Jorgen Lundman | 9b4a1f9 | 2012-07-19 20:48:25 +0000 | [diff] [blame] | 1 | /* |
| 2 | * |
| 3 | * ZFS filesystem ported to u-boot by |
| 4 | * Jorgen Lundman <lundman at lundman.net> |
| 5 | * |
| 6 | * GRUB -- GRand Unified Bootloader |
| 7 | * Copyright (C) 1999,2000,2001,2002,2003,2004 |
| 8 | * Free Software Foundation, Inc. |
| 9 | * Copyright 2004 Sun Microsystems, Inc. |
| 10 | * |
| 11 | * GRUB is free software; you can redistribute it and/or modify |
| 12 | * it under the terms of the GNU General Public License as published by |
| 13 | * the Free Software Foundation; either version 2 of the License, or |
| 14 | * (at your option) any later version. |
| 15 | * |
| 16 | * GRUB is distributed in the hope that it will be useful, |
| 17 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 18 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 19 | * GNU General Public License for more details. |
| 20 | * |
| 21 | * You should have received a copy of the GNU General Public License |
| 22 | * along with GRUB. If not, see <http://www.gnu.org/licenses/>. |
| 23 | * |
| 24 | */ |
| 25 | |
| 26 | #include <common.h> |
| 27 | #include <malloc.h> |
| 28 | #include <linux/stat.h> |
| 29 | #include <linux/time.h> |
| 30 | #include <linux/ctype.h> |
| 31 | #include <asm/byteorder.h> |
| 32 | #include "zfs_common.h" |
| 33 | |
| 34 | block_dev_desc_t *zfs_dev_desc; |
| 35 | |
| 36 | /* |
| 37 | * The zfs plug-in routines for GRUB are: |
| 38 | * |
| 39 | * zfs_mount() - locates a valid uberblock of the root pool and reads |
| 40 | * in its MOS at the memory address MOS. |
| 41 | * |
| 42 | * zfs_open() - locates a plain file object by following the MOS |
| 43 | * and places its dnode at the memory address DNODE. |
| 44 | * |
| 45 | * zfs_read() - read in the data blocks pointed by the DNODE. |
| 46 | * |
| 47 | */ |
| 48 | |
| 49 | #include <zfs/zfs.h> |
| 50 | #include <zfs/zio.h> |
| 51 | #include <zfs/dnode.h> |
| 52 | #include <zfs/uberblock_impl.h> |
| 53 | #include <zfs/vdev_impl.h> |
| 54 | #include <zfs/zio_checksum.h> |
| 55 | #include <zfs/zap_impl.h> |
| 56 | #include <zfs/zap_leaf.h> |
| 57 | #include <zfs/zfs_znode.h> |
| 58 | #include <zfs/dmu.h> |
| 59 | #include <zfs/dmu_objset.h> |
| 60 | #include <zfs/sa_impl.h> |
| 61 | #include <zfs/dsl_dir.h> |
| 62 | #include <zfs/dsl_dataset.h> |
| 63 | |
| 64 | |
| 65 | #define ZPOOL_PROP_BOOTFS "bootfs" |
| 66 | |
| 67 | |
| 68 | /* |
| 69 | * For nvlist manipulation. (from nvpair.h) |
| 70 | */ |
| 71 | #define NV_ENCODE_NATIVE 0 |
| 72 | #define NV_ENCODE_XDR 1 |
| 73 | #define NV_BIG_ENDIAN 0 |
| 74 | #define NV_LITTLE_ENDIAN 1 |
| 75 | #define DATA_TYPE_UINT64 8 |
| 76 | #define DATA_TYPE_STRING 9 |
| 77 | #define DATA_TYPE_NVLIST 19 |
| 78 | #define DATA_TYPE_NVLIST_ARRAY 20 |
| 79 | |
| 80 | |
| 81 | /* |
| 82 | * Macros to get fields in a bp or DVA. |
| 83 | */ |
| 84 | #define P2PHASE(x, align) ((x) & ((align) - 1)) |
| 85 | #define DVA_OFFSET_TO_PHYS_SECTOR(offset) \ |
| 86 | ((offset + VDEV_LABEL_START_SIZE) >> SPA_MINBLOCKSHIFT) |
| 87 | |
| 88 | /* |
| 89 | * return x rounded down to an align boundary |
| 90 | * eg, P2ALIGN(1200, 1024) == 1024 (1*align) |
| 91 | * eg, P2ALIGN(1024, 1024) == 1024 (1*align) |
| 92 | * eg, P2ALIGN(0x1234, 0x100) == 0x1200 (0x12*align) |
| 93 | * eg, P2ALIGN(0x5600, 0x100) == 0x5600 (0x56*align) |
| 94 | */ |
| 95 | #define P2ALIGN(x, align) ((x) & -(align)) |
| 96 | |
| 97 | /* |
| 98 | * FAT ZAP data structures |
| 99 | */ |
| 100 | #define ZFS_CRC64_POLY 0xC96C5795D7870F42ULL /* ECMA-182, reflected form */ |
| 101 | #define ZAP_HASH_IDX(hash, n) (((n) == 0) ? 0 : ((hash) >> (64 - (n)))) |
| 102 | #define CHAIN_END 0xffff /* end of the chunk chain */ |
| 103 | |
| 104 | /* |
| 105 | * The amount of space within the chunk available for the array is: |
| 106 | * chunk size - space for type (1) - space for next pointer (2) |
| 107 | */ |
| 108 | #define ZAP_LEAF_ARRAY_BYTES (ZAP_LEAF_CHUNKSIZE - 3) |
| 109 | |
| 110 | #define ZAP_LEAF_HASH_SHIFT(bs) (bs - 5) |
| 111 | #define ZAP_LEAF_HASH_NUMENTRIES(bs) (1 << ZAP_LEAF_HASH_SHIFT(bs)) |
| 112 | #define LEAF_HASH(bs, h) \ |
| 113 | ((ZAP_LEAF_HASH_NUMENTRIES(bs)-1) & \ |
| 114 | ((h) >> (64 - ZAP_LEAF_HASH_SHIFT(bs)-l->l_hdr.lh_prefix_len))) |
| 115 | |
| 116 | /* |
| 117 | * The amount of space available for chunks is: |
| 118 | * block size shift - hash entry size (2) * number of hash |
| 119 | * entries - header space (2*chunksize) |
| 120 | */ |
| 121 | #define ZAP_LEAF_NUMCHUNKS(bs) \ |
| 122 | (((1<<bs) - 2*ZAP_LEAF_HASH_NUMENTRIES(bs)) / \ |
| 123 | ZAP_LEAF_CHUNKSIZE - 2) |
| 124 | |
| 125 | /* |
| 126 | * The chunks start immediately after the hash table. The end of the |
| 127 | * hash table is at l_hash + HASH_NUMENTRIES, which we simply cast to a |
| 128 | * chunk_t. |
| 129 | */ |
| 130 | #define ZAP_LEAF_CHUNK(l, bs, idx) \ |
| 131 | ((zap_leaf_chunk_t *)(l->l_hash + ZAP_LEAF_HASH_NUMENTRIES(bs)))[idx] |
| 132 | #define ZAP_LEAF_ENTRY(l, bs, idx) (&ZAP_LEAF_CHUNK(l, bs, idx).l_entry) |
| 133 | |
| 134 | |
| 135 | /* |
| 136 | * Decompression Entry - lzjb |
| 137 | */ |
| 138 | #ifndef NBBY |
| 139 | #define NBBY 8 |
| 140 | #endif |
| 141 | |
| 142 | |
| 143 | |
| 144 | typedef int zfs_decomp_func_t(void *s_start, void *d_start, |
| 145 | uint32_t s_len, uint32_t d_len); |
| 146 | typedef struct decomp_entry { |
| 147 | char *name; |
| 148 | zfs_decomp_func_t *decomp_func; |
| 149 | } decomp_entry_t; |
| 150 | |
| 151 | typedef struct dnode_end { |
| 152 | dnode_phys_t dn; |
| 153 | zfs_endian_t endian; |
| 154 | } dnode_end_t; |
| 155 | |
| 156 | struct zfs_data { |
| 157 | /* cache for a file block of the currently zfs_open()-ed file */ |
| 158 | char *file_buf; |
| 159 | uint64_t file_start; |
| 160 | uint64_t file_end; |
| 161 | |
| 162 | /* XXX: ashift is per vdev, not per pool. We currently only ever touch |
| 163 | * a single vdev, but when/if raid-z or stripes are supported, this |
| 164 | * may need revision. |
| 165 | */ |
| 166 | uint64_t vdev_ashift; |
| 167 | uint64_t label_txg; |
| 168 | uint64_t pool_guid; |
| 169 | |
| 170 | /* cache for a dnode block */ |
| 171 | dnode_phys_t *dnode_buf; |
| 172 | dnode_phys_t *dnode_mdn; |
| 173 | uint64_t dnode_start; |
| 174 | uint64_t dnode_end; |
| 175 | zfs_endian_t dnode_endian; |
| 176 | |
| 177 | uberblock_t current_uberblock; |
| 178 | |
| 179 | dnode_end_t mos; |
| 180 | dnode_end_t mdn; |
| 181 | dnode_end_t dnode; |
| 182 | |
| 183 | uint64_t vdev_phys_sector; |
| 184 | |
| 185 | int (*userhook)(const char *, const struct zfs_dirhook_info *); |
| 186 | struct zfs_dirhook_info *dirinfo; |
| 187 | |
| 188 | }; |
| 189 | |
| 190 | |
| 191 | |
| 192 | |
| 193 | static int |
| 194 | zlib_decompress(void *s, void *d, |
| 195 | uint32_t slen, uint32_t dlen) |
| 196 | { |
| 197 | if (zlib_decompress(s, d, slen, dlen) < 0) |
| 198 | return ZFS_ERR_BAD_FS; |
| 199 | return ZFS_ERR_NONE; |
| 200 | } |
| 201 | |
| 202 | static decomp_entry_t decomp_table[ZIO_COMPRESS_FUNCTIONS] = { |
| 203 | {"inherit", NULL}, /* ZIO_COMPRESS_INHERIT */ |
| 204 | {"on", lzjb_decompress}, /* ZIO_COMPRESS_ON */ |
| 205 | {"off", NULL}, /* ZIO_COMPRESS_OFF */ |
| 206 | {"lzjb", lzjb_decompress}, /* ZIO_COMPRESS_LZJB */ |
| 207 | {"empty", NULL}, /* ZIO_COMPRESS_EMPTY */ |
| 208 | {"gzip-1", zlib_decompress}, /* ZIO_COMPRESS_GZIP1 */ |
| 209 | {"gzip-2", zlib_decompress}, /* ZIO_COMPRESS_GZIP2 */ |
| 210 | {"gzip-3", zlib_decompress}, /* ZIO_COMPRESS_GZIP3 */ |
| 211 | {"gzip-4", zlib_decompress}, /* ZIO_COMPRESS_GZIP4 */ |
| 212 | {"gzip-5", zlib_decompress}, /* ZIO_COMPRESS_GZIP5 */ |
| 213 | {"gzip-6", zlib_decompress}, /* ZIO_COMPRESS_GZIP6 */ |
| 214 | {"gzip-7", zlib_decompress}, /* ZIO_COMPRESS_GZIP7 */ |
| 215 | {"gzip-8", zlib_decompress}, /* ZIO_COMPRESS_GZIP8 */ |
| 216 | {"gzip-9", zlib_decompress}, /* ZIO_COMPRESS_GZIP9 */ |
| 217 | }; |
| 218 | |
| 219 | |
| 220 | |
| 221 | static int zio_read_data(blkptr_t *bp, zfs_endian_t endian, |
| 222 | void *buf, struct zfs_data *data); |
| 223 | |
| 224 | static int |
| 225 | zio_read(blkptr_t *bp, zfs_endian_t endian, void **buf, |
| 226 | size_t *size, struct zfs_data *data); |
| 227 | |
| 228 | /* |
| 229 | * Our own version of log2(). Same thing as highbit()-1. |
| 230 | */ |
| 231 | static int |
| 232 | zfs_log2(uint64_t num) |
| 233 | { |
| 234 | int i = 0; |
| 235 | |
| 236 | while (num > 1) { |
| 237 | i++; |
| 238 | num = num >> 1; |
| 239 | } |
| 240 | |
| 241 | return i; |
| 242 | } |
| 243 | |
| 244 | |
| 245 | /* Checksum Functions */ |
| 246 | static void |
| 247 | zio_checksum_off(const void *buf __attribute__ ((unused)), |
| 248 | uint64_t size __attribute__ ((unused)), |
| 249 | zfs_endian_t endian __attribute__ ((unused)), |
| 250 | zio_cksum_t *zcp) |
| 251 | { |
| 252 | ZIO_SET_CHECKSUM(zcp, 0, 0, 0, 0); |
| 253 | } |
| 254 | |
| 255 | /* Checksum Table and Values */ |
| 256 | static zio_checksum_info_t zio_checksum_table[ZIO_CHECKSUM_FUNCTIONS] = { |
| 257 | {NULL, 0, 0, "inherit"}, |
| 258 | {NULL, 0, 0, "on"}, |
| 259 | {zio_checksum_off, 0, 0, "off"}, |
| 260 | {zio_checksum_SHA256, 1, 1, "label"}, |
| 261 | {zio_checksum_SHA256, 1, 1, "gang_header"}, |
| 262 | {NULL, 0, 0, "zilog"}, |
| 263 | {fletcher_2_endian, 0, 0, "fletcher2"}, |
| 264 | {fletcher_4_endian, 1, 0, "fletcher4"}, |
| 265 | {zio_checksum_SHA256, 1, 0, "SHA256"}, |
| 266 | {NULL, 0, 0, "zilog2"}, |
| 267 | }; |
| 268 | |
| 269 | /* |
| 270 | * zio_checksum_verify: Provides support for checksum verification. |
| 271 | * |
| 272 | * Fletcher2, Fletcher4, and SHA256 are supported. |
| 273 | * |
| 274 | */ |
| 275 | static int |
| 276 | zio_checksum_verify(zio_cksum_t zc, uint32_t checksum, |
