| 932 | /* |
| 933 | * We also want to check that the ECC bytes wrote |
| 934 | * correctly for the same reasons stated above. |
| 935 | */ |
| 936 | NanD_Command (nand, NAND_CMD_READOOB); |
| 937 | if (nand->bus16) { |
| 938 | NanD_Address (nand, ADDR_COLUMN_PAGE, |
| 939 | (page << nand->page_shift) + (col >> 1)); |
| 940 | } else { |
| 941 | NanD_Address (nand, ADDR_COLUMN_PAGE, |
| 942 | (page << nand->page_shift) + col); |
| 943 | } |
| 944 | if (nand->bus16) { |
| 945 | for (i = 0; i < nand->oobsize; i += 2) { |
| 946 | u16 val; |
| 947 | |
| 948 | val = READ_NAND (nand->IO_ADDR); |
| 949 | nand->data_buf[i] = val & 0xff; |
| 950 | nand->data_buf[i + 1] = val >> 8; |
| 951 | } |
| 952 | } else { |
| 953 | for (i = 0; i < nand->oobsize; i++) { |
| 954 | nand->data_buf[i] = READ_NAND (nand->IO_ADDR); |
| 955 | } |
| 956 | } |
| 957 | for (i = 0; i < ecc_bytes; i++) { |
| 958 | if ((nand->data_buf[(oob_config.ecc_pos[i])] != ecc_code[i]) && ecc_code[i]) { |
| 959 | printf ("%s: Failed ECC write " |
| 960 | "verify, page 0x%08x, " |
| 961 | "%6i bytes were succesful\n", |
| 962 | __FUNCTION__, page, i); |
| 963 | return -1; |
| 964 | } |
| 965 | } |
| 966 | #endif /* CONFIG_MTD_NAND_ECC */ |
| 967 | #endif /* CONFIG_MTD_NAND_VERIFY_WRITE */ |
| 968 | return 0; |
| 969 | } |
| 970 | |
| 971 | static int nand_write_ecc (struct nand_chip* nand, size_t to, size_t len, |
| 972 | size_t * retlen, const u_char * buf, u_char * ecc_code) |
| 973 | { |
| 974 | int i, page, col, cnt, ret = 0; |
| 975 | |
| 976 | /* Do not allow write past end of device */ |
| 977 | if ((to + len) > nand->totlen) { |
| 978 | printf ("%s: Attempt to write past end of page\n", __FUNCTION__); |
| 979 | return -1; |
| 980 | } |
| 981 | |
| 982 | /* Shift to get page */ |
| 983 | page = ((int) to) >> nand->page_shift; |
| 984 | |
| 985 | /* Get the starting column */ |
| 986 | col = to & (nand->oobblock - 1); |
| 987 | |
| 988 | /* Initialize return length value */ |
| 989 | *retlen = 0; |
| 990 | |
| 991 | /* Select the NAND device */ |
| 992 | #ifdef CONFIG_OMAP1510 |
| 993 | archflashwp(0,0); |
| 994 | #endif |
| 995 | #ifdef CFG_NAND_WP |
| 996 | NAND_WP_OFF(); |
| 997 | #endif |
| 998 | |
| 999 | NAND_ENABLE_CE(nand); /* set pin low */ |
| 1000 | |
| 1001 | /* Check the WP bit */ |
| 1002 | NanD_Command(nand, NAND_CMD_STATUS); |
| 1003 | if (!(READ_NAND(nand->IO_ADDR) & 0x80)) { |
| 1004 | printf ("%s: Device is write protected!!!\n", __FUNCTION__); |
| 1005 | ret = -1; |
| 1006 | goto out; |
| 1007 | } |
| 1008 | |
| 1009 | /* Loop until all data is written */ |
| 1010 | while (*retlen < len) { |
| 1011 | /* Invalidate cache, if we write to this page */ |
| 1012 | if (nand->cache_page == page) |
| 1013 | nand->cache_page = -1; |
| 1014 | |
| 1015 | /* Write data into buffer */ |
| 1016 | if ((col + len) >= nand->oobblock) { |
| 1017 | for (i = col, cnt = 0; i < nand->oobblock; i++, cnt++) { |
