Stefan Roese | 2fc10f6 | 2009-03-19 15:35:05 +0100 | [diff] [blame] | 1 | /* |
| 2 | * This file is part of UBIFS. |
| 3 | * |
| 4 | * Copyright (C) 2006-2008 Nokia Corporation. |
| 5 | * |
| 6 | * This program is free software; you can redistribute it and/or modify it |
| 7 | * under the terms of the GNU General Public License version 2 as published by |
| 8 | * the Free Software Foundation. |
| 9 | * |
| 10 | * This program is distributed in the hope that it will be useful, but WITHOUT |
| 11 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 12 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| 13 | * more details. |
| 14 | * |
| 15 | * You should have received a copy of the GNU General Public License along with |
| 16 | * this program; if not, write to the Free Software Foundation, Inc., 51 |
| 17 | * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA |
| 18 | * |
| 19 | * Authors: Adrian Hunter |
| 20 | * Artem Bityutskiy (Битюцкий Артём) |
| 21 | */ |
| 22 | |
| 23 | /* |
| 24 | * This file implements TNC (Tree Node Cache) which caches indexing nodes of |
| 25 | * the UBIFS B-tree. |
| 26 | * |
| 27 | * At the moment the locking rules of the TNC tree are quite simple and |
| 28 | * straightforward. We just have a mutex and lock it when we traverse the |
| 29 | * tree. If a znode is not in memory, we read it from flash while still having |
| 30 | * the mutex locked. |
| 31 | */ |
| 32 | |
| 33 | #include "ubifs.h" |
| 34 | |
| 35 | /* |
| 36 | * Returned codes of 'matches_name()' and 'fallible_matches_name()' functions. |
| 37 | * @NAME_LESS: name corresponding to the first argument is less than second |
| 38 | * @NAME_MATCHES: names match |
| 39 | * @NAME_GREATER: name corresponding to the second argument is greater than |
| 40 | * first |
| 41 | * @NOT_ON_MEDIA: node referred by zbranch does not exist on the media |
| 42 | * |
| 43 | * These constants were introduce to improve readability. |
| 44 | */ |
| 45 | enum { |
| 46 | NAME_LESS = 0, |
| 47 | NAME_MATCHES = 1, |
| 48 | NAME_GREATER = 2, |
| 49 | NOT_ON_MEDIA = 3, |
| 50 | }; |
| 51 | |
| 52 | /** |
| 53 | * insert_old_idx - record an index node obsoleted since the last commit start. |
| 54 | * @c: UBIFS file-system description object |
| 55 | * @lnum: LEB number of obsoleted index node |
| 56 | * @offs: offset of obsoleted index node |
| 57 | * |
| 58 | * Returns %0 on success, and a negative error code on failure. |
| 59 | * |
| 60 | * For recovery, there must always be a complete intact version of the index on |
| 61 | * flash at all times. That is called the "old index". It is the index as at the |
| 62 | * time of the last successful commit. Many of the index nodes in the old index |
| 63 | * may be dirty, but they must not be erased until the next successful commit |
| 64 | * (at which point that index becomes the old index). |
| 65 | * |
| 66 | * That means that the garbage collection and the in-the-gaps method of |
| 67 | * committing must be able to determine if an index node is in the old index. |
| 68 | * Most of the old index nodes can be found by looking up the TNC using the |
| 69 | * 'lookup_znode()' function. However, some of the old index nodes may have |
| 70 | * been deleted from the current index or may have been changed so much that |
| 71 | * they cannot be easily found. In those cases, an entry is added to an RB-tree. |
| 72 | * That is what this function does. The RB-tree is ordered by LEB number and |
| 73 | * offset because they uniquely identify the old index node. |
| 74 | */ |
| 75 | static int insert_old_idx(struct ubifs_info *c, int lnum, int offs) |
| 76 | { |
| 77 | struct ubifs_old_idx *old_idx, *o; |
| 78 | struct rb_node **p, *parent = NULL; |
| 79 | |
| 80 | old_idx = kmalloc(sizeof(struct ubifs_old_idx), GFP_NOFS); |
| 81 | if (unlikely(!old_idx)) |
| 82 | return -ENOMEM; |
| 83 | old_idx->lnum = lnum; |
| 84 | old_idx->offs = offs; |
| 85 | |
| 86 | p = &c->old_idx.rb_node; |
| 87 | while (*p) { |
| 88 | parent = *p; |
| 89 | o = rb_entry(parent, struct ubifs_old_idx, rb); |
| 90 | if (lnum < o->lnum) |
| 91 | p = &(*p)->rb_left; |
| 92 | else if (lnum > o->lnum) |
| 93 | p = &(*p)->rb_right; |
| 94 | else if (offs < o->offs) |
| 95 | p = &(*p)->rb_left; |
| 96 | else if (offs > o->offs) |
| 97 | p = &(*p)->rb_right; |
| 98 | else { |
| 99 | ubifs_err("old idx added twice!"); |
| 100 | kfree(old_idx); |
| 101 | return 0; |
| 102 | } |
| 103 | } |
| 104 | rb_link_node(&old_idx->rb, parent, p); |
| 105 | rb_insert_color(&old_idx->rb, &c->old_idx); |
| 106 | return 0; |
| 107 | } |
| 108 | |
| 109 | /** |
| 110 | * insert_old_idx_znode - record a znode obsoleted since last commit start. |
| 111 | * @c: UBIFS file-system description object |
| 112 | * @znode: znode of obsoleted index node |
| 113 | * |
| 114 | * Returns %0 on success, and a negative error code on failure. |
| 115 | */ |
| 116 | int insert_old_idx_znode(struct ubifs_info *c, struct ubifs_znode *znode) |
| 117 | { |
| 118 | if (znode->parent) { |
| 119 | struct ubifs_zbranch *zbr; |
| 120 | |
| 121 | zbr = &znode->parent->zbranch[znode->iip]; |
| 122 | if (zbr->len) |
| 123 | return insert_old_idx(c, zbr->lnum, zbr->offs); |
| 124 | } else |
| 125 | if (c->zroot.len) |
| 126 | return insert_old_idx(c, c->zroot.lnum, |
| 127 | c->zroot.offs); |
| 128 | return 0; |
| 129 | } |
| 130 | |
| 131 | /** |
| 132 | * ins_clr_old_idx_znode - record a znode obsoleted since last commit start. |
| 133 | * @c: UBIFS file-system description object |
| 134 | * @znode: znode of obsoleted index node |
| 135 | * |
| 136 | * Returns %0 on success, and a negative error code on failure. |
| 137 | */ |
| 138 | static int ins_clr_old_idx_znode(struct ubifs_info *c, |
| 139 | struct ubifs_znode *znode) |
| 140 | { |
| 141 | int err; |
| 142 | |
| 143 | if (znode->parent) { |
| 144 | struct ubifs_zbranch *zbr; |
| 145 | |
| 146 | zbr = &znode->parent->zbranch[znode->iip]; |
| 147 | if (zbr->len) { |
| 148 | err = insert_old_idx(c, zbr->lnum, zbr->offs); |
| 149 | if (err) |
| 150 | return err; |
| 151 | zbr->lnum = 0; |
| 152 | zbr->offs = 0; |
| 153 | zbr->len = 0; |
| 154 | } |
| 155 | } else |
| 156 | if (c->zroot.len) { |
| 157 | err = insert_old_idx(c, c->zroot.lnum, c->zroot.offs); |
| 158 | if (err) |
| 159 | return err; |
| 160 | c->zroot.lnum = 0; |
| 161 | c->zroot.offs = 0; |
| 162 | c->zroot.len = 0; |
| 163 | } |
| 164 | return 0; |
| 165 | } |
| 166 | |
| 167 | /** |
| 168 | * destroy_old_idx - destroy the old_idx RB-tree. |
| 169 | * @c: UBIFS file-system description object |
| 170 | * |
| 171 | * During start commit, the old_idx RB-tree is used to avoid overwriting index |
| 172 | * nodes that were in the index last commit but have since been deleted. This |
| 173 | * is necessary for recovery i.e. the old index must be kept intact until the |
| 174 | * new index is successfully written. The old-idx RB-tree is used for the |
| 175 | * in-the-gaps method of writing index nodes and is destroyed every commit. |
| 176 | */ |
| 177 | void destroy_old_idx(struct ubifs_info *c) |
| 178 | { |
| 179 | struct rb_node *this = c->old_idx.rb_node; |
| 180 | struct ubifs_old_idx *old_idx; |
| 181 | |
| 182 | while (this) { |
| 183 | if (this->rb_left) { |
| 184 | this = this->rb_left; |
| 185 | continue; |
| 186 | } else if (this->rb_right) { |
| 187 | this = this->rb_right; |
| 188 | continue; |
| 189 | } |
| 190 | old_idx = rb_entry(this, struct ubifs_old_idx, rb); |
| 191 | this = rb_parent(this); |
| 192 | if (this) { |
| 193 | if (this->rb_left == &old_idx->rb) |
| 194 | this->rb_left = NULL; |
| 195 | else |
| 196 | this->rb_right = NULL; |
| 197 | } |
| 198 | kfree(old_idx); |
| 199 | } |
| 200 | c->old_idx = RB_ROOT; |
| 201 | } |
| 202 | |
| 203 | /** |
| 204 | * copy_znode - copy a dirty znode. |
| 205 | * @c: UBIFS file-system description object |
| 206 | * @znode: znode to copy |
| 207 | * |
| 208 | * A dirty znode being committed may not be changed, so it is copied. |
| 209 | */ |
| 210 | static struct ubifs_znode *copy_znode(struct ubifs_info *c, |
| 211 | struct ubifs_znode *znode) |
| 212 | { |
| 213 | struct ubifs_znode *zn; |
| 214 | |
| 215 | zn = kmalloc(c->max_znode_sz, GFP_NOFS); |
| 216 | if (unlikely(!zn)) |
| 217 | return ERR_PTR(-ENOMEM); |
| 218 | |
| 219 | memcpy(zn, znode, c->max_znode_sz); |
| 220 | zn->cnext = NULL; |
| 221 | __set_bit(DIRTY_ZNODE, &zn->flags); |
| 222 | __clear_bit(COW_ZNODE, &zn->flags); |
| 223 | |
| 224 | ubifs_assert(!test_bit(OBSOLETE_ZNODE, &znode->flags)); |