| 277 | zfs_endian_t endian, char *buf, int size) |
| 278 | { |
| 279 | zio_eck_t *zec = (zio_eck_t *) (buf + size) - 1; |
| 280 | zio_checksum_info_t *ci = &zio_checksum_table[checksum]; |
| 281 | zio_cksum_t actual_cksum, expected_cksum; |
| 282 | |
| 283 | if (checksum >= ZIO_CHECKSUM_FUNCTIONS || ci->ci_func == NULL) { |
| 284 | printf("zfs unknown checksum function %d\n", checksum); |
| 285 | return ZFS_ERR_NOT_IMPLEMENTED_YET; |
| 286 | } |
| 287 | |
| 288 | if (ci->ci_eck) { |
| 289 | expected_cksum = zec->zec_cksum; |
| 290 | zec->zec_cksum = zc; |
| 291 | ci->ci_func(buf, size, endian, &actual_cksum); |
| 292 | zec->zec_cksum = expected_cksum; |
| 293 | zc = expected_cksum; |
| 294 | } else { |
| 295 | ci->ci_func(buf, size, endian, &actual_cksum); |
| 296 | } |
| 297 | |
| 298 | if ((actual_cksum.zc_word[0] != zc.zc_word[0]) |
| 299 | || (actual_cksum.zc_word[1] != zc.zc_word[1]) |
| 300 | || (actual_cksum.zc_word[2] != zc.zc_word[2]) |
| 301 | || (actual_cksum.zc_word[3] != zc.zc_word[3])) { |
| 302 | return ZFS_ERR_BAD_FS; |
| 303 | } |
| 304 | |
| 305 | return ZFS_ERR_NONE; |
| 306 | } |
| 307 | |
| 308 | /* |
| 309 | * vdev_uberblock_compare takes two uberblock structures and returns an integer |
| 310 | * indicating the more recent of the two. |
| 311 | * Return Value = 1 if ub2 is more recent |
| 312 | * Return Value = -1 if ub1 is more recent |
| 313 | * The most recent uberblock is determined using its transaction number and |
| 314 | * timestamp. The uberblock with the highest transaction number is |
| 315 | * considered "newer". If the transaction numbers of the two blocks match, the |
| 316 | * timestamps are compared to determine the "newer" of the two. |
| 317 | */ |
| 318 | static int |
| 319 | vdev_uberblock_compare(uberblock_t *ub1, uberblock_t *ub2) |
| 320 | { |
| 321 | zfs_endian_t ub1_endian, ub2_endian; |
| 322 | if (zfs_to_cpu64(ub1->ub_magic, LITTLE_ENDIAN) == UBERBLOCK_MAGIC) |
| 323 | ub1_endian = LITTLE_ENDIAN; |
| 324 | else |
| 325 | ub1_endian = BIG_ENDIAN; |
| 326 | if (zfs_to_cpu64(ub2->ub_magic, LITTLE_ENDIAN) == UBERBLOCK_MAGIC) |
| 327 | ub2_endian = LITTLE_ENDIAN; |
| 328 | else |
| 329 | ub2_endian = BIG_ENDIAN; |
| 330 | |
| 331 | if (zfs_to_cpu64(ub1->ub_txg, ub1_endian) |
| 332 | < zfs_to_cpu64(ub2->ub_txg, ub2_endian)) |
| 333 | return -1; |
| 334 | if (zfs_to_cpu64(ub1->ub_txg, ub1_endian) |
| 335 | > zfs_to_cpu64(ub2->ub_txg, ub2_endian)) |
| 336 | return 1; |
| 337 | |
| 338 | if (zfs_to_cpu64(ub1->ub_timestamp, ub1_endian) |
| 339 | < zfs_to_cpu64(ub2->ub_timestamp, ub2_endian)) |
| 340 | return -1; |
| 341 | if (zfs_to_cpu64(ub1->ub_timestamp, ub1_endian) |
| 342 | > zfs_to_cpu64(ub2->ub_timestamp, ub2_endian)) |
| 343 | return 1; |
| 344 | |
| 345 | return 0; |
| 346 | } |
| 347 | |
| 348 | /* |
| 349 | * Three pieces of information are needed to verify an uberblock: the magic |
| 350 | * number, the version number, and the checksum. |
| 351 | * |
| 352 | * Currently Implemented: version number, magic number, label txg |
| 353 | * Need to Implement: checksum |
| 354 | * |
| 355 | */ |
| 356 | static int |
| 357 | uberblock_verify(uberblock_t *uber, int offset, struct zfs_data *data) |
| 358 | { |
| 359 | int err; |
| 360 | zfs_endian_t endian = UNKNOWN_ENDIAN; |
| 361 | zio_cksum_t zc; |
| 362 | |
| 363 | if (uber->ub_txg < data->label_txg) { |
| 364 | debug("ignoring partially written label: uber_txg < label_txg %llu %llu\n", |
| 365 | uber->ub_txg, data->label_txg); |
| 366 | return ZFS_ERR_BAD_FS; |
| 367 | } |
| 368 | |
| 369 | if (zfs_to_cpu64(uber->ub_magic, LITTLE_ENDIAN) == UBERBLOCK_MAGIC |
| 370 | && zfs_to_cpu64(uber->ub_version, LITTLE_ENDIAN) > 0 |
| 371 | && zfs_to_cpu64(uber->ub_version, LITTLE_ENDIAN) <= SPA_VERSION) |
| 372 | endian = LITTLE_ENDIAN; |
| 373 | |
| 374 | if (zfs_to_cpu64(uber->ub_magic, BIG_ENDIAN) == UBERBLOCK_MAGIC |
| 375 | && zfs_to_cpu64(uber->ub_version, BIG_ENDIAN) > 0 |
| 376 | && zfs_to_cpu64(uber->ub_version, BIG_ENDIAN) <= SPA_VERSION) |
| 377 | endian = BIG_ENDIAN; |
| 378 | |
| 379 | if (endian == UNKNOWN_ENDIAN) { |
| 380 | printf("invalid uberblock magic\n"); |
| 381 | return ZFS_ERR_BAD_FS; |
| 382 | } |
| 383 | |
| 384 | memset(&zc, 0, sizeof(zc)); |
| 385 | zc.zc_word[0] = cpu_to_zfs64(offset, endian); |
| 386 | err = zio_checksum_verify(zc, ZIO_CHECKSUM_LABEL, endian, |
| 387 | (char *) uber, UBERBLOCK_SIZE(data->vdev_ashift)); |
| 388 | |
| 389 | if (!err) { |
| 390 | /* Check that the data pointed by the rootbp is usable. */ |
| 391 | void *osp = NULL; |
| 392 | size_t ospsize; |
| 393 | err = zio_read(&uber->ub_rootbp, endian, &osp, &ospsize, data); |
| 394 | free(osp); |
| 395 | |
| 396 | if (!err && ospsize < OBJSET_PHYS_SIZE_V14) { |
| 397 | printf("uberblock rootbp points to invalid data\n"); |
| 398 | return ZFS_ERR_BAD_FS; |
| 399 | } |
| 400 | } |
| 401 | |
| 402 | return err; |
| 403 | } |
| 404 | |
| 405 | /* |
| 406 | * Find the best uberblock. |
| 407 | * Return: |
| 408 | * Success - Pointer to the best uberblock. |
| 409 | * Failure - NULL |
| 410 | */ |
| 411 | static uberblock_t *find_bestub(char *ub_array, struct zfs_data *data) |
| 412 | { |
| 413 | const uint64_t sector = data->vdev_phys_sector; |
| 414 | uberblock_t *ubbest = NULL; |
| 415 | uberblock_t *ubnext; |
| 416 | unsigned int i, offset, pickedub = 0; |
| 417 | int err = ZFS_ERR_NONE; |
| 418 | |
| 419 | const unsigned int UBCOUNT = UBERBLOCK_COUNT(data->vdev_ashift); |
| 420 | const uint64_t UBBYTES = UBERBLOCK_SIZE(data->vdev_ashift); |
| 421 | |
| 422 | for (i = 0; i < UBCOUNT; i++) { |
| 423 | ubnext = (uberblock_t *) (i * UBBYTES + ub_array); |
| 424 | offset = (sector << SPA_MINBLOCKSHIFT) + VDEV_PHYS_SIZE + (i * UBBYTES); |
| 425 | |
| 426 | err = uberblock_verify(ubnext, offset, data); |
| 427 | if (err) |
| 428 | continue; |
| 429 | |
| 430 | if (ubbest == NULL || vdev_uberblock_compare(ubnext, ubbest) > 0) { |
| 431 | ubbest = ubnext; |
| 432 | pickedub = i; |
| 433 | } |
| 434 | } |
| 435 | |
| 436 | if (ubbest) |
| 437 | debug("zfs Found best uberblock at idx %d, txg %llu\n", |
| 438 | pickedub, (unsigned long long) ubbest->ub_txg); |
| 439 | |
| 440 | return ubbest; |
| 441 | } |
| 442 | |
| 443 | static inline size_t |
| 444 | get_psize(blkptr_t *bp, zfs_endian_t endian) |
| 445 | { |
| 446 | return (((zfs_to_cpu64((bp)->blk_prop, endian) >> 16) & 0xffff) + 1) |
| 447 | << SPA_MINBLOCKSHIFT; |
| 448 | } |
| 449 | |
| 450 | static uint64_t |
| 451 | dva_get_offset(dva_t *dva, zfs_endian_t endian) |
| 452 | { |
| 453 | return zfs_to_cpu64((dva)->dva_word[1], |
| 454 | endian) << SPA_MINBLOCKSHIFT; |
| 455 | } |
| 456 | |
| 457 | /* |
| 458 | * Read a block of data based on the gang block address dva, |
| 459 | * and put its data in buf. |
| 460 | * |
| 461 | */ |
| 462 | static int |
| 463 | zio_read_gang(blkptr_t *bp, zfs_endian_t endian, dva_t *dva, void *buf, |
| 464 | struct zfs_data *data) |
| 465 | { |
| 466 | zio_gbh_phys_t *zio_gb; |
| 467 | uint64_t offset, sector; |
| 468 | unsigned i; |
| 469 | int err; |
| 470 | zio_cksum_t zc; |
| 471 | |
| 472 | memset(&zc, 0, sizeof(zc)); |
| 473 | |
| 474 | zio_gb = malloc(SPA_GANGBLOCKSIZE); |
| 475 | if (!zio_gb) |
| 476 | return ZFS_ERR_OUT_OF_MEMORY; |
| 477 | |
| 478 | offset = dva_get_offset(dva, endian); |
| 479 | sector = DVA_OFFSET_TO_PHYS_SECTOR(offset); |
| 480 | |
| 481 | /* read in the gang block header */ |
| 482 | err = zfs_devread(sector, 0, SPA_GANGBLOCKSIZE, (char *) zio_gb); |
| 483 | |
| 484 | if (err) { |
| 485 | free(zio_gb); |
| 486 | return err; |
| 487 | } |
| 488 | |
| 489 | /* XXX */ |
| 490 | /* self checksuming the gang block header */ |
| 491 | ZIO_SET_CHECKSUM(&zc, DVA_GET_VDEV(dva), |
| 492 | dva_get_offset(dva, endian), bp->blk_birth, 0); |
| 493 | err = zio_checksum_verify(zc, ZIO_CHECKSUM_GANG_HEADER, endian, |
| 494 | (char *) zio_gb, SPA_GANGBLOCKSIZE); |
| 495 | if (err) { |
| 496 | free(zio_gb); |
| 497 | return err; |
| 498 | } |
| 499 | |
| 500 | endian = (zfs_to_cpu64(bp->blk_prop, endian) >> 63) & 1; |
| 501 | |
| 502 | for (i = 0; i < SPA_GBH_NBLKPTRS; i++) { |
| 503 | if (zio_gb->zg_blkptr[i].blk_birth == 0) |
| 504 | continue; |
| 505 | |
| 506 | err = zio_read_data(&zio_gb->zg_blkptr[i], endian, buf, data); |
| 507 | if (err) { |
| 508 | free(zio_gb); |
| 509 | return err; |
| 510 | } |
| 511 | buf = (char *) buf + get_psize(&zio_gb->zg_blkptr[i], endian); |
| 512 | } |
| 513 | free(zio_gb); |
| 514 | return ZFS_ERR_NONE; |
| 515 | } |
| 516 | |
| 517 | /* |
| 518 | * Read in a block of raw data to buf. |
| 519 | */ |
| 520 | static int |
| 521 | zio_read_data(blkptr_t *bp, zfs_endian_t endian, void *buf, |
| 522 | struct zfs_data *data) |
| 523 | { |
| 524 | int i, psize; |
| 525 | int err = ZFS_ERR_NONE; |
| 526 | |
| 527 | psize = get_psize(bp, endian); |
| 528 | |
| 529 | /* pick a good dva from the block pointer */ |
| 530 | for (i = 0; i < SPA_DVAS_PER_BP; i++) { |
| 531 | uint64_t offset, sector; |
| 532 | |
| 533 | if (bp->blk_dva[i].dva_word[0] == 0 && bp->blk_dva[i].dva_word[1] == 0) |
| 534 | continue; |
| 535 | |
| 536 | if ((zfs_to_cpu64(bp->blk_dva[i].dva_word[1], endian)>>63) & 1) { |
| 537 | err = zio_read_gang(bp, endian, &bp->blk_dva[i], buf, data); |
| 538 | } else { |
| 539 | /* read in a data block */ |
| 540 | offset = dva_get_offset(&bp->blk_dva[i], endian); |
| 541 | sector = DVA_OFFSET_TO_PHYS_SECTOR(offset); |
| 542 | |
| 543 | err = zfs_devread(sector, 0, psize, buf); |
| 544 | } |
| 545 | |
| 546 | if (!err) { |
| 547 | /*Check the underlying checksum before we rule this DVA as "good"*/ |
| 548 | uint32_t checkalgo = (zfs_to_cpu64((bp)->blk_prop, endian) >> 40) & 0xff; |
| 549 | |