| 1018 | nand->data_buf[i] = buf[(*retlen + cnt)]; |
| 1019 | } |
| 1020 | } else { |
| 1021 | for (i = col, cnt = 0; cnt < (len - *retlen); i++, cnt++) { |
| 1022 | nand->data_buf[i] = buf[(*retlen + cnt)]; |
| 1023 | } |
| 1024 | } |
| 1025 | /* We use the same function for write and writev !) */ |
| 1026 | ret = nand_write_page (nand, page, col, i, ecc_code); |
| 1027 | if (ret) |
| 1028 | goto out; |
| 1029 | |
| 1030 | /* Next data start at page boundary */ |
| 1031 | col = 0; |
| 1032 | |
| 1033 | /* Update written bytes count */ |
| 1034 | *retlen += cnt; |
| 1035 | |
| 1036 | /* Increment page address */ |
| 1037 | page++; |
| 1038 | } |
| 1039 | |
| 1040 | /* Return happy */ |
| 1041 | *retlen = len; |
| 1042 | |
| 1043 | out: |
| 1044 | /* De-select the NAND device */ |
| 1045 | NAND_DISABLE_CE(nand); /* set pin high */ |
| 1046 | #ifdef CONFIG_OMAP1510 |
| 1047 | archflashwp(0,1); |
| 1048 | #endif |
| 1049 | #ifdef CFG_NAND_WP |
| 1050 | NAND_WP_ON(); |
| 1051 | #endif |
| 1052 | |
| 1053 | return ret; |
| 1054 | } |
| 1055 | |
| 1056 | /* read from the 16 bytes of oob data that correspond to a 512 byte |
| 1057 | * page or 2 256-byte pages. |
| 1058 | */ |
| 1059 | int nand_read_oob(struct nand_chip* nand, size_t ofs, size_t len, |
| 1060 | size_t * retlen, u_char * buf) |
| 1061 | { |
| 1062 | int len256 = 0; |
| 1063 | struct Nand *mychip; |
| 1064 | int ret = 0; |
| 1065 | |
| 1066 | mychip = &nand->chips[ofs >> nand->chipshift]; |
| 1067 | |
| 1068 | /* update address for 2M x 8bit devices. OOB starts on the second */ |
| 1069 | /* page to maintain compatibility with nand_read_ecc. */ |
| 1070 | if (nand->page256) { |
| 1071 | if (!(ofs & 0x8)) |
| 1072 | ofs += 0x100; |
| 1073 | else |
| 1074 | ofs -= 0x8; |
| 1075 | } |
| 1076 | |
| 1077 | NAND_ENABLE_CE(nand); /* set pin low */ |
| 1078 | NanD_Command(nand, NAND_CMD_READOOB); |
| 1079 | if (nand->bus16) { |
| 1080 | NanD_Address(nand, ADDR_COLUMN_PAGE, |
| 1081 | ((ofs >> nand->page_shift) << nand->page_shift) + |
| 1082 | ((ofs & (nand->oobblock - 1)) >> 1)); |
| 1083 | } else { |
| 1084 | NanD_Address(nand, ADDR_COLUMN_PAGE, ofs); |
| 1085 | } |
| 1086 | |
| 1087 | /* treat crossing 8-byte OOB data for 2M x 8bit devices */ |
| 1088 | /* Note: datasheet says it should automaticaly wrap to the */ |
| 1089 | /* next OOB block, but it didn't work here. mf. */ |
| 1090 | if (nand->page256 && ofs + len > (ofs | 0x7) + 1) { |
| 1091 | len256 = (ofs | 0x7) + 1 - ofs; |
| 1092 | NanD_ReadBuf(nand, buf, len256); |
| 1093 | |
| 1094 | NanD_Command(nand, NAND_CMD_READOOB); |
| 1095 | NanD_Address(nand, ADDR_COLUMN_PAGE, ofs & (~0x1ff)); |
| 1096 | } |
| 1097 | |
| 1098 | NanD_ReadBuf(nand, &buf[len256], len - len256); |
| 1099 | |
| 1100 | *retlen = len; |
| 1101 | /* Reading the full OOB data drops us off of the end of the page, |
| 1102 | * causing the flash device to go into busy mode, so we need |
