blob: 14a57c3106d550138af6f23bd78f3e12551bb3bf [file] [log] [blame]
Simon Glassb2c1cac2014-02-26 15:59:21 -07001/*
2 * Tests for the core driver model code
3 *
4 * Copyright (c) 2013 Google, Inc
5 *
6 * SPDX-License-Identifier: GPL-2.0+
7 */
8
9#include <common.h>
10#include <errno.h>
11#include <dm.h>
12#include <fdtdec.h>
13#include <malloc.h>
14#include <dm/device-internal.h>
15#include <dm/root.h>
16#include <dm/ut.h>
17#include <dm/util.h>
18#include <dm/test.h>
19#include <dm/uclass-internal.h>
20
21DECLARE_GLOBAL_DATA_PTR;
22
23enum {
24 TEST_INTVAL1 = 0,
25 TEST_INTVAL2 = 3,
26 TEST_INTVAL3 = 6,
27 TEST_INTVAL_MANUAL = 101112,
28};
29
30static const struct dm_test_pdata test_pdata[] = {
31 { .ping_add = TEST_INTVAL1, },
32 { .ping_add = TEST_INTVAL2, },
33 { .ping_add = TEST_INTVAL3, },
34};
35
36static const struct dm_test_pdata test_pdata_manual = {
37 .ping_add = TEST_INTVAL_MANUAL,
38};
39
40U_BOOT_DEVICE(dm_test_info1) = {
41 .name = "test_drv",
42 .platdata = &test_pdata[0],
43};
44
45U_BOOT_DEVICE(dm_test_info2) = {
46 .name = "test_drv",
47 .platdata = &test_pdata[1],
48};
49
50U_BOOT_DEVICE(dm_test_info3) = {
51 .name = "test_drv",
52 .platdata = &test_pdata[2],
53};
54
55static struct driver_info driver_info_manual = {
56 .name = "test_manual_drv",
57 .platdata = &test_pdata_manual,
58};
59
60/* Test that binding with platdata occurs correctly */
61static int dm_test_autobind(struct dm_test_state *dms)
62{
63 struct device *dev;
64
65 /*
66 * We should have a single class (UCLASS_ROOT) and a single root
67 * device with no children.
68 */
69 ut_assert(dms->root);
70 ut_asserteq(1, list_count_items(&gd->uclass_root));
71 ut_asserteq(0, list_count_items(&gd->dm_root->child_head));
72 ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_POST_BIND]);
73
74 ut_assertok(dm_scan_platdata());
75
76 /* We should have our test class now at least, plus more children */
77 ut_assert(1 < list_count_items(&gd->uclass_root));
78 ut_assert(0 < list_count_items(&gd->dm_root->child_head));
79
80 /* Our 3 dm_test_infox children should be bound to the test uclass */
81 ut_asserteq(3, dm_testdrv_op_count[DM_TEST_OP_POST_BIND]);
82
83 /* No devices should be probed */
84 list_for_each_entry(dev, &gd->dm_root->child_head, sibling_node)
85 ut_assert(!(dev->flags & DM_FLAG_ACTIVATED));
86
87 /* Our test driver should have been bound 3 times */
88 ut_assert(dm_testdrv_op_count[DM_TEST_OP_BIND] == 3);
89
90 return 0;
91}
92DM_TEST(dm_test_autobind, 0);
93
94/* Test that autoprobe finds all the expected devices */
95static int dm_test_autoprobe(struct dm_test_state *dms)
96{
97 int expected_base_add;
98 struct device *dev;
99 struct uclass *uc;
100 int i;
101
102 ut_assertok(uclass_get(UCLASS_TEST, &uc));
103 ut_assert(uc);
104
105 ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_INIT]);
106 ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_POST_PROBE]);
107
108 /* The root device should not be activated until needed */
109 ut_assert(!(dms->root->flags & DM_FLAG_ACTIVATED));
110
111 /*
112 * We should be able to find the three test devices, and they should
113 * all be activated as they are used (lazy activation, required by
114 * U-Boot)
115 */
116 for (i = 0; i < 3; i++) {
117 ut_assertok(uclass_find_device(UCLASS_TEST, i, &dev));
118 ut_assert(dev);