| 550 | err = zio_checksum_verify(bp->blk_cksum, checkalgo, endian, buf, psize); |
| 551 | if (!err) |
| 552 | return ZFS_ERR_NONE; |
| 553 | } |
| 554 | |
| 555 | /* If read failed or checksum bad, reset the error. Hopefully we've got some more DVA's to try.*/ |
| 556 | } |
| 557 | |
| 558 | if (!err) { |
| 559 | printf("couldn't find a valid DVA\n"); |
| 560 | err = ZFS_ERR_BAD_FS; |
| 561 | } |
| 562 | |
| 563 | return err; |
| 564 | } |
| 565 | |
| 566 | /* |
| 567 | * Read in a block of data, verify its checksum, decompress if needed, |
| 568 | * and put the uncompressed data in buf. |
| 569 | */ |
| 570 | static int |
| 571 | zio_read(blkptr_t *bp, zfs_endian_t endian, void **buf, |
| 572 | size_t *size, struct zfs_data *data) |
| 573 | { |
| 574 | size_t lsize, psize; |
| 575 | unsigned int comp; |
| 576 | char *compbuf = NULL; |
| 577 | int err; |
| 578 | |
| 579 | *buf = NULL; |
| 580 | |
| 581 | comp = (zfs_to_cpu64((bp)->blk_prop, endian)>>32) & 0xff; |
| 582 | lsize = (BP_IS_HOLE(bp) ? 0 : |
| 583 | (((zfs_to_cpu64((bp)->blk_prop, endian) & 0xffff) + 1) |
| 584 | << SPA_MINBLOCKSHIFT)); |
| 585 | psize = get_psize(bp, endian); |
| 586 | |
| 587 | if (size) |
| 588 | *size = lsize; |
| 589 | |
| 590 | if (comp >= ZIO_COMPRESS_FUNCTIONS) { |
| 591 | printf("compression algorithm %u not supported\n", (unsigned int) comp); |
| 592 | return ZFS_ERR_NOT_IMPLEMENTED_YET; |
| 593 | } |
| 594 | |
| 595 | if (comp != ZIO_COMPRESS_OFF && decomp_table[comp].decomp_func == NULL) { |
| 596 | printf("compression algorithm %s not supported\n", decomp_table[comp].name); |
| 597 | return ZFS_ERR_NOT_IMPLEMENTED_YET; |
| 598 | } |
| 599 | |
| 600 | if (comp != ZIO_COMPRESS_OFF) { |
| 601 | compbuf = malloc(psize); |
| 602 | if (!compbuf) |
| 603 | return ZFS_ERR_OUT_OF_MEMORY; |
| 604 | } else { |
| 605 | compbuf = *buf = malloc(lsize); |
| 606 | } |
| 607 | |
| 608 | err = zio_read_data(bp, endian, compbuf, data); |
| 609 | if (err) { |
| 610 | free(compbuf); |
| 611 | *buf = NULL; |
| 612 | return err; |
| 613 | } |
| 614 | |
| 615 | if (comp != ZIO_COMPRESS_OFF) { |
| 616 | *buf = malloc(lsize); |
| 617 | if (!*buf) { |
| 618 | free(compbuf); |
| 619 | return ZFS_ERR_OUT_OF_MEMORY; |
| 620 | } |
| 621 | |
| 622 | err = decomp_table[comp].decomp_func(compbuf, *buf, psize, lsize); |
| 623 | free(compbuf); |
| 624 | if (err) { |
| 625 | free(*buf); |
| 626 | *buf = NULL; |
| 627 | return err; |
| 628 | } |
| 629 | } |
| 630 | |
| 631 | return ZFS_ERR_NONE; |
| 632 | } |
| 633 | |
| 634 | /* |
| 635 | * Get the block from a block id. |
| 636 | * push the block onto the stack. |
| 637 | * |
| 638 | */ |
| 639 | static int |
| 640 | dmu_read(dnode_end_t *dn, uint64_t blkid, void **buf, |
| 641 | zfs_endian_t *endian_out, struct zfs_data *data) |
| 642 | { |
| 643 | int idx, level; |
| 644 | blkptr_t *bp_array = dn->dn.dn_blkptr; |
| 645 | int epbs = dn->dn.dn_indblkshift - SPA_BLKPTRSHIFT; |
| 646 | blkptr_t *bp; |
| 647 | void *tmpbuf = 0; |
| 648 | zfs_endian_t endian; |
| 649 | int err = ZFS_ERR_NONE; |
| 650 | |
| 651 | bp = malloc(sizeof(blkptr_t)); |
| 652 | if (!bp) |
| 653 | return ZFS_ERR_OUT_OF_MEMORY; |
| 654 | |
| 655 | endian = dn->endian; |
| 656 | for (level = dn->dn.dn_nlevels - 1; level >= 0; level--) { |
| 657 | idx = (blkid >> (epbs * level)) & ((1 << epbs) - 1); |
| 658 | *bp = bp_array[idx]; |
| 659 | if (bp_array != dn->dn.dn_blkptr) { |
| 660 | free(bp_array); |
| 661 | bp_array = 0; |
| 662 | } |
| 663 | |
| 664 | if (BP_IS_HOLE(bp)) { |
| 665 | size_t size = zfs_to_cpu16(dn->dn.dn_datablkszsec, |
| 666 | dn->endian) |
| 667 | << SPA_MINBLOCKSHIFT; |
| 668 | *buf = malloc(size); |
| 669 | if (*buf) { |
| 670 | err = ZFS_ERR_OUT_OF_MEMORY; |
| 671 | break; |
| 672 | } |
| 673 | memset(*buf, 0, size); |
| 674 | endian = (zfs_to_cpu64(bp->blk_prop, endian) >> 63) & 1; |
| 675 | break; |
| 676 | } |
| 677 | if (level == 0) { |
| 678 | err = zio_read(bp, endian, buf, 0, data); |
| 679 | endian = (zfs_to_cpu64(bp->blk_prop, endian) >> 63) & 1; |
| 680 | break; |
| 681 | } |
| 682 | err = zio_read(bp, endian, &tmpbuf, 0, data); |
| 683 | endian = (zfs_to_cpu64(bp->blk_prop, endian) >> 63) & 1; |
| 684 | if (err) |
| 685 | break; |
| 686 | bp_array = tmpbuf; |
| 687 | } |
| 688 | if (bp_array != dn->dn.dn_blkptr) |
| 689 | free(bp_array); |
| 690 | if (endian_out) |
| 691 | *endian_out = endian; |
| 692 | |
| 693 | free(bp); |
| 694 | return err; |
| 695 | } |
| 696 | |
| 697 | /* |
| 698 | * mzap_lookup: Looks up property described by "name" and returns the value |
| 699 | * in "value". |
| 700 | */ |
| 701 | static int |
| 702 | mzap_lookup(mzap_phys_t *zapobj, zfs_endian_t endian, |
| 703 | int objsize, char *name, uint64_t * value) |
| 704 | { |
| 705 | int i, chunks; |
| 706 | mzap_ent_phys_t *mzap_ent = zapobj->mz_chunk; |
| 707 | |
| 708 | chunks = objsize / MZAP_ENT_LEN - 1; |
| 709 | for (i = 0; i < chunks; i++) { |
| 710 | if (strcmp(mzap_ent[i].mze_name, name) == 0) { |
| 711 | *value = zfs_to_cpu64(mzap_ent[i].mze_value, endian); |
| 712 | return ZFS_ERR_NONE; |
| 713 | } |
| 714 | } |
| 715 | |
| 716 | printf("couldn't find '%s'\n", name); |
| 717 | return ZFS_ERR_FILE_NOT_FOUND; |
| 718 | } |
| 719 | |
| 720 | static int |
| 721 | mzap_iterate(mzap_phys_t *zapobj, zfs_endian_t endian, int objsize, |
| 722 | int (*hook)(const char *name, |
| 723 | uint64_t val, |
| 724 | struct zfs_data *data), |
| 725 | struct zfs_data *data) |
| 726 | { |
| 727 | int i, chunks; |
| 728 | mzap_ent_phys_t *mzap_ent = zapobj->mz_chunk; |
| 729 | |
| 730 | chunks = objsize / MZAP_ENT_LEN - 1; |
| 731 | for (i = 0; i < chunks; i++) { |
| 732 | if (hook(mzap_ent[i].mze_name, |
| 733 | zfs_to_cpu64(mzap_ent[i].mze_value, endian), |
| 734 | data)) |
| 735 | return 1; |
| 736 | } |
| 737 | |
| 738 | return 0; |
| 739 | } |
| 740 | |
| 741 | static uint64_t |
| 742 | zap_hash(uint64_t salt, const char *name) |
| 743 | { |
| 744 | static uint64_t table[256]; |
| 745 | const uint8_t *cp; |
| 746 | uint8_t c; |
| 747 | uint64_t crc = salt; |
| 748 | |
| 749 | if (table[128] == 0) { |
| 750 | uint64_t *ct; |
| 751 | int i, j; |
| 752 | for (i = 0; i < 256; i++) { |
| 753 | for (ct = table + i, *ct = i, j = 8; j > 0; j--) |
| 754 | *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY); |
| 755 | } |
| 756 | } |
| 757 | |
| 758 | for (cp = (const uint8_t *) name; (c = *cp) != '\0'; cp++) |
| 759 | crc = (crc >> 8) ^ table[(crc ^ c) & 0xFF]; |
| 760 | |
| 761 | /* |
| 762 | * Only use 28 bits, since we need 4 bits in the cookie for the |
| 763 | * collision differentiator. We MUST use the high bits, since |
| 764 | * those are the onces that we first pay attention to when |
| 765 | * chosing the bucket. |
| 766 | */ |
| 767 | crc &= ~((1ULL << (64 - ZAP_HASHBITS)) - 1); |
| 768 | |
| 769 | return crc; |
| 770 | } |
| 771 | |
| 772 | /* |
| 773 | * Only to be used on 8-bit arrays. |
| 774 | * array_len is actual len in bytes (not encoded le_value_length). |
| 775 | * buf is null-terminated. |
| 776 | */ |
| 777 | /* XXX */ |
| 778 | static int |
| 779 | zap_leaf_array_equal(zap_leaf_phys_t *l, zfs_endian_t endian, |
| 780 | int blksft, int chunk, int array_len, const char *buf) |
| 781 | { |
| 782 | int bseen = 0; |
| 783 | |
| 784 | while (bseen < array_len) { |
| 785 | struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, blksft, chunk).l_array; |
| 786 | int toread = MIN(array_len - bseen, ZAP_LEAF_ARRAY_BYTES); |
| 787 | |
| 788 | if (chunk >= ZAP_LEAF_NUMCHUNKS(blksft)) |
| 789 | return 0; |
| 790 | |
| 791 | if (memcmp(la->la_array, buf + bseen, toread) != 0) |
| 792 | break; |
| 793 | chunk = zfs_to_cpu16(la->la_next, endian); |
| 794 | bseen += toread; |
| 795 | } |
| 796 | return (bseen == array_len); |
| 797 | } |
| 798 | |
| 799 | /* XXX */ |
| 800 | static int |
| 801 | zap_leaf_array_get(zap_leaf_phys_t *l, zfs_endian_t endian, int blksft, |
| 802 | int chunk, int array_len, char *buf) |
| 803 | { |
| 804 | int bseen = 0; |
| 805 | |
| 806 | while (bseen < array_len) { |
| 807 | struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, blksft, chunk).l_array; |
| 808 | int toread = MIN(array_len - bseen, ZAP_LEAF_ARRAY_BYTES); |
| 809 | |
| 810 | if (chunk >= ZAP_LEAF_NUMCHUNKS(blksft)) |
| 811 | /* Don't use errno because this error is to be ignored. */ |
| 812 | return ZFS_ERR_BAD_FS; |
| 813 | |
| 814 | memcpy(buf + bseen, la->la_array, toread); |
| 815 | chunk = zfs_to_cpu16(la->la_next, endian); |
| 816 | bseen += toread; |
| 817 | } |
| 818 | return ZFS_ERR_NONE; |
| 819 | } |
| 820 | |
| 821 | |
| 822 | /* |
| 823 | * Given a zap_leaf_phys_t, walk thru the zap leaf chunks to get the |
| 824 | * value for the property "name". |
| 825 | * |
| 826 | */ |
| 827 | /* XXX */ |
| 828 | static int |
| 829 | zap_leaf_lookup(zap_leaf_phys_t *l, zfs_endian_t endian, |
| 830 | int blksft, uint64_t h, |
| 831 | const char *name, uint64_t *value) |
| 832 | { |
| 833 | uint16_t chunk; |
| 834 | struct zap_leaf_entry *le; |
| 835 | |
| 836 | /* Verify if this is a valid leaf block */ |
| 837 | if (zfs_to_cpu64(l->l_hdr.lh_block_type, endian) != ZBT_LEAF) { |
| 838 | printf("invalid leaf type\n"); |
| 839 | return ZFS_ERR_BAD_FS; |
| 840 | } |
| 841 | if (zfs_to_cpu32(l->l_hdr.lh_magic, endian) != ZAP_LEAF_MAGIC) { |
| 842 | printf("invalid leaf magic\n"); |
| 843 | return ZFS_ERR_BAD_FS; |
| 844 | } |
| 845 | |
| 846 | for (chunk = zfs_to_cpu16(l->l_hash[LEAF_HASH(blksft, h)], endian); |
| 847 | chunk != CHAIN_END; chunk = le->le_next) { |
| 848 | |
| 849 | if (chunk >= ZAP_LEAF_NUMCHUNKS(blksft)) { |
| 850 | printf("invalid chunk number\n"); |
| 851 | return ZFS_ERR_BAD_FS; |
| 852 | } |
| 853 | |
