blob: 7ed9e29fd77f690c0c515f317fdfc7bd0194037d [file] [log] [blame]
Stefan Roese3e103812014-10-22 12:13:14 +02001/*
2 * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs.
3 *
4 * U-Boot version:
Stefan Roese05b38c12015-11-19 07:46:15 +01005 * Copyright (C) 2014-2015 Stefan Roese <sr@denx.de>
Stefan Roese3e103812014-10-22 12:13:14 +02006 *
7 * Based on the Linux version which is:
8 * Copyright (C) 2012 Marvell
9 *
10 * Rami Rosen <rosenr@marvell.com>
11 * Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
12 *
13 * SPDX-License-Identifier: GPL-2.0
14 */
15
16#include <common.h>
Stefan Roese05b38c12015-11-19 07:46:15 +010017#include <dm.h>
Stefan Roese3e103812014-10-22 12:13:14 +020018#include <net.h>
19#include <netdev.h>
20#include <config.h>
21#include <malloc.h>
22#include <asm/io.h>
Masahiro Yamada56a931c2016-09-21 11:28:55 +090023#include <linux/errno.h>
Stefan Roese3e103812014-10-22 12:13:14 +020024#include <phy.h>
25#include <miiphy.h>
26#include <watchdog.h>
27#include <asm/arch/cpu.h>
28#include <asm/arch/soc.h>
29#include <linux/compat.h>
30#include <linux/mbus.h>
31
Stefan Roese05b38c12015-11-19 07:46:15 +010032DECLARE_GLOBAL_DATA_PTR;
33
Stefan Roese3e103812014-10-22 12:13:14 +020034#if !defined(CONFIG_PHYLIB)
35# error Marvell mvneta requires PHYLIB
36#endif
37
38/* Some linux -> U-Boot compatibility stuff */
39#define netdev_err(dev, fmt, args...) \
40 printf(fmt, ##args)
41#define netdev_warn(dev, fmt, args...) \
42 printf(fmt, ##args)
43#define netdev_info(dev, fmt, args...) \
44 printf(fmt, ##args)
45
46#define CONFIG_NR_CPUS 1
Stefan Roese3e103812014-10-22 12:13:14 +020047#define ETH_HLEN 14 /* Total octets in header */
48
49/* 2(HW hdr) 14(MAC hdr) 4(CRC) 32(extra for cache prefetch) */
50#define WRAP (2 + ETH_HLEN + 4 + 32)
51#define MTU 1500
52#define RX_BUFFER_SIZE (ALIGN(MTU + WRAP, ARCH_DMA_MINALIGN))
53
54#define MVNETA_SMI_TIMEOUT 10000
55
56/* Registers */
57#define MVNETA_RXQ_CONFIG_REG(q) (0x1400 + ((q) << 2))
58#define MVNETA_RXQ_HW_BUF_ALLOC BIT(1)
59#define MVNETA_RXQ_PKT_OFFSET_ALL_MASK (0xf << 8)
60#define MVNETA_RXQ_PKT_OFFSET_MASK(offs) ((offs) << 8)
61#define MVNETA_RXQ_THRESHOLD_REG(q) (0x14c0 + ((q) << 2))
62#define MVNETA_RXQ_NON_OCCUPIED(v) ((v) << 16)
63#define MVNETA_RXQ_BASE_ADDR_REG(q) (0x1480 + ((q) << 2))
64#define MVNETA_RXQ_SIZE_REG(q) (0x14a0 + ((q) << 2))
65#define MVNETA_RXQ_BUF_SIZE_SHIFT 19
66#define MVNETA_RXQ_BUF_SIZE_MASK (0x1fff << 19)
67#define MVNETA_RXQ_STATUS_REG(q) (0x14e0 + ((q) << 2))
68#define MVNETA_RXQ_OCCUPIED_ALL_MASK 0x3fff
69#define MVNETA_RXQ_STATUS_UPDATE_REG(q) (0x1500 + ((q) << 2))
70#define MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT 16
71#define MVNETA_RXQ_ADD_NON_OCCUPIED_MAX 255
72#define MVNETA_PORT_RX_RESET 0x1cc0
73#define MVNETA_PORT_RX_DMA_RESET BIT(0)
74#define MVNETA_PHY_ADDR 0x2000
75#define MVNETA_PHY_ADDR_MASK 0x1f
76#define MVNETA_SMI 0x2004
77#define MVNETA_PHY_REG_MASK 0x1f
78/* SMI register fields */
79#define MVNETA_SMI_DATA_OFFS 0 /* Data */
80#define MVNETA_SMI_DATA_MASK (0xffff << MVNETA_SMI_DATA_OFFS)
81#define MVNETA_SMI_DEV_ADDR_OFFS 16 /* PHY device address */
82#define MVNETA_SMI_REG_ADDR_OFFS 21 /* PHY device reg addr*/
83#define MVNETA_SMI_OPCODE_OFFS 26 /* Write/Read opcode */
84#define MVNETA_SMI_OPCODE_READ (1 << MVNETA_SMI_OPCODE_OFFS)
85#define MVNETA_SMI_READ_VALID (1 << 27) /* Read Valid */
86#define MVNETA_SMI_BUSY (1 << 28) /* Busy */
87#define MVNETA_MBUS_RETRY 0x2010
88#define MVNETA_UNIT_INTR_CAUSE 0x2080
89#define MVNETA_UNIT_CONTROL 0x20B0
90#define MVNETA_PHY_POLLING_ENABLE BIT(1)
91#define MVNETA_WIN_BASE(w) (0x2200 + ((w) << 3))
92#define MVNETA_WIN_SIZE(w) (0x2204 + ((w) << 3))
93#define MVNETA_WIN_REMAP(w) (0x2280 + ((w) << 2))
94#define MVNETA_BASE_ADDR_ENABLE 0x2290
95#define MVNETA_PORT_CONFIG 0x2400
96#define MVNETA_UNI_PROMISC_MODE BIT(0)
97#define MVNETA_DEF_RXQ(q) ((q) << 1)
98#define MVNETA_DEF_RXQ_ARP(q) ((q) << 4)
99#define MVNETA_TX_UNSET_ERR_SUM BIT(12)
100#define MVNETA_DEF_RXQ_TCP(q) ((q) << 16)
101#define MVNETA_DEF_RXQ_UDP(q) ((q) << 19)
102#define MVNETA_DEF_RXQ_BPDU(q) ((q) << 22)
103#define MVNETA_RX_CSUM_WITH_PSEUDO_HDR BIT(25)
104#define MVNETA_PORT_CONFIG_DEFL_VALUE(q) (MVNETA_DEF_RXQ(q) | \
105 MVNETA_DEF_RXQ_ARP(q) | \
106 MVNETA_DEF_RXQ_TCP(q) | \
107 MVNETA_DEF_RXQ_UDP(q) | \
108 MVNETA_DEF_RXQ_BPDU(q) | \
109 MVNETA_TX_UNSET_ERR_SUM | \
110 MVNETA_RX_CSUM_WITH_PSEUDO_HDR)
111#define MVNETA_PORT_CONFIG_EXTEND 0x2404
112#define MVNETA_MAC_ADDR_LOW 0x2414
113#define MVNETA_MAC_ADDR_HIGH 0x2418
114#define MVNETA_SDMA_CONFIG 0x241c
115#define MVNETA_SDMA_BRST_SIZE_16 4
116#define MVNETA_RX_BRST_SZ_MASK(burst) ((burst) << 1)
117#define MVNETA_RX_NO_DATA_SWAP BIT(4)
118#define MVNETA_TX_NO_DATA_SWAP BIT(5)
119#define MVNETA_DESC_SWAP BIT(6)
120#define MVNETA_TX_BRST_SZ_MASK(burst) ((burst) << 22)
121#define MVNETA_PORT_STATUS 0x2444
122#define MVNETA_TX_IN_PRGRS BIT(1)
123#define MVNETA_TX_FIFO_EMPTY BIT(8)
124#define MVNETA_RX_MIN_FRAME_SIZE 0x247c
125#define MVNETA_SERDES_CFG 0x24A0
126#define MVNETA_SGMII_SERDES_PROTO 0x0cc7
127#define MVNETA_QSGMII_SERDES_PROTO 0x0667
128#define MVNETA_TYPE_PRIO 0x24bc
129#define MVNETA_FORCE_UNI BIT(21)
130#define MVNETA_TXQ_CMD_1 0x24e4
131#define MVNETA_TXQ_CMD 0x2448
132#define MVNETA_TXQ_DISABLE_SHIFT 8
133#define MVNETA_TXQ_ENABLE_MASK 0x000000ff
134#define MVNETA_ACC_MODE 0x2500
135#define MVNETA_CPU_MAP(cpu) (0x2540 + ((cpu) << 2))
136#define MVNETA_CPU_RXQ_ACCESS_ALL_MASK 0x000000ff
137#define MVNETA_CPU_TXQ_ACCESS_ALL_MASK 0x0000ff00
138#define MVNETA_RXQ_TIME_COAL_REG(q) (0x2580 + ((q) << 2))
139
140/* Exception Interrupt Port/Queue Cause register */
141
142#define MVNETA_INTR_NEW_CAUSE 0x25a0
143#define MVNETA_INTR_NEW_MASK 0x25a4
144
145/* bits 0..7 = TXQ SENT, one bit per queue.