| 225 | __set_bit(OBSOLETE_ZNODE, &znode->flags); |
| 226 | |
| 227 | if (znode->level != 0) { |
| 228 | int i; |
| 229 | const int n = zn->child_cnt; |
| 230 | |
| 231 | /* The children now have new parent */ |
| 232 | for (i = 0; i < n; i++) { |
| 233 | struct ubifs_zbranch *zbr = &zn->zbranch[i]; |
| 234 | |
| 235 | if (zbr->znode) |
| 236 | zbr->znode->parent = zn; |
| 237 | } |
| 238 | } |
| 239 | |
| 240 | atomic_long_inc(&c->dirty_zn_cnt); |
| 241 | return zn; |
| 242 | } |
| 243 | |
| 244 | /** |
| 245 | * add_idx_dirt - add dirt due to a dirty znode. |
| 246 | * @c: UBIFS file-system description object |
| 247 | * @lnum: LEB number of index node |
| 248 | * @dirt: size of index node |
| 249 | * |
| 250 | * This function updates lprops dirty space and the new size of the index. |
| 251 | */ |
| 252 | static int add_idx_dirt(struct ubifs_info *c, int lnum, int dirt) |
| 253 | { |
| 254 | c->calc_idx_sz -= ALIGN(dirt, 8); |
| 255 | return ubifs_add_dirt(c, lnum, dirt); |
| 256 | } |
| 257 | |
| 258 | /** |
| 259 | * dirty_cow_znode - ensure a znode is not being committed. |
| 260 | * @c: UBIFS file-system description object |
| 261 | * @zbr: branch of znode to check |
| 262 | * |
| 263 | * Returns dirtied znode on success or negative error code on failure. |
| 264 | */ |
| 265 | static struct ubifs_znode *dirty_cow_znode(struct ubifs_info *c, |
| 266 | struct ubifs_zbranch *zbr) |
| 267 | { |
| 268 | struct ubifs_znode *znode = zbr->znode; |
| 269 | struct ubifs_znode *zn; |
| 270 | int err; |
| 271 | |
| 272 | if (!test_bit(COW_ZNODE, &znode->flags)) { |
| 273 | /* znode is not being committed */ |
| 274 | if (!test_and_set_bit(DIRTY_ZNODE, &znode->flags)) { |
| 275 | atomic_long_inc(&c->dirty_zn_cnt); |
| 276 | atomic_long_dec(&c->clean_zn_cnt); |
| 277 | atomic_long_dec(&ubifs_clean_zn_cnt); |
| 278 | err = add_idx_dirt(c, zbr->lnum, zbr->len); |
| 279 | if (unlikely(err)) |
| 280 | return ERR_PTR(err); |
| 281 | } |
| 282 | return znode; |
| 283 | } |
| 284 | |
| 285 | zn = copy_znode(c, znode); |
| 286 | if (IS_ERR(zn)) |
| 287 | return zn; |
| 288 | |
| 289 | if (zbr->len) { |
| 290 | err = insert_old_idx(c, zbr->lnum, zbr->offs); |
| 291 | if (unlikely(err)) |
| 292 | return ERR_PTR(err); |
| 293 | err = add_idx_dirt(c, zbr->lnum, zbr->len); |
| 294 | } else |
| 295 | err = 0; |
| 296 | |
| 297 | zbr->znode = zn; |
| 298 | zbr->lnum = 0; |
| 299 | zbr->offs = 0; |
| 300 | zbr->len = 0; |
| 301 | |
| 302 | if (unlikely(err)) |
| 303 | return ERR_PTR(err); |
| 304 | return zn; |
| 305 | } |
| 306 | |
| 307 | /** |
| 308 | * lnc_add - add a leaf node to the leaf node cache. |
| 309 | * @c: UBIFS file-system description object |
| 310 | * @zbr: zbranch of leaf node |
| 311 | * @node: leaf node |
| 312 | * |
| 313 | * Leaf nodes are non-index nodes directory entry nodes or data nodes. The |
| 314 | * purpose of the leaf node cache is to save re-reading the same leaf node over |
| 315 | * and over again. Most things are cached by VFS, however the file system must |
| 316 | * cache directory entries for readdir and for resolving hash collisions. The |
| 317 | * present implementation of the leaf node cache is extremely simple, and |
| 318 | * allows for error returns that are not used but that may be needed if a more |
| 319 | * complex implementation is created. |
| 320 | * |
| 321 | * Note, this function does not add the @node object to LNC directly, but |
| 322 | * allocates a copy of the object and adds the copy to LNC. The reason for this |
| 323 | * is that @node has been allocated outside of the TNC subsystem and will be |
| 324 | * used with @c->tnc_mutex unlock upon return from the TNC subsystem. But LNC |
| 325 | * may be changed at any time, e.g. freed by the shrinker. |
| 326 | */ |
| 327 | static int lnc_add(struct ubifs_info *c, struct ubifs_zbranch *zbr, |
| 328 | const void *node) |
| 329 | { |
| 330 | int err; |
| 331 | void *lnc_node; |
| 332 | const struct ubifs_dent_node *dent = node; |
| 333 | |
| 334 | ubifs_assert(!zbr->leaf); |
| 335 | ubifs_assert(zbr->len != 0); |
| 336 | ubifs_assert(is_hash_key(c, &zbr->key)); |
| 337 | |
| 338 | err = ubifs_validate_entry(c, dent); |
| 339 | if (err) { |
| 340 | dbg_dump_stack(); |
| 341 | dbg_dump_node(c, dent); |
| 342 | return err; |
| 343 | } |
| 344 | |
| 345 | lnc_node = kmalloc(zbr->len, GFP_NOFS); |
| 346 | if (!lnc_node) |
| 347 | /* We don't have to have the cache, so no error */ |
| 348 | return 0; |
| 349 | |
| 350 | memcpy(lnc_node, node, zbr->len); |
| 351 | zbr->leaf = lnc_node; |
| 352 | return 0; |
| 353 | } |
| 354 | |
| 355 | /** |
| 356 | * lnc_add_directly - add a leaf node to the leaf-node-cache. |
| 357 | * @c: UBIFS file-system description object |
| 358 | * @zbr: zbranch of leaf node |
| 359 | * @node: leaf node |
| 360 | * |
| 361 | * This function is similar to 'lnc_add()', but it does not create a copy of |
| 362 | * @node but inserts @node to TNC directly. |
| 363 | */ |
| 364 | static int lnc_add_directly(struct ubifs_info *c, struct ubifs_zbranch *zbr, |
| 365 | void *node) |
| 366 | { |
| 367 | int err; |
| 368 | |
| 369 | ubifs_assert(!zbr->leaf); |
| 370 | ubifs_assert(zbr->len != 0); |
| 371 | |
| 372 | err = ubifs_validate_entry(c, node); |
| 373 | if (err) { |
| 374 | dbg_dump_stack(); |
| 375 | dbg_dump_node(c, node); |
| 376 | return err; |
| 377 | } |
| 378 | |
| 379 | zbr->leaf = node; |
| 380 | return 0; |
| 381 | } |
| 382 | |
| 383 | /** |
| 384 | * lnc_free - remove a leaf node from the leaf node cache. |
| 385 | * @zbr: zbranch of leaf node |
| 386 | * @node: leaf node |
| 387 | */ |
| 388 | static void lnc_free(struct ubifs_zbranch *zbr) |
| 389 | { |
| 390 | if (!zbr->leaf) |
| 391 | return; |
| 392 | kfree(zbr->leaf); |
| 393 | zbr->leaf = NULL; |
| 394 | } |
| 395 | |
| 396 | /** |
| 397 | * tnc_read_node_nm - read a "hashed" leaf node. |
| 398 | * @c: UBIFS file-system description object |
| 399 | * @zbr: key and position of the node |
| 400 | * @node: node is returned here |
| 401 | * |
| 402 | * This function reads a "hashed" node defined by @zbr from the leaf node cache |
| 403 | * (in it is there) or from the hash media, in which case the node is also |
| 404 | * added to LNC. Returns zero in case of success or a negative negative error |
| 405 | * code in case of failure. |
| 406 | */ |
| 407 | static int tnc_read_node_nm(struct ubifs_info *c, struct ubifs_zbranch *zbr, |
| 408 | void *node) |
| 409 | { |
| 410 | int err; |
| 411 | |
| 412 | ubifs_assert(is_hash_key(c, &zbr->key)); |
| 413 | |
| 414 | if (zbr->leaf) { |
| 415 | /* Read from the leaf node cache */ |
| 416 | ubifs_assert(zbr->len != 0); |
| 417 | memcpy(node, zbr->leaf, zbr->len); |
| 418 | return 0; |
| 419 | } |
| 420 | |
| 421 | err = ubifs_tnc_read_node(c, zbr, node); |
| 422 | if (err) |
| 423 | return err; |
| 424 | |
| 425 | /* Add the node to the leaf node cache */ |
| 426 | err = lnc_add(c, zbr, node); |
| 427 | return err; |
| 428 | } |
| 429 | |
| 430 | /** |
| 431 | * try_read_node - read a node if it is a node. |
| 432 | * @c: UBIFS file-system description object |
| 433 | * @buf: buffer to read to |
| 434 | * @type: node type |
| 435 | * @len: node length (not aligned) |
| 436 | * @lnum: LEB number of node to read |
| 437 | * @offs: offset of node to read |
| 438 | * |
| 439 | * This function tries to read a node of known type and length, checks it and |
| 440 | * stores it in @buf. This function returns %1 if a node is present and %0 if |
| 441 | * a node is not present. A negative error code is returned for I/O errors. |
| 442 | * This function performs that same function as ubifs_read_node except that |
| 443 | * it does not require that there is actually a node present and instead |
| 444 | * the return code indicates if a node was read. |
| 445 | * |
| 446 | * Note, this function does not check CRC of data nodes if @c->no_chk_data_crc |
| 447 | * is true (it is controlled by corresponding mount option). However, if |
| 448 | * @c->always_chk_crc is true, @c->no_chk_data_crc is ignored and CRC is always |
| 449 | * checked. |
| 450 | */ |
| 451 | static int try_read_node(const struct ubifs_info *c, void *buf, int type, |
| 452 | int len, int lnum, int offs) |
| 453 | { |
| 454 | int err, node_len; |
| 455 | struct ubifs_ch *ch = buf; |
| 456 | uint32_t crc, node_crc; |
| 457 | |
| 458 | dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len); |
| 459 | |
| 460 | err = ubi_read(c->ubi, lnum, buf, offs, len); |