119 ut_assertf(!(dev->flags & DM_FLAG_ACTIVATED),
120 "Driver %d/%s already activated", i, dev->name);
121
122 /* This should activate it */
123 ut_assertok(uclass_get_device(UCLASS_TEST, i, &dev));
124 ut_assert(dev);
125 ut_assert(dev->flags & DM_FLAG_ACTIVATED);
126
127 /* Activating a device should activate the root device */
128 if (!i)
129 ut_assert(dms->root->flags & DM_FLAG_ACTIVATED);
130 }
131
132 /* Our 3 dm_test_infox children should be passed to post_probe */
133 ut_asserteq(3, dm_testdrv_op_count[DM_TEST_OP_POST_PROBE]);
134
135 /* Also we can check the per-device data */
136 expected_base_add = 0;
137 for (i = 0; i < 3; i++) {
138 struct dm_test_uclass_perdev_priv *priv;
139 struct dm_test_pdata *pdata;
140
141 ut_assertok(uclass_find_device(UCLASS_TEST, i, &dev));
142 ut_assert(dev);
143
144 priv = dev->uclass_priv;
145 ut_assert(priv);
146 ut_asserteq(expected_base_add, priv->base_add);
147
148 pdata = dev->platdata;
149 expected_base_add += pdata->ping_add;
150 }
151
152 return 0;
153}
154DM_TEST(dm_test_autoprobe, DM_TESTF_SCAN_PDATA);
155
156/* Check that we see the correct platdata in each device */
157static int dm_test_platdata(struct dm_test_state *dms)
158{
159 const struct dm_test_pdata *pdata;
160 struct device *dev;
161 int i;
162
163 for (i = 0; i < 3; i++) {
164 ut_assertok(uclass_find_device(UCLASS_TEST, i, &dev));
165 ut_assert(dev);
166 pdata = dev->platdata;
167 ut_assert(pdata->ping_add == test_pdata[i].ping_add);
168 }
169
170 return 0;
171}
172DM_TEST(dm_test_platdata, DM_TESTF_SCAN_PDATA);
173
174/* Test that we can bind, probe, remove, unbind a driver */
175static int dm_test_lifecycle(struct dm_test_state *dms)
176{
177 int op_count[DM_TEST_OP_COUNT];
178 struct device *dev, *test_dev;
179 int pingret;
180 int ret;
181
182 memcpy(op_count, dm_testdrv_op_count, sizeof(op_count));
183
184 ut_assertok(device_bind_by_name(dms->root, &driver_info_manual,
185 &dev));
186 ut_assert(dev);
187 ut_assert(dm_testdrv_op_count[DM_TEST_OP_BIND]
188 == op_count[DM_TEST_OP_BIND] + 1);
189 ut_assert(!dev->priv);
190
191 /* Probe the device - it should fail allocating private data */
192 dms->force_fail_alloc = 1;
193 ret = device_probe(dev);
194 ut_assert(ret == -ENOMEM);
195 ut_assert(dm_testdrv_op_count[DM_TEST_OP_PROBE]
196 == op_count[DM_TEST_OP_PROBE] + 1);
197 ut_assert(!dev->priv);
198
199 /* Try again without the alloc failure */
200 dms->force_fail_alloc = 0;
201 ut_assertok(device_probe(dev));
202 ut_assert(dm_testdrv_op_count[DM_TEST_OP_PROBE]
203 == op_count[DM_TEST_OP_PROBE] + 2);
204 ut_assert(dev->priv);
205
206 /* This should be device 3 in the uclass */
207 ut_assertok(uclass_find_device(UCLASS_TEST, 3, &test_dev));
208 ut_assert(dev == test_dev);
209
210 /* Try ping */
211 ut_assertok(test_ping(dev, 100, &pingret));
212 ut_assert(pingret == 102);
213
214 /* Now remove device 3 */
215 ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_PRE_REMOVE]);
216 ut_assertok(device_remove(dev));
217 ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_PRE_REMOVE]);
218
219 ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_UNBIND]);
220 ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_PRE_UNBIND]);
221 ut_assertok(device_unbind(dev));
222 ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_UNBIND]);
223 ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_PRE_UNBIND]);