146 * bits 8..15 = RXQ OCCUP, one bit per queue.
147 * bits 16..23 = RXQ FREE, one bit per queue.
148 * bit 29 = OLD_REG_SUM, see old reg ?
149 * bit 30 = TX_ERR_SUM, one bit for 4 ports
150 * bit 31 = MISC_SUM, one bit for 4 ports
151 */
152#define MVNETA_TX_INTR_MASK(nr_txqs) (((1 << nr_txqs) - 1) << 0)
153#define MVNETA_TX_INTR_MASK_ALL (0xff << 0)
154#define MVNETA_RX_INTR_MASK(nr_rxqs) (((1 << nr_rxqs) - 1) << 8)
155#define MVNETA_RX_INTR_MASK_ALL (0xff << 8)
156
157#define MVNETA_INTR_OLD_CAUSE 0x25a8
158#define MVNETA_INTR_OLD_MASK 0x25ac
159
160/* Data Path Port/Queue Cause Register */
161#define MVNETA_INTR_MISC_CAUSE 0x25b0
162#define MVNETA_INTR_MISC_MASK 0x25b4
163#define MVNETA_INTR_ENABLE 0x25b8
164
165#define MVNETA_RXQ_CMD 0x2680
166#define MVNETA_RXQ_DISABLE_SHIFT 8
167#define MVNETA_RXQ_ENABLE_MASK 0x000000ff
168#define MVETH_TXQ_TOKEN_COUNT_REG(q) (0x2700 + ((q) << 4))
169#define MVETH_TXQ_TOKEN_CFG_REG(q) (0x2704 + ((q) << 4))
170#define MVNETA_GMAC_CTRL_0 0x2c00
171#define MVNETA_GMAC_MAX_RX_SIZE_SHIFT 2
172#define MVNETA_GMAC_MAX_RX_SIZE_MASK 0x7ffc
173#define MVNETA_GMAC0_PORT_ENABLE BIT(0)
174#define MVNETA_GMAC_CTRL_2 0x2c08
175#define MVNETA_GMAC2_PCS_ENABLE BIT(3)
176#define MVNETA_GMAC2_PORT_RGMII BIT(4)
177#define MVNETA_GMAC2_PORT_RESET BIT(6)
178#define MVNETA_GMAC_STATUS 0x2c10
179#define MVNETA_GMAC_LINK_UP BIT(0)
180#define MVNETA_GMAC_SPEED_1000 BIT(1)
181#define MVNETA_GMAC_SPEED_100 BIT(2)
182#define MVNETA_GMAC_FULL_DUPLEX BIT(3)
183#define MVNETA_GMAC_RX_FLOW_CTRL_ENABLE BIT(4)
184#define MVNETA_GMAC_TX_FLOW_CTRL_ENABLE BIT(5)
185#define MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE BIT(6)
186#define MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE BIT(7)
187#define MVNETA_GMAC_AUTONEG_CONFIG 0x2c0c
188#define MVNETA_GMAC_FORCE_LINK_DOWN BIT(0)
189#define MVNETA_GMAC_FORCE_LINK_PASS BIT(1)
190#define MVNETA_GMAC_CONFIG_MII_SPEED BIT(5)
191#define MVNETA_GMAC_CONFIG_GMII_SPEED BIT(6)
192#define MVNETA_GMAC_AN_SPEED_EN BIT(7)
193#define MVNETA_GMAC_CONFIG_FULL_DUPLEX BIT(12)
194#define MVNETA_GMAC_AN_DUPLEX_EN BIT(13)
195#define MVNETA_MIB_COUNTERS_BASE 0x3080
196#define MVNETA_MIB_LATE_COLLISION 0x7c
197#define MVNETA_DA_FILT_SPEC_MCAST 0x3400
198#define MVNETA_DA_FILT_OTH_MCAST 0x3500
199#define MVNETA_DA_FILT_UCAST_BASE 0x3600
200#define MVNETA_TXQ_BASE_ADDR_REG(q) (0x3c00 + ((q) << 2))
201#define MVNETA_TXQ_SIZE_REG(q) (0x3c20 + ((q) << 2))
202#define MVNETA_TXQ_SENT_THRESH_ALL_MASK 0x3fff0000
203#define MVNETA_TXQ_SENT_THRESH_MASK(coal) ((coal) << 16)
204#define MVNETA_TXQ_UPDATE_REG(q) (0x3c60 + ((q) << 2))
205#define MVNETA_TXQ_DEC_SENT_SHIFT 16
206#define MVNETA_TXQ_STATUS_REG(q) (0x3c40 + ((q) << 2))
207#define MVNETA_TXQ_SENT_DESC_SHIFT 16
208#define MVNETA_TXQ_SENT_DESC_MASK 0x3fff0000
209#define MVNETA_PORT_TX_RESET 0x3cf0
210#define MVNETA_PORT_TX_DMA_RESET BIT(0)
211#define MVNETA_TX_MTU 0x3e0c
212#define MVNETA_TX_TOKEN_SIZE 0x3e14
213#define MVNETA_TX_TOKEN_SIZE_MAX 0xffffffff
214#define MVNETA_TXQ_TOKEN_SIZE_REG(q) (0x3e40 + ((q) << 2))
215#define MVNETA_TXQ_TOKEN_SIZE_MAX 0x7fffffff
216
217/* Descriptor ring Macros */
218#define MVNETA_QUEUE_NEXT_DESC(q, index) \
219 (((index) < (q)->last_desc) ? ((index) + 1) : 0)
220
221/* Various constants */
222
223/* Coalescing */
224#define MVNETA_TXDONE_COAL_PKTS 16
225#define MVNETA_RX_COAL_PKTS 32
226#define MVNETA_RX_COAL_USEC 100
227
228/* The two bytes Marvell header. Either contains a special value used
229 * by Marvell switches when a specific hardware mode is enabled (not
230 * supported by this driver) or is filled automatically by zeroes on
231 * the RX side. Those two bytes being at the front of the Ethernet
232 * header, they allow to have the IP header aligned on a 4 bytes
233 * boundary automatically: the hardware skips those two bytes on its
234 * own.