| 1103 | * to wait until ready 11.4.1 and Toshiba TC58256FT nands */ |
| 1104 | |
| 1105 | ret = NanD_WaitReady(nand, 1); |
| 1106 | NAND_DISABLE_CE(nand); /* set pin high */ |
| 1107 | |
| 1108 | return ret; |
| 1109 | |
| 1110 | } |
| 1111 | |
| 1112 | /* write to the 16 bytes of oob data that correspond to a 512 byte |
| 1113 | * page or 2 256-byte pages. |
| 1114 | */ |
| 1115 | int nand_write_oob(struct nand_chip* nand, size_t ofs, size_t len, |
| 1116 | size_t * retlen, const u_char * buf) |
| 1117 | { |
| 1118 | int len256 = 0; |
| 1119 | int i; |
| 1120 | unsigned long nandptr = nand->IO_ADDR; |
| 1121 | |
| 1122 | #ifdef PSYCHO_DEBUG |
| 1123 | printf("nand_write_oob(%lx, %d): %2.2X %2.2X %2.2X %2.2X ... %2.2X %2.2X .. %2.2X %2.2X\n", |
| 1124 | (long)ofs, len, buf[0], buf[1], buf[2], buf[3], |
| 1125 | buf[8], buf[9], buf[14],buf[15]); |
| 1126 | #endif |
| 1127 | |
| 1128 | NAND_ENABLE_CE(nand); /* set pin low to enable chip */ |
| 1129 | |
| 1130 | /* Reset the chip */ |
| 1131 | NanD_Command(nand, NAND_CMD_RESET); |
| 1132 | |
| 1133 | /* issue the Read2 command to set the pointer to the Spare Data Area. */ |
| 1134 | NanD_Command(nand, NAND_CMD_READOOB); |
| 1135 | if (nand->bus16) { |
| 1136 | NanD_Address(nand, ADDR_COLUMN_PAGE, |
| 1137 | ((ofs >> nand->page_shift) << nand->page_shift) + |
| 1138 | ((ofs & (nand->oobblock - 1)) >> 1)); |
| 1139 | } else { |
| 1140 | NanD_Address(nand, ADDR_COLUMN_PAGE, ofs); |
| 1141 | } |
| 1142 | |
| 1143 | /* update address for 2M x 8bit devices. OOB starts on the second */ |
| 1144 | /* page to maintain compatibility with nand_read_ecc. */ |
| 1145 | if (nand->page256) { |
| 1146 | if (!(ofs & 0x8)) |
| 1147 | ofs += 0x100; |
| 1148 | else |
| 1149 | ofs -= 0x8; |
| 1150 | } |
| 1151 | |
| 1152 | /* issue the Serial Data In command to initial the Page Program process */ |
| 1153 | NanD_Command(nand, NAND_CMD_SEQIN); |
| 1154 | if (nand->bus16) { |
| 1155 | NanD_Address(nand, ADDR_COLUMN_PAGE, |
| 1156 | ((ofs >> nand->page_shift) << nand->page_shift) + |
| 1157 | ((ofs & (nand->oobblock - 1)) >> 1)); |
| 1158 | } else { |
| 1159 | NanD_Address(nand, ADDR_COLUMN_PAGE, ofs); |
| 1160 | } |
| 1161 | |
| 1162 | /* treat crossing 8-byte OOB data for 2M x 8bit devices */ |
| 1163 | /* Note: datasheet says it should automaticaly wrap to the */ |
| 1164 | /* next OOB block, but it didn't work here. mf. */ |
| 1165 | if (nand->page256 && ofs + len > (ofs | 0x7) + 1) { |
| 1166 | len256 = (ofs | 0x7) + 1 - ofs; |
| 1167 | for (i = 0; i < len256; i++) |
| 1168 | WRITE_NAND(buf[i], nandptr); |
| 1169 | |
| 1170 | NanD_Command(nand, NAND_CMD_PAGEPROG); |
| 1171 | NanD_Command(nand, NAND_CMD_STATUS); |
| 1172 | #ifdef NAND_NO_RB |
| 1173 | { u_char ret_val; |
| 1174 | do { |
| 1175 | ret_val = READ_NAND(nandptr); /* wait till ready */ |
| 1176 | } while ((ret_val & 0x40) != 0x40); |
| 1177 | } |
| 1178 | #endif |
| 1179 | if (READ_NAND(nandptr) & 1) { |