| 461 | if (err) { |
| 462 | ubifs_err("cannot read node type %d from LEB %d:%d, error %d", |
| 463 | type, lnum, offs, err); |
| 464 | return err; |
| 465 | } |
| 466 | |
| 467 | if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) |
| 468 | return 0; |
| 469 | |
| 470 | if (ch->node_type != type) |
| 471 | return 0; |
| 472 | |
| 473 | node_len = le32_to_cpu(ch->len); |
| 474 | if (node_len != len) |
| 475 | return 0; |
| 476 | |
| 477 | if (type == UBIFS_DATA_NODE && !c->always_chk_crc && c->no_chk_data_crc) |
| 478 | return 1; |
| 479 | |
| 480 | crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8); |
| 481 | node_crc = le32_to_cpu(ch->crc); |
| 482 | if (crc != node_crc) |
| 483 | return 0; |
| 484 | |
| 485 | return 1; |
| 486 | } |
| 487 | |
| 488 | /** |
| 489 | * fallible_read_node - try to read a leaf node. |
| 490 | * @c: UBIFS file-system description object |
| 491 | * @key: key of node to read |
| 492 | * @zbr: position of node |
| 493 | * @node: node returned |
| 494 | * |
| 495 | * This function tries to read a node and returns %1 if the node is read, %0 |
| 496 | * if the node is not present, and a negative error code in the case of error. |
| 497 | */ |
| 498 | static int fallible_read_node(struct ubifs_info *c, const union ubifs_key *key, |
| 499 | struct ubifs_zbranch *zbr, void *node) |
| 500 | { |
| 501 | int ret; |
| 502 | |
| 503 | dbg_tnc("LEB %d:%d, key %s", zbr->lnum, zbr->offs, DBGKEY(key)); |
| 504 | |
| 505 | ret = try_read_node(c, node, key_type(c, key), zbr->len, zbr->lnum, |
| 506 | zbr->offs); |
| 507 | if (ret == 1) { |
| 508 | union ubifs_key node_key; |
| 509 | struct ubifs_dent_node *dent = node; |
| 510 | |
| 511 | /* All nodes have key in the same place */ |
| 512 | key_read(c, &dent->key, &node_key); |
| 513 | if (keys_cmp(c, key, &node_key) != 0) |
| 514 | ret = 0; |
| 515 | } |
| 516 | if (ret == 0 && c->replaying) |
| 517 | dbg_mnt("dangling branch LEB %d:%d len %d, key %s", |
| 518 | zbr->lnum, zbr->offs, zbr->len, DBGKEY(key)); |
| 519 | return ret; |
| 520 | } |
| 521 | |
| 522 | /** |
| 523 | * matches_name - determine if a direntry or xattr entry matches a given name. |
| 524 | * @c: UBIFS file-system description object |
| 525 | * @zbr: zbranch of dent |
| 526 | * @nm: name to match |
| 527 | * |
| 528 | * This function checks if xentry/direntry referred by zbranch @zbr matches name |
| 529 | * @nm. Returns %NAME_MATCHES if it does, %NAME_LESS if the name referred by |
| 530 | * @zbr is less than @nm, and %NAME_GREATER if it is greater than @nm. In case |
| 531 | * of failure, a negative error code is returned. |
| 532 | */ |
| 533 | static int matches_name(struct ubifs_info *c, struct ubifs_zbranch *zbr, |
| 534 | const struct qstr *nm) |
| 535 | { |
| 536 | struct ubifs_dent_node *dent; |
| 537 | int nlen, err; |
| 538 | |
| 539 | /* If possible, match against the dent in the leaf node cache */ |
| 540 | if (!zbr->leaf) { |
| 541 | dent = kmalloc(zbr->len, GFP_NOFS); |
| 542 | if (!dent) |
| 543 | return -ENOMEM; |
| 544 | |
| 545 | err = ubifs_tnc_read_node(c, zbr, dent); |
| 546 | if (err) |
| 547 | goto out_free; |
| 548 | |
| 549 | /* Add the node to the leaf node cache */ |
| 550 | err = lnc_add_directly(c, zbr, dent); |
| 551 | if (err) |
| 552 | goto out_free; |
| 553 | } else |
| 554 | dent = zbr->leaf; |
| 555 | |
| 556 | nlen = le16_to_cpu(dent->nlen); |
| 557 | err = memcmp(dent->name, nm->name, min_t(int, nlen, nm->len)); |
| 558 | if (err == 0) { |
| 559 | if (nlen == nm->len) |
| 560 | return NAME_MATCHES; |
| 561 | else if (nlen < nm->len) |
| 562 | return NAME_LESS; |
| 563 | else |
| 564 | return NAME_GREATER; |
| 565 | } else if (err < 0) |
| 566 | return NAME_LESS; |
| 567 | else |
| 568 | return NAME_GREATER; |
| 569 | |
| 570 | out_free: |
| 571 | kfree(dent); |
| 572 | return err; |
| 573 | } |
| 574 | |
| 575 | /** |
| 576 | * get_znode - get a TNC znode that may not be loaded yet. |
| 577 | * @c: UBIFS file-system description object |
| 578 | * @znode: parent znode |
| 579 | * @n: znode branch slot number |
| 580 | * |
| 581 | * This function returns the znode or a negative error code. |
| 582 | */ |
| 583 | static struct ubifs_znode *get_znode(struct ubifs_info *c, |
| 584 | struct ubifs_znode *znode, int n) |
| 585 | { |
| 586 | struct ubifs_zbranch *zbr; |
| 587 | |
| 588 | zbr = &znode->zbranch[n]; |
| 589 | if (zbr->znode) |
| 590 | znode = zbr->znode; |
| 591 | else |
| 592 | znode = ubifs_load_znode(c, zbr, znode, n); |
| 593 | return znode; |
| 594 | } |
| 595 | |
| 596 | /** |
| 597 | * tnc_next - find next TNC entry. |
| 598 | * @c: UBIFS file-system description object |
| 599 | * @zn: znode is passed and returned here |
| 600 | * @n: znode branch slot number is passed and returned here |
| 601 | * |
| 602 | * This function returns %0 if the next TNC entry is found, %-ENOENT if there is |
| 603 | * no next entry, or a negative error code otherwise. |
| 604 | */ |
| 605 | static int tnc_next(struct ubifs_info *c, struct ubifs_znode **zn, int *n) |
| 606 | { |
| 607 | struct ubifs_znode *znode = *zn; |
| 608 | int nn = *n; |
| 609 | |
| 610 | nn += 1; |
| 611 | if (nn < znode->child_cnt) { |
| 612 | *n = nn; |
| 613 | return 0; |
| 614 | } |
| 615 | while (1) { |
| 616 | struct ubifs_znode *zp; |
| 617 | |
| 618 | zp = znode->parent; |
| 619 | if (!zp) |
| 620 | return -ENOENT; |
| 621 | nn = znode->iip + 1; |
| 622 | znode = zp; |
| 623 | if (nn < znode->child_cnt) { |
| 624 | znode = get_znode(c, znode, nn); |
| 625 | if (IS_ERR(znode)) |
| 626 | return PTR_ERR(znode); |
| 627 | while (znode->level != 0) { |
| 628 | znode = get_znode(c, znode, 0); |
| 629 | if (IS_ERR(znode)) |
| 630 | return PTR_ERR(znode); |
| 631 | } |
| 632 | nn = 0; |
| 633 | break; |
| 634 | } |
| 635 | } |
| 636 | *zn = znode; |
| 637 | *n = nn; |
| 638 | return 0; |
| 639 | } |
| 640 | |
| 641 | /** |
| 642 | * tnc_prev - find previous TNC entry. |
| 643 | * @c: UBIFS file-system description object |
| 644 | * @zn: znode is returned here |
| 645 | * @n: znode branch slot number is passed and returned here |
| 646 | * |
| 647 | * This function returns %0 if the previous TNC entry is found, %-ENOENT if |
| 648 | * there is no next entry, or a negative error code otherwise. |
| 649 | */ |
| 650 | static int tnc_prev(struct ubifs_info *c, struct ubifs_znode **zn, int *n) |
| 651 | { |
| 652 | struct ubifs_znode *znode = *zn; |
| 653 | int nn = *n; |
| 654 | |
| 655 | if (nn > 0) { |
| 656 | *n = nn - 1; |
| 657 | return 0; |
| 658 | } |
| 659 | while (1) { |
| 660 | struct ubifs_znode *zp; |
| 661 | |
| 662 | zp = znode->parent; |
| 663 | if (!zp) |
| 664 | return -ENOENT; |
| 665 | nn = znode->iip - 1; |
| 666 | znode = zp; |
| 667 | if (nn >= 0) { |
| 668 | znode = get_znode(c, znode, nn); |
| 669 | if (IS_ERR(znode)) |
| 670 | return PTR_ERR(znode); |
| 671 | while (znode->level != 0) { |
| 672 | nn = znode->child_cnt - 1; |
| 673 | znode = get_znode(c, znode, nn); |
| 674 | if (IS_ERR(znode)) |
| 675 | return PTR_ERR(znode); |
| 676 | } |
| 677 | nn = znode->child_cnt - 1; |
| 678 | break; |
| 679 | } |
| 680 | } |
| 681 | *zn = znode; |
| 682 | *n = nn; |
| 683 | return 0; |
| 684 | } |
| 685 | |
| 686 | /** |
| 687 | * resolve_collision - resolve a collision. |
| 688 | * @c: UBIFS file-system description object |
| 689 | * @key: key of a directory or extended attribute entry |
| 690 | * @zn: znode is returned here |
| 691 | * @n: zbranch number is passed and returned here |
| 692 | * @nm: name of the entry |
| 693 | * |
| 694 | * This function is called for "hashed" keys to make sure that the found key |
| 695 | * really corresponds to the looked up node (directory or extended attribute |
| 696 | * entry). It returns %1 and sets @zn and @n if the collision is resolved. |
| 697 | * %0 is returned if @nm is not found and @zn and @n are set to the previous |
| 698 | * entry, i.e. to the entry after which @nm could follow if it were in TNC. |
| 699 | * This means that @n may be set to %-1 if the leftmost key in @zn is the |
| 700 | * previous one. A negative error code is returned on failures. |
| 701 | */ |
| 702 | static int resolve_collision(struct ubifs_info *c, const union ubifs_key *key, |
| 703 | struct ubifs_znode **zn, int *n, |
| 704 | const struct qstr *nm) |
| 705 | { |
| 706 | int err; |
| 707 | |
| 708 | err = matches_name(c, &(*zn)->zbranch[*n], nm); |
| 709 | if (unlikely(err < 0)) |
| 710 | return err; |
| 711 | if (err == NAME_MATCHES) |