| 854 | le = ZAP_LEAF_ENTRY(l, blksft, chunk); |
| 855 | |
| 856 | /* Verify the chunk entry */ |
| 857 | if (le->le_type != ZAP_CHUNK_ENTRY) { |
| 858 | printf("invalid chunk entry\n"); |
| 859 | return ZFS_ERR_BAD_FS; |
| 860 | } |
| 861 | |
| 862 | if (zfs_to_cpu64(le->le_hash, endian) != h) |
| 863 | continue; |
| 864 | |
| 865 | if (zap_leaf_array_equal(l, endian, blksft, |
| 866 | zfs_to_cpu16(le->le_name_chunk, endian), |
| 867 | zfs_to_cpu16(le->le_name_length, endian), |
| 868 | name)) { |
| 869 | struct zap_leaf_array *la; |
| 870 | |
| 871 | if (le->le_int_size != 8 || le->le_value_length != 1) { |
| 872 | printf("invalid leaf chunk entry\n"); |
| 873 | return ZFS_ERR_BAD_FS; |
| 874 | } |
| 875 | /* get the uint64_t property value */ |
| 876 | la = &ZAP_LEAF_CHUNK(l, blksft, le->le_value_chunk).l_array; |
| 877 | |
| 878 | *value = be64_to_cpu(la->la_array64); |
| 879 | |
| 880 | return ZFS_ERR_NONE; |
| 881 | } |
| 882 | } |
| 883 | |
| 884 | printf("couldn't find '%s'\n", name); |
| 885 | return ZFS_ERR_FILE_NOT_FOUND; |
| 886 | } |
| 887 | |
| 888 | |
| 889 | /* Verify if this is a fat zap header block */ |
| 890 | static int |
| 891 | zap_verify(zap_phys_t *zap) |
| 892 | { |
| 893 | if (zap->zap_magic != (uint64_t) ZAP_MAGIC) { |
| 894 | printf("bad ZAP magic\n"); |
| 895 | return ZFS_ERR_BAD_FS; |
| 896 | } |
| 897 | |
| 898 | if (zap->zap_flags != 0) { |
| 899 | printf("bad ZAP flags\n"); |
| 900 | return ZFS_ERR_BAD_FS; |
| 901 | } |
| 902 | |
| 903 | if (zap->zap_salt == 0) { |
| 904 | printf("bad ZAP salt\n"); |
| 905 | return ZFS_ERR_BAD_FS; |
| 906 | } |
| 907 | |
| 908 | return ZFS_ERR_NONE; |
| 909 | } |
| 910 | |
| 911 | /* |
| 912 | * Fat ZAP lookup |
| 913 | * |
| 914 | */ |
| 915 | /* XXX */ |
| 916 | static int |
| 917 | fzap_lookup(dnode_end_t *zap_dnode, zap_phys_t *zap, |
| 918 | char *name, uint64_t *value, struct zfs_data *data) |
| 919 | { |
| 920 | void *l; |
| 921 | uint64_t hash, idx, blkid; |
| 922 | int blksft = zfs_log2(zfs_to_cpu16(zap_dnode->dn.dn_datablkszsec, |
| 923 | zap_dnode->endian) << DNODE_SHIFT); |
| 924 | int err; |
| 925 | zfs_endian_t leafendian; |
| 926 | |
| 927 | err = zap_verify(zap); |
| 928 | if (err) |
| 929 | return err; |
| 930 | |
| 931 | hash = zap_hash(zap->zap_salt, name); |
| 932 | |
| 933 | /* get block id from index */ |
| 934 | if (zap->zap_ptrtbl.zt_numblks != 0) { |
| 935 | printf("external pointer tables not supported\n"); |
| 936 | return ZFS_ERR_NOT_IMPLEMENTED_YET; |
| 937 | } |
| 938 | idx = ZAP_HASH_IDX(hash, zap->zap_ptrtbl.zt_shift); |
| 939 | blkid = ((uint64_t *) zap)[idx + (1 << (blksft - 3 - 1))]; |
| 940 | |
| 941 | /* Get the leaf block */ |
| 942 | if ((1U << blksft) < sizeof(zap_leaf_phys_t)) { |
| 943 | printf("ZAP leaf is too small\n"); |
| 944 | return ZFS_ERR_BAD_FS; |
| 945 | } |
| 946 | err = dmu_read(zap_dnode, blkid, &l, &leafendian, data); |
| 947 | if (err) |
| 948 | return err; |
| 949 | |
| 950 | err = zap_leaf_lookup(l, leafendian, blksft, hash, name, value); |
| 951 | free(l); |
| 952 | return err; |
| 953 | } |
| 954 | |
| 955 | /* XXX */ |
| 956 | static int |
| 957 | fzap_iterate(dnode_end_t *zap_dnode, zap_phys_t *zap, |
| 958 | int (*hook)(const char *name, |
| 959 | uint64_t val, |
| 960 | struct zfs_data *data), |
| 961 | struct zfs_data *data) |
| 962 | { |
| 963 | zap_leaf_phys_t *l; |
| 964 | void *l_in; |
| 965 | uint64_t idx, blkid; |
| 966 | uint16_t chunk; |
| 967 | int blksft = zfs_log2(zfs_to_cpu16(zap_dnode->dn.dn_datablkszsec, |
| 968 | zap_dnode->endian) << DNODE_SHIFT); |
| 969 | int err; |
| 970 | zfs_endian_t endian; |
| 971 | |
| 972 | if (zap_verify(zap)) |
| 973 | return 0; |
| 974 | |
| 975 | /* get block id from index */ |
| 976 | if (zap->zap_ptrtbl.zt_numblks != 0) { |
| 977 | printf("external pointer tables not supported\n"); |
| 978 | return 0; |
| 979 | } |
| 980 | /* Get the leaf block */ |
| 981 | if ((1U << blksft) < sizeof(zap_leaf_phys_t)) { |
| 982 | printf("ZAP leaf is too small\n"); |
| 983 | return 0; |
| 984 | } |
| 985 | for (idx = 0; idx < zap->zap_ptrtbl.zt_numblks; idx++) { |
| 986 | blkid = ((uint64_t *) zap)[idx + (1 << (blksft - 3 - 1))]; |
| 987 | |
| 988 | err = dmu_read(zap_dnode, blkid, &l_in, &endian, data); |
| 989 | l = l_in; |
| 990 | if (err) |
| 991 | continue; |
| 992 | |
| 993 | /* Verify if this is a valid leaf block */ |
| 994 | if (zfs_to_cpu64(l->l_hdr.lh_block_type, endian) != ZBT_LEAF) { |
| 995 | free(l); |
| 996 | continue; |
| 997 | } |
| 998 | if (zfs_to_cpu32(l->l_hdr.lh_magic, endian) != ZAP_LEAF_MAGIC) { |
| 999 | free(l); |
| 1000 | continue; |
| 1001 | } |
| 1002 | |
| 1003 | for (chunk = 0; chunk < ZAP_LEAF_NUMCHUNKS(blksft); chunk++) { |
| 1004 | char *buf; |
| 1005 | struct zap_leaf_array *la; |
| 1006 | struct zap_leaf_entry *le; |
| 1007 | uint64_t val; |
| 1008 | le = ZAP_LEAF_ENTRY(l, blksft, chunk); |
| 1009 | |
| 1010 | /* Verify the chunk entry */ |
| 1011 | if (le->le_type != ZAP_CHUNK_ENTRY) |
| 1012 | continue; |
| 1013 | |
| 1014 | buf = malloc(zfs_to_cpu16(le->le_name_length, endian) |
| 1015 | + 1); |
| 1016 | if (zap_leaf_array_get(l, endian, blksft, le->le_name_chunk, |
| 1017 | le->le_name_length, buf)) { |
| 1018 | free(buf); |
| 1019 | continue; |
| 1020 | } |
| 1021 | buf[le->le_name_length] = 0; |
| 1022 | |
| 1023 | if (le->le_int_size != 8 |
| 1024 | || zfs_to_cpu16(le->le_value_length, endian) != 1) |
| 1025 | continue; |
| 1026 | |
| 1027 | /* get the uint64_t property value */ |
| 1028 | la = &ZAP_LEAF_CHUNK(l, blksft, le->le_value_chunk).l_array; |
| 1029 | val = be64_to_cpu(la->la_array64); |
| 1030 | if (hook(buf, val, data)) |
| 1031 | return 1; |
| 1032 | free(buf); |
| 1033 | } |
| 1034 | } |
| 1035 | return 0; |
| 1036 | } |
| 1037 | |
| 1038 | |
| 1039 | /* |
| 1040 | * Read in the data of a zap object and find the value for a matching |
| 1041 | * property name. |
| 1042 | * |
| 1043 | */ |
| 1044 | static int |
| 1045 | zap_lookup(dnode_end_t *zap_dnode, char *name, uint64_t *val, |
| 1046 | struct zfs_data *data) |
| 1047 | { |
| 1048 | uint64_t block_type; |
| 1049 | int size; |
| 1050 | void *zapbuf; |
| 1051 | int err; |
| 1052 | zfs_endian_t endian; |
| 1053 | |
| 1054 | /* Read in the first block of the zap object data. */ |
| 1055 | size = zfs_to_cpu16(zap_dnode->dn.dn_datablkszsec, |
| 1056 | zap_dnode->endian) << SPA_MINBLOCKSHIFT; |
| 1057 | err = dmu_read(zap_dnode, 0, &zapbuf, &endian, data); |
| 1058 | if (err) |
| 1059 | return err; |
| 1060 | block_type = zfs_to_cpu64(*((uint64_t *) zapbuf), endian); |
| 1061 | |
| 1062 | if (block_type == ZBT_MICRO) { |
| 1063 | err = (mzap_lookup(zapbuf, endian, size, name, val)); |
| 1064 | free(zapbuf); |
| 1065 | return err; |
| 1066 | } else if (block_type == ZBT_HEADER) { |
| 1067 | /* this is a fat zap */ |
| 1068 | err = (fzap_lookup(zap_dnode, zapbuf, name, val, data)); |
| 1069 | free(zapbuf); |
| 1070 | return err; |
| 1071 | } |
| 1072 | |
| 1073 | printf("unknown ZAP type\n"); |
| 1074 | return ZFS_ERR_BAD_FS; |
| 1075 | } |
| 1076 | |
| 1077 | static int |
| 1078 | zap_iterate(dnode_end_t *zap_dnode, |
| 1079 | int (*hook)(const char *name, uint64_t val, |
| 1080 | struct zfs_data *data), |
| 1081 | struct zfs_data *data) |
| 1082 | { |
| 1083 | uint64_t block_type; |
| 1084 | int size; |
| 1085 | void *zapbuf; |
| 1086 | int err; |
| 1087 | int ret; |
| 1088 | zfs_endian_t endian; |
| 1089 | |
| 1090 | /* Read in the first block of the zap object data. */ |
| 1091 | size = zfs_to_cpu16(zap_dnode->dn.dn_datablkszsec, zap_dnode->endian) << SPA_MINBLOCKSHIFT; |
| 1092 | err = dmu_read(zap_dnode, 0, &zapbuf, &endian, data); |
| 1093 | if (err) |
| 1094 | return 0; |
| 1095 | block_type = zfs_to_cpu64(*((uint64_t *) zapbuf), endian); |
| 1096 | |
| 1097 | if (block_type == ZBT_MICRO) { |
| 1098 | ret = mzap_iterate(zapbuf, endian, size, hook, data); |
| 1099 | free(zapbuf); |
| 1100 | return ret; |
| 1101 | } else if (block_type == ZBT_HEADER) { |
| 1102 | /* this is a fat zap */ |
| 1103 | ret = fzap_iterate(zap_dnode, zapbuf, hook, data); |
| 1104 | free(zapbuf); |
| 1105 | return ret; |
| 1106 | } |
| 1107 | printf("unknown ZAP type\n"); |
| 1108 | return 0; |
| 1109 | } |
| 1110 | |
| 1111 | |
| 1112 | /* |
| 1113 | * Get the dnode of an object number from the metadnode of an object set. |
| 1114 | * |
| 1115 | * Input |
| 1116 | * mdn - metadnode to get the object dnode |
| 1117 | * objnum - object number for the object dnode |
| 1118 | * buf - data buffer that holds the returning dnode |
| 1119 | */ |
| 1120 | static int |
| 1121 | dnode_get(dnode_end_t *mdn, uint64_t objnum, uint8_t type, |
| 1122 | dnode_end_t *buf, struct zfs_data *data) |
| 1123 | { |
| 1124 | uint64_t blkid, blksz; /* the block id this object dnode is in */ |
| 1125 | int epbs; /* shift of number of dnodes in a block */ |
| 1126 | int idx; /* index within a block */ |
| 1127 | void *dnbuf; |
| 1128 | int err; |
| 1129 | zfs_endian_t endian; |
| 1130 | |
| 1131 | blksz = zfs_to_cpu16(mdn->dn.dn_datablkszsec, |
| 1132 | mdn->endian) << SPA_MINBLOCKSHIFT; |
| 1133 | |
| 1134 | epbs = zfs_log2(blksz) - DNODE_SHIFT; |
| 1135 | blkid = objnum >> epbs; |
| 1136 | idx = objnum & ((1 << epbs) - 1); |
| 1137 | |
| 1138 | if (data->dnode_buf != NULL && memcmp(data->dnode_mdn, mdn, |
| 1139 | sizeof(*mdn)) == 0 |
| 1140 | && objnum >= data->dnode_start && objnum < data->dnode_end) { |
| 1141 | memmove(&(buf->dn), &(data->dnode_buf)[idx], DNODE_SIZE); |
| 1142 | buf->endian = data->dnode_endian; |
| 1143 | if (type && buf->dn.dn_type != type) { |
| 1144 | printf("incorrect dnode type: %02X != %02x\n", buf->dn.dn_type, type); |
| 1145 | return ZFS_ERR_BAD_FS; |
| 1146 | } |