| 1180 | puts ("Error programming oob data\n"); |
| 1181 | /* There was an error */ |
| 1182 | NAND_DISABLE_CE(nand); /* set pin high */ |
| 1183 | *retlen = 0; |
| 1184 | return -1; |
| 1185 | } |
| 1186 | NanD_Command(nand, NAND_CMD_SEQIN); |
| 1187 | NanD_Address(nand, ADDR_COLUMN_PAGE, ofs & (~0x1ff)); |
| 1188 | } |
| 1189 | |
| 1190 | if (nand->bus16) { |
| 1191 | for (i = len256; i < len; i += 2) { |
| 1192 | WRITE_NAND(buf[i] + (buf[i+1] << 8), nandptr); |
| 1193 | } |
| 1194 | } else { |
| 1195 | for (i = len256; i < len; i++) |
| 1196 | WRITE_NAND(buf[i], nandptr); |
| 1197 | } |
| 1198 | |
| 1199 | NanD_Command(nand, NAND_CMD_PAGEPROG); |
| 1200 | NanD_Command(nand, NAND_CMD_STATUS); |
| 1201 | #ifdef NAND_NO_RB |
| 1202 | { u_char ret_val; |
| 1203 | do { |
| 1204 | ret_val = READ_NAND(nandptr); /* wait till ready */ |
| 1205 | } while ((ret_val & 0x40) != 0x40); |
| 1206 | } |
| 1207 | #endif |
| 1208 | if (READ_NAND(nandptr) & 1) { |
| 1209 | puts ("Error programming oob data\n"); |
| 1210 | /* There was an error */ |
| 1211 | NAND_DISABLE_CE(nand); /* set pin high */ |
| 1212 | *retlen = 0; |
| 1213 | return -1; |
| 1214 | } |
| 1215 | |
| 1216 | NAND_DISABLE_CE(nand); /* set pin high */ |
| 1217 | *retlen = len; |
| 1218 | return 0; |
| 1219 | |
| 1220 | } |
| 1221 | |
| 1222 | int nand_legacy_erase(struct nand_chip* nand, size_t ofs, size_t len, int clean) |
| 1223 | { |
| 1224 | /* This is defined as a structure so it will work on any system |
| 1225 | * using native endian jffs2 (the default). |
| 1226 | */ |
| 1227 | static struct jffs2_unknown_node clean_marker = { |
| 1228 | JFFS2_MAGIC_BITMASK, |
| 1229 | JFFS2_NODETYPE_CLEANMARKER, |
| 1230 | 8 /* 8 bytes in this node */ |
| 1231 | }; |
| 1232 | unsigned long nandptr; |
| 1233 | struct Nand *mychip; |
| 1234 | int ret = 0; |
| 1235 | |
| 1236 | if (ofs & (nand->erasesize-1) || len & (nand->erasesize-1)) { |
| 1237 | printf ("Offset and size must be sector aligned, erasesize = %d\n", |
| 1238 | (int) nand->erasesize); |
| 1239 | return -1; |
| 1240 | } |
| 1241 | |
| 1242 | nandptr = nand->IO_ADDR; |
| 1243 | |
| 1244 | /* Select the NAND device */ |
| 1245 | #ifdef CONFIG_OMAP1510 |
| 1246 | archflashwp(0,0); |
| 1247 | #endif |
| 1248 | #ifdef CFG_NAND_WP |
| 1249 | NAND_WP_OFF(); |
| 1250 | #endif |
| 1251 | NAND_ENABLE_CE(nand); /* set pin low */ |
| 1252 | |
| 1253 | /* Check the WP bit */ |
| 1254 | NanD_Command(nand, NAND_CMD_STATUS); |
| 1255 | if (!(READ_NAND(nand->IO_ADDR) & 0x80)) { |
| 1256 | printf ("nand_write_ecc: Device is write protected!!!\n"); |
| 1257 | ret = -1; |
| 1258 | goto out; |
| 1259 | } |
| 1260 | |
| 1261 | /* Check the WP bit */ |
| 1262 | NanD_Command(nand, NAND_CMD_STATUS); |
| 1263 | if (!(READ_NAND(nand->IO_ADDR) & 0x80)) { |
| 1264 | printf ("%s: Device is write protected!!!\n", __FUNCTION__); |
| 1265 | ret = -1; |
| 1266 | goto out; |
| 1267 | } |
| 1268 | |