| 712 | return 1; |
| 713 | |
| 714 | if (err == NAME_GREATER) { |
| 715 | /* Look left */ |
| 716 | while (1) { |
| 717 | err = tnc_prev(c, zn, n); |
| 718 | if (err == -ENOENT) { |
| 719 | ubifs_assert(*n == 0); |
| 720 | *n = -1; |
| 721 | return 0; |
| 722 | } |
| 723 | if (err < 0) |
| 724 | return err; |
| 725 | if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) { |
| 726 | /* |
| 727 | * We have found the branch after which we would |
| 728 | * like to insert, but inserting in this znode |
| 729 | * may still be wrong. Consider the following 3 |
| 730 | * znodes, in the case where we are resolving a |
| 731 | * collision with Key2. |
| 732 | * |
| 733 | * znode zp |
| 734 | * ---------------------- |
| 735 | * level 1 | Key0 | Key1 | |
| 736 | * ----------------------- |
| 737 | * | | |
| 738 | * znode za | | znode zb |
| 739 | * ------------ ------------ |
| 740 | * level 0 | Key0 | | Key2 | |
| 741 | * ------------ ------------ |
| 742 | * |
| 743 | * The lookup finds Key2 in znode zb. Lets say |
| 744 | * there is no match and the name is greater so |
| 745 | * we look left. When we find Key0, we end up |
| 746 | * here. If we return now, we will insert into |
| 747 | * znode za at slot n = 1. But that is invalid |
| 748 | * according to the parent's keys. Key2 must |
| 749 | * be inserted into znode zb. |
| 750 | * |
| 751 | * Note, this problem is not relevant for the |
| 752 | * case when we go right, because |
| 753 | * 'tnc_insert()' would correct the parent key. |
| 754 | */ |
| 755 | if (*n == (*zn)->child_cnt - 1) { |
| 756 | err = tnc_next(c, zn, n); |
| 757 | if (err) { |
| 758 | /* Should be impossible */ |
| 759 | ubifs_assert(0); |
| 760 | if (err == -ENOENT) |
| 761 | err = -EINVAL; |
| 762 | return err; |
| 763 | } |
| 764 | ubifs_assert(*n == 0); |
| 765 | *n = -1; |
| 766 | } |
| 767 | return 0; |
| 768 | } |
| 769 | err = matches_name(c, &(*zn)->zbranch[*n], nm); |
| 770 | if (err < 0) |
| 771 | return err; |
| 772 | if (err == NAME_LESS) |
| 773 | return 0; |
| 774 | if (err == NAME_MATCHES) |
| 775 | return 1; |
| 776 | ubifs_assert(err == NAME_GREATER); |
| 777 | } |
| 778 | } else { |
| 779 | int nn = *n; |
| 780 | struct ubifs_znode *znode = *zn; |
| 781 | |
| 782 | /* Look right */ |
| 783 | while (1) { |
| 784 | err = tnc_next(c, &znode, &nn); |
| 785 | if (err == -ENOENT) |
| 786 | return 0; |
| 787 | if (err < 0) |
| 788 | return err; |
| 789 | if (keys_cmp(c, &znode->zbranch[nn].key, key)) |
| 790 | return 0; |
| 791 | err = matches_name(c, &znode->zbranch[nn], nm); |
| 792 | if (err < 0) |
| 793 | return err; |
| 794 | if (err == NAME_GREATER) |
| 795 | return 0; |
| 796 | *zn = znode; |
| 797 | *n = nn; |
| 798 | if (err == NAME_MATCHES) |
| 799 | return 1; |
| 800 | ubifs_assert(err == NAME_LESS); |
| 801 | } |
| 802 | } |
| 803 | } |
| 804 | |
| 805 | /** |
| 806 | * fallible_matches_name - determine if a dent matches a given name. |
| 807 | * @c: UBIFS file-system description object |
| 808 | * @zbr: zbranch of dent |
| 809 | * @nm: name to match |
| 810 | * |
| 811 | * This is a "fallible" version of 'matches_name()' function which does not |
| 812 | * panic if the direntry/xentry referred by @zbr does not exist on the media. |
| 813 | * |
| 814 | * This function checks if xentry/direntry referred by zbranch @zbr matches name |
| 815 | * @nm. Returns %NAME_MATCHES it does, %NAME_LESS if the name referred by @zbr |
| 816 | * is less than @nm, %NAME_GREATER if it is greater than @nm, and @NOT_ON_MEDIA |
| 817 | * if xentry/direntry referred by @zbr does not exist on the media. A negative |
| 818 | * error code is returned in case of failure. |
| 819 | */ |
| 820 | static int fallible_matches_name(struct ubifs_info *c, |
| 821 | struct ubifs_zbranch *zbr, |
| 822 | const struct qstr *nm) |
| 823 | { |
| 824 | struct ubifs_dent_node *dent; |
| 825 | int nlen, err; |
| 826 | |
| 827 | /* If possible, match against the dent in the leaf node cache */ |
| 828 | if (!zbr->leaf) { |
| 829 | dent = kmalloc(zbr->len, GFP_NOFS); |
| 830 | if (!dent) |
| 831 | return -ENOMEM; |
| 832 | |
| 833 | err = fallible_read_node(c, &zbr->key, zbr, dent); |
| 834 | if (err < 0) |
| 835 | goto out_free; |
| 836 | if (err == 0) { |
| 837 | /* The node was not present */ |
| 838 | err = NOT_ON_MEDIA; |
| 839 | goto out_free; |
| 840 | } |
| 841 | ubifs_assert(err == 1); |
| 842 | |
| 843 | err = lnc_add_directly(c, zbr, dent); |
| 844 | if (err) |
| 845 | goto out_free; |
| 846 | } else |
| 847 | dent = zbr->leaf; |
| 848 | |
| 849 | nlen = le16_to_cpu(dent->nlen); |
| 850 | err = memcmp(dent->name, nm->name, min_t(int, nlen, nm->len)); |
| 851 | if (err == 0) { |
| 852 | if (nlen == nm->len) |
| 853 | return NAME_MATCHES; |
| 854 | else if (nlen < nm->len) |
| 855 | return NAME_LESS; |
| 856 | else |
| 857 | return NAME_GREATER; |
| 858 | } else if (err < 0) |
| 859 | return NAME_LESS; |
| 860 | else |
| 861 | return NAME_GREATER; |
| 862 | |
| 863 | out_free: |
| 864 | kfree(dent); |
| 865 | return err; |
| 866 | } |
| 867 | |
| 868 | /** |
| 869 | * fallible_resolve_collision - resolve a collision even if nodes are missing. |
| 870 | * @c: UBIFS file-system description object |
| 871 | * @key: key |
| 872 | * @zn: znode is returned here |
| 873 | * @n: branch number is passed and returned here |
| 874 | * @nm: name of directory entry |
| 875 | * @adding: indicates caller is adding a key to the TNC |
| 876 | * |
| 877 | * This is a "fallible" version of the 'resolve_collision()' function which |
| 878 | * does not panic if one of the nodes referred to by TNC does not exist on the |
| 879 | * media. This may happen when replaying the journal if a deleted node was |
| 880 | * Garbage-collected and the commit was not done. A branch that refers to a node |
| 881 | * that is not present is called a dangling branch. The following are the return |
| 882 | * codes for this function: |
| 883 | * o if @nm was found, %1 is returned and @zn and @n are set to the found |
| 884 | * branch; |
| 885 | * o if we are @adding and @nm was not found, %0 is returned; |
| 886 | * o if we are not @adding and @nm was not found, but a dangling branch was |
| 887 | * found, then %1 is returned and @zn and @n are set to the dangling branch; |
| 888 | * o a negative error code is returned in case of failure. |
| 889 | */ |
| 890 | static int fallible_resolve_collision(struct ubifs_info *c, |
| 891 | const union ubifs_key *key, |
| 892 | struct ubifs_znode **zn, int *n, |
| 893 | const struct qstr *nm, int adding) |
| 894 | { |
| 895 | struct ubifs_znode *o_znode = NULL, *znode = *zn; |
| 896 | int uninitialized_var(o_n), err, cmp, unsure = 0, nn = *n; |
| 897 | |
| 898 | cmp = fallible_matches_name(c, &znode->zbranch[nn], nm); |
| 899 | if (unlikely(cmp < 0)) |
| 900 | return cmp; |
| 901 | if (cmp == NAME_MATCHES) |
| 902 | return 1; |
| 903 | if (cmp == NOT_ON_MEDIA) { |
| 904 | o_znode = znode; |
| 905 | o_n = nn; |
| 906 | /* |
| 907 | * We are unlucky and hit a dangling branch straight away. |
| 908 | * Now we do not really know where to go to find the needed |
| 909 | * branch - to the left or to the right. Well, let's try left. |
| 910 | */ |
| 911 | unsure = 1; |
| 912 | } else if (!adding) |
| 913 | unsure = 1; /* Remove a dangling branch wherever it is */ |
| 914 | |
| 915 | if (cmp == NAME_GREATER || unsure) { |
| 916 | /* Look left */ |
| 917 | while (1) { |
| 918 | err = tnc_prev(c, zn, n); |
| 919 | if (err == -ENOENT) { |
| 920 | ubifs_assert(*n == 0); |
| 921 | *n = -1; |
| 922 | break; |
| 923 | } |
| 924 | if (err < 0) |
| 925 | return err; |
| 926 | if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) { |
| 927 | /* See comments in 'resolve_collision()' */ |
| 928 | if (*n == (*zn)->child_cnt - 1) { |
| 929 | err = tnc_next(c, zn, n); |
| 930 | if (err) { |
| 931 | /* Should be impossible */ |
| 932 | ubifs_assert(0); |
| 933 | if (err == -ENOENT) |
| 934 | err = -EINVAL; |
| 935 | return err; |
| 936 | } |
| 937 | ubifs_assert(*n == 0); |
| 938 | *n = -1; |
| 939 | } |
| 940 | break; |
| 941 | } |
| 942 | err = fallible_matches_name(c, &(*zn)->zbranch[*n], nm); |
| 943 | if (err < 0) |
| 944 | return err; |
| 945 | if (err == NAME_MATCHES) |
| 946 | return 1; |
| 947 | if (err == NOT_ON_MEDIA) { |
| 948 | o_znode = *zn; |
| 949 | o_n = *n; |
| 950 | continue; |
| 951 | } |
| 952 | if (!adding) |
| 953 | continue; |
| 954 | if (err == NAME_LESS) |
| 955 | break; |
| 956 | else |
| 957 | unsure = 0; |
| 958 | } |
| 959 | } |