| 1147 | return ZFS_ERR_NONE; |
| 1148 | } |
| 1149 | |
| 1150 | err = dmu_read(mdn, blkid, &dnbuf, &endian, data); |
| 1151 | if (err) |
| 1152 | return err; |
| 1153 | |
| 1154 | free(data->dnode_buf); |
| 1155 | free(data->dnode_mdn); |
| 1156 | data->dnode_mdn = malloc(sizeof(*mdn)); |
| 1157 | if (!data->dnode_mdn) { |
| 1158 | data->dnode_buf = 0; |
| 1159 | } else { |
| 1160 | memcpy(data->dnode_mdn, mdn, sizeof(*mdn)); |
| 1161 | data->dnode_buf = dnbuf; |
| 1162 | data->dnode_start = blkid << epbs; |
| 1163 | data->dnode_end = (blkid + 1) << epbs; |
| 1164 | data->dnode_endian = endian; |
| 1165 | } |
| 1166 | |
| 1167 | memmove(&(buf->dn), (dnode_phys_t *) dnbuf + idx, DNODE_SIZE); |
| 1168 | buf->endian = endian; |
| 1169 | if (type && buf->dn.dn_type != type) { |
| 1170 | printf("incorrect dnode type\n"); |
| 1171 | return ZFS_ERR_BAD_FS; |
| 1172 | } |
| 1173 | |
| 1174 | return ZFS_ERR_NONE; |
| 1175 | } |
| 1176 | |
| 1177 | /* |
| 1178 | * Get the file dnode for a given file name where mdn is the meta dnode |
| 1179 | * for this ZFS object set. When found, place the file dnode in dn. |
| 1180 | * The 'path' argument will be mangled. |
| 1181 | * |
| 1182 | */ |
| 1183 | static int |
| 1184 | dnode_get_path(dnode_end_t *mdn, const char *path_in, dnode_end_t *dn, |
| 1185 | struct zfs_data *data) |
| 1186 | { |
| 1187 | uint64_t objnum, version; |
| 1188 | char *cname, ch; |
| 1189 | int err = ZFS_ERR_NONE; |
| 1190 | char *path, *path_buf; |
| 1191 | struct dnode_chain { |
| 1192 | struct dnode_chain *next; |
| 1193 | dnode_end_t dn; |
| 1194 | }; |
| 1195 | struct dnode_chain *dnode_path = 0, *dn_new, *root; |
| 1196 | |
| 1197 | dn_new = malloc(sizeof(*dn_new)); |
| 1198 | if (!dn_new) |
| 1199 | return ZFS_ERR_OUT_OF_MEMORY; |
| 1200 | dn_new->next = 0; |
| 1201 | dnode_path = root = dn_new; |
| 1202 | |
| 1203 | err = dnode_get(mdn, MASTER_NODE_OBJ, DMU_OT_MASTER_NODE, |
| 1204 | &(dnode_path->dn), data); |
| 1205 | if (err) { |
| 1206 | free(dn_new); |
| 1207 | return err; |
| 1208 | } |
| 1209 | |
| 1210 | err = zap_lookup(&(dnode_path->dn), ZPL_VERSION_STR, &version, data); |
| 1211 | if (err) { |
| 1212 | free(dn_new); |
| 1213 | return err; |
| 1214 | } |
| 1215 | if (version > ZPL_VERSION) { |
| 1216 | free(dn_new); |
| 1217 | printf("too new ZPL version\n"); |
| 1218 | return ZFS_ERR_NOT_IMPLEMENTED_YET; |
| 1219 | } |
| 1220 | |
| 1221 | err = zap_lookup(&(dnode_path->dn), ZFS_ROOT_OBJ, &objnum, data); |
| 1222 | if (err) { |
| 1223 | free(dn_new); |
| 1224 | return err; |
| 1225 | } |
| 1226 | |
| 1227 | err = dnode_get(mdn, objnum, 0, &(dnode_path->dn), data); |
| 1228 | if (err) { |
| 1229 | free(dn_new); |
| 1230 | return err; |
| 1231 | } |
| 1232 | |
| 1233 | path = path_buf = strdup(path_in); |
| 1234 | if (!path_buf) { |
| 1235 | free(dn_new); |
| 1236 | return ZFS_ERR_OUT_OF_MEMORY; |
| 1237 | } |
| 1238 | |
| 1239 | while (1) { |
| 1240 | /* skip leading slashes */ |
| 1241 | while (*path == '/') |
| 1242 | path++; |
| 1243 | if (!*path) |
| 1244 | break; |
| 1245 | /* get the next component name */ |
| 1246 | cname = path; |
| 1247 | while (*path && *path != '/') |
| 1248 | path++; |
| 1249 | /* Skip dot. */ |
| 1250 | if (cname + 1 == path && cname[0] == '.') |
| 1251 | continue; |
| 1252 | /* Handle double dot. */ |
| 1253 | if (cname + 2 == path && cname[0] == '.' && cname[1] == '.') { |
| 1254 | if (dn_new->next) { |
| 1255 | dn_new = dnode_path; |
| 1256 | dnode_path = dn_new->next; |
| 1257 | free(dn_new); |
| 1258 | } else { |
| 1259 | printf("can't resolve ..\n"); |
| 1260 | err = ZFS_ERR_FILE_NOT_FOUND; |
| 1261 | break; |
| 1262 | } |
| 1263 | continue; |
| 1264 | } |
| 1265 | |
| 1266 | ch = *path; |
| 1267 | *path = 0; /* ensure null termination */ |
| 1268 | |
| 1269 | if (dnode_path->dn.dn.dn_type != DMU_OT_DIRECTORY_CONTENTS) { |
| 1270 | free(path_buf); |
| 1271 | printf("not a directory\n"); |
| 1272 | return ZFS_ERR_BAD_FILE_TYPE; |
| 1273 | } |
| 1274 | err = zap_lookup(&(dnode_path->dn), cname, &objnum, data); |
| 1275 | if (err) |
| 1276 | break; |
| 1277 | |
| 1278 | dn_new = malloc(sizeof(*dn_new)); |
| 1279 | if (!dn_new) { |
| 1280 | err = ZFS_ERR_OUT_OF_MEMORY; |
| 1281 | break; |
| 1282 | } |
| 1283 | dn_new->next = dnode_path; |
| 1284 | dnode_path = dn_new; |
| 1285 | |
| 1286 | objnum = ZFS_DIRENT_OBJ(objnum); |
| 1287 | err = dnode_get(mdn, objnum, 0, &(dnode_path->dn), data); |
| 1288 | if (err) |
| 1289 | break; |
| 1290 | |
| 1291 | *path = ch; |
| 1292 | } |
| 1293 | |
| 1294 | if (!err) |
| 1295 | memcpy(dn, &(dnode_path->dn), sizeof(*dn)); |
| 1296 | |
| 1297 | while (dnode_path) { |
| 1298 | dn_new = dnode_path->next; |
| 1299 | free(dnode_path); |
| 1300 | dnode_path = dn_new; |
| 1301 | } |
| 1302 | free(path_buf); |
| 1303 | return err; |
| 1304 | } |
| 1305 | |
| 1306 | |
| 1307 | /* |
| 1308 | * Given a MOS metadnode, get the metadnode of a given filesystem name (fsname), |
| 1309 | * e.g. pool/rootfs, or a given object number (obj), e.g. the object number |
| 1310 | * of pool/rootfs. |
| 1311 | * |
| 1312 | * If no fsname and no obj are given, return the DSL_DIR metadnode. |
| 1313 | * If fsname is given, return its metadnode and its matching object number. |
| 1314 | * If only obj is given, return the metadnode for this object number. |
| 1315 | * |
| 1316 | */ |
| 1317 | static int |
| 1318 | get_filesystem_dnode(dnode_end_t *mosmdn, char *fsname, |
| 1319 | dnode_end_t *mdn, struct zfs_data *data) |
| 1320 | { |
| 1321 | uint64_t objnum; |
| 1322 | int err; |
| 1323 | |
| 1324 | err = dnode_get(mosmdn, DMU_POOL_DIRECTORY_OBJECT, |
| 1325 | DMU_OT_OBJECT_DIRECTORY, mdn, data); |
| 1326 | if (err) |
| 1327 | return err; |
| 1328 | |
| 1329 | err = zap_lookup(mdn, DMU_POOL_ROOT_DATASET, &objnum, data); |
| 1330 | if (err) |
| 1331 | return err; |
| 1332 | |
| 1333 | err = dnode_get(mosmdn, objnum, DMU_OT_DSL_DIR, mdn, data); |
| 1334 | if (err) |
| 1335 | return err; |
| 1336 | |
| 1337 | while (*fsname) { |
| 1338 | uint64_t childobj; |
| 1339 | char *cname, ch; |
| 1340 | |
| 1341 | while (*fsname == '/') |
| 1342 | fsname++; |
| 1343 | |
| 1344 | if (!*fsname || *fsname == '@') |
| 1345 | break; |
| 1346 | |
| 1347 | cname = fsname; |
| 1348 | while (*fsname && !isspace(*fsname) && *fsname != '/') |
| 1349 | fsname++; |
| 1350 | ch = *fsname; |
| 1351 | *fsname = 0; |
| 1352 | |
| 1353 | childobj = zfs_to_cpu64((((dsl_dir_phys_t *) DN_BONUS(&mdn->dn)))->dd_child_dir_zapobj, mdn->endian); |
| 1354 | err = dnode_get(mosmdn, childobj, |
| 1355 | DMU_OT_DSL_DIR_CHILD_MAP, mdn, data); |
| 1356 | if (err) |
| 1357 | return err; |
| 1358 | |
| 1359 | err = zap_lookup(mdn, cname, &objnum, data); |
| 1360 | if (err) |
| 1361 | return err; |
| 1362 | |
| 1363 | err = dnode_get(mosmdn, objnum, DMU_OT_DSL_DIR, mdn, data); |
| 1364 | if (err) |
| 1365 | return err; |
| 1366 | |
| 1367 | *fsname = ch; |
| 1368 | } |
| 1369 | return ZFS_ERR_NONE; |
| 1370 | } |
| 1371 | |
| 1372 | static int |
| 1373 | make_mdn(dnode_end_t *mdn, struct zfs_data *data) |
| 1374 | { |
| 1375 | void *osp; |
| 1376 | blkptr_t *bp; |
| 1377 | size_t ospsize; |
| 1378 | int err; |
| 1379 | |
| 1380 | bp = &(((dsl_dataset_phys_t *) DN_BONUS(&mdn->dn))->ds_bp); |
| 1381 | err = zio_read(bp, mdn->endian, &osp, &ospsize, data); |
| 1382 | if (err) |
| 1383 | return err; |
| 1384 | if (ospsize < OBJSET_PHYS_SIZE_V14) { |
| 1385 | free(osp); |
| 1386 | printf("too small osp\n"); |
| 1387 | return ZFS_ERR_BAD_FS; |
| 1388 | } |
| 1389 | |
| 1390 | mdn->endian = (zfs_to_cpu64(bp->blk_prop, mdn->endian)>>63) & 1; |
| 1391 | memmove((char *) &(mdn->dn), |
| 1392 | (char *) &((objset_phys_t *) osp)->os_meta_dnode, DNODE_SIZE); |
| 1393 | free(osp); |
| 1394 | return ZFS_ERR_NONE; |
| 1395 | } |
| 1396 | |
| 1397 | static int |
| 1398 | dnode_get_fullpath(const char *fullpath, dnode_end_t *mdn, |
| 1399 | uint64_t *mdnobj, dnode_end_t *dn, int *isfs, |
| 1400 | struct zfs_data *data) |
| 1401 | { |
| 1402 | char *fsname, *snapname; |
| 1403 | const char *ptr_at, *filename; |
| 1404 | uint64_t headobj; |
| 1405 | int err; |
| 1406 | |
| 1407 | ptr_at = strchr(fullpath, '@'); |
| 1408 | if (!ptr_at) { |
| 1409 | *isfs = 1; |
| 1410 | filename = 0; |
| 1411 | snapname = 0; |
| 1412 | fsname = strdup(fullpath); |
| 1413 | } else { |
| 1414 | const char *ptr_slash = strchr(ptr_at, '/'); |
| 1415 | |
| 1416 | *isfs = 0; |
| 1417 | fsname = malloc(ptr_at - fullpath + 1); |
| 1418 | if (!fsname) |
| 1419 | return ZFS_ERR_OUT_OF_MEMORY; |
| 1420 | memcpy(fsname, fullpath, ptr_at - fullpath); |
| 1421 | fsname[ptr_at - fullpath] = 0; |
| 1422 | if (ptr_at[1] && ptr_at[1] != '/') { |
| 1423 | snapname = malloc(ptr_slash - ptr_at); |
| 1424 | if (!snapname) { |
| 1425 | free(fsname); |
| 1426 | return ZFS_ERR_OUT_OF_MEMORY; |
| 1427 | } |
| 1428 | memcpy(snapname, ptr_at + 1, ptr_slash - ptr_at - 1); |
| 1429 | snapname[ptr_slash - ptr_at - 1] = 0; |
| 1430 | } else { |
| 1431 | snapname = 0; |
| 1432 | } |
| 1433 | if (ptr_slash) |
| 1434 | filename = ptr_slash; |
| 1435 | else |
| 1436 | filename = "/"; |
| 1437 | printf("zfs fsname = '%s' snapname='%s' filename = '%s'\n", |
| 1438 | fsname, snapname, filename); |
| 1439 | } |
| 1440 | |
| 1441 | |
| 1442 | err = get_filesystem_dnode(&(data->mos), fsname, dn, data); |
| 1443 | |
| 1444 | if (err) { |
| 1445 | free(fsname); |
| 1446 | free(snapname); |
| 1447 | return err; |
| 1448 | } |
| 1449 | |
| 1450 | headobj = zfs_to_cpu64(((dsl_dir_phys_t *) DN_BONUS(&dn->dn))->dd_head_dataset_obj, dn->endian); |
| 1451 | |
| 1452 | err = dnode_get(&(data->mos), headobj, DMU_OT_DSL_DATASET, mdn, data); |
| 1453 | if (err) { |
| 1454 | free(fsname); |