| 1269 | /* FIXME: Do nand in the background. Use timers or schedule_task() */ |
| 1270 | while(len) { |
| 1271 | /*mychip = &nand->chips[shr(ofs, nand->chipshift)];*/ |
| 1272 | mychip = &nand->chips[ofs >> nand->chipshift]; |
| 1273 | |
| 1274 | /* always check for bad block first, genuine bad blocks |
| 1275 | * should _never_ be erased. |
| 1276 | */ |
| 1277 | if (ALLOW_ERASE_BAD_DEBUG || !check_block(nand, ofs)) { |
| 1278 | /* Select the NAND device */ |
| 1279 | NAND_ENABLE_CE(nand); /* set pin low */ |
| 1280 | |
| 1281 | NanD_Command(nand, NAND_CMD_ERASE1); |
| 1282 | NanD_Address(nand, ADDR_PAGE, ofs); |
| 1283 | NanD_Command(nand, NAND_CMD_ERASE2); |
| 1284 | |
| 1285 | NanD_Command(nand, NAND_CMD_STATUS); |
| 1286 | |
| 1287 | #ifdef NAND_NO_RB |
| 1288 | { u_char ret_val; |
| 1289 | do { |
| 1290 | ret_val = READ_NAND(nandptr); /* wait till ready */ |
| 1291 | } while ((ret_val & 0x40) != 0x40); |
| 1292 | } |
| 1293 | #endif |
| 1294 | if (READ_NAND(nandptr) & 1) { |
| 1295 | printf ("%s: Error erasing at 0x%lx\n", |
| 1296 | __FUNCTION__, (long)ofs); |
| 1297 | /* There was an error */ |
| 1298 | ret = -1; |
| 1299 | goto out; |
| 1300 | } |
| 1301 | if (clean) { |
| 1302 | int n; /* return value not used */ |
| 1303 | int p, l; |
| 1304 | |
| 1305 | /* clean marker position and size depend |
| 1306 | * on the page size, since 256 byte pages |
| 1307 | * only have 8 bytes of oob data |
| 1308 | */ |
| 1309 | if (nand->page256) { |
| 1310 | p = NAND_JFFS2_OOB8_FSDAPOS; |
| 1311 | l = NAND_JFFS2_OOB8_FSDALEN; |
| 1312 | } else { |
| 1313 | p = NAND_JFFS2_OOB16_FSDAPOS; |
| 1314 | l = NAND_JFFS2_OOB16_FSDALEN; |
| 1315 | } |
| 1316 | |
| 1317 | ret = nand_write_oob(nand, ofs + p, l, (size_t *)&n, |
| 1318 | (u_char *)&clean_marker); |
| 1319 | /* quit here if write failed */ |
| 1320 | if (ret) |
| 1321 | goto out; |
| 1322 | } |
| 1323 | } |
| 1324 | ofs += nand->erasesize; |
| 1325 | len -= nand->erasesize; |
| 1326 | } |
| 1327 | |
| 1328 | out: |
| 1329 | /* De-select the NAND device */ |
| 1330 | NAND_DISABLE_CE(nand); /* set pin high */ |
| 1331 | #ifdef CONFIG_OMAP1510 |
| 1332 | archflashwp(0,1); |
| 1333 | #endif |
| 1334 | #ifdef CFG_NAND_WP |
| 1335 | NAND_WP_ON(); |
| 1336 | #endif |
| 1337 | |
| 1338 | return ret; |
| 1339 | } |
| 1340 | |
| 1341 | |
| 1342 | static inline int nandcheck(unsigned long potential, unsigned long physadr) |
| 1343 | { |
| 1344 | return 0; |
| 1345 | } |
| 1346 | |
| 1347 | unsigned long nand_probe(unsigned long physadr) |
| 1348 | { |
| 1349 | struct nand_chip *nand = NULL; |
| 1350 | int i = 0, ChipID = 1; |
| 1351 | |
| 1352 | #ifdef CONFIG_MTD_NAND_ECC_JFFS2 |
| 1353 | oob_config.ecc_pos[0] = NAND_JFFS2_OOB_ECCPOS0; |
| 1354 | oob_config.ecc_pos[1] = NAND_JFFS2_OOB_ECCPOS1; |
| 1355 | oob_config.ecc_pos[2] = NAND_JFFS2_OOB_ECCPOS2; |
| 1356 | oob_config.ecc_pos[3] = NAND_JFFS2_OOB_ECCPOS3; |