| 960 | |
| 961 | if (cmp == NAME_LESS || unsure) { |
| 962 | /* Look right */ |
| 963 | *zn = znode; |
| 964 | *n = nn; |
| 965 | while (1) { |
| 966 | err = tnc_next(c, &znode, &nn); |
| 967 | if (err == -ENOENT) |
| 968 | break; |
| 969 | if (err < 0) |
| 970 | return err; |
| 971 | if (keys_cmp(c, &znode->zbranch[nn].key, key)) |
| 972 | break; |
| 973 | err = fallible_matches_name(c, &znode->zbranch[nn], nm); |
| 974 | if (err < 0) |
| 975 | return err; |
| 976 | if (err == NAME_GREATER) |
| 977 | break; |
| 978 | *zn = znode; |
| 979 | *n = nn; |
| 980 | if (err == NAME_MATCHES) |
| 981 | return 1; |
| 982 | if (err == NOT_ON_MEDIA) { |
| 983 | o_znode = znode; |
| 984 | o_n = nn; |
| 985 | } |
| 986 | } |
| 987 | } |
| 988 | |
| 989 | /* Never match a dangling branch when adding */ |
| 990 | if (adding || !o_znode) |
| 991 | return 0; |
| 992 | |
| 993 | dbg_mnt("dangling match LEB %d:%d len %d %s", |
| 994 | o_znode->zbranch[o_n].lnum, o_znode->zbranch[o_n].offs, |
| 995 | o_znode->zbranch[o_n].len, DBGKEY(key)); |
| 996 | *zn = o_znode; |
| 997 | *n = o_n; |
| 998 | return 1; |
| 999 | } |
| 1000 | |
| 1001 | /** |
| 1002 | * matches_position - determine if a zbranch matches a given position. |
| 1003 | * @zbr: zbranch of dent |
| 1004 | * @lnum: LEB number of dent to match |
| 1005 | * @offs: offset of dent to match |
| 1006 | * |
| 1007 | * This function returns %1 if @lnum:@offs matches, and %0 otherwise. |
| 1008 | */ |
| 1009 | static int matches_position(struct ubifs_zbranch *zbr, int lnum, int offs) |
| 1010 | { |
| 1011 | if (zbr->lnum == lnum && zbr->offs == offs) |
| 1012 | return 1; |
| 1013 | else |
| 1014 | return 0; |
| 1015 | } |
| 1016 | |
| 1017 | /** |
| 1018 | * resolve_collision_directly - resolve a collision directly. |
| 1019 | * @c: UBIFS file-system description object |
| 1020 | * @key: key of directory entry |
| 1021 | * @zn: znode is passed and returned here |
| 1022 | * @n: zbranch number is passed and returned here |
| 1023 | * @lnum: LEB number of dent node to match |
| 1024 | * @offs: offset of dent node to match |
| 1025 | * |
| 1026 | * This function is used for "hashed" keys to make sure the found directory or |
| 1027 | * extended attribute entry node is what was looked for. It is used when the |
| 1028 | * flash address of the right node is known (@lnum:@offs) which makes it much |
| 1029 | * easier to resolve collisions (no need to read entries and match full |
| 1030 | * names). This function returns %1 and sets @zn and @n if the collision is |
| 1031 | * resolved, %0 if @lnum:@offs is not found and @zn and @n are set to the |
| 1032 | * previous directory entry. Otherwise a negative error code is returned. |
| 1033 | */ |
| 1034 | static int resolve_collision_directly(struct ubifs_info *c, |
| 1035 | const union ubifs_key *key, |
| 1036 | struct ubifs_znode **zn, int *n, |
| 1037 | int lnum, int offs) |
| 1038 | { |
| 1039 | struct ubifs_znode *znode; |
| 1040 | int nn, err; |
| 1041 | |
| 1042 | znode = *zn; |
| 1043 | nn = *n; |
| 1044 | if (matches_position(&znode->zbranch[nn], lnum, offs)) |
| 1045 | return 1; |
| 1046 | |
| 1047 | /* Look left */ |
| 1048 | while (1) { |
| 1049 | err = tnc_prev(c, &znode, &nn); |
| 1050 | if (err == -ENOENT) |
| 1051 | break; |
| 1052 | if (err < 0) |
| 1053 | return err; |
| 1054 | if (keys_cmp(c, &znode->zbranch[nn].key, key)) |
| 1055 | break; |
| 1056 | if (matches_position(&znode->zbranch[nn], lnum, offs)) { |
| 1057 | *zn = znode; |
| 1058 | *n = nn; |
| 1059 | return 1; |
| 1060 | } |
| 1061 | } |
| 1062 | |
| 1063 | /* Look right */ |
| 1064 | znode = *zn; |
| 1065 | nn = *n; |
| 1066 | while (1) { |
| 1067 | err = tnc_next(c, &znode, &nn); |
| 1068 | if (err == -ENOENT) |
| 1069 | return 0; |
| 1070 | if (err < 0) |
| 1071 | return err; |
| 1072 | if (keys_cmp(c, &znode->zbranch[nn].key, key)) |
| 1073 | return 0; |
| 1074 | *zn = znode; |
| 1075 | *n = nn; |
| 1076 | if (matches_position(&znode->zbranch[nn], lnum, offs)) |
| 1077 | return 1; |
| 1078 | } |
| 1079 | } |
| 1080 | |
| 1081 | /** |
| 1082 | * dirty_cow_bottom_up - dirty a znode and its ancestors. |
| 1083 | * @c: UBIFS file-system description object |
| 1084 | * @znode: znode to dirty |
| 1085 | * |
| 1086 | * If we do not have a unique key that resides in a znode, then we cannot |
| 1087 | * dirty that znode from the top down (i.e. by using lookup_level0_dirty) |
| 1088 | * This function records the path back to the last dirty ancestor, and then |
| 1089 | * dirties the znodes on that path. |
| 1090 | */ |
| 1091 | static struct ubifs_znode *dirty_cow_bottom_up(struct ubifs_info *c, |
| 1092 | struct ubifs_znode *znode) |
| 1093 | { |
| 1094 | struct ubifs_znode *zp; |
| 1095 | int *path = c->bottom_up_buf, p = 0; |
| 1096 | |
| 1097 | ubifs_assert(c->zroot.znode); |
| 1098 | ubifs_assert(znode); |
| 1099 | if (c->zroot.znode->level > BOTTOM_UP_HEIGHT) { |
| 1100 | kfree(c->bottom_up_buf); |
| 1101 | c->bottom_up_buf = kmalloc(c->zroot.znode->level * sizeof(int), |
| 1102 | GFP_NOFS); |
| 1103 | if (!c->bottom_up_buf) |
| 1104 | return ERR_PTR(-ENOMEM); |
| 1105 | path = c->bottom_up_buf; |
| 1106 | } |
| 1107 | if (c->zroot.znode->level) { |
| 1108 | /* Go up until parent is dirty */ |
| 1109 | while (1) { |
| 1110 | int n; |
| 1111 | |
| 1112 | zp = znode->parent; |
| 1113 | if (!zp) |
| 1114 | break; |
| 1115 | n = znode->iip; |
| 1116 | ubifs_assert(p < c->zroot.znode->level); |
| 1117 | path[p++] = n; |
| 1118 | if (!zp->cnext && ubifs_zn_dirty(znode)) |
| 1119 | break; |
| 1120 | znode = zp; |
| 1121 | } |
| 1122 | } |
| 1123 | |
| 1124 | /* Come back down, dirtying as we go */ |
| 1125 | while (1) { |
| 1126 | struct ubifs_zbranch *zbr; |
| 1127 | |
| 1128 | zp = znode->parent; |
| 1129 | if (zp) { |
| 1130 | ubifs_assert(path[p - 1] >= 0); |
| 1131 | ubifs_assert(path[p - 1] < zp->child_cnt); |
| 1132 | zbr = &zp->zbranch[path[--p]]; |
| 1133 | znode = dirty_cow_znode(c, zbr); |
| 1134 | } else { |
| 1135 | ubifs_assert(znode == c->zroot.znode); |
| 1136 | znode = dirty_cow_znode(c, &c->zroot); |
| 1137 | } |
| 1138 | if (IS_ERR(znode) || !p) |
| 1139 | break; |
| 1140 | ubifs_assert(path[p - 1] >= 0); |
| 1141 | ubifs_assert(path[p - 1] < znode->child_cnt); |
| 1142 | znode = znode->zbranch[path[p - 1]].znode; |
| 1143 | } |
| 1144 | |
| 1145 | return znode; |
| 1146 | } |
| 1147 | |
| 1148 | /** |
| 1149 | * ubifs_lookup_level0 - search for zero-level znode. |
| 1150 | * @c: UBIFS file-system description object |
| 1151 | * @key: key to lookup |
| 1152 | * @zn: znode is returned here |
| 1153 | * @n: znode branch slot number is returned here |
| 1154 | * |
| 1155 | * This function looks up the TNC tree and search for zero-level znode which |
| 1156 | * refers key @key. The found zero-level znode is returned in @zn. There are 3 |
| 1157 | * cases: |
| 1158 | * o exact match, i.e. the found zero-level znode contains key @key, then %1 |
| 1159 | * is returned and slot number of the matched branch is stored in @n; |
| 1160 | * o not exact match, which means that zero-level znode does not contain |
| 1161 | * @key, then %0 is returned and slot number of the closed branch is stored |
| 1162 | * in @n; |
| 1163 | * o @key is so small that it is even less than the lowest key of the |
| 1164 | * leftmost zero-level node, then %0 is returned and %0 is stored in @n. |
| 1165 | * |
| 1166 | * Note, when the TNC tree is traversed, some znodes may be absent, then this |
| 1167 | * function reads corresponding indexing nodes and inserts them to TNC. In |
| 1168 | * case of failure, a negative error code is returned. |
| 1169 | */ |
| 1170 | int ubifs_lookup_level0(struct ubifs_info *c, const union ubifs_key *key, |
| 1171 | struct ubifs_znode **zn, int *n) |
| 1172 | { |
| 1173 | int err, exact; |
| 1174 | struct ubifs_znode *znode; |
| 1175 | unsigned long time = get_seconds(); |
| 1176 | |
| 1177 | dbg_tnc("search key %s", DBGKEY(key)); |
| 1178 | |
| 1179 | znode = c->zroot.znode; |
| 1180 | if (unlikely(!znode)) { |
| 1181 | znode = ubifs_load_znode(c, &c->zroot, NULL, 0); |
| 1182 | if (IS_ERR(znode)) |
| 1183 | return PTR_ERR(znode); |
| 1184 | } |
| 1185 | |
| 1186 | znode->time = time; |
| 1187 | |
| 1188 | while (1) { |
| 1189 | struct ubifs_zbranch *zbr; |
| 1190 | |
| 1191 | exact = ubifs_search_zbranch(c, znode, key, n); |
| 1192 | |
| 1193 | if (znode->level == 0) |
| 1194 | break; |
| 1195 | |
| 1196 | if (*n < 0) |
| 1197 | *n = 0; |
| 1198 | zbr = &znode->zbranch[*n]; |