235 */
236#define MVNETA_MH_SIZE 2
237
238#define MVNETA_VLAN_TAG_LEN 4
239
240#define MVNETA_CPU_D_CACHE_LINE_SIZE 32
241#define MVNETA_TX_CSUM_MAX_SIZE 9800
242#define MVNETA_ACC_MODE_EXT 1
243
244/* Timeout constants */
245#define MVNETA_TX_DISABLE_TIMEOUT_MSEC 1000
246#define MVNETA_RX_DISABLE_TIMEOUT_MSEC 1000
247#define MVNETA_TX_FIFO_EMPTY_TIMEOUT 10000
248
249#define MVNETA_TX_MTU_MAX 0x3ffff
250
251/* Max number of Rx descriptors */
252#define MVNETA_MAX_RXD 16
253
254/* Max number of Tx descriptors */
255#define MVNETA_MAX_TXD 16
256
257/* descriptor aligned size */
258#define MVNETA_DESC_ALIGNED_SIZE 32
259
260struct mvneta_port {
261 void __iomem *base;
262 struct mvneta_rx_queue *rxqs;
263 struct mvneta_tx_queue *txqs;
264
265 u8 mcast_count[256];
266 u16 tx_ring_size;
267 u16 rx_ring_size;
268
269 phy_interface_t phy_interface;
270 unsigned int link;
271 unsigned int duplex;
272 unsigned int speed;
273
274 int init;
275 int phyaddr;
276 struct phy_device *phydev;
277 struct mii_dev *bus;
278};
279
280/* The mvneta_tx_desc and mvneta_rx_desc structures describe the
281 * layout of the transmit and reception DMA descriptors, and their
282 * layout is therefore defined by the hardware design
283 */
284
285#define MVNETA_TX_L3_OFF_SHIFT 0
286#define MVNETA_TX_IP_HLEN_SHIFT 8
287#define MVNETA_TX_L4_UDP BIT(16)
288#define MVNETA_TX_L3_IP6 BIT(17)
289#define MVNETA_TXD_IP_CSUM BIT(18)
290#define MVNETA_TXD_Z_PAD BIT(19)
291#define MVNETA_TXD_L_DESC BIT(20)
292#define MVNETA_TXD_F_DESC BIT(21)
293#define MVNETA_TXD_FLZ_DESC (MVNETA_TXD_Z_PAD | \
294 MVNETA_TXD_L_DESC | \
295 MVNETA_TXD_F_DESC)
296#define MVNETA_TX_L4_CSUM_FULL BIT(30)
297#define MVNETA_TX_L4_CSUM_NOT BIT(31)
298
299#define MVNETA_RXD_ERR_CRC 0x0
300#define MVNETA_RXD_ERR_SUMMARY BIT(16)
301#define MVNETA_RXD_ERR_OVERRUN BIT(17)
302#define MVNETA_RXD_ERR_LEN BIT(18)
303#define MVNETA_RXD_ERR_RESOURCE (BIT(17) | BIT(18))
304#define MVNETA_RXD_ERR_CODE_MASK (BIT(17) | BIT(18))
305#define MVNETA_RXD_L3_IP4 BIT(25)
306#define MVNETA_RXD_FIRST_LAST_DESC (BIT(26) | BIT(27))
307#define MVNETA_RXD_L4_CSUM_OK BIT(30)
308
309struct mvneta_tx_desc {
310 u32 command; /* Options used by HW for packet transmitting.*/
311 u16 reserverd1; /* csum_l4 (for future use) */
312 u16 data_size; /* Data size of transmitted packet in bytes */
313 u32 buf_phys_addr; /* Physical addr of transmitted buffer */
314 u32 reserved2; /* hw_cmd - (for future use, PMT) */
315 u32 reserved3[4]; /* Reserved - (for future use) */
316};
317
318struct mvneta_rx_desc {
319 u32 status; /* Info about received packet */
320 u16 reserved1; /* pnc_info - (for future use, PnC) */
321 u16 data_size; /* Size of received packet in bytes */
322
323 u32 buf_phys_addr; /* Physical address of the buffer */
324 u32 reserved2; /* pnc_flow_id (for future use, PnC) */
325
326 u32 buf_cookie; /* cookie for access to RX buffer in rx path */
327 u16 reserved3; /* prefetch_cmd, for future use */
328 u16 reserved4; /* csum_l4 - (for future use, PnC) */
329
330 u32 reserved5; /* pnc_extra PnC (for future use, PnC) */
331 u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */
332};
333
334struct mvneta_tx_queue {
335 /* Number of this TX queue, in the range 0-7 */
336 u8 id;
337
338 /* Number of TX DMA descriptors in the descriptor ring */
339 int size;
340
341 /* Index of last TX DMA descriptor that was inserted */
342 int txq_put_index;
343
344 /* Index of the TX DMA descriptor to be cleaned up */
345 int txq_get_index;
346
347 /* Virtual address of the TX DMA descriptors array */
348 struct mvneta_tx_desc *descs;
349
350 /* DMA address of the TX DMA descriptors array */
351 dma_addr_t descs_phys;
352
353 /* Index of the last TX DMA descriptor */
354 int last_desc;
355
356 /* Index of the next TX DMA descriptor to process */
357 int next_desc_to_proc;
358};
359
360struct mvneta_rx_queue {
361 /* rx queue number, in the range 0-7 */
362 u8 id;
363
364 /* num of rx descriptors in the rx descriptor ring */
365 int size;
366
367 /* Virtual address of the RX DMA descriptors array */
368 struct mvneta_rx_desc *descs;
369
370 /* DMA address of the RX DMA descriptors array */
371 dma_addr_t descs_phys;
372
373 /* Index of the last RX DMA descriptor */
374 int last_desc;
375
376 /* Index of the next RX DMA descriptor to process */
377 int next_desc_to_proc;
378};
379
380/* U-Boot doesn't use the queues, so set the number to 1 */
381static int rxq_number = 1;
382static int txq_number = 1;
383static int rxq_def;
384
385struct buffer_location {
386 struct mvneta_tx_desc *tx_descs;
387 struct mvneta_rx_desc *rx_descs;
388 u32 rx_buffers;
389};
390
391/*
392 * All 4 interfaces use the same global buffer, since only one interface
393 * can be enabled at once
394 */
395static struct buffer_location buffer_loc;
396
397/*
398 * Page table entries are set to 1MB, or multiples of 1MB
399 * (not < 1MB). driver uses less bd's so use 1MB bdspace.
400 */
401#define BD_SPACE (1 << 20)
402
403/* Utility/helper methods */
404
405/* Write helper method */
406static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data)
407{
408 writel(data, pp->base + offset);
409}
410
411/* Read helper method */
412static u32 mvreg_read(struct mvneta_port *pp, u32 offset)
413{
414 return readl(pp->base + offset);
415}
416
417/* Clear all MIB counters */
418static void mvneta_mib_counters_clear(struct mvneta_port *pp)
419{
420 int i;
421
422 /* Perform dummy reads from MIB counters */
423 for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4)
424 mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i));
425}
426
427/* Rx descriptors helper methods */
428
429/* Checks whether the RX descriptor having this status is both the first
430 * and the last descriptor for the RX packet. Each RX packet is currently
431 * received through a single RX descriptor, so not having each RX
432 * descriptor with its first and last bits set is an error
433 */
434static int mvneta_rxq_desc_is_first_last(u32 status)
435{
436 return (status & MVNETA_RXD_FIRST_LAST_DESC) ==
437 MVNETA_RXD_FIRST_LAST_DESC;
438}
439
440/* Add number of descriptors ready to receive new packets */
441static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp,
442 struct mvneta_rx_queue *rxq,
443 int ndescs)
444{
445 /* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can
446 * be added at once
447 */
448 while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) {
449 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
450 (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX <<
451 MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
452 ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX;
453 }
454
455 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
456 (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
457}
458
459/* Get number of RX descriptors occupied by received packets */
460static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp,
461 struct mvneta_rx_queue *rxq)
462{
463 u32 val;
464
465 val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id));
466 return val & MVNETA_RXQ_OCCUPIED_ALL_MASK;
467}
468
469/* Update num of rx desc called upon return from rx path or
470 * from mvneta_rxq_drop_pkts().