| 1357 | oob_config.ecc_pos[4] = NAND_JFFS2_OOB_ECCPOS4; |
| 1358 | oob_config.ecc_pos[5] = NAND_JFFS2_OOB_ECCPOS5; |
| 1359 | oob_config.eccvalid_pos = 4; |
| 1360 | #else |
| 1361 | oob_config.ecc_pos[0] = NAND_NOOB_ECCPOS0; |
| 1362 | oob_config.ecc_pos[1] = NAND_NOOB_ECCPOS1; |
| 1363 | oob_config.ecc_pos[2] = NAND_NOOB_ECCPOS2; |
| 1364 | oob_config.ecc_pos[3] = NAND_NOOB_ECCPOS3; |
| 1365 | oob_config.ecc_pos[4] = NAND_NOOB_ECCPOS4; |
| 1366 | oob_config.ecc_pos[5] = NAND_NOOB_ECCPOS5; |
| 1367 | oob_config.eccvalid_pos = NAND_NOOB_ECCVPOS; |
| 1368 | #endif |
| 1369 | oob_config.badblock_pos = 5; |
| 1370 | |
| 1371 | for (i=0; i<CFG_MAX_NAND_DEVICE; i++) { |
| 1372 | if (nand_dev_desc[i].ChipID == NAND_ChipID_UNKNOWN) { |
| 1373 | nand = &nand_dev_desc[i]; |
| 1374 | break; |
| 1375 | } |
| 1376 | } |
| 1377 | if (!nand) |
| 1378 | return (0); |
| 1379 | |
| 1380 | memset((char *)nand, 0, sizeof(struct nand_chip)); |
| 1381 | |
| 1382 | nand->IO_ADDR = physadr; |
| 1383 | nand->cache_page = -1; /* init the cache page */ |
| 1384 | NanD_ScanChips(nand); |
| 1385 | |
| 1386 | if (nand->totlen == 0) { |
| 1387 | /* no chips found, clean up and quit */ |
| 1388 | memset((char *)nand, 0, sizeof(struct nand_chip)); |
| 1389 | nand->ChipID = NAND_ChipID_UNKNOWN; |
| 1390 | return (0); |
| 1391 | } |
| 1392 | |
| 1393 | nand->ChipID = ChipID; |
| 1394 | if (curr_device == -1) |
| 1395 | curr_device = i; |
| 1396 | |
| 1397 | nand->data_buf = malloc (nand->oobblock + nand->oobsize); |
| 1398 | if (!nand->data_buf) { |
| 1399 | puts ("Cannot allocate memory for data structures.\n"); |
| 1400 | return (0); |
| 1401 | } |
| 1402 | |
| 1403 | return (nand->totlen); |
| 1404 | } |
| 1405 | |
| 1406 | #ifdef CONFIG_MTD_NAND_ECC |
| 1407 | /* |
| 1408 | * Pre-calculated 256-way 1 byte column parity |
| 1409 | */ |
| 1410 | static const u_char nand_ecc_precalc_table[] = { |
| 1411 | 0x00, 0x55, 0x56, 0x03, 0x59, 0x0c, 0x0f, 0x5a, |
| 1412 | 0x5a, 0x0f, 0x0c, 0x59, 0x03, 0x56, 0x55, 0x00, |
| 1413 | 0x65, 0x30, 0x33, 0x66, 0x3c, 0x69, 0x6a, 0x3f, |
| 1414 | 0x3f, 0x6a, 0x69, 0x3c, 0x66, 0x33, 0x30, 0x65, |
| 1415 | 0x66, 0x33, 0x30, 0x65, 0x3f, 0x6a, 0x69, 0x3c, |
| 1416 | 0x3c, 0x69, 0x6a, 0x3f, 0x65, 0x30, 0x33, 0x66, |
| 1417 | 0x03, 0x56, 0x55, 0x00, 0x5a, 0x0f, 0x0c, 0x59, |
| 1418 | 0x59, 0x0c, 0x0f, 0x5a, 0x00, 0x55, 0x56, 0x03, |
| 1419 | 0x69, 0x3c, 0x3f, 0x6a, 0x30, 0x65, 0x66, 0x33, |
| 1420 | 0x33, 0x66, 0x65, 0x30, 0x6a, 0x3f, 0x3c, 0x69, |
| 1421 | 0x0c, 0x59, 0x5a, 0x0f, 0x55, 0x00, 0x03, 0x56, |
| 1422 | 0x56, 0x03, 0x00, 0x55, 0x0f, 0x5a, 0x59, 0x0c, |
| 1423 | 0x0f, 0x5a, 0x59, 0x0c, 0x56, 0x03, 0x00, 0x55, |
| 1424 | 0x55, 0x00, 0x03, 0x56, 0x0c, 0x59, 0x5a, 0x0f, |
| 1425 | 0x6a, 0x3f, 0x3c, 0x69, 0x33, 0x66, 0x65, 0x30, |
| 1426 | 0x30, 0x65, 0x66, 0x33, 0x69, 0x3c, 0x3f, 0x6a, |
| 1427 | 0x6a, 0x3f, 0x3c, 0x69, 0x33, 0x66, 0x65, 0x30, |
| 1428 | 0x30, 0x65, 0x66, 0x33, 0x69, 0x3c, 0x3f, 0x6a, |