| 1455 | free(snapname); |
| 1456 | return err; |
| 1457 | } |
| 1458 | |
| 1459 | if (snapname) { |
| 1460 | uint64_t snapobj; |
| 1461 | |
| 1462 | snapobj = zfs_to_cpu64(((dsl_dataset_phys_t *) DN_BONUS(&mdn->dn))->ds_snapnames_zapobj, mdn->endian); |
| 1463 | |
| 1464 | err = dnode_get(&(data->mos), snapobj, |
| 1465 | DMU_OT_DSL_DS_SNAP_MAP, mdn, data); |
| 1466 | if (!err) |
| 1467 | err = zap_lookup(mdn, snapname, &headobj, data); |
| 1468 | if (!err) |
| 1469 | err = dnode_get(&(data->mos), headobj, DMU_OT_DSL_DATASET, mdn, data); |
| 1470 | if (err) { |
| 1471 | free(fsname); |
| 1472 | free(snapname); |
| 1473 | return err; |
| 1474 | } |
| 1475 | } |
| 1476 | |
| 1477 | if (mdnobj) |
| 1478 | *mdnobj = headobj; |
| 1479 | |
| 1480 | make_mdn(mdn, data); |
| 1481 | |
| 1482 | if (*isfs) { |
| 1483 | free(fsname); |
| 1484 | free(snapname); |
| 1485 | return ZFS_ERR_NONE; |
| 1486 | } |
| 1487 | err = dnode_get_path(mdn, filename, dn, data); |
| 1488 | free(fsname); |
| 1489 | free(snapname); |
| 1490 | return err; |
| 1491 | } |
| 1492 | |
| 1493 | /* |
| 1494 | * For a given XDR packed nvlist, verify the first 4 bytes and move on. |
| 1495 | * |
| 1496 | * An XDR packed nvlist is encoded as (comments from nvs_xdr_create) : |
| 1497 | * |
| 1498 | * encoding method/host endian (4 bytes) |
| 1499 | * nvl_version (4 bytes) |
| 1500 | * nvl_nvflag (4 bytes) |
| 1501 | * encoded nvpairs: |
| 1502 | * encoded size of the nvpair (4 bytes) |
| 1503 | * decoded size of the nvpair (4 bytes) |
| 1504 | * name string size (4 bytes) |
| 1505 | * name string data (sizeof(NV_ALIGN4(string)) |
| 1506 | * data type (4 bytes) |
| 1507 | * # of elements in the nvpair (4 bytes) |
| 1508 | * data |
| 1509 | * 2 zero's for the last nvpair |
| 1510 | * (end of the entire list) (8 bytes) |
| 1511 | * |
| 1512 | */ |
| 1513 | |
| 1514 | static int |
| 1515 | nvlist_find_value(char *nvlist, char *name, int valtype, char **val, |
| 1516 | size_t *size_out, size_t *nelm_out) |
| 1517 | { |
| 1518 | int name_len, type, encode_size; |
| 1519 | char *nvpair, *nvp_name; |
| 1520 | |
| 1521 | /* Verify if the 1st and 2nd byte in the nvlist are valid. */ |
| 1522 | /* NOTE: independently of what endianness header announces all |
| 1523 | subsequent values are big-endian. */ |
| 1524 | if (nvlist[0] != NV_ENCODE_XDR || (nvlist[1] != NV_LITTLE_ENDIAN |
| 1525 | && nvlist[1] != NV_BIG_ENDIAN)) { |
| 1526 | printf("zfs incorrect nvlist header\n"); |
| 1527 | return ZFS_ERR_BAD_FS; |
| 1528 | } |
| 1529 | |
| 1530 | /* skip the header, nvl_version, and nvl_nvflag */ |
| 1531 | nvlist = nvlist + 4 * 3; |
| 1532 | /* |
| 1533 | * Loop thru the nvpair list |
| 1534 | * The XDR representation of an integer is in big-endian byte order. |
| 1535 | */ |
| 1536 | while ((encode_size = be32_to_cpu(*(uint32_t *) nvlist))) { |
| 1537 | int nelm; |
| 1538 | |
| 1539 | nvpair = nvlist + 4 * 2; /* skip the encode/decode size */ |
| 1540 | |
| 1541 | name_len = be32_to_cpu(*(uint32_t *) nvpair); |
| 1542 | nvpair += 4; |
| 1543 | |
| 1544 | nvp_name = nvpair; |
| 1545 | nvpair = nvpair + ((name_len + 3) & ~3); /* align */ |
| 1546 | |
| 1547 | type = be32_to_cpu(*(uint32_t *) nvpair); |
| 1548 | nvpair += 4; |
| 1549 | |
| 1550 | nelm = be32_to_cpu(*(uint32_t *) nvpair); |
| 1551 | if (nelm < 1) { |
| 1552 | printf("empty nvpair\n"); |
| 1553 | return ZFS_ERR_BAD_FS; |
| 1554 | } |
| 1555 | |
| 1556 | nvpair += 4; |
| 1557 | |
| 1558 | if ((strncmp(nvp_name, name, name_len) == 0) && type == valtype) { |
| 1559 | *val = nvpair; |
| 1560 | *size_out = encode_size; |
| 1561 | if (nelm_out) |
| 1562 | *nelm_out = nelm; |
| 1563 | return 1; |
| 1564 | } |
| 1565 | |
| 1566 | nvlist += encode_size; /* goto the next nvpair */ |
| 1567 | } |
| 1568 | return 0; |
| 1569 | } |
| 1570 | |
| 1571 | int |
| 1572 | zfs_nvlist_lookup_uint64(char *nvlist, char *name, uint64_t *out) |
| 1573 | { |
| 1574 | char *nvpair; |
| 1575 | size_t size; |
| 1576 | int found; |
| 1577 | |
| 1578 | found = nvlist_find_value(nvlist, name, DATA_TYPE_UINT64, &nvpair, &size, 0); |
| 1579 | if (!found) |
| 1580 | return 0; |
| 1581 | if (size < sizeof(uint64_t)) { |
| 1582 | printf("invalid uint64\n"); |
| 1583 | return ZFS_ERR_BAD_FS; |
| 1584 | } |
| 1585 | |
| 1586 | *out = be64_to_cpu(*(uint64_t *) nvpair); |
| 1587 | return 1; |
| 1588 | } |
| 1589 | |
| 1590 | char * |
| 1591 | zfs_nvlist_lookup_string(char *nvlist, char *name) |
| 1592 | { |
| 1593 | char *nvpair; |
| 1594 | char *ret; |
| 1595 | size_t slen; |
| 1596 | size_t size; |
| 1597 | int found; |
| 1598 | |
| 1599 | found = nvlist_find_value(nvlist, name, DATA_TYPE_STRING, &nvpair, &size, 0); |
| 1600 | if (!found) |
| 1601 | return 0; |
| 1602 | if (size < 4) { |
| 1603 | printf("invalid string\n"); |
| 1604 | return 0; |
| 1605 | } |
| 1606 | slen = be32_to_cpu(*(uint32_t *) nvpair); |
| 1607 | if (slen > size - 4) |
| 1608 | slen = size - 4; |
| 1609 | ret = malloc(slen + 1); |
| 1610 | if (!ret) |
| 1611 | return 0; |
| 1612 | memcpy(ret, nvpair + 4, slen); |
| 1613 | ret[slen] = 0; |
| 1614 | return ret; |
| 1615 | } |
| 1616 | |
| 1617 | char * |
| 1618 | zfs_nvlist_lookup_nvlist(char *nvlist, char *name) |
| 1619 | { |
| 1620 | char *nvpair; |
| 1621 | char *ret; |
| 1622 | size_t size; |
| 1623 | int found; |
| 1624 | |
| 1625 | found = nvlist_find_value(nvlist, name, DATA_TYPE_NVLIST, &nvpair, |
| 1626 | &size, 0); |
| 1627 | if (!found) |
| 1628 | return 0; |
| 1629 | ret = calloc(1, size + 3 * sizeof(uint32_t)); |
| 1630 | if (!ret) |
| 1631 | return 0; |
| 1632 | memcpy(ret, nvlist, sizeof(uint32_t)); |
| 1633 | |
| 1634 | memcpy(ret + sizeof(uint32_t), nvpair, size); |
| 1635 | return ret; |
| 1636 | } |
| 1637 | |
| 1638 | int |
| 1639 | zfs_nvlist_lookup_nvlist_array_get_nelm(char *nvlist, char *name) |
| 1640 | { |
| 1641 | char *nvpair; |
| 1642 | size_t nelm, size; |
| 1643 | int found; |
| 1644 | |
| 1645 | found = nvlist_find_value(nvlist, name, DATA_TYPE_NVLIST, &nvpair, |
| 1646 | &size, &nelm); |
| 1647 | if (!found) |
| 1648 | return -1; |
| 1649 | return nelm; |
| 1650 | } |
| 1651 | |
| 1652 | char * |
| 1653 | zfs_nvlist_lookup_nvlist_array(char *nvlist, char *name, |
| 1654 | size_t index) |
| 1655 | { |
| 1656 | char *nvpair, *nvpairptr; |
| 1657 | int found; |
| 1658 | char *ret; |
| 1659 | size_t size; |
| 1660 | unsigned i; |
| 1661 | size_t nelm; |
| 1662 | |
| 1663 | found = nvlist_find_value(nvlist, name, DATA_TYPE_NVLIST, &nvpair, |
| 1664 | &size, &nelm); |
| 1665 | if (!found) |
| 1666 | return 0; |
| 1667 | if (index >= nelm) { |
| 1668 | printf("trying to lookup past nvlist array\n"); |
| 1669 | return 0; |
| 1670 | } |
| 1671 | |
| 1672 | nvpairptr = nvpair; |
| 1673 | |
| 1674 | for (i = 0; i < index; i++) { |
| 1675 | uint32_t encode_size; |
| 1676 | |
| 1677 | /* skip the header, nvl_version, and nvl_nvflag */ |
| 1678 | nvpairptr = nvpairptr + 4 * 2; |
| 1679 | |
| 1680 | while (nvpairptr < nvpair + size |
| 1681 | && (encode_size = be32_to_cpu(*(uint32_t *) nvpairptr))) |
| 1682 | nvlist += encode_size; /* goto the next nvpair */ |
| 1683 | |
| 1684 | nvlist = nvlist + 4 * 2; /* skip the ending 2 zeros - 8 bytes */ |
| 1685 | } |
| 1686 | |
| 1687 | if (nvpairptr >= nvpair + size |
| 1688 | || nvpairptr + be32_to_cpu(*(uint32_t *) (nvpairptr + 4 * 2)) |
| 1689 | >= nvpair + size) { |
| 1690 | printf("incorrect nvlist array\n"); |
| 1691 | return 0; |
| 1692 | } |
| 1693 | |
| 1694 | ret = calloc(1, be32_to_cpu(*(uint32_t *) (nvpairptr + 4 * 2)) |
| 1695 | + 3 * sizeof(uint32_t)); |
| 1696 | if (!ret) |
| 1697 | return 0; |
| 1698 | memcpy(ret, nvlist, sizeof(uint32_t)); |
| 1699 | |
| 1700 | memcpy(ret + sizeof(uint32_t), nvpairptr, size); |
| 1701 | return ret; |
| 1702 | } |
| 1703 | |
| 1704 | static int |
| 1705 | int_zfs_fetch_nvlist(struct zfs_data *data, char **nvlist) |
| 1706 | { |
| 1707 | int err; |
| 1708 | |
| 1709 | *nvlist = malloc(VDEV_PHYS_SIZE); |
| 1710 | /* Read in the vdev name-value pair list (112K). */ |
| 1711 | err = zfs_devread(data->vdev_phys_sector, 0, VDEV_PHYS_SIZE, *nvlist); |
| 1712 | if (err) { |
| 1713 | free(*nvlist); |
| 1714 | *nvlist = 0; |
| 1715 | return err; |
| 1716 | } |
| 1717 | return ZFS_ERR_NONE; |
| 1718 | } |
| 1719 | |
| 1720 | /* |
| 1721 | * Check the disk label information and retrieve needed vdev name-value pairs. |
| 1722 | * |
| 1723 | */ |
| 1724 | static int |
| 1725 | check_pool_label(struct zfs_data *data) |
| 1726 | { |
| 1727 | uint64_t pool_state; |
| 1728 | char *nvlist; /* for the pool */ |
| 1729 | char *vdevnvlist; /* for the vdev */ |
| 1730 | uint64_t diskguid; |
| 1731 | uint64_t version; |
| 1732 | int found; |
| 1733 | int err; |
| 1734 | |
| 1735 | err = int_zfs_fetch_nvlist(data, &nvlist); |
| 1736 | if (err) |
| 1737 | return err; |
| 1738 | |
| 1739 | found = zfs_nvlist_lookup_uint64(nvlist, ZPOOL_CONFIG_POOL_STATE, |
| 1740 | &pool_state); |
| 1741 | if (!found) { |
| 1742 | free(nvlist); |
| 1743 | printf("zfs pool state not found\n"); |
| 1744 | return ZFS_ERR_BAD_FS; |
| 1745 | } |
| 1746 | |
| 1747 | if (pool_state == POOL_STATE_DESTROYED) { |
| 1748 | free(nvlist); |
| 1749 | printf("zpool is marked as destroyed\n"); |
| 1750 | return ZFS_ERR_BAD_FS; |
| 1751 | } |
| 1752 | |
| 1753 | data->label_txg = 0; |
| 1754 | found = zfs_nvlist_lookup_uint64(nvlist, ZPOOL_CONFIG_POOL_TXG, |
| 1755 | &data->label_txg); |
| 1756 | if (!found) { |
| 1757 | free(nvlist); |
| 1758 | printf("zfs pool txg not found\n"); |
| 1759 | return ZFS_ERR_BAD_FS; |
| 1760 | } |
| 1761 | |
| 1762 | /* not an active device */ |
| 1763 | if (data->label_txg == 0) { |
| 1764 | free(nvlist); |
| 1765 | printf("zpool is not active\n"); |