471 */
472static void mvneta_rxq_desc_num_update(struct mvneta_port *pp,
473 struct mvneta_rx_queue *rxq,
474 int rx_done, int rx_filled)
475{
476 u32 val;
477
478 if ((rx_done <= 0xff) && (rx_filled <= 0xff)) {
479 val = rx_done |
480 (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT);
481 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
482 return;
483 }
484
485 /* Only 255 descriptors can be added at once */
486 while ((rx_done > 0) || (rx_filled > 0)) {
487 if (rx_done <= 0xff) {
488 val = rx_done;
489 rx_done = 0;
490 } else {
491 val = 0xff;
492 rx_done -= 0xff;
493 }
494 if (rx_filled <= 0xff) {
495 val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
496 rx_filled = 0;
497 } else {
498 val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
499 rx_filled -= 0xff;
500 }
501 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
502 }
503}
504
505/* Get pointer to next RX descriptor to be processed by SW */
506static struct mvneta_rx_desc *
507mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq)
508{
509 int rx_desc = rxq->next_desc_to_proc;
510
511 rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc);
512 return rxq->descs + rx_desc;
513}
514
515/* Tx descriptors helper methods */
516
517/* Update HW with number of TX descriptors to be sent */
518static void mvneta_txq_pend_desc_add(struct mvneta_port *pp,
519 struct mvneta_tx_queue *txq,
520 int pend_desc)
521{
522 u32 val;
523
524 /* Only 255 descriptors can be added at once ; Assume caller
525 * process TX desriptors in quanta less than 256
526 */
527 val = pend_desc;
528 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
529}
530
531/* Get pointer to next TX descriptor to be processed (send) by HW */
532static struct mvneta_tx_desc *
533mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq)
534{
535 int tx_desc = txq->next_desc_to_proc;
536
537 txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc);
538 return txq->descs + tx_desc;
539}
540
541/* Set rxq buf size */
542static void mvneta_rxq_buf_size_set(struct mvneta_port *pp,
543 struct mvneta_rx_queue *rxq,
544 int buf_size)
545{
546 u32 val;
547
548 val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id));
549
550 val &= ~MVNETA_RXQ_BUF_SIZE_MASK;
551 val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT);
552
553 mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val);
554}
555
556/* Start the Ethernet port RX and TX activity */
557static void mvneta_port_up(struct mvneta_port *pp)
558{
559 int queue;
560 u32 q_map;
561
562 /* Enable all initialized TXs. */
563 mvneta_mib_counters_clear(pp);
564 q_map = 0;
565 for (queue = 0; queue < txq_number; queue++) {
566 struct mvneta_tx_queue *txq = &pp->txqs[queue];
567 if (txq->descs != NULL)
568 q_map |= (1 << queue);
569 }
570 mvreg_write(pp, MVNETA_TXQ_CMD, q_map);
571
572 /* Enable all initialized RXQs. */
573 q_map = 0;
574 for (queue = 0; queue < rxq_number; queue++) {
575 struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
576 if (rxq->descs != NULL)
577 q_map |= (1 << queue);
578 }
579 mvreg_write(pp, MVNETA_RXQ_CMD, q_map);
580}
581
582/* Stop the Ethernet port activity */
583static void mvneta_port_down(struct mvneta_port *pp)
584{
585 u32 val;
586 int count;
587
588 /* Stop Rx port activity. Check port Rx activity. */
589 val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK;
590
591 /* Issue stop command for active channels only */
592 if (val != 0)
593 mvreg_write(pp, MVNETA_RXQ_CMD,
594 val << MVNETA_RXQ_DISABLE_SHIFT);
595
596 /* Wait for all Rx activity to terminate. */
597 count = 0;
598 do {
599 if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) {
600 netdev_warn(pp->dev,
601 "TIMEOUT for RX stopped ! rx_queue_cmd: 0x08%x\n",
602 val);
603 break;
604 }
605 mdelay(1);
606
607 val = mvreg_read(pp, MVNETA_RXQ_CMD);
608 } while (val & 0xff);
609
610 /* Stop Tx port activity. Check port Tx activity. Issue stop
611 * command for active channels only
612 */
613 val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK;
614
615 if (val != 0)
616 mvreg_write(pp, MVNETA_TXQ_CMD,
617 (val << MVNETA_TXQ_DISABLE_SHIFT));
618
619 /* Wait for all Tx activity to terminate. */
620 count = 0;
621 do {
622 if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) {
623 netdev_warn(pp->dev,
624 "TIMEOUT for TX stopped status=0x%08x\n",
625 val);
626 break;
627 }
628 mdelay(1);
629
630 /* Check TX Command reg that all Txqs are stopped */
631 val = mvreg_read(pp, MVNETA_TXQ_CMD);
632
633 } while (val & 0xff);
634
635 /* Double check to verify that TX FIFO is empty */
636 count = 0;
637 do {
638 if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) {
639 netdev_warn(pp->dev,
640 "TX FIFO empty timeout status=0x08%x\n",
641 val);
642 break;
643 }
644 mdelay(1);
645
646 val = mvreg_read(pp, MVNETA_PORT_STATUS);
647 } while (!(val & MVNETA_TX_FIFO_EMPTY) &&
648 (val & MVNETA_TX_IN_PRGRS));
649
650 udelay(200);
651}
652
653/* Enable the port by setting the port enable bit of the MAC control register */
654static void mvneta_port_enable(struct mvneta_port *pp)
655{
656 u32 val;
657
658 /* Enable port */
659 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
660 val |= MVNETA_GMAC0_PORT_ENABLE;
661 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
662}
663
664/* Disable the port and wait for about 200 usec before retuning */
665static void mvneta_port_disable(struct mvneta_port *pp)
666{
667 u32 val;
668
669 /* Reset the Enable bit in the Serial Control Register */
670 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
671 val &= ~MVNETA_GMAC0_PORT_ENABLE;
672 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
673
674 udelay(200);
675}
676
677/* Multicast tables methods */
678
679/* Set all entries in Unicast MAC Table; queue==-1 means reject all */
680static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue)
681{
682 int offset;
683 u32 val;
684
685 if (queue == -1) {
686 val = 0;
687 } else {
688 val = 0x1 | (queue << 1);
689 val |= (val << 24) | (val << 16) | (val << 8);
690 }
691
692 for (offset = 0; offset <= 0xc; offset += 4)
693 mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val);
694}
695
696/* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */
697static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue)
698{
699 int offset;
700 u32 val;
701
702 if (queue == -1) {
703 val = 0;
704 } else {
705 val = 0x1 | (queue << 1);
706 val |= (val << 24) | (val << 16) | (val << 8);
707 }
708
709 for (offset = 0; offset <= 0xfc; offset += 4)
710 mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val);
711}
712
713/* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */
714static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue)
715{
716 int offset;
717 u32 val;
718
719 if (queue == -1) {
720 memset(pp->mcast_count, 0, sizeof(pp->mcast_count));
721 val = 0;
722 } else {
723 memset(pp->mcast_count, 1, sizeof(pp->mcast_count));
724 val = 0x1 | (queue << 1);
725 val |= (val << 24) | (val << 16) | (val << 8);
726 }
727
728 for (offset = 0; offset <= 0xfc; offset += 4)
729 mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val);
730}
731
732/* This method sets defaults to the NETA port:
733 * Clears interrupt Cause and Mask registers.
734 * Clears all MAC tables.
735 * Sets defaults to all registers.
736 * Resets RX and TX descriptor rings.
737 * Resets PHY.
738 * This method can be called after mvneta_port_down() to return the port
739 * settings to defaults.
740 */
741static void mvneta_defaults_set(struct mvneta_port *pp)
742{
743 int cpu;
744 int queue;
745 u32 val;
746
747 /* Clear all Cause registers */
748 mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0);
749 mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0);
750 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
751
752 /* Mask all interrupts */
753 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
754 mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
755 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
756 mvreg_write(pp, MVNETA_INTR_ENABLE, 0);
757
758 /* Enable MBUS Retry bit16 */
759 mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20);
760
761 /* Set CPU queue access map - all CPUs have access to all RX
762 * queues and to all TX queues
763 */
764 for (cpu = 0; cpu < CONFIG_NR_CPUS; cpu++)
765 mvreg_write(pp, MVNETA_CPU_MAP(cpu),
766 (MVNETA_CPU_RXQ_ACCESS_ALL_MASK |
767 MVNETA_CPU_TXQ_ACCESS_ALL_MASK));
768
769 /* Reset RX and TX DMAs */
770 mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
771 mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
772
773 /* Disable Legacy WRR, Disable EJP, Release from reset */
774 mvreg_write(pp, MVNETA_TXQ_CMD_1, 0);
775 for (queue = 0; queue < txq_number; queue++) {