| 1429 | 0x0f, 0x5a, 0x59, 0x0c, 0x56, 0x03, 0x00, 0x55, |
| 1430 | 0x55, 0x00, 0x03, 0x56, 0x0c, 0x59, 0x5a, 0x0f, |
| 1431 | 0x0c, 0x59, 0x5a, 0x0f, 0x55, 0x00, 0x03, 0x56, |
| 1432 | 0x56, 0x03, 0x00, 0x55, 0x0f, 0x5a, 0x59, 0x0c, |
| 1433 | 0x69, 0x3c, 0x3f, 0x6a, 0x30, 0x65, 0x66, 0x33, |
| 1434 | 0x33, 0x66, 0x65, 0x30, 0x6a, 0x3f, 0x3c, 0x69, |
| 1435 | 0x03, 0x56, 0x55, 0x00, 0x5a, 0x0f, 0x0c, 0x59, |
| 1436 | 0x59, 0x0c, 0x0f, 0x5a, 0x00, 0x55, 0x56, 0x03, |
| 1437 | 0x66, 0x33, 0x30, 0x65, 0x3f, 0x6a, 0x69, 0x3c, |
| 1438 | 0x3c, 0x69, 0x6a, 0x3f, 0x65, 0x30, 0x33, 0x66, |
| 1439 | 0x65, 0x30, 0x33, 0x66, 0x3c, 0x69, 0x6a, 0x3f, |
| 1440 | 0x3f, 0x6a, 0x69, 0x3c, 0x66, 0x33, 0x30, 0x65, |
| 1441 | 0x00, 0x55, 0x56, 0x03, 0x59, 0x0c, 0x0f, 0x5a, |
| 1442 | 0x5a, 0x0f, 0x0c, 0x59, 0x03, 0x56, 0x55, 0x00 |
| 1443 | }; |
| 1444 | |
| 1445 | |
| 1446 | /* |
| 1447 | * Creates non-inverted ECC code from line parity |
| 1448 | */ |
| 1449 | static void nand_trans_result(u_char reg2, u_char reg3, |
| 1450 | u_char *ecc_code) |
| 1451 | { |
| 1452 | u_char a, b, i, tmp1, tmp2; |
| 1453 | |
| 1454 | /* Initialize variables */ |
| 1455 | a = b = 0x80; |
| 1456 | tmp1 = tmp2 = 0; |
| 1457 | |
| 1458 | /* Calculate first ECC byte */ |
| 1459 | for (i = 0; i < 4; i++) { |
| 1460 | if (reg3 & a) /* LP15,13,11,9 --> ecc_code[0] */ |
| 1461 | tmp1 |= b; |
| 1462 | b >>= 1; |
| 1463 | if (reg2 & a) /* LP14,12,10,8 --> ecc_code[0] */ |
| 1464 | tmp1 |= b; |
| 1465 | b >>= 1; |
| 1466 | a >>= 1; |
| 1467 | } |
| 1468 | |
| 1469 | /* Calculate second ECC byte */ |
| 1470 | b = 0x80; |
| 1471 | for (i = 0; i < 4; i++) { |
| 1472 | if (reg3 & a) /* LP7,5,3,1 --> ecc_code[1] */ |
| 1473 | tmp2 |= b; |
| 1474 | b >>= 1; |
| 1475 | if (reg2 & a) /* LP6,4,2,0 --> ecc_code[1] */ |
| 1476 | tmp2 |= b; |
| 1477 | b >>= 1; |
| 1478 | a >>= 1; |
| 1479 | } |
| 1480 | |
| 1481 | /* Store two of the ECC bytes */ |
| 1482 | ecc_code[0] = tmp1; |
| 1483 | ecc_code[1] = tmp2; |
| 1484 | } |
| 1485 | |
| 1486 | /* |
| 1487 | * Calculate 3 byte ECC code for 256 byte block |
| 1488 | */ |
| 1489 | static void nand_calculate_ecc (const u_char *dat, u_char *ecc_code) |
| 1490 | { |
| 1491 | u_char idx, reg1, reg3; |
| 1492 | int j; |
| 1493 | |
| 1494 | /* Initialize variables */ |
| 1495 | reg1 = reg3 = 0; |
| 1496 | ecc_code[0] = ecc_code[1] = ecc_code[2] = 0; |
| 1497 | |
| 1498 | /* Build up column parity */ |
| 1499 | for(j = 0; j < 256; j++) { |
| 1500 | |
| 1501 | /* Get CP0 - CP5 from table */ |
| 1502 | idx = nand_ecc_precalc_table[dat[j]]; |
| 1503 | reg1 ^= idx; |
| 1504 | |
| 1505 | /* All bit XOR = 1 ? */ |
| 1506 | if (idx & 0x40) { |
| 1507 | reg3 ^= (u_char) j; |
| 1508 | } |
| 1509 | } |
| 1510 | |
| 1511 | /* Create non-inverted ECC code from line parity */ |
| 1512 | nand_trans_result((reg1 & 0x40) ? ~reg3 : reg3, reg3, ecc_code); |
| 1513 | |
| 1514 | /* Calculate final ECC code */ |