| 1199 | |
| 1200 | if (zbr->znode) { |
| 1201 | znode->time = time; |
| 1202 | znode = zbr->znode; |
| 1203 | continue; |
| 1204 | } |
| 1205 | |
| 1206 | /* znode is not in TNC cache, load it from the media */ |
| 1207 | znode = ubifs_load_znode(c, zbr, znode, *n); |
| 1208 | if (IS_ERR(znode)) |
| 1209 | return PTR_ERR(znode); |
| 1210 | } |
| 1211 | |
| 1212 | *zn = znode; |
| 1213 | if (exact || !is_hash_key(c, key) || *n != -1) { |
| 1214 | dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n); |
| 1215 | return exact; |
| 1216 | } |
| 1217 | |
| 1218 | /* |
| 1219 | * Here is a tricky place. We have not found the key and this is a |
| 1220 | * "hashed" key, which may collide. The rest of the code deals with |
| 1221 | * situations like this: |
| 1222 | * |
| 1223 | * | 3 | 5 | |
| 1224 | * / \ |
| 1225 | * | 3 | 5 | | 6 | 7 | (x) |
| 1226 | * |
| 1227 | * Or more a complex example: |
| 1228 | * |
| 1229 | * | 1 | 5 | |
| 1230 | * / \ |
| 1231 | * | 1 | 3 | | 5 | 8 | |
| 1232 | * \ / |
| 1233 | * | 5 | 5 | | 6 | 7 | (x) |
| 1234 | * |
| 1235 | * In the examples, if we are looking for key "5", we may reach nodes |
| 1236 | * marked with "(x)". In this case what we have do is to look at the |
| 1237 | * left and see if there is "5" key there. If there is, we have to |
| 1238 | * return it. |
| 1239 | * |
| 1240 | * Note, this whole situation is possible because we allow to have |
| 1241 | * elements which are equivalent to the next key in the parent in the |
| 1242 | * children of current znode. For example, this happens if we split a |
| 1243 | * znode like this: | 3 | 5 | 5 | 6 | 7 |, which results in something |
| 1244 | * like this: |
| 1245 | * | 3 | 5 | |
| 1246 | * / \ |
| 1247 | * | 3 | 5 | | 5 | 6 | 7 | |
| 1248 | * ^ |
| 1249 | * And this becomes what is at the first "picture" after key "5" marked |
| 1250 | * with "^" is removed. What could be done is we could prohibit |
| 1251 | * splitting in the middle of the colliding sequence. Also, when |
| 1252 | * removing the leftmost key, we would have to correct the key of the |
| 1253 | * parent node, which would introduce additional complications. Namely, |
| 1254 | * if we changed the the leftmost key of the parent znode, the garbage |
| 1255 | * collector would be unable to find it (GC is doing this when GC'ing |
| 1256 | * indexing LEBs). Although we already have an additional RB-tree where |
| 1257 | * we save such changed znodes (see 'ins_clr_old_idx_znode()') until |
| 1258 | * after the commit. But anyway, this does not look easy to implement |
| 1259 | * so we did not try this. |
| 1260 | */ |
| 1261 | err = tnc_prev(c, &znode, n); |
| 1262 | if (err == -ENOENT) { |
| 1263 | dbg_tnc("found 0, lvl %d, n -1", znode->level); |
| 1264 | *n = -1; |
| 1265 | return 0; |
| 1266 | } |
| 1267 | if (unlikely(err < 0)) |
| 1268 | return err; |
| 1269 | if (keys_cmp(c, key, &znode->zbranch[*n].key)) { |
| 1270 | dbg_tnc("found 0, lvl %d, n -1", znode->level); |
| 1271 | *n = -1; |
| 1272 | return 0; |
| 1273 | } |
| 1274 | |
| 1275 | dbg_tnc("found 1, lvl %d, n %d", znode->level, *n); |
| 1276 | *zn = znode; |
| 1277 | return 1; |
| 1278 | } |
| 1279 | |
| 1280 | /** |
| 1281 | * lookup_level0_dirty - search for zero-level znode dirtying. |
| 1282 | * @c: UBIFS file-system description object |
| 1283 | * @key: key to lookup |
| 1284 | * @zn: znode is returned here |
| 1285 | * @n: znode branch slot number is returned here |
| 1286 | * |
| 1287 | * This function looks up the TNC tree and search for zero-level znode which |
| 1288 | * refers key @key. The found zero-level znode is returned in @zn. There are 3 |
| 1289 | * cases: |
| 1290 | * o exact match, i.e. the found zero-level znode contains key @key, then %1 |
| 1291 | * is returned and slot number of the matched branch is stored in @n; |
| 1292 | * o not exact match, which means that zero-level znode does not contain @key |
| 1293 | * then %0 is returned and slot number of the closed branch is stored in |
| 1294 | * @n; |
| 1295 | * o @key is so small that it is even less than the lowest key of the |
| 1296 | * leftmost zero-level node, then %0 is returned and %-1 is stored in @n. |
| 1297 | * |
| 1298 | * Additionally all znodes in the path from the root to the located zero-level |
| 1299 | * znode are marked as dirty. |
| 1300 | * |
| 1301 | * Note, when the TNC tree is traversed, some znodes may be absent, then this |
| 1302 | * function reads corresponding indexing nodes and inserts them to TNC. In |
| 1303 | * case of failure, a negative error code is returned. |
| 1304 | */ |
| 1305 | static int lookup_level0_dirty(struct ubifs_info *c, const union ubifs_key *key, |
| 1306 | struct ubifs_znode **zn, int *n) |
| 1307 | { |
| 1308 | int err, exact; |
| 1309 | struct ubifs_znode *znode; |
| 1310 | unsigned long time = get_seconds(); |
| 1311 | |
| 1312 | dbg_tnc("search and dirty key %s", DBGKEY(key)); |
| 1313 | |
| 1314 | znode = c->zroot.znode; |
| 1315 | if (unlikely(!znode)) { |
| 1316 | znode = ubifs_load_znode(c, &c->zroot, NULL, 0); |
| 1317 | if (IS_ERR(znode)) |
| 1318 | return PTR_ERR(znode); |
| 1319 | } |
| 1320 | |
| 1321 | znode = dirty_cow_znode(c, &c->zroot); |
| 1322 | if (IS_ERR(znode)) |
| 1323 | return PTR_ERR(znode); |
| 1324 | |
| 1325 | znode->time = time; |
| 1326 | |
| 1327 | while (1) { |
| 1328 | struct ubifs_zbranch *zbr; |
| 1329 | |
| 1330 | exact = ubifs_search_zbranch(c, znode, key, n); |
| 1331 | |
| 1332 | if (znode->level == 0) |
| 1333 | break; |
| 1334 | |
| 1335 | if (*n < 0) |
| 1336 | *n = 0; |
| 1337 | zbr = &znode->zbranch[*n]; |
| 1338 | |
| 1339 | if (zbr->znode) { |
| 1340 | znode->time = time; |
| 1341 | znode = dirty_cow_znode(c, zbr); |
| 1342 | if (IS_ERR(znode)) |
| 1343 | return PTR_ERR(znode); |
| 1344 | continue; |
| 1345 | } |
| 1346 | |
| 1347 | /* znode is not in TNC cache, load it from the media */ |
| 1348 | znode = ubifs_load_znode(c, zbr, znode, *n); |
| 1349 | if (IS_ERR(znode)) |
| 1350 | return PTR_ERR(znode); |
| 1351 | znode = dirty_cow_znode(c, zbr); |
| 1352 | if (IS_ERR(znode)) |
| 1353 | return PTR_ERR(znode); |
| 1354 | } |
| 1355 | |
| 1356 | *zn = znode; |
| 1357 | if (exact || !is_hash_key(c, key) || *n != -1) { |
| 1358 | dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n); |
| 1359 | return exact; |
| 1360 | } |
| 1361 | |
| 1362 | /* |
| 1363 | * See huge comment at 'lookup_level0_dirty()' what is the rest of the |
| 1364 | * code. |
| 1365 | */ |
| 1366 | err = tnc_prev(c, &znode, n); |
| 1367 | if (err == -ENOENT) { |
| 1368 | *n = -1; |
| 1369 | dbg_tnc("found 0, lvl %d, n -1", znode->level); |
| 1370 | return 0; |
| 1371 | } |
| 1372 | if (unlikely(err < 0)) |
| 1373 | return err; |
| 1374 | if (keys_cmp(c, key, &znode->zbranch[*n].key)) { |
| 1375 | *n = -1; |
| 1376 | dbg_tnc("found 0, lvl %d, n -1", znode->level); |
| 1377 | return 0; |
| 1378 | } |
| 1379 | |
| 1380 | if (znode->cnext || !ubifs_zn_dirty(znode)) { |
| 1381 | znode = dirty_cow_bottom_up(c, znode); |
| 1382 | if (IS_ERR(znode)) |
| 1383 | return PTR_ERR(znode); |
| 1384 | } |
| 1385 | |
| 1386 | dbg_tnc("found 1, lvl %d, n %d", znode->level, *n); |
| 1387 | *zn = znode; |
| 1388 | return 1; |
| 1389 | } |
| 1390 | |
| 1391 | /** |
| 1392 | * maybe_leb_gced - determine if a LEB may have been garbage collected. |
| 1393 | * @c: UBIFS file-system description object |
| 1394 | * @lnum: LEB number |
| 1395 | * @gc_seq1: garbage collection sequence number |
| 1396 | * |
| 1397 | * This function determines if @lnum may have been garbage collected since |
| 1398 | * sequence number @gc_seq1. If it may have been then %1 is returned, otherwise |
| 1399 | * %0 is returned. |
| 1400 | */ |
| 1401 | static int maybe_leb_gced(struct ubifs_info *c, int lnum, int gc_seq1) |
| 1402 | { |
| 1403 | /* |
| 1404 | * No garbage collection in the read-only U-Boot implementation |
| 1405 | */ |
| 1406 | return 0; |
| 1407 | } |
| 1408 | |
| 1409 | /** |
| 1410 | * ubifs_tnc_locate - look up a file-system node and return it and its location. |
| 1411 | * @c: UBIFS file-system description object |
| 1412 | * @key: node key to lookup |
| 1413 | * @node: the node is returned here |
| 1414 | * @lnum: LEB number is returned here |
| 1415 | * @offs: offset is returned here |
| 1416 | * |
| 1417 | * This function look up and reads node with key @key. The caller has to make |
| 1418 | * sure the @node buffer is large enough to fit the node. Returns zero in case |