776 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0);
777 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0);
778 }
779
780 mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
781 mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
782
783 /* Set Port Acceleration Mode */
784 val = MVNETA_ACC_MODE_EXT;
785 mvreg_write(pp, MVNETA_ACC_MODE, val);
786
787 /* Update val of portCfg register accordingly with all RxQueue types */
788 val = MVNETA_PORT_CONFIG_DEFL_VALUE(rxq_def);
789 mvreg_write(pp, MVNETA_PORT_CONFIG, val);
790
791 val = 0;
792 mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val);
793 mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64);
794
795 /* Build PORT_SDMA_CONFIG_REG */
796 val = 0;
797
798 /* Default burst size */
799 val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
800 val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
801 val |= MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP;
802
803 /* Assign port SDMA configuration */
804 mvreg_write(pp, MVNETA_SDMA_CONFIG, val);
805
806 /* Enable PHY polling in hardware for U-Boot */
807 val = mvreg_read(pp, MVNETA_UNIT_CONTROL);
808 val |= MVNETA_PHY_POLLING_ENABLE;
809 mvreg_write(pp, MVNETA_UNIT_CONTROL, val);
810
811 mvneta_set_ucast_table(pp, -1);
812 mvneta_set_special_mcast_table(pp, -1);
813 mvneta_set_other_mcast_table(pp, -1);
814}
815
816/* Set unicast address */
817static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble,
818 int queue)
819{
820 unsigned int unicast_reg;
821 unsigned int tbl_offset;
822 unsigned int reg_offset;
823
824 /* Locate the Unicast table entry */
825 last_nibble = (0xf & last_nibble);
826
827 /* offset from unicast tbl base */
828 tbl_offset = (last_nibble / 4) * 4;
829
830 /* offset within the above reg */
831 reg_offset = last_nibble % 4;
832
833 unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset));
834
835 if (queue == -1) {
836 /* Clear accepts frame bit at specified unicast DA tbl entry */
837 unicast_reg &= ~(0xff << (8 * reg_offset));
838 } else {
839 unicast_reg &= ~(0xff << (8 * reg_offset));
840 unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
841 }
842
843 mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg);
844}
845
846/* Set mac address */
847static void mvneta_mac_addr_set(struct mvneta_port *pp, unsigned char *addr,
848 int queue)
849{
850 unsigned int mac_h;
851 unsigned int mac_l;
852
853 if (queue != -1) {
854 mac_l = (addr[4] << 8) | (addr[5]);
855 mac_h = (addr[0] << 24) | (addr[1] << 16) |
856 (addr[2] << 8) | (addr[3] << 0);
857
858 mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l);
859 mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h);
860 }
861
862 /* Accept frames of this address */
863 mvneta_set_ucast_addr(pp, addr[5], queue);
864}
865
866/* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */
867static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc,
868 u32 phys_addr, u32 cookie)
869{
870 rx_desc->buf_cookie = cookie;
871 rx_desc->buf_phys_addr = phys_addr;
872}
873
874/* Decrement sent descriptors counter */
875static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp,
876 struct mvneta_tx_queue *txq,
877 int sent_desc)
878{
879 u32 val;
880
881 /* Only 255 TX descriptors can be updated at once */
882 while (sent_desc > 0xff) {
883 val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT;
884 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
885 sent_desc = sent_desc - 0xff;
886 }
887
888 val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT;
889 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
890}
891
892/* Get number of TX descriptors already sent by HW */
893static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp,
894 struct mvneta_tx_queue *txq)
895{
896 u32 val;
897 int sent_desc;
898
899 val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id));
900 sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >>
901 MVNETA_TXQ_SENT_DESC_SHIFT;
902
903 return sent_desc;
904}
905
906/* Display more error info */
907static void mvneta_rx_error(struct mvneta_port *pp,
908 struct mvneta_rx_desc *rx_desc)
909{
910 u32 status = rx_desc->status;
911
912 if (!mvneta_rxq_desc_is_first_last(status)) {
913 netdev_err(pp->dev,
914 "bad rx status %08x (buffer oversize), size=%d\n",
915 status, rx_desc->data_size);
916 return;
917 }
918
919 switch (status & MVNETA_RXD_ERR_CODE_MASK) {
920 case MVNETA_RXD_ERR_CRC:
921 netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n",
922 status, rx_desc->data_size);
923 break;
924 case MVNETA_RXD_ERR_OVERRUN:
925 netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n",
926 status, rx_desc->data_size);
927 break;
928 case MVNETA_RXD_ERR_LEN:
929 netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n",
930 status, rx_desc->data_size);
931 break;
932 case MVNETA_RXD_ERR_RESOURCE:
933 netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n",
934 status, rx_desc->data_size);
935 break;
936 }
937}
938
939static struct mvneta_rx_queue *mvneta_rxq_handle_get(struct mvneta_port *pp,
940 int rxq)
941{
942 return &pp->rxqs[rxq];
943}
944
945
946/* Drop packets received by the RXQ and free buffers */
947static void mvneta_rxq_drop_pkts(struct mvneta_port *pp,
948 struct mvneta_rx_queue *rxq)
949{
950 int rx_done;
951
952 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
953 if (rx_done)
954 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
955}
956
957/* Handle rxq fill: allocates rxq skbs; called when initializing a port */
958static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
959 int num)
960{
961 int i;
962
963 for (i = 0; i < num; i++) {
964 u32 addr;
965
966 /* U-Boot special: Fill in the rx buffer addresses */
967 addr = buffer_loc.rx_buffers + (i * RX_BUFFER_SIZE);
968 mvneta_rx_desc_fill(rxq->descs + i, addr, addr);
969 }
970
971 /* Add this number of RX descriptors as non occupied (ready to
972 * get packets)
973 */
974 mvneta_rxq_non_occup_desc_add(pp, rxq, i);
975
976 return 0;
977}
978
979/* Rx/Tx queue initialization/cleanup methods */
980
981/* Create a specified RX queue */
982static int mvneta_rxq_init(struct mvneta_port *pp,
983 struct mvneta_rx_queue *rxq)
984
985{
986 rxq->size = pp->rx_ring_size;
987
988 /* Allocate memory for RX descriptors */
989 rxq->descs_phys = (dma_addr_t)rxq->descs;
990 if (rxq->descs == NULL)
991 return -ENOMEM;
992
993 rxq->last_desc = rxq->size - 1;
994
995 /* Set Rx descriptors queue starting address */
996 mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys);
997 mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size);
998
999 /* Fill RXQ with buffers from RX pool */
1000 mvneta_rxq_buf_size_set(pp, rxq, RX_BUFFER_SIZE);
1001 mvneta_rxq_fill(pp, rxq, rxq->size);
1002
1003 return 0;
1004}
1005
1006/* Cleanup Rx queue */
1007static void mvneta_rxq_deinit(struct mvneta_port *pp,
1008 struct mvneta_rx_queue *rxq)
1009{
1010 mvneta_rxq_drop_pkts(pp, rxq);
1011
1012 rxq->descs = NULL;
1013 rxq->last_desc = 0;
1014 rxq->next_desc_to_proc = 0;
1015 rxq->descs_phys = 0;
1016}
1017
1018/* Create and initialize a tx queue */
1019static int mvneta_txq_init(struct mvneta_port *pp,
1020 struct mvneta_tx_queue *txq)
1021{
1022 txq->size = pp->tx_ring_size;
1023
1024 /* Allocate memory for TX descriptors */
1025 txq->descs_phys = (u32)txq->descs;
1026 if (txq->descs == NULL)
1027 return -ENOMEM;
1028
1029 txq->last_desc = txq->size - 1;
1030
1031 /* Set maximum bandwidth for enabled TXQs */
1032 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff);
1033 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff);
1034
1035 /* Set Tx descriptors queue starting address */
1036 mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys);
1037 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size);
1038
1039 return 0;
1040}
1041
1042/* Free allocated resources when mvneta_txq_init() fails to allocate memory*/
1043static void mvneta_txq_deinit(struct mvneta_port *pp,
1044 struct mvneta_tx_queue *txq)
1045{
1046 txq->descs = NULL;
1047 txq->last_desc = 0;
1048 txq->next_desc_to_proc = 0;
1049 txq->descs_phys = 0;
1050
1051 /* Set minimum bandwidth for disabled TXQs */
1052 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0);
1053 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0);
1054
1055 /* Set Tx descriptors queue starting address and size */
1056 mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0);
1057 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0);
1058}
1059
1060/* Cleanup all Tx queues */
1061static void mvneta_cleanup_txqs(struct mvneta_port *pp)
1062{
1063 int queue;
1064
1065 for (queue = 0; queue < txq_number; queue++)
1066 mvneta_txq_deinit(pp, &pp->txqs[queue]);