| 1515 | ecc_code[0] = ~ecc_code[0]; |
| 1516 | ecc_code[1] = ~ecc_code[1]; |
| 1517 | ecc_code[2] = ((~reg1) << 2) | 0x03; |
| 1518 | } |
| 1519 | |
| 1520 | /* |
| 1521 | * Detect and correct a 1 bit error for 256 byte block |
| 1522 | */ |
| 1523 | static int nand_correct_data (u_char *dat, u_char *read_ecc, u_char *calc_ecc) |
| 1524 | { |
| 1525 | u_char a, b, c, d1, d2, d3, add, bit, i; |
| 1526 | |
| 1527 | /* Do error detection */ |
| 1528 | d1 = calc_ecc[0] ^ read_ecc[0]; |
| 1529 | d2 = calc_ecc[1] ^ read_ecc[1]; |
| 1530 | d3 = calc_ecc[2] ^ read_ecc[2]; |
| 1531 | |
| 1532 | if ((d1 | d2 | d3) == 0) { |
| 1533 | /* No errors */ |
| 1534 | return 0; |
| 1535 | } else { |
| 1536 | a = (d1 ^ (d1 >> 1)) & 0x55; |
| 1537 | b = (d2 ^ (d2 >> 1)) & 0x55; |
| 1538 | c = (d3 ^ (d3 >> 1)) & 0x54; |
| 1539 | |
| 1540 | /* Found and will correct single bit error in the data */ |
| 1541 | if ((a == 0x55) && (b == 0x55) && (c == 0x54)) { |
| 1542 | c = 0x80; |
| 1543 | add = 0; |
| 1544 | a = 0x80; |
| 1545 | for (i=0; i<4; i++) { |
| 1546 | if (d1 & c) |
| 1547 | add |= a; |
| 1548 | c >>= 2; |
| 1549 | a >>= 1; |
| 1550 | } |
| 1551 | c = 0x80; |
| 1552 | for (i=0; i<4; i++) { |
| 1553 | if (d2 & c) |
| 1554 | add |= a; |
| 1555 | c >>= 2; |
| 1556 | a >>= 1; |
| 1557 | } |
| 1558 | bit = 0; |
| 1559 | b = 0x04; |
| 1560 | c = 0x80; |
| 1561 | for (i=0; i<3; i++) { |
| 1562 | if (d3 & c) |
| 1563 | bit |= b; |
| 1564 | c >>= 2; |
| 1565 | b >>= 1; |
| 1566 | } |
| 1567 | b = 0x01; |
| 1568 | a = dat[add]; |
| 1569 | a ^= (b << bit); |
| 1570 | dat[add] = a; |
| 1571 | return 1; |
| 1572 | } |
| 1573 | else { |
| 1574 | i = 0; |
| 1575 | while (d1) { |
| 1576 | if (d1 & 0x01) |
| 1577 | ++i; |
| 1578 | d1 >>= 1; |
| 1579 | } |
| 1580 | while (d2) { |
| 1581 | if (d2 & 0x01) |
| 1582 | ++i; |
| 1583 | d2 >>= 1; |
| 1584 | } |
| 1585 | while (d3) { |
| 1586 | if (d3 & 0x01) |
| 1587 | ++i; |
| 1588 | d3 >>= 1; |
| 1589 | } |
| 1590 | if (i == 1) { |
| 1591 | /* ECC Code Error Correction */ |
| 1592 | read_ecc[0] = calc_ecc[0]; |
| 1593 | read_ecc[1] = calc_ecc[1]; |
| 1594 | read_ecc[2] = calc_ecc[2]; |
| 1595 | return 2; |
| 1596 | } |
| 1597 | else { |
| 1598 | /* Uncorrectable Error */ |
| 1599 | return -1; |
| 1600 | } |
| 1601 | } |
| 1602 | } |
| 1603 | |
| 1604 | /* Should never happen */ |
| 1605 | return -1; |
| 1606 | } |
| 1607 | |
| 1608 | #endif |
| 1609 | |
Marian Balakowicz | 6a07675 | 2006-04-08 19:08:06 +0200 | [diff] [blame] | 1610 | #ifdef CONFIG_JFFS2_NAND |
| 1611 | int read_jffs2_nand(size_t start, size_t len, |
| 1612 | size_t * retlen, u_char * buf, int nanddev) |
| 1613 | { |
| 1614 | return nand_legacy_rw(nand_dev_desc + nanddev, NANDRW_READ | NANDRW_JFFS2, |
| 1615 | start, len, retlen, buf); |
| 1616 | } |
| 1617 | #endif /* CONFIG_JFFS2_NAND */ |
| 1618 | |
Jon Loeliger | 82ecaad | 2007-07-09 17:39:42 -0500 | [diff] [blame] | 1619 | #endif |