| 1419 | * of success, %-ENOENT if the node was not found, and a negative error code in |
| 1420 | * case of failure. The node location can be returned in @lnum and @offs. |
| 1421 | */ |
| 1422 | int ubifs_tnc_locate(struct ubifs_info *c, const union ubifs_key *key, |
| 1423 | void *node, int *lnum, int *offs) |
| 1424 | { |
| 1425 | int found, n, err, safely = 0, gc_seq1; |
| 1426 | struct ubifs_znode *znode; |
| 1427 | struct ubifs_zbranch zbr, *zt; |
| 1428 | |
| 1429 | again: |
| 1430 | mutex_lock(&c->tnc_mutex); |
| 1431 | found = ubifs_lookup_level0(c, key, &znode, &n); |
| 1432 | if (!found) { |
| 1433 | err = -ENOENT; |
| 1434 | goto out; |
| 1435 | } else if (found < 0) { |
| 1436 | err = found; |
| 1437 | goto out; |
| 1438 | } |
| 1439 | zt = &znode->zbranch[n]; |
| 1440 | if (lnum) { |
| 1441 | *lnum = zt->lnum; |
| 1442 | *offs = zt->offs; |
| 1443 | } |
| 1444 | if (is_hash_key(c, key)) { |
| 1445 | /* |
| 1446 | * In this case the leaf node cache gets used, so we pass the |
| 1447 | * address of the zbranch and keep the mutex locked |
| 1448 | */ |
| 1449 | err = tnc_read_node_nm(c, zt, node); |
| 1450 | goto out; |
| 1451 | } |
| 1452 | if (safely) { |
| 1453 | err = ubifs_tnc_read_node(c, zt, node); |
| 1454 | goto out; |
| 1455 | } |
| 1456 | /* Drop the TNC mutex prematurely and race with garbage collection */ |
| 1457 | zbr = znode->zbranch[n]; |
| 1458 | gc_seq1 = c->gc_seq; |
| 1459 | mutex_unlock(&c->tnc_mutex); |
| 1460 | |
| 1461 | err = fallible_read_node(c, key, &zbr, node); |
| 1462 | if (err <= 0 || maybe_leb_gced(c, zbr.lnum, gc_seq1)) { |
| 1463 | /* |
| 1464 | * The node may have been GC'ed out from under us so try again |
| 1465 | * while keeping the TNC mutex locked. |
| 1466 | */ |
| 1467 | safely = 1; |
| 1468 | goto again; |
| 1469 | } |
| 1470 | return 0; |
| 1471 | |
| 1472 | out: |
| 1473 | mutex_unlock(&c->tnc_mutex); |
| 1474 | return err; |
| 1475 | } |
| 1476 | |
| 1477 | /** |
| 1478 | * ubifs_tnc_get_bu_keys - lookup keys for bulk-read. |
| 1479 | * @c: UBIFS file-system description object |
| 1480 | * @bu: bulk-read parameters and results |
| 1481 | * |
| 1482 | * Lookup consecutive data node keys for the same inode that reside |
| 1483 | * consecutively in the same LEB. This function returns zero in case of success |
| 1484 | * and a negative error code in case of failure. |
| 1485 | * |
| 1486 | * Note, if the bulk-read buffer length (@bu->buf_len) is known, this function |
| 1487 | * makes sure bulk-read nodes fit the buffer. Otherwise, this function prepares |
| 1488 | * maximum possible amount of nodes for bulk-read. |
| 1489 | */ |
| 1490 | int ubifs_tnc_get_bu_keys(struct ubifs_info *c, struct bu_info *bu) |
| 1491 | { |
| 1492 | int n, err = 0, lnum = -1, uninitialized_var(offs); |
| 1493 | int uninitialized_var(len); |
| 1494 | unsigned int block = key_block(c, &bu->key); |
| 1495 | struct ubifs_znode *znode; |
| 1496 | |
| 1497 | bu->cnt = 0; |
| 1498 | bu->blk_cnt = 0; |
| 1499 | bu->eof = 0; |
| 1500 | |
| 1501 | mutex_lock(&c->tnc_mutex); |
| 1502 | /* Find first key */ |
| 1503 | err = ubifs_lookup_level0(c, &bu->key, &znode, &n); |
| 1504 | if (err < 0) |
| 1505 | goto out; |
| 1506 | if (err) { |
| 1507 | /* Key found */ |
| 1508 | len = znode->zbranch[n].len; |
| 1509 | /* The buffer must be big enough for at least 1 node */ |
| 1510 | if (len > bu->buf_len) { |
| 1511 | err = -EINVAL; |
| 1512 | goto out; |
| 1513 | } |
| 1514 | /* Add this key */ |
| 1515 | bu->zbranch[bu->cnt++] = znode->zbranch[n]; |
| 1516 | bu->blk_cnt += 1; |
| 1517 | lnum = znode->zbranch[n].lnum; |
| 1518 | offs = ALIGN(znode->zbranch[n].offs + len, 8); |
| 1519 | } |
| 1520 | while (1) { |
| 1521 | struct ubifs_zbranch *zbr; |
| 1522 | union ubifs_key *key; |
| 1523 | unsigned int next_block; |
| 1524 | |
| 1525 | /* Find next key */ |
| 1526 | err = tnc_next(c, &znode, &n); |
| 1527 | if (err) |
| 1528 | goto out; |
| 1529 | zbr = &znode->zbranch[n]; |
| 1530 | key = &zbr->key; |
| 1531 | /* See if there is another data key for this file */ |
| 1532 | if (key_inum(c, key) != key_inum(c, &bu->key) || |
| 1533 | key_type(c, key) != UBIFS_DATA_KEY) { |
| 1534 | err = -ENOENT; |
| 1535 | goto out; |
| 1536 | } |
| 1537 | if (lnum < 0) { |
| 1538 | /* First key found */ |
| 1539 | lnum = zbr->lnum; |
| 1540 | offs = ALIGN(zbr->offs + zbr->len, 8); |
| 1541 | len = zbr->len; |
| 1542 | if (len > bu->buf_len) { |
| 1543 | err = -EINVAL; |
| 1544 | goto out; |
| 1545 | } |
| 1546 | } else { |
| 1547 | /* |
| 1548 | * The data nodes must be in consecutive positions in |
| 1549 | * the same LEB. |
| 1550 | */ |
| 1551 | if (zbr->lnum != lnum || zbr->offs != offs) |
| 1552 | goto out; |
| 1553 | offs += ALIGN(zbr->len, 8); |
| 1554 | len = ALIGN(len, 8) + zbr->len; |
| 1555 | /* Must not exceed buffer length */ |
| 1556 | if (len > bu->buf_len) |
| 1557 | goto out; |
| 1558 | } |
| 1559 | /* Allow for holes */ |
| 1560 | next_block = key_block(c, key); |
| 1561 | bu->blk_cnt += (next_block - block - 1); |
| 1562 | if (bu->blk_cnt >= UBIFS_MAX_BULK_READ) |
| 1563 | goto out; |
| 1564 | block = next_block; |
| 1565 | /* Add this key */ |
| 1566 | bu->zbranch[bu->cnt++] = *zbr; |
| 1567 | bu->blk_cnt += 1; |
| 1568 | /* See if we have room for more */ |
| 1569 | if (bu->cnt >= UBIFS_MAX_BULK_READ) |
| 1570 | goto out; |
| 1571 | if (bu->blk_cnt >= UBIFS_MAX_BULK_READ) |
| 1572 | goto out; |
| 1573 | } |
| 1574 | out: |
| 1575 | if (err == -ENOENT) { |
| 1576 | bu->eof = 1; |
| 1577 | err = 0; |
| 1578 | } |
| 1579 | bu->gc_seq = c->gc_seq; |
| 1580 | mutex_unlock(&c->tnc_mutex); |
| 1581 | if (err) |
| 1582 | return err; |
| 1583 | /* |
| 1584 | * An enormous hole could cause bulk-read to encompass too many |
| 1585 | * page cache pages, so limit the number here. |
| 1586 | */ |
| 1587 | if (bu->blk_cnt > UBIFS_MAX_BULK_READ) |
| 1588 | bu->blk_cnt = UBIFS_MAX_BULK_READ; |
| 1589 | /* |
| 1590 | * Ensure that bulk-read covers a whole number of page cache |
| 1591 | * pages. |
| 1592 | */ |
| 1593 | if (UBIFS_BLOCKS_PER_PAGE == 1 || |
| 1594 | !(bu->blk_cnt & (UBIFS_BLOCKS_PER_PAGE - 1))) |
| 1595 | return 0; |
| 1596 | if (bu->eof) { |
| 1597 | /* At the end of file we can round up */ |
| 1598 | bu->blk_cnt += UBIFS_BLOCKS_PER_PAGE - 1; |
| 1599 | return 0; |
| 1600 | } |
| 1601 | /* Exclude data nodes that do not make up a whole page cache page */ |
| 1602 | block = key_block(c, &bu->key) + bu->blk_cnt; |
| 1603 | block &= ~(UBIFS_BLOCKS_PER_PAGE - 1); |
| 1604 | while (bu->cnt) { |
| 1605 | if (key_block(c, &bu->zbranch[bu->cnt - 1].key) < block) |
| 1606 | break; |
| 1607 | bu->cnt -= 1; |
| 1608 | } |
| 1609 | return 0; |
| 1610 | } |
| 1611 | |
| 1612 | /** |
| 1613 | * validate_data_node - validate data nodes for bulk-read. |
| 1614 | * @c: UBIFS file-system description object |
| 1615 | * @buf: buffer containing data node to validate |
| 1616 | * @zbr: zbranch of data node to validate |
| 1617 | * |
| 1618 | * This functions returns %0 on success or a negative error code on failure. |
| 1619 | */ |
| 1620 | static int validate_data_node(struct ubifs_info *c, void *buf, |
| 1621 | struct ubifs_zbranch *zbr) |
| 1622 | { |
| 1623 | union ubifs_key key1; |
| 1624 | struct ubifs_ch *ch = buf; |
| 1625 | int err, len; |
| 1626 | |
| 1627 | if (ch->node_type != UBIFS_DATA_NODE) { |
| 1628 | ubifs_err("bad node type (%d but expected %d)", |
| 1629 | ch->node_type, UBIFS_DATA_NODE); |
| 1630 | goto out_err; |
| 1631 | } |
| 1632 | |
| 1633 | err = ubifs_check_node(c, buf, zbr->lnum, zbr->offs, 0, 0); |
| 1634 | if (err) { |
| 1635 | ubifs_err("expected node type %d", UBIFS_DATA_NODE); |
| 1636 | goto out; |
| 1637 | } |
| 1638 | |
| 1639 | len = le32_to_cpu(ch->len); |
| 1640 | if (len != zbr->len) { |
| 1641 | ubifs_err("bad node length %d, expected %d", len, zbr->len); |
| 1642 | goto out_err; |
| 1643 | } |
| 1644 | |
| 1645 | /* Make sure the key of the read node is correct */ |
| 1646 | key_read(c, buf + UBIFS_KEY_OFFSET, &key1); |
| 1647 | if (!keys_eq(c, &zbr->key, &key1)) { |
| 1648 | ubifs_err("bad key in node at LEB %d:%d", |
| 1649 | zbr->lnum, zbr->offs); |
| 1650 | dbg_tnc("looked for key %s found node's key %s", |
| 1651 | DBGKEY(&zbr->key), DBGKEY1(&key1)); |
| 1652 | goto out_err; |
| 1653 | } |
| 1654 | |
| 1655 | return 0; |
| 1656 | |
| 1657 | out_err: |
| 1658 | err = -EINVAL; |
| 1659 | out: |
| 1660 | ubifs_err("bad node at LEB %d:%d", zbr->lnum, zbr->offs); |
| 1661 | dbg_dump_node(c, buf); |
| 1662 | dbg_dump_stack(); |