224
225 return 0;
226}
227DM_TEST(dm_test_lifecycle, DM_TESTF_SCAN_PDATA | DM_TESTF_PROBE_TEST);
228
229/* Test that we can bind/unbind and the lists update correctly */
230static int dm_test_ordering(struct dm_test_state *dms)
231{
232 struct device *dev, *dev_penultimate, *dev_last, *test_dev;
233 int pingret;
234
235 ut_assertok(device_bind_by_name(dms->root, &driver_info_manual,
236 &dev));
237 ut_assert(dev);
238
239 /* Bind two new devices (numbers 4 and 5) */
240 ut_assertok(device_bind_by_name(dms->root, &driver_info_manual,
241 &dev_penultimate));
242 ut_assert(dev_penultimate);
243 ut_assertok(device_bind_by_name(dms->root, &driver_info_manual,
244 &dev_last));
245 ut_assert(dev_last);
246
247 /* Now remove device 3 */
248 ut_assertok(device_remove(dev));
249 ut_assertok(device_unbind(dev));
250
251 /* The device numbering should have shifted down one */
252 ut_assertok(uclass_find_device(UCLASS_TEST, 3, &test_dev));
253 ut_assert(dev_penultimate == test_dev);
254 ut_assertok(uclass_find_device(UCLASS_TEST, 4, &test_dev));
255 ut_assert(dev_last == test_dev);
256
257 /* Add back the original device 3, now in position 5 */
258 ut_assertok(device_bind_by_name(dms->root, &driver_info_manual, &dev));
259 ut_assert(dev);
260
261 /* Try ping */
262 ut_assertok(test_ping(dev, 100, &pingret));
263 ut_assert(pingret == 102);
264
265 /* Remove 3 and 4 */
266 ut_assertok(device_remove(dev_penultimate));
267 ut_assertok(device_unbind(dev_penultimate));
268 ut_assertok(device_remove(dev_last));
269 ut_assertok(device_unbind(dev_last));
270
271 /* Our device should now be in position 3 */
272 ut_assertok(uclass_find_device(UCLASS_TEST, 3, &test_dev));
273 ut_assert(dev == test_dev);
274
275 /* Now remove device 3 */
276 ut_assertok(device_remove(dev));
277 ut_assertok(device_unbind(dev));
278
279 return 0;
280}
281DM_TEST(dm_test_ordering, DM_TESTF_SCAN_PDATA);
282
283/* Check that we can perform operations on a device (do a ping) */
284int dm_check_operations(struct dm_test_state *dms, struct device *dev,
285 uint32_t base, struct dm_test_priv *priv)
286{
287 int expected;
288 int pingret;
289
290 /* Getting the child device should allocate platdata / priv */
291 ut_assertok(testfdt_ping(dev, 10, &pingret));
292 ut_assert(dev->priv);
293 ut_assert(dev->platdata);
294
295 expected = 10 + base;
296 ut_asserteq(expected, pingret);
297
298 /* Do another ping */
299 ut_assertok(testfdt_ping(dev, 20, &pingret));
300 expected = 20 + base;
301 ut_asserteq(expected, pingret);
302
303 /* Now check the ping_total */
304 priv = dev->priv;
305 ut_asserteq(DM_TEST_START_TOTAL + 10 + 20 + base * 2,
306 priv->ping_total);
307
308 return 0;
309}
310
311/* Check that we can perform operations on devices */
312static int dm_test_operations(struct dm_test_state *dms)
313{
314 struct device *dev;
315 int i;
316
317 /*
318 * Now check that the ping adds are what we expect. This is using the
319 * ping-add property in each node.
320 */
321 for (i = 0; i < ARRAY_SIZE(test_pdata); i++) {
322 uint32_t base;
323
324 ut_assertok(uclass_get_device(UCLASS_TEST, i, &dev));
325
326 /*
327 * Get the 'reg' property, which tells us what the ping add
328 * should be. We don't use the platdata because we want
329 * to test the code that sets that up (testfdt_drv_probe()).