| 1766 | return ZFS_ERR_BAD_FS; |
| 1767 | } |
| 1768 | |
| 1769 | found = zfs_nvlist_lookup_uint64(nvlist, ZPOOL_CONFIG_VERSION, |
| 1770 | &version); |
| 1771 | if (!found) { |
| 1772 | free(nvlist); |
| 1773 | printf("zpool config version not found\n"); |
| 1774 | return ZFS_ERR_BAD_FS; |
| 1775 | } |
| 1776 | |
| 1777 | if (version > SPA_VERSION) { |
| 1778 | free(nvlist); |
| 1779 | printf("SPA version too new %llu > %llu\n", |
| 1780 | (unsigned long long) version, |
| 1781 | (unsigned long long) SPA_VERSION); |
| 1782 | return ZFS_ERR_NOT_IMPLEMENTED_YET; |
| 1783 | } |
| 1784 | |
| 1785 | vdevnvlist = zfs_nvlist_lookup_nvlist(nvlist, ZPOOL_CONFIG_VDEV_TREE); |
| 1786 | if (!vdevnvlist) { |
| 1787 | free(nvlist); |
| 1788 | printf("ZFS config vdev tree not found\n"); |
| 1789 | return ZFS_ERR_BAD_FS; |
| 1790 | } |
| 1791 | |
| 1792 | found = zfs_nvlist_lookup_uint64(vdevnvlist, ZPOOL_CONFIG_ASHIFT, |
| 1793 | &data->vdev_ashift); |
| 1794 | free(vdevnvlist); |
| 1795 | if (!found) { |
| 1796 | free(nvlist); |
| 1797 | printf("ZPOOL config ashift not found\n"); |
| 1798 | return ZFS_ERR_BAD_FS; |
| 1799 | } |
| 1800 | |
| 1801 | found = zfs_nvlist_lookup_uint64(nvlist, ZPOOL_CONFIG_GUID, &diskguid); |
| 1802 | if (!found) { |
| 1803 | free(nvlist); |
| 1804 | printf("ZPOOL config guid not found\n"); |
| 1805 | return ZFS_ERR_BAD_FS; |
| 1806 | } |
| 1807 | |
| 1808 | found = zfs_nvlist_lookup_uint64(nvlist, ZPOOL_CONFIG_POOL_GUID, &data->pool_guid); |
| 1809 | if (!found) { |
| 1810 | free(nvlist); |
| 1811 | printf("ZPOOL config pool guid not found\n"); |
| 1812 | return ZFS_ERR_BAD_FS; |
| 1813 | } |
| 1814 | |
| 1815 | free(nvlist); |
| 1816 | |
| 1817 | printf("ZFS Pool GUID: %llu (%016llx) Label: GUID: %llu (%016llx), txg: %llu, SPA v%llu, ashift: %llu\n", |
| 1818 | (unsigned long long) data->pool_guid, |
| 1819 | (unsigned long long) data->pool_guid, |
| 1820 | (unsigned long long) diskguid, |
| 1821 | (unsigned long long) diskguid, |
| 1822 | (unsigned long long) data->label_txg, |
| 1823 | (unsigned long long) version, |
| 1824 | (unsigned long long) data->vdev_ashift); |
| 1825 | |
| 1826 | return ZFS_ERR_NONE; |
| 1827 | } |
| 1828 | |
| 1829 | /* |
| 1830 | * vdev_label_start returns the physical disk offset (in bytes) of |
| 1831 | * label "l". |
| 1832 | */ |
| 1833 | static uint64_t vdev_label_start(uint64_t psize, int l) |
| 1834 | { |
| 1835 | return (l * sizeof(vdev_label_t) + (l < VDEV_LABELS / 2 ? |
| 1836 | 0 : psize - |
| 1837 | VDEV_LABELS * sizeof(vdev_label_t))); |
| 1838 | } |
| 1839 | |
| 1840 | void |
| 1841 | zfs_unmount(struct zfs_data *data) |
| 1842 | { |
| 1843 | free(data->dnode_buf); |
| 1844 | free(data->dnode_mdn); |
| 1845 | free(data->file_buf); |
| 1846 | free(data); |
| 1847 | } |
| 1848 | |
| 1849 | /* |
| 1850 | * zfs_mount() locates a valid uberblock of the root pool and read in its MOS |
| 1851 | * to the memory address MOS. |
| 1852 | * |
| 1853 | */ |
| 1854 | struct zfs_data * |
| 1855 | zfs_mount(device_t dev) |
| 1856 | { |
| 1857 | struct zfs_data *data = 0; |
| 1858 | int label = 0, bestlabel = -1; |
| 1859 | char *ub_array; |
| 1860 | uberblock_t *ubbest; |
| 1861 | uberblock_t *ubcur = NULL; |
| 1862 | void *osp = 0; |
| 1863 | size_t ospsize; |
| 1864 | int err; |
| 1865 | |
| 1866 | data = malloc(sizeof(*data)); |
| 1867 | if (!data) |
| 1868 | return 0; |
| 1869 | memset(data, 0, sizeof(*data)); |
| 1870 | |
| 1871 | ub_array = malloc(VDEV_UBERBLOCK_RING); |
| 1872 | if (!ub_array) { |
| 1873 | zfs_unmount(data); |
| 1874 | return 0; |
| 1875 | } |
| 1876 | |
| 1877 | ubbest = malloc(sizeof(*ubbest)); |
| 1878 | if (!ubbest) { |
| 1879 | zfs_unmount(data); |
| 1880 | return 0; |
| 1881 | } |
| 1882 | memset(ubbest, 0, sizeof(*ubbest)); |
| 1883 | |
| 1884 | /* |
| 1885 | * some eltorito stacks don't give us a size and |
| 1886 | * we end up setting the size to MAXUINT, further |
| 1887 | * some of these devices stop working once a single |
| 1888 | * read past the end has been issued. Checking |
| 1889 | * for a maximum part_length and skipping the backup |
| 1890 | * labels at the end of the slice/partition/device |
| 1891 | * avoids breaking down on such devices. |
| 1892 | */ |
| 1893 | const int vdevnum = |
| 1894 | dev->part_length == 0 ? |
| 1895 | VDEV_LABELS / 2 : VDEV_LABELS; |
| 1896 | |
| 1897 | /* Size in bytes of the device (disk or partition) aligned to label size*/ |
| 1898 | uint64_t device_size = |
| 1899 | dev->part_length << SECTOR_BITS; |
| 1900 | |
| 1901 | const uint64_t alignedbytes = |
| 1902 | P2ALIGN(device_size, (uint64_t) sizeof(vdev_label_t)); |
| 1903 | |
| 1904 | for (label = 0; label < vdevnum; label++) { |
| 1905 | uint64_t labelstartbytes = vdev_label_start(alignedbytes, label); |
| 1906 | uint64_t labelstart = labelstartbytes >> SECTOR_BITS; |
| 1907 | |
| 1908 | debug("zfs reading label %d at sector %llu (byte %llu)\n", |
| 1909 | label, (unsigned long long) labelstart, |
| 1910 | (unsigned long long) labelstartbytes); |
| 1911 | |
| 1912 | data->vdev_phys_sector = labelstart + |
| 1913 | ((VDEV_SKIP_SIZE + VDEV_BOOT_HEADER_SIZE) >> SECTOR_BITS); |
| 1914 | |
| 1915 | err = check_pool_label(data); |
| 1916 | if (err) { |
| 1917 | printf("zfs error checking label %d\n", label); |
| 1918 | continue; |
| 1919 | } |
| 1920 | |
| 1921 | /* Read in the uberblock ring (128K). */ |
| 1922 | err = zfs_devread(data->vdev_phys_sector + |
| 1923 | (VDEV_PHYS_SIZE >> SECTOR_BITS), |
| 1924 | 0, VDEV_UBERBLOCK_RING, ub_array); |
| 1925 | if (err) { |
| 1926 | printf("zfs error reading uberblock ring for label %d\n", label); |
| 1927 | continue; |
| 1928 | } |
| 1929 | |
| 1930 | ubcur = find_bestub(ub_array, data); |
| 1931 | if (!ubcur) { |
| 1932 | printf("zfs No good uberblocks found in label %d\n", label); |
| 1933 | continue; |
| 1934 | } |
| 1935 | |
| 1936 | if (vdev_uberblock_compare(ubcur, ubbest) > 0) { |
| 1937 | /* Looks like the block is good, so use it.*/ |
| 1938 | memcpy(ubbest, ubcur, sizeof(*ubbest)); |
| 1939 | bestlabel = label; |
| 1940 | debug("zfs Current best uberblock found in label %d\n", label); |
| 1941 | } |
| 1942 | } |
| 1943 | free(ub_array); |
| 1944 | |
| 1945 | /* We zero'd the structure to begin with. If we never assigned to it, |
| 1946 | magic will still be zero. */ |
| 1947 | if (!ubbest->ub_magic) { |
| 1948 | printf("couldn't find a valid ZFS label\n"); |
| 1949 | zfs_unmount(data); |
| 1950 | free(ubbest); |
| 1951 | return 0; |
| 1952 | } |
| 1953 | |
| 1954 | debug("zfs ubbest %p in label %d\n", ubbest, bestlabel); |
| 1955 | |
| 1956 | zfs_endian_t ub_endian = |
| 1957 | zfs_to_cpu64(ubbest->ub_magic, LITTLE_ENDIAN) == UBERBLOCK_MAGIC |
| 1958 | ? LITTLE_ENDIAN : BIG_ENDIAN; |
| 1959 | |
| 1960 | debug("zfs endian set to %s\n", !ub_endian ? "big" : "little"); |
| 1961 | |
| 1962 | err = zio_read(&ubbest->ub_rootbp, ub_endian, &osp, &ospsize, data); |
| 1963 | |
| 1964 | if (err) { |
| 1965 | printf("couldn't zio_read object directory\n"); |
| 1966 | zfs_unmount(data); |
| 1967 | free(ubbest); |
| 1968 | return 0; |
| 1969 | } |
| 1970 | |
| 1971 | if (ospsize < OBJSET_PHYS_SIZE_V14) { |
| 1972 | printf("osp too small\n"); |
| 1973 | zfs_unmount(data); |
| 1974 | free(osp); |
| 1975 | free(ubbest); |
| 1976 | return 0; |
| 1977 | } |
| 1978 | |
| 1979 | /* Got the MOS. Save it at the memory addr MOS. */ |
| 1980 | memmove(&(data->mos.dn), &((objset_phys_t *) osp)->os_meta_dnode, DNODE_SIZE); |
| 1981 | data->mos.endian = |
| 1982 | (zfs_to_cpu64(ubbest->ub_rootbp.blk_prop, ub_endian) >> 63) & 1; |
| 1983 | memmove(&(data->current_uberblock), ubbest, sizeof(uberblock_t)); |
| 1984 | |
| 1985 | free(osp); |
| 1986 | free(ubbest); |
| 1987 | |
| 1988 | return data; |
| 1989 | } |
| 1990 | |
| 1991 | int |
| 1992 | zfs_fetch_nvlist(device_t dev, char **nvlist) |
| 1993 | { |
| 1994 | struct zfs_data *zfs; |
| 1995 | int err; |
| 1996 | |
| 1997 | zfs = zfs_mount(dev); |
| 1998 | if (!zfs) |
| 1999 | return ZFS_ERR_BAD_FS; |
| 2000 | err = int_zfs_fetch_nvlist(zfs, nvlist); |
| 2001 | zfs_unmount(zfs); |
| 2002 | return err; |
| 2003 | } |
| 2004 | |
Jorgen Lundman | 9b4a1f9 | 2012-07-19 20:48:25 +0000 | [diff] [blame] | 2005 | /* |
| 2006 | * zfs_open() locates a file in the rootpool by following the |
| 2007 | * MOS and places the dnode of the file in the memory address DNODE. |
| 2008 | */ |
| 2009 | int |
| 2010 | zfs_open(struct zfs_file *file, const char *fsfilename) |
| 2011 | { |
| 2012 | struct zfs_data *data; |
| 2013 | int err; |
| 2014 | int isfs; |
| 2015 | |
| 2016 | data = zfs_mount(file->device); |
| 2017 | if (!data) |
| 2018 | return ZFS_ERR_BAD_FS; |
| 2019 | |
| 2020 | err = dnode_get_fullpath(fsfilename, &(data->mdn), 0, |
| 2021 | &(data->dnode), &isfs, data); |
| 2022 | if (err) { |
| 2023 | zfs_unmount(data); |
| 2024 | return err; |
| 2025 | } |
| 2026 | |
| 2027 | if (isfs) { |
| 2028 | zfs_unmount(data); |
| 2029 | printf("Missing @ or / separator\n"); |
| 2030 | return ZFS_ERR_FILE_NOT_FOUND; |
| 2031 | } |
| 2032 | |
| 2033 | /* We found the dnode for this file. Verify if it is a plain file. */ |
| 2034 | if (data->dnode.dn.dn_type != DMU_OT_PLAIN_FILE_CONTENTS) { |
| 2035 | zfs_unmount(data); |
| 2036 | printf("not a file\n"); |
| 2037 | return ZFS_ERR_BAD_FILE_TYPE; |
| 2038 | } |
| 2039 | |
| 2040 | /* get the file size and set the file position to 0 */ |
| 2041 | |
| 2042 | /* |
| 2043 | * For DMU_OT_SA we will need to locate the SIZE attribute |
| 2044 | * attribute, which could be either in the bonus buffer |
| 2045 | * or the "spill" block. |
| 2046 | */ |
| 2047 | if (data->dnode.dn.dn_bonustype == DMU_OT_SA) { |
| 2048 | void *sahdrp; |