1067}
1068
1069/* Cleanup all Rx queues */
1070static void mvneta_cleanup_rxqs(struct mvneta_port *pp)
1071{
1072 int queue;
1073
1074 for (queue = 0; queue < rxq_number; queue++)
1075 mvneta_rxq_deinit(pp, &pp->rxqs[queue]);
1076}
1077
1078
1079/* Init all Rx queues */
1080static int mvneta_setup_rxqs(struct mvneta_port *pp)
1081{
1082 int queue;
1083
1084 for (queue = 0; queue < rxq_number; queue++) {
1085 int err = mvneta_rxq_init(pp, &pp->rxqs[queue]);
1086 if (err) {
1087 netdev_err(pp->dev, "%s: can't create rxq=%d\n",
1088 __func__, queue);
1089 mvneta_cleanup_rxqs(pp);
1090 return err;
1091 }
1092 }
1093
1094 return 0;
1095}
1096
1097/* Init all tx queues */
1098static int mvneta_setup_txqs(struct mvneta_port *pp)
1099{
1100 int queue;
1101
1102 for (queue = 0; queue < txq_number; queue++) {
1103 int err = mvneta_txq_init(pp, &pp->txqs[queue]);
1104 if (err) {
1105 netdev_err(pp->dev, "%s: can't create txq=%d\n",
1106 __func__, queue);
1107 mvneta_cleanup_txqs(pp);
1108 return err;
1109 }
1110 }
1111
1112 return 0;
1113}
1114
1115static void mvneta_start_dev(struct mvneta_port *pp)
1116{
1117 /* start the Rx/Tx activity */
1118 mvneta_port_enable(pp);
1119}
1120
Stefan Roese05b38c12015-11-19 07:46:15 +01001121static void mvneta_adjust_link(struct udevice *dev)
Stefan Roese3e103812014-10-22 12:13:14 +02001122{
Stefan Roese05b38c12015-11-19 07:46:15 +01001123 struct mvneta_port *pp = dev_get_priv(dev);
Stefan Roese3e103812014-10-22 12:13:14 +02001124 struct phy_device *phydev = pp->phydev;
1125 int status_change = 0;
1126
1127 if (phydev->link) {
1128 if ((pp->speed != phydev->speed) ||
1129 (pp->duplex != phydev->duplex)) {
1130 u32 val;
1131
1132 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
1133 val &= ~(MVNETA_GMAC_CONFIG_MII_SPEED |
1134 MVNETA_GMAC_CONFIG_GMII_SPEED |
1135 MVNETA_GMAC_CONFIG_FULL_DUPLEX |
1136 MVNETA_GMAC_AN_SPEED_EN |
1137 MVNETA_GMAC_AN_DUPLEX_EN);
1138
1139 if (phydev->duplex)
1140 val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX;
1141
1142 if (phydev->speed == SPEED_1000)
1143 val |= MVNETA_GMAC_CONFIG_GMII_SPEED;
1144 else
1145 val |= MVNETA_GMAC_CONFIG_MII_SPEED;
1146
1147 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
1148
1149 pp->duplex = phydev->duplex;
1150 pp->speed = phydev->speed;
1151 }
1152 }
1153
1154 if (phydev->link != pp->link) {
1155 if (!phydev->link) {
1156 pp->duplex = -1;
1157 pp->speed = 0;
1158 }
1159
1160 pp->link = phydev->link;
1161 status_change = 1;
1162 }
1163
1164 if (status_change) {
1165 if (phydev->link) {
1166 u32 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
1167 val |= (MVNETA_GMAC_FORCE_LINK_PASS |
1168 MVNETA_GMAC_FORCE_LINK_DOWN);
1169 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
1170 mvneta_port_up(pp);
1171 } else {
1172 mvneta_port_down(pp);
1173 }
1174 }
1175}
1176
Stefan Roese05b38c12015-11-19 07:46:15 +01001177static int mvneta_open(struct udevice *dev)
Stefan Roese3e103812014-10-22 12:13:14 +02001178{
Stefan Roese05b38c12015-11-19 07:46:15 +01001179 struct mvneta_port *pp = dev_get_priv(dev);
Stefan Roese3e103812014-10-22 12:13:14 +02001180 int ret;
1181
1182 ret = mvneta_setup_rxqs(pp);
1183 if (ret)
1184 return ret;
1185
1186 ret = mvneta_setup_txqs(pp);
1187 if (ret)
1188 return ret;
1189
1190 mvneta_adjust_link(dev);
1191
1192 mvneta_start_dev(pp);
1193
1194 return 0;
1195}
1196
1197/* Initialize hw */
Stefan Roese05b38c12015-11-19 07:46:15 +01001198static int mvneta_init2(struct mvneta_port *pp)
Stefan Roese3e103812014-10-22 12:13:14 +02001199{
1200 int queue;
1201
1202 /* Disable port */
1203 mvneta_port_disable(pp);
1204
1205 /* Set port default values */
1206 mvneta_defaults_set(pp);
1207
1208 pp->txqs = kzalloc(txq_number * sizeof(struct mvneta_tx_queue),
1209 GFP_KERNEL);
1210 if (!pp->txqs)
1211 return -ENOMEM;
1212
1213 /* U-Boot special: use preallocated area */
1214 pp->txqs[0].descs = buffer_loc.tx_descs;
1215
1216 /* Initialize TX descriptor rings */
1217 for (queue = 0; queue < txq_number; queue++) {
1218 struct mvneta_tx_queue *txq = &pp->txqs[queue];
1219 txq->id = queue;
1220 txq->size = pp->tx_ring_size;
1221 }
1222
1223 pp->rxqs = kzalloc(rxq_number * sizeof(struct mvneta_rx_queue),
1224 GFP_KERNEL);
1225 if (!pp->rxqs) {
1226 kfree(pp->txqs);
1227 return -ENOMEM;
1228 }
1229
1230 /* U-Boot special: use preallocated area */
1231 pp->rxqs[0].descs = buffer_loc.rx_descs;
1232
1233 /* Create Rx descriptor rings */
1234 for (queue = 0; queue < rxq_number; queue++) {
1235 struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
1236 rxq->id = queue;
1237 rxq->size = pp->rx_ring_size;
1238 }
1239
1240 return 0;
1241}
1242
1243/* platform glue : initialize decoding windows */
1244static void mvneta_conf_mbus_windows(struct mvneta_port *pp)
1245{
1246 const struct mbus_dram_target_info *dram;
1247 u32 win_enable;
1248 u32 win_protect;
1249 int i;
1250
1251 dram = mvebu_mbus_dram_info();
1252 for (i = 0; i < 6; i++) {
1253 mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
1254 mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
1255
1256 if (i < 4)
1257 mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
1258 }
1259
1260 win_enable = 0x3f;
1261 win_protect = 0;
1262
1263 for (i = 0; i < dram->num_cs; i++) {
1264 const struct mbus_dram_window *cs = dram->cs + i;
1265 mvreg_write(pp, MVNETA_WIN_BASE(i), (cs->base & 0xffff0000) |
1266 (cs->mbus_attr << 8) | dram->mbus_dram_target_id);
1267
1268 mvreg_write(pp, MVNETA_WIN_SIZE(i),
1269 (cs->size - 1) & 0xffff0000);
1270
1271 win_enable &= ~(1 << i);
1272 win_protect |= 3 << (2 * i);
1273 }
1274
1275 mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
1276}
1277
1278/* Power up the port */
1279static int mvneta_port_power_up(struct mvneta_port *pp, int phy_mode)
1280{
1281 u32 ctrl;
1282
1283 /* MAC Cause register should be cleared */
1284 mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0);
1285
1286 ctrl = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
1287
1288 /* Even though it might look weird, when we're configured in
1289 * SGMII or QSGMII mode, the RGMII bit needs to be set.
1290 */
1291 switch (phy_mode) {
1292 case PHY_INTERFACE_MODE_QSGMII:
1293 mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_QSGMII_SERDES_PROTO);
1294 ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII;
1295 break;
1296 case PHY_INTERFACE_MODE_SGMII:
1297 mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_SGMII_SERDES_PROTO);
1298 ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII;
1299 break;
1300 case PHY_INTERFACE_MODE_RGMII:
1301 case PHY_INTERFACE_MODE_RGMII_ID:
1302 ctrl |= MVNETA_GMAC2_PORT_RGMII;
1303 break;
1304 default:
1305 return -EINVAL;
1306 }
1307
1308 /* Cancel Port Reset */
1309 ctrl &= ~MVNETA_GMAC2_PORT_RESET;
1310 mvreg_write(pp, MVNETA_GMAC_CTRL_2, ctrl);
1311
1312 while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) &
1313 MVNETA_GMAC2_PORT_RESET) != 0)
1314 continue;
1315
1316 return 0;
1317}
1318
1319/* Device initialization routine */
Stefan Roese05b38c12015-11-19 07:46:15 +01001320static int mvneta_init(struct udevice *dev)
Stefan Roese3e103812014-10-22 12:13:14 +02001321{
Stefan Roese05b38c12015-11-19 07:46:15 +01001322 struct eth_pdata *pdata = dev_get_platdata(dev);
1323 struct mvneta_port *pp = dev_get_priv(dev);
Stefan Roese3e103812014-10-22 12:13:14 +02001324 int err;
1325
1326 pp->tx_ring_size = MVNETA_MAX_TXD;
1327 pp->rx_ring_size = MVNETA_MAX_RXD;
1328
Stefan Roese05b38c12015-11-19 07:46:15 +01001329 err = mvneta_init2(pp);
Stefan Roese3e103812014-10-22 12:13:14 +02001330 if (err < 0) {
1331 dev_err(&pdev->dev, "can't init eth hal\n");
1332 return err;
1333 }
1334
Stefan Roese05b38c12015-11-19 07:46:15 +01001335 mvneta_mac_addr_set(pp, pdata->enetaddr, rxq_def);
Stefan Roese3e103812014-10-22 12:13:14 +02001336
1337 err = mvneta_port_power_up(pp, pp->phy_interface);
1338 if (err < 0) {
1339 dev_err(&pdev->dev, "can't power up port\n");
1340 return err;
1341 }
1342
1343 /* Call open() now as it needs to be done before runing send() */
1344 mvneta_open(dev);
1345
1346 return 0;
1347}
1348
1349/* U-Boot only functions follow here */
1350
1351/* SMI / MDIO functions */
1352
1353static int smi_wait_ready(struct mvneta_port *pp)
1354{
1355 u32 timeout = MVNETA_SMI_TIMEOUT;
1356 u32 smi_reg;
1357
1358 /* wait till the SMI is not busy */
1359 do {
1360 /* read smi register */
1361 smi_reg = mvreg_read(pp, MVNETA_SMI);
1362 if (timeout-- == 0) {
1363 printf("Error: SMI busy timeout\n");
1364 return -EFAULT;
1365 }
1366 } while (smi_reg & MVNETA_SMI_BUSY);
1367
1368 return 0;
1369}
1370
1371/*
Stefan Roese05b38c12015-11-19 07:46:15 +01001372 * mvneta_mdio_read - miiphy_read callback function.