330 */
331 base = test_pdata[i].ping_add;
332 debug("dev=%d, base=%d\n", i, base);
333
334 ut_assert(!dm_check_operations(dms, dev, base, dev->priv));
335 }
336
337 return 0;
338}
339DM_TEST(dm_test_operations, DM_TESTF_SCAN_PDATA);
340
341/* Remove all drivers and check that things work */
342static int dm_test_remove(struct dm_test_state *dms)
343{
344 struct device *dev;
345 int i;
346
347 for (i = 0; i < 3; i++) {
348 ut_assertok(uclass_find_device(UCLASS_TEST, i, &dev));
349 ut_assert(dev);
350 ut_assertf(dev->flags & DM_FLAG_ACTIVATED,
351 "Driver %d/%s not activated", i, dev->name);
352 ut_assertok(device_remove(dev));
353 ut_assertf(!(dev->flags & DM_FLAG_ACTIVATED),
354 "Driver %d/%s should have deactivated", i,
355 dev->name);
356 ut_assert(!dev->priv);
357 }
358
359 return 0;
360}
361DM_TEST(dm_test_remove, DM_TESTF_SCAN_PDATA | DM_TESTF_PROBE_TEST);
362
363/* Remove and recreate everything, check for memory leaks */
364static int dm_test_leak(struct dm_test_state *dms)
365{
366 int i;
367
368 for (i = 0; i < 2; i++) {
369 struct mallinfo start, end;
370 struct device *dev;
371 int ret;
372 int id;
373
374 start = mallinfo();
375 if (!start.uordblks)
376 puts("Warning: Please add '#define DEBUG' to the top of common/dlmalloc.c\n");
377
378 ut_assertok(dm_scan_platdata());
379 ut_assertok(dm_scan_fdt(gd->fdt_blob));
380
381 /* Scanning the uclass is enough to probe all the devices */
382 for (id = UCLASS_ROOT; id < UCLASS_COUNT; id++) {
383 for (ret = uclass_first_device(UCLASS_TEST, &dev);
384 dev;
385 ret = uclass_next_device(&dev))
386 ;
387 ut_assertok(ret);
388 }
389
390 /* Don't delete the root class, since we started with that */
391 for (id = UCLASS_ROOT + 1; id < UCLASS_COUNT; id++) {
392 struct uclass *uc;
393
394 uc = uclass_find(id);
395 if (!uc)
396 continue;
397 ut_assertok(uclass_destroy(uc));
398 }
399
400 end = mallinfo();
401 ut_asserteq(start.uordblks, end.uordblks);
402 }
403
404 return 0;
405}
406DM_TEST(dm_test_leak, 0);
407
408/* Test uclass init/destroy methods */
409static int dm_test_uclass(struct dm_test_state *dms)
410{
411 struct uclass *uc;
412
413 ut_assertok(uclass_get(UCLASS_TEST, &uc));
414 ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_INIT]);
415 ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_DESTROY]);
416 ut_assert(uc->priv);
417
418 ut_assertok(uclass_destroy(uc));
419 ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_INIT]);
420 ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_DESTROY]);
421
422 return 0;
423}
424DM_TEST(dm_test_uclass, 0);
425
426/**
427 * create_children() - Create children of a parent node
428 *
429 * @dms: Test system state
430 * @parent: Parent device
431 * @count: Number of children to create
432 * @key: Key value to put in first child. Subsequence children
433 * receive an incrementing value
434 * @child: If not NULL, then the child device pointers are written into
435 * this array.