| 1663 | return err; |
| 1664 | } |
| 1665 | |
| 1666 | /** |
| 1667 | * ubifs_tnc_bulk_read - read a number of data nodes in one go. |
| 1668 | * @c: UBIFS file-system description object |
| 1669 | * @bu: bulk-read parameters and results |
| 1670 | * |
| 1671 | * This functions reads and validates the data nodes that were identified by the |
| 1672 | * 'ubifs_tnc_get_bu_keys()' function. This functions returns %0 on success, |
| 1673 | * -EAGAIN to indicate a race with GC, or another negative error code on |
| 1674 | * failure. |
| 1675 | */ |
| 1676 | int ubifs_tnc_bulk_read(struct ubifs_info *c, struct bu_info *bu) |
| 1677 | { |
| 1678 | int lnum = bu->zbranch[0].lnum, offs = bu->zbranch[0].offs, len, err, i; |
| 1679 | void *buf; |
| 1680 | |
| 1681 | len = bu->zbranch[bu->cnt - 1].offs; |
| 1682 | len += bu->zbranch[bu->cnt - 1].len - offs; |
| 1683 | if (len > bu->buf_len) { |
| 1684 | ubifs_err("buffer too small %d vs %d", bu->buf_len, len); |
| 1685 | return -EINVAL; |
| 1686 | } |
| 1687 | |
| 1688 | /* Do the read */ |
| 1689 | err = ubi_read(c->ubi, lnum, bu->buf, offs, len); |
| 1690 | |
| 1691 | /* Check for a race with GC */ |
| 1692 | if (maybe_leb_gced(c, lnum, bu->gc_seq)) |
| 1693 | return -EAGAIN; |
| 1694 | |
| 1695 | if (err && err != -EBADMSG) { |
| 1696 | ubifs_err("failed to read from LEB %d:%d, error %d", |
| 1697 | lnum, offs, err); |
| 1698 | dbg_dump_stack(); |
| 1699 | dbg_tnc("key %s", DBGKEY(&bu->key)); |
| 1700 | return err; |
| 1701 | } |
| 1702 | |
| 1703 | /* Validate the nodes read */ |
| 1704 | buf = bu->buf; |
| 1705 | for (i = 0; i < bu->cnt; i++) { |
| 1706 | err = validate_data_node(c, buf, &bu->zbranch[i]); |
| 1707 | if (err) |
| 1708 | return err; |
| 1709 | buf = buf + ALIGN(bu->zbranch[i].len, 8); |
| 1710 | } |
| 1711 | |
| 1712 | return 0; |
| 1713 | } |
| 1714 | |
| 1715 | /** |
| 1716 | * do_lookup_nm- look up a "hashed" node. |
| 1717 | * @c: UBIFS file-system description object |
| 1718 | * @key: node key to lookup |
| 1719 | * @node: the node is returned here |
| 1720 | * @nm: node name |
| 1721 | * |
| 1722 | * This function look up and reads a node which contains name hash in the key. |
| 1723 | * Since the hash may have collisions, there may be many nodes with the same |
| 1724 | * key, so we have to sequentially look to all of them until the needed one is |
| 1725 | * found. This function returns zero in case of success, %-ENOENT if the node |
| 1726 | * was not found, and a negative error code in case of failure. |
| 1727 | */ |
| 1728 | static int do_lookup_nm(struct ubifs_info *c, const union ubifs_key *key, |
| 1729 | void *node, const struct qstr *nm) |
| 1730 | { |
| 1731 | int found, n, err; |
| 1732 | struct ubifs_znode *znode; |
| 1733 | |
| 1734 | dbg_tnc("name '%.*s' key %s", nm->len, nm->name, DBGKEY(key)); |
| 1735 | mutex_lock(&c->tnc_mutex); |
| 1736 | found = ubifs_lookup_level0(c, key, &znode, &n); |
| 1737 | if (!found) { |
| 1738 | err = -ENOENT; |
| 1739 | goto out_unlock; |
| 1740 | } else if (found < 0) { |
| 1741 | err = found; |
| 1742 | goto out_unlock; |
| 1743 | } |
| 1744 | |
| 1745 | ubifs_assert(n >= 0); |
| 1746 | |
| 1747 | err = resolve_collision(c, key, &znode, &n, nm); |
| 1748 | dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n); |
| 1749 | if (unlikely(err < 0)) |
| 1750 | goto out_unlock; |
| 1751 | if (err == 0) { |
| 1752 | err = -ENOENT; |
| 1753 | goto out_unlock; |
| 1754 | } |
| 1755 | |
| 1756 | err = tnc_read_node_nm(c, &znode->zbranch[n], node); |
| 1757 | |
| 1758 | out_unlock: |
| 1759 | mutex_unlock(&c->tnc_mutex); |
| 1760 | return err; |
| 1761 | } |
| 1762 | |
| 1763 | /** |
| 1764 | * ubifs_tnc_lookup_nm - look up a "hashed" node. |
| 1765 | * @c: UBIFS file-system description object |
| 1766 | * @key: node key to lookup |
| 1767 | * @node: the node is returned here |
| 1768 | * @nm: node name |
| 1769 | * |
| 1770 | * This function look up and reads a node which contains name hash in the key. |
| 1771 | * Since the hash may have collisions, there may be many nodes with the same |
| 1772 | * key, so we have to sequentially look to all of them until the needed one is |
| 1773 | * found. This function returns zero in case of success, %-ENOENT if the node |
| 1774 | * was not found, and a negative error code in case of failure. |
| 1775 | */ |
| 1776 | int ubifs_tnc_lookup_nm(struct ubifs_info *c, const union ubifs_key *key, |
| 1777 | void *node, const struct qstr *nm) |
| 1778 | { |
| 1779 | int err, len; |
| 1780 | const struct ubifs_dent_node *dent = node; |
| 1781 | |
| 1782 | /* |
| 1783 | * We assume that in most of the cases there are no name collisions and |
| 1784 | * 'ubifs_tnc_lookup()' returns us the right direntry. |
| 1785 | */ |
| 1786 | err = ubifs_tnc_lookup(c, key, node); |
| 1787 | if (err) |
| 1788 | return err; |
| 1789 | |
| 1790 | len = le16_to_cpu(dent->nlen); |
| 1791 | if (nm->len == len && !memcmp(dent->name, nm->name, len)) |
| 1792 | return 0; |
| 1793 | |
| 1794 | /* |
| 1795 | * Unluckily, there are hash collisions and we have to iterate over |
| 1796 | * them look at each direntry with colliding name hash sequentially. |
| 1797 | */ |
| 1798 | return do_lookup_nm(c, key, node, nm); |
| 1799 | } |
| 1800 | |
| 1801 | /** |
| 1802 | * correct_parent_keys - correct parent znodes' keys. |
| 1803 | * @c: UBIFS file-system description object |
| 1804 | * @znode: znode to correct parent znodes for |
| 1805 | * |
| 1806 | * This is a helper function for 'tnc_insert()'. When the key of the leftmost |
| 1807 | * zbranch changes, keys of parent znodes have to be corrected. This helper |
| 1808 | * function is called in such situations and corrects the keys if needed. |
| 1809 | */ |
| 1810 | static void correct_parent_keys(const struct ubifs_info *c, |
| 1811 | struct ubifs_znode *znode) |
| 1812 | { |
| 1813 | union ubifs_key *key, *key1; |
| 1814 | |
| 1815 | ubifs_assert(znode->parent); |
| 1816 | ubifs_assert(znode->iip == 0); |
| 1817 | |
| 1818 | key = &znode->zbranch[0].key; |
| 1819 | key1 = &znode->parent->zbranch[0].key; |
| 1820 | |
| 1821 | while (keys_cmp(c, key, key1) < 0) { |
| 1822 | key_copy(c, key, key1); |
| 1823 | znode = znode->parent; |
| 1824 | znode->alt = 1; |
| 1825 | if (!znode->parent || znode->iip) |
| 1826 | break; |
| 1827 | key1 = &znode->parent->zbranch[0].key; |
| 1828 | } |
| 1829 | } |
| 1830 | |
| 1831 | /** |
| 1832 | * insert_zbranch - insert a zbranch into a znode. |
| 1833 | * @znode: znode into which to insert |
| 1834 | * @zbr: zbranch to insert |
| 1835 | * @n: slot number to insert to |
| 1836 | * |
| 1837 | * This is a helper function for 'tnc_insert()'. UBIFS does not allow "gaps" in |
| 1838 | * znode's array of zbranches and keeps zbranches consolidated, so when a new |
| 1839 | * zbranch has to be inserted to the @znode->zbranches[]' array at the @n-th |
| 1840 | * slot, zbranches starting from @n have to be moved right. |
| 1841 | */ |
| 1842 | static void insert_zbranch(struct ubifs_znode *znode, |
| 1843 | const struct ubifs_zbranch *zbr, int n) |
| 1844 | { |
| 1845 | int i; |
| 1846 | |
| 1847 | ubifs_assert(ubifs_zn_dirty(znode)); |
| 1848 | |
| 1849 | if (znode->level) { |
| 1850 | for (i = znode->child_cnt; i > n; i--) { |
| 1851 | znode->zbranch[i] = znode->zbranch[i - 1]; |
| 1852 | if (znode->zbranch[i].znode) |
| 1853 | znode->zbranch[i].znode->iip = i; |
| 1854 | } |
| 1855 | if (zbr->znode) |
| 1856 | zbr->znode->iip = n; |
| 1857 | } else |
| 1858 | for (i = znode->child_cnt; i > n; i--) |
| 1859 | znode->zbranch[i] = znode->zbranch[i - 1]; |
| 1860 | |
| 1861 | znode->zbranch[n] = *zbr; |
| 1862 | znode->child_cnt += 1; |
| 1863 | |
| 1864 | /* |
| 1865 | * After inserting at slot zero, the lower bound of the key range of |
| 1866 | * this znode may have changed. If this znode is subsequently split |
| 1867 | * then the upper bound of the key range may change, and furthermore |
| 1868 | * it could change to be lower than the original lower bound. If that |
| 1869 | * happens, then it will no longer be possible to find this znode in the |
| 1870 | * TNC using the key from the index node on flash. That is bad because |
| 1871 | * if it is not found, we will assume it is obsolete and may overwrite |
| 1872 | * it. Then if there is an unclean unmount, we will start using the |
| 1873 | * old index which will be broken. |
| 1874 | * |
| 1875 | * So we first mark znodes that have insertions at slot zero, and then |
| 1876 | * if they are