Stefan Roese3e103812014-10-22 12:13:14 +02001373 *
1374 * Returns 16bit phy register value, or 0xffff on error
1375 */
Stefan Roese05b38c12015-11-19 07:46:15 +01001376static int mvneta_mdio_read(struct mii_dev *bus, int addr, int devad, int reg)
Stefan Roese3e103812014-10-22 12:13:14 +02001377{
Stefan Roese05b38c12015-11-19 07:46:15 +01001378 struct mvneta_port *pp = bus->priv;
Stefan Roese3e103812014-10-22 12:13:14 +02001379 u32 smi_reg;
1380 u32 timeout;
1381
1382 /* check parameters */
Stefan Roese05b38c12015-11-19 07:46:15 +01001383 if (addr > MVNETA_PHY_ADDR_MASK) {
1384 printf("Error: Invalid PHY address %d\n", addr);
Stefan Roese3e103812014-10-22 12:13:14 +02001385 return -EFAULT;
1386 }
1387
Stefan Roese05b38c12015-11-19 07:46:15 +01001388 if (reg > MVNETA_PHY_REG_MASK) {
1389 printf("Err: Invalid register offset %d\n", reg);
Stefan Roese3e103812014-10-22 12:13:14 +02001390 return -EFAULT;
1391 }
1392
1393 /* wait till the SMI is not busy */
1394 if (smi_wait_ready(pp) < 0)
1395 return -EFAULT;
1396
1397 /* fill the phy address and regiser offset and read opcode */
Stefan Roese05b38c12015-11-19 07:46:15 +01001398 smi_reg = (addr << MVNETA_SMI_DEV_ADDR_OFFS)
1399 | (reg << MVNETA_SMI_REG_ADDR_OFFS)
Stefan Roese3e103812014-10-22 12:13:14 +02001400 | MVNETA_SMI_OPCODE_READ;
1401
1402 /* write the smi register */
1403 mvreg_write(pp, MVNETA_SMI, smi_reg);
1404
Stefan Roese05b38c12015-11-19 07:46:15 +01001405 /* wait till read value is ready */
Stefan Roese3e103812014-10-22 12:13:14 +02001406 timeout = MVNETA_SMI_TIMEOUT;
1407
1408 do {
1409 /* read smi register */
1410 smi_reg = mvreg_read(pp, MVNETA_SMI);
1411 if (timeout-- == 0) {
1412 printf("Err: SMI read ready timeout\n");
1413 return -EFAULT;
1414 }
1415 } while (!(smi_reg & MVNETA_SMI_READ_VALID));
1416
1417 /* Wait for the data to update in the SMI register */
1418 for (timeout = 0; timeout < MVNETA_SMI_TIMEOUT; timeout++)
1419 ;
1420
Stefan Roese05b38c12015-11-19 07:46:15 +01001421 return mvreg_read(pp, MVNETA_SMI) & MVNETA_SMI_DATA_MASK;
Stefan Roese3e103812014-10-22 12:13:14 +02001422}
1423
1424/*
Stefan Roese05b38c12015-11-19 07:46:15 +01001425 * mvneta_mdio_write - miiphy_write callback function.
Stefan Roese3e103812014-10-22 12:13:14 +02001426 *
1427 * Returns 0 if write succeed, -EINVAL on bad parameters
1428 * -ETIME on timeout
1429 */
Stefan Roese05b38c12015-11-19 07:46:15 +01001430static int mvneta_mdio_write(struct mii_dev *bus, int addr, int devad, int reg,
1431 u16 value)
Stefan Roese3e103812014-10-22 12:13:14 +02001432{
Stefan Roese05b38c12015-11-19 07:46:15 +01001433 struct mvneta_port *pp = bus->priv;
Stefan Roese3e103812014-10-22 12:13:14 +02001434 u32 smi_reg;
1435
1436 /* check parameters */
Stefan Roese05b38c12015-11-19 07:46:15 +01001437 if (addr > MVNETA_PHY_ADDR_MASK) {
1438 printf("Error: Invalid PHY address %d\n", addr);
Stefan Roese3e103812014-10-22 12:13:14 +02001439 return -EFAULT;
1440 }
1441
Stefan Roese05b38c12015-11-19 07:46:15 +01001442 if (reg > MVNETA_PHY_REG_MASK) {
1443 printf("Err: Invalid register offset %d\n", reg);
Stefan Roese3e103812014-10-22 12:13:14 +02001444 return -EFAULT;
1445 }
1446
1447 /* wait till the SMI is not busy */
1448 if (smi_wait_ready(pp) < 0)
1449 return -EFAULT;
1450
1451 /* fill the phy addr and reg offset and write opcode and data */
Stefan Roese05b38c12015-11-19 07:46:15 +01001452 smi_reg = value << MVNETA_SMI_DATA_OFFS;
1453 smi_reg |= (addr << MVNETA_SMI_DEV_ADDR_OFFS)
1454 | (reg << MVNETA_SMI_REG_ADDR_OFFS);
Stefan Roese3e103812014-10-22 12:13:14 +02001455 smi_reg &= ~MVNETA_SMI_OPCODE_READ;
1456
1457 /* write the smi register */
1458 mvreg_write(pp, MVNETA_SMI, smi_reg);
1459
1460 return 0;
1461}
1462
Stefan Roese05b38c12015-11-19 07:46:15 +01001463static int mvneta_start(struct udevice *dev)
Stefan Roese3e103812014-10-22 12:13:14 +02001464{
Stefan Roese05b38c12015-11-19 07:46:15 +01001465 struct mvneta_port *pp = dev_get_priv(dev);
Stefan Roese3e103812014-10-22 12:13:14 +02001466 struct phy_device *phydev;
1467
1468 mvneta_port_power_up(pp, pp->phy_interface);
1469
1470 if (!pp->init || pp->link == 0) {
1471 /* Set phy address of the port */
1472 mvreg_write(pp, MVNETA_PHY_ADDR, pp->phyaddr);
1473 phydev = phy_connect(pp->bus, pp->phyaddr, dev,
1474 pp->phy_interface);
1475
1476 pp->phydev = phydev;
1477 phy_config(phydev);
1478 phy_startup(phydev);
1479 if (!phydev->link) {
1480 printf("%s: No link.\n", phydev->dev->name);
1481 return -1;
1482 }
1483
1484 /* Full init on first call */
Stefan Roese05b38c12015-11-19 07:46:15 +01001485 mvneta_init(dev);
Stefan Roese3e103812014-10-22 12:13:14 +02001486 pp->init = 1;
1487 } else {
1488 /* Upon all following calls, this is enough */
1489 mvneta_port_up(pp);
1490 mvneta_port_enable(pp);
1491 }
1492
1493 return 0;
1494}
1495
Stefan Roese05b38c12015-11-19 07:46:15 +01001496static int mvneta_send(struct udevice *dev, void *packet, int length)
Stefan Roese3e103812014-10-22 12:13:14 +02001497{
Stefan Roese05b38c12015-11-19 07:46:15 +01001498 struct mvneta_port *pp = dev_get_priv(dev);
Stefan Roese3e103812014-10-22 12:13:14 +02001499 struct mvneta_tx_queue *txq = &pp->txqs[0];
1500 struct mvneta_tx_desc *tx_desc;
1501 int sent_desc;
1502 u32 timeout = 0;
1503
1504 /* Get a descriptor for the first part of the packet */
1505 tx_desc = mvneta_txq_next_desc_get(txq);
1506
Stefan Roese05b38c12015-11-19 07:46:15 +01001507 tx_desc->buf_phys_addr = (u32)packet;
1508 tx_desc->data_size = length;
Stefan Roese68849a92016-08-25 12:56:50 +02001509 flush_dcache_range((u32)packet,
1510 (u32)packet + ALIGN(length, PKTALIGN));
Stefan Roese3e103812014-10-22 12:13:14 +02001511
1512 /* First and Last descriptor */
1513 tx_desc->command = MVNETA_TX_L4_CSUM_NOT | MVNETA_TXD_FLZ_DESC;
1514 mvneta_txq_pend_desc_add(pp, txq, 1);
1515
1516 /* Wait for packet to be sent (queue might help with speed here) */
1517 sent_desc = mvneta_txq_sent_desc_num_get(pp, txq);
1518 while (!sent_desc) {
1519 if (timeout++ > 10000) {
1520 printf("timeout: packet not sent\n");
1521 return -1;
1522 }
1523 sent_desc = mvneta_txq_sent_desc_num_get(pp, txq);
1524 }
1525
1526 /* txDone has increased - hw sent packet */
1527 mvneta_txq_sent_desc_dec(pp, txq, sent_desc);
Stefan Roese3e103812014-10-22 12:13:14 +02001528
1529 return 0;
1530}
1531