436 * @return 0 if OK, -ve on error
437 */
438static int create_children(struct dm_test_state *dms, struct device *parent,
439 int count, int key, struct device *child[])
440{
441 struct device *dev;
442 int i;
443
444 for (i = 0; i < count; i++) {
445 struct dm_test_pdata *pdata;
446
447 ut_assertok(device_bind_by_name(parent, &driver_info_manual,
448 &dev));
449 pdata = calloc(1, sizeof(*pdata));
450 pdata->ping_add = key + i;
451 dev->platdata = pdata;
452 if (child)
453 child[i] = dev;
454 }
455
456 return 0;
457}
458
459#define NODE_COUNT 10
460
461static int dm_test_children(struct dm_test_state *dms)
462{
463 struct device *top[NODE_COUNT];
464 struct device *child[NODE_COUNT];
465 struct device *grandchild[NODE_COUNT];
466 struct device *dev;
467 int total;
468 int ret;
469 int i;
470
471 /* We don't care about the numbering for this test */
472 dms->skip_post_probe = 1;
473
474 ut_assert(NODE_COUNT > 5);
475
476 /* First create 10 top-level children */
477 ut_assertok(create_children(dms, dms->root, NODE_COUNT, 0, top));
478
479 /* Now a few have their own children */
480 ut_assertok(create_children(dms, top[2], NODE_COUNT, 2, NULL));
481 ut_assertok(create_children(dms, top[5], NODE_COUNT, 5, child));
482
483 /* And grandchildren */
484 for (i = 0; i < NODE_COUNT; i++)
485 ut_assertok(create_children(dms, child[i], NODE_COUNT, 50 * i,
486 i == 2 ? grandchild : NULL));
487
488 /* Check total number of devices */
489 total = NODE_COUNT * (3 + NODE_COUNT);
490 ut_asserteq(total, dm_testdrv_op_count[DM_TEST_OP_BIND]);
491
492 /* Try probing one of the grandchildren */
493 ut_assertok(uclass_get_device(UCLASS_TEST,
494 NODE_COUNT * 3 + 2 * NODE_COUNT, &dev));
495 ut_asserteq_ptr(grandchild[0], dev);
496
497 /*
498 * This should have probed the child and top node also, for a total
499 * of 3 nodes.
500 */
501 ut_asserteq(3, dm_testdrv_op_count[DM_TEST_OP_PROBE]);
502
503 /* Probe the other grandchildren */
504 for (i = 1; i < NODE_COUNT; i++)
505 ut_assertok(device_probe(grandchild[i]));
506
507 ut_asserteq(2 + NODE_COUNT, dm_testdrv_op_count[DM_TEST_OP_PROBE]);
508
509 /* Probe everything */
510 for (ret = uclass_first_device(UCLASS_TEST, &dev);
511 dev;
512 ret = uclass_next_device(&dev))
513 ;
514 ut_assertok(ret);
515
516 ut_asserteq(total, dm_testdrv_op_count[DM_TEST_OP_PROBE]);
517
518 /* Remove a top-level child and check that the children are removed */
519 ut_assertok(device_remove(top[2]));
520 ut_asserteq(NODE_COUNT + 1, dm_testdrv_op_count[DM_TEST_OP_REMOVE]);
521 dm_testdrv_op_count[DM_TEST_OP_REMOVE] = 0;
522
523 /* Try one with grandchildren */
524 ut_assertok(uclass_get_device(UCLASS_TEST, 5, &dev));
525 ut_asserteq_ptr(dev, top[5]);
526 ut_assertok(device_remove(dev));
527 ut_asserteq(1 + NODE_COUNT * (1 + NODE_COUNT),
528 dm_testdrv_op_count[DM_TEST_OP_REMOVE]);
529
530 /* Try the same with unbind */
531 ut_assertok(device_unbind(top[2]));
532 ut_asserteq(NODE_COUNT + 1, dm_testdrv_op_count[DM_TEST_OP_UNBIND]);
533 dm_testdrv_op_count[DM_TEST_OP_UNBIND] = 0;
534
535 /* Try one with grandchildren */
536 ut_assertok(uclass_get_device(UCLASS_TEST, 5, &dev));
537 ut_asserteq_ptr(dev, top[6]);
538 ut_assertok(device_unbind(top[5]));
539 ut_asserteq(1 + NODE_COUNT * (1 + NODE_COUNT),
540 dm_testdrv_op_count[DM_TEST_OP_UNBIND]);
541
542 return 0;
543}
544DM_TEST(dm_test_children, 0);