| 2049 | int hdrsize; |
| 2050 | |
| 2051 | if (data->dnode.dn.dn_bonuslen != 0) { |
| 2052 | sahdrp = (sa_hdr_phys_t *) DN_BONUS(&data->dnode.dn); |
| 2053 | } else if (data->dnode.dn.dn_flags & DNODE_FLAG_SPILL_BLKPTR) { |
| 2054 | blkptr_t *bp = &data->dnode.dn.dn_spill; |
| 2055 | |
| 2056 | err = zio_read(bp, data->dnode.endian, &sahdrp, NULL, data); |
| 2057 | if (err) |
| 2058 | return err; |
| 2059 | } else { |
| 2060 | printf("filesystem is corrupt :(\n"); |
| 2061 | return ZFS_ERR_BAD_FS; |
| 2062 | } |
| 2063 | |
| 2064 | hdrsize = SA_HDR_SIZE(((sa_hdr_phys_t *) sahdrp)); |
| 2065 | file->size = *(uint64_t *) ((char *) sahdrp + hdrsize + SA_SIZE_OFFSET); |
| 2066 | } else { |
| 2067 | file->size = zfs_to_cpu64(((znode_phys_t *) DN_BONUS(&data->dnode.dn))->zp_size, data->dnode.endian); |
| 2068 | } |
| 2069 | |
| 2070 | file->data = data; |
| 2071 | file->offset = 0; |
| 2072 | |
| 2073 | return ZFS_ERR_NONE; |
| 2074 | } |
| 2075 | |
| 2076 | uint64_t |
| 2077 | zfs_read(zfs_file_t file, char *buf, uint64_t len) |
| 2078 | { |
| 2079 | struct zfs_data *data = (struct zfs_data *) file->data; |
| 2080 | int blksz, movesize; |
| 2081 | uint64_t length; |
| 2082 | int64_t red; |
| 2083 | int err; |
| 2084 | |
| 2085 | if (data->file_buf == NULL) { |
| 2086 | data->file_buf = malloc(SPA_MAXBLOCKSIZE); |
| 2087 | if (!data->file_buf) |
| 2088 | return -1; |
| 2089 | data->file_start = data->file_end = 0; |
| 2090 | } |
| 2091 | |
| 2092 | /* |
| 2093 | * If offset is in memory, move it into the buffer provided and return. |
| 2094 | */ |
| 2095 | if (file->offset >= data->file_start |
| 2096 | && file->offset + len <= data->file_end) { |
| 2097 | memmove(buf, data->file_buf + file->offset - data->file_start, |
| 2098 | len); |
| 2099 | return len; |
| 2100 | } |
| 2101 | |
| 2102 | blksz = zfs_to_cpu16(data->dnode.dn.dn_datablkszsec, |
| 2103 | data->dnode.endian) << SPA_MINBLOCKSHIFT; |
| 2104 | |
| 2105 | /* |
| 2106 | * Entire Dnode is too big to fit into the space available. We |
| 2107 | * will need to read it in chunks. This could be optimized to |
| 2108 | * read in as large a chunk as there is space available, but for |
| 2109 | * now, this only reads in one data block at a time. |
| 2110 | */ |
| 2111 | length = len; |
| 2112 | red = 0; |
| 2113 | while (length) { |
| 2114 | void *t; |
| 2115 | /* |
| 2116 | * Find requested blkid and the offset within that block. |
| 2117 | */ |
| 2118 | uint64_t blkid = (file->offset + red) / blksz; |
| 2119 | free(data->file_buf); |
| 2120 | data->file_buf = 0; |
| 2121 | |
| 2122 | err = dmu_read(&(data->dnode), blkid, &t, |
| 2123 | 0, data); |
| 2124 | data->file_buf = t; |
| 2125 | if (err) |
| 2126 | return -1; |
| 2127 | |
| 2128 | data->file_start = blkid * blksz; |
| 2129 | data->file_end = data->file_start + blksz; |
| 2130 | |
| 2131 | movesize = MIN(length, data->file_end - (int) file->offset - red); |
| 2132 | |
| 2133 | memmove(buf, data->file_buf + file->offset + red |
| 2134 | - data->file_start, movesize); |
| 2135 | buf += movesize; |
| 2136 | length -= movesize; |
| 2137 | red += movesize; |
| 2138 | } |
| 2139 | |
| 2140 | return len; |
| 2141 | } |
| 2142 | |
| 2143 | int |
| 2144 | zfs_close(zfs_file_t file) |
| 2145 | { |
| 2146 | zfs_unmount((struct zfs_data *) file->data); |
| 2147 | return ZFS_ERR_NONE; |
| 2148 | } |
| 2149 | |
| 2150 | int |
| 2151 | zfs_getmdnobj(device_t dev, const char *fsfilename, |
| 2152 | uint64_t *mdnobj) |
| 2153 | { |
| 2154 | struct zfs_data *data; |
| 2155 | int err; |
| 2156 | int isfs; |
| 2157 | |
| 2158 | data = zfs_mount(dev); |
| 2159 | if (!data) |
| 2160 | return ZFS_ERR_BAD_FS; |
| 2161 | |
| 2162 | err = dnode_get_fullpath(fsfilename, &(data->mdn), mdnobj, |
| 2163 | &(data->dnode), &isfs, data); |
| 2164 | zfs_unmount(data); |
| 2165 | return err; |
| 2166 | } |
| 2167 | |
| 2168 | static void |
| 2169 | fill_fs_info(struct zfs_dirhook_info *info, |
| 2170 | dnode_end_t mdn, struct zfs_data *data) |
| 2171 | { |
| 2172 | int err; |
| 2173 | dnode_end_t dn; |
| 2174 | uint64_t objnum; |
| 2175 | uint64_t headobj; |
| 2176 | |
| 2177 | memset(info, 0, sizeof(*info)); |
| 2178 | |
| 2179 | info->dir = 1; |
| 2180 | |
| 2181 | if (mdn.dn.dn_type == DMU_OT_DSL_DIR) { |
| 2182 | headobj = zfs_to_cpu64(((dsl_dir_phys_t *) DN_BONUS(&mdn.dn))->dd_head_dataset_obj, mdn.endian); |
| 2183 | |
| 2184 | err = dnode_get(&(data->mos), headobj, DMU_OT_DSL_DATASET, &mdn, data); |
| 2185 | if (err) { |
| 2186 | printf("zfs failed here 1\n"); |
| 2187 | return; |
| 2188 | } |
| 2189 | } |
| 2190 | make_mdn(&mdn, data); |
| 2191 | err = dnode_get(&mdn, MASTER_NODE_OBJ, DMU_OT_MASTER_NODE, |
| 2192 | &dn, data); |
| 2193 | if (err) { |
| 2194 | printf("zfs failed here 2\n"); |
| 2195 | return; |
| 2196 | } |
| 2197 | |
| 2198 | err = zap_lookup(&dn, ZFS_ROOT_OBJ, &objnum, data); |
| 2199 | if (err) { |
| 2200 | printf("zfs failed here 3\n"); |
| 2201 | return; |
| 2202 | } |
| 2203 | |
| 2204 | err = dnode_get(&mdn, objnum, 0, &dn, data); |
| 2205 | if (err) { |
| 2206 | printf("zfs failed here 4\n"); |
| 2207 | return; |
| 2208 | } |
| 2209 | |
| 2210 | info->mtimeset = 1; |
| 2211 | info->mtime = zfs_to_cpu64(((znode_phys_t *) DN_BONUS(&dn.dn))->zp_mtime[0], dn.endian); |
| 2212 | |
| 2213 | return; |
| 2214 | } |
| 2215 | |
| 2216 | static int iterate_zap(const char *name, uint64_t val, struct zfs_data *data) |
| 2217 | { |
| 2218 | struct zfs_dirhook_info info; |
| 2219 | dnode_end_t dn; |
| 2220 | |
| 2221 | memset(&info, 0, sizeof(info)); |
| 2222 | |
| 2223 | dnode_get(&(data->mdn), val, 0, &dn, data); |
| 2224 | info.mtimeset = 1; |
| 2225 | info.mtime = zfs_to_cpu64(((znode_phys_t *) DN_BONUS(&dn.dn))->zp_mtime[0], dn.endian); |
| 2226 | info.dir = (dn.dn.dn_type == DMU_OT_DIRECTORY_CONTENTS); |
| 2227 | debug("zfs type=%d, name=%s\n", |
| 2228 | (int)dn.dn.dn_type, (char *)name); |
| 2229 | if (!data->userhook) |
| 2230 | return 0; |
| 2231 | return data->userhook(name, &info); |
| 2232 | } |
| 2233 | |
| 2234 | static int iterate_zap_fs(const char *name, uint64_t val, struct zfs_data *data) |
| 2235 | { |
| 2236 | struct zfs_dirhook_info info; |
| 2237 | dnode_end_t mdn; |
| 2238 | int err; |
| 2239 | err = dnode_get(&(data->mos), val, 0, &mdn, data); |
| 2240 | if (err) |
| 2241 | return 0; |
| 2242 | if (mdn.dn.dn_type != DMU_OT_DSL_DIR) |
| 2243 | return 0; |
| 2244 | |
| 2245 | fill_fs_info(&info, mdn, data); |
| 2246 | |
| 2247 | if (!data->userhook) |
| 2248 | return 0; |
| 2249 | return data->userhook(name, &info); |
| 2250 | } |
| 2251 | |
| 2252 | static int iterate_zap_snap(const char *name, uint64_t val, struct zfs_data *data) |
| 2253 | { |
| 2254 | struct zfs_dirhook_info info; |
| 2255 | char *name2; |
| 2256 | int ret = 0; |
| 2257 | dnode_end_t mdn; |
| 2258 | int err; |
| 2259 | |
| 2260 | err = dnode_get(&(data->mos), val, 0, &mdn, data); |
| 2261 | if (err) |
| 2262 | return 0; |
| 2263 | |
| 2264 | if (mdn.dn.dn_type != DMU_OT_DSL_DATASET) |
| 2265 | return 0; |
| 2266 | |
| 2267 | fill_fs_info(&info, mdn, data); |
| 2268 | |
| 2269 | name2 = malloc(strlen(name) + 2); |
| 2270 | name2[0] = '@'; |
| 2271 | memcpy(name2 + 1, name, strlen(name) + 1); |
| 2272 | if (data->userhook) |
| 2273 | ret = data->userhook(name2, &info); |
| 2274 | free(name2); |
| 2275 | return ret; |
| 2276 | } |
| 2277 | |
| 2278 | int |
| 2279 | zfs_ls(device_t device, const char *path, |
| 2280 | int (*hook)(const char *, const struct zfs_dirhook_info *)) |
| 2281 | { |
| 2282 | struct zfs_data *data; |
| 2283 | int err; |
| 2284 | int isfs; |
Jorgen Lundman | 9b4a1f9 | 2012-07-19 20:48:25 +0000 | [diff] [blame] | 2285 | |
| 2286 | data = zfs_mount(device); |
| 2287 | if (!data) |
| 2288 | return ZFS_ERR_BAD_FS; |
| 2289 | |
| 2290 | data->userhook = hook; |
| 2291 | |
| 2292 | err = dnode_get_fullpath(path, &(data->mdn), 0, &(data->dnode), &isfs, data); |
| 2293 | if (err) { |
| 2294 | zfs_unmount(data); |
| 2295 | return err; |
| 2296 | } |
| 2297 | if (isfs) { |
| 2298 | uint64_t childobj, headobj; |
| 2299 | uint64_t snapobj; |
| 2300 | dnode_end_t dn; |
| 2301 | struct zfs_dirhook_info info; |
| 2302 | |
| 2303 | fill_fs_info(&info, data->dnode, data); |
| 2304 | hook("@", &info); |
| 2305 | |
| 2306 | childobj = zfs_to_cpu64(((dsl_dir_phys_t *) DN_BONUS(&data->dnode.dn))->dd_child_dir_zapobj, data->dnode.endian); |
| 2307 | headobj = zfs_to_cpu64(((dsl_dir_phys_t *) DN_BONUS(&data->dnode.dn))->dd_head_dataset_obj, data->dnode.endian); |
| 2308 | err = dnode_get(&(data->mos), childobj, |
| 2309 | DMU_OT_DSL_DIR_CHILD_MAP, &dn, data); |
| 2310 | if (err) { |
| 2311 | zfs_unmount(data); |
| 2312 | return err; |
| 2313 | } |
| 2314 | |
| 2315 | |
| 2316 | zap_iterate(&dn, iterate_zap_fs, data); |
| 2317 | |
| 2318 | err = dnode_get(&(data->mos), headobj, DMU_OT_DSL_DATASET, &dn, data); |
| 2319 | if (err) { |
| 2320 | zfs_unmount(data); |
| 2321 | return err; |
| 2322 | } |
| 2323 | |
| 2324 | snapobj = zfs_to_cpu64(((dsl_dataset_phys_t *) DN_BONUS(&dn.dn))->ds_snapnames_zapobj, dn.endian); |
| 2325 | |
| 2326 | err = dnode_get(&(data->mos), snapobj, |
| 2327 | DMU_OT_DSL_DS_SNAP_MAP, &dn, data); |
| 2328 | if (err) { |
| 2329 | zfs_unmount(data); |
| 2330 | return err; |
| 2331 | } |
| 2332 | |
| 2333 | zap_iterate(&dn, iterate_zap_snap, data); |
| 2334 | } else { |
| 2335 | if (data->dnode.dn.dn_type != DMU_OT_DIRECTORY_CONTENTS) { |
| 2336 | zfs_unmount(data); |
| 2337 | printf("not a directory\n"); |
| 2338 | return ZFS_ERR_BAD_FILE_TYPE; |
| 2339 | } |
| 2340 | zap_iterate(&(data->dnode), iterate_zap, data); |
| 2341 | } |
| 2342 | zfs_unmount(data); |
| 2343 | return ZFS_ERR_NONE; |
| 2344 | } |