Stefan Roese05b38c12015-11-19 07:46:15 +01001532static int mvneta_recv(struct udevice *dev, int flags, uchar **packetp)
Stefan Roese3e103812014-10-22 12:13:14 +02001533{
Stefan Roese05b38c12015-11-19 07:46:15 +01001534 struct mvneta_port *pp = dev_get_priv(dev);
Stefan Roese3e103812014-10-22 12:13:14 +02001535 int rx_done;
Stefan Roese3e103812014-10-22 12:13:14 +02001536 struct mvneta_rx_queue *rxq;
Stefan Roese05b38c12015-11-19 07:46:15 +01001537 int rx_bytes = 0;
Stefan Roese3e103812014-10-22 12:13:14 +02001538
1539 /* get rx queue */
1540 rxq = mvneta_rxq_handle_get(pp, rxq_def);
1541 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
Stefan Roese3e103812014-10-22 12:13:14 +02001542
Stefan Roese05b38c12015-11-19 07:46:15 +01001543 if (rx_done) {
Stefan Roese3e103812014-10-22 12:13:14 +02001544 struct mvneta_rx_desc *rx_desc;
1545 unsigned char *data;
1546 u32 rx_status;
Stefan Roese3e103812014-10-22 12:13:14 +02001547
1548 /*
1549 * No cache invalidation needed here, since the desc's are
1550 * located in a uncached memory region
1551 */
1552 rx_desc = mvneta_rxq_next_desc_get(rxq);
1553
1554 rx_status = rx_desc->status;
1555 if (!mvneta_rxq_desc_is_first_last(rx_status) ||
1556 (rx_status & MVNETA_RXD_ERR_SUMMARY)) {
1557 mvneta_rx_error(pp, rx_desc);
1558 /* leave the descriptor untouched */
Stefan Roese05b38c12015-11-19 07:46:15 +01001559 return -EIO;
Stefan Roese3e103812014-10-22 12:13:14 +02001560 }
1561
1562 /* 2 bytes for marvell header. 4 bytes for crc */
1563 rx_bytes = rx_desc->data_size - 6;
1564
1565 /* give packet to stack - skip on first 2 bytes */
1566 data = (u8 *)rx_desc->buf_cookie + 2;
1567 /*
1568 * No cache invalidation needed here, since the rx_buffer's are
1569 * located in a uncached memory region
1570 */
Stefan Roese05b38c12015-11-19 07:46:15 +01001571 *packetp = data;
Stefan Roese3e103812014-10-22 12:13:14 +02001572
Stefan Roese3e103812014-10-22 12:13:14 +02001573 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
Stefan Roese05b38c12015-11-19 07:46:15 +01001574 }
Stefan Roese3e103812014-10-22 12:13:14 +02001575
Stefan Roese05b38c12015-11-19 07:46:15 +01001576 return rx_bytes;
Stefan Roese3e103812014-10-22 12:13:14 +02001577}
1578
Stefan Roese05b38c12015-11-19 07:46:15 +01001579static int mvneta_probe(struct udevice *dev)
Stefan Roese3e103812014-10-22 12:13:14 +02001580{
Stefan Roese05b38c12015-11-19 07:46:15 +01001581 struct eth_pdata *pdata = dev_get_platdata(dev);
1582 struct mvneta_port *pp = dev_get_priv(dev);
1583 void *blob = (void *)gd->fdt_blob;
1584 int node = dev->of_offset;
1585 struct mii_dev *bus;
1586 unsigned long addr;
Stefan Roese3e103812014-10-22 12:13:14 +02001587 void *bd_space;
1588
Stefan Roese3e103812014-10-22 12:13:14 +02001589 /*
1590 * Allocate buffer area for descs and rx_buffers. This is only
1591 * done once for all interfaces. As only one interface can
1592 * be active. Make this area DMA save by disabling the D-cache
1593 */
1594 if (!buffer_loc.tx_descs) {
1595 /* Align buffer area for descs and rx_buffers to 1MiB */
1596 bd_space = memalign(1 << MMU_SECTION_SHIFT, BD_SPACE);
1597 mmu_set_region_dcache_behaviour((u32)bd_space, BD_SPACE,
1598 DCACHE_OFF);
1599 buffer_loc.tx_descs = (struct mvneta_tx_desc *)bd_space;
1600 buffer_loc.rx_descs = (struct mvneta_rx_desc *)
1601 ((u32)bd_space +
1602 MVNETA_MAX_TXD * sizeof(struct mvneta_tx_desc));
1603 buffer_loc.rx_buffers = (u32)
1604 (bd_space +
1605 MVNETA_MAX_TXD * sizeof(struct mvneta_tx_desc) +
1606 MVNETA_MAX_RXD * sizeof(struct mvneta_rx_desc));
1607 }
1608
Stefan Roese05b38c12015-11-19 07:46:15 +01001609 pp->base = (void __iomem *)pdata->iobase;
Stefan Roese3e103812014-10-22 12:13:14 +02001610
Stefan Roese05b38c12015-11-19 07:46:15 +01001611 /* Configure MBUS address windows */
1612 mvneta_conf_mbus_windows(pp);
Stefan Roese3e103812014-10-22 12:13:14 +02001613
Stefan Roese05b38c12015-11-19 07:46:15 +01001614 /* PHY interface is already decoded in mvneta_ofdata_to_platdata() */
1615 pp->phy_interface = pdata->phy_interface;
Stefan Roese3e103812014-10-22 12:13:14 +02001616
Stefan Roese05b38c12015-11-19 07:46:15 +01001617 /* Now read phyaddr from DT */
1618 addr = fdtdec_get_int(blob, node, "phy", 0);
1619 addr = fdt_node_offset_by_phandle(blob, addr);
1620 pp->phyaddr = fdtdec_get_int(blob, addr, "reg", 0);
Stefan Roese3e103812014-10-22 12:13:14 +02001621
Stefan Roese05b38c12015-11-19 07:46:15 +01001622 bus = mdio_alloc();
1623 if (!bus) {
1624 printf("Failed to allocate MDIO bus\n");
1625 return -ENOMEM;
1626 }
1627
1628 bus->read = mvneta_mdio_read;
1629 bus->write = mvneta_mdio_write;
1630 snprintf(bus->name, sizeof(bus->name), dev->name);
1631 bus->priv = (void *)pp;
1632 pp->bus = bus;
1633
1634 return mdio_register(bus);
1635}
1636
1637static void mvneta_stop(struct udevice *dev)
1638{
1639 struct mvneta_port *pp = dev_get_priv(dev);
1640
1641 mvneta_port_down(pp);
1642 mvneta_port_disable(pp);
1643}
1644
1645static const struct eth_ops mvneta_ops = {
1646 .start = mvneta_start,
1647 .send = mvneta_send,
1648 .recv = mvneta_recv,
1649 .stop = mvneta_stop,
1650};
1651
1652static int mvneta_ofdata_to_platdata(struct udevice *dev)
1653{
1654 struct eth_pdata *pdata = dev_get_platdata(dev);
1655 const char *phy_mode;
1656
1657 pdata->iobase = dev_get_addr(dev);
1658
1659 /* Get phy-mode / phy_interface from DT */
1660 pdata->phy_interface = -1;
1661 phy_mode = fdt_getprop(gd->fdt_blob, dev->of_offset, "phy-mode", NULL);
1662 if (phy_mode)
1663 pdata->phy_interface = phy_get_interface_by_name(phy_mode);
1664 if (pdata->phy_interface == -1) {
1665 debug("%s: Invalid PHY interface '%s'\n", __func__, phy_mode);
1666 return -EINVAL;
1667 }
Stefan Roese3e103812014-10-22 12:13:14 +02001668
Stefan Roese05b38c12015-11-19 07:46:15 +01001669 return 0;
Stefan Roese3e103812014-10-22 12:13:14 +02001670}
Stefan Roese05b38c12015-11-19 07:46:15 +01001671
1672static const struct udevice_id mvneta_ids[] = {
1673 { .compatible = "marvell,armada-370-neta" },
1674 { .compatible = "marvell,armada-xp-neta" },
1675 { }
1676};
1677
1678U_BOOT_DRIVER(mvneta) = {
1679 .name = "mvneta",
1680 .id = UCLASS_ETH,
1681 .of_match = mvneta_ids,
1682 .ofdata_to_platdata = mvneta_ofdata_to_platdata,
1683 .probe = mvneta_probe,
1684 .ops = &mvneta_ops,
1685 .priv_auto_alloc_size = sizeof(struct mvneta_port),
1686 .platdata_auto_alloc_size = sizeof(struct eth_pdata),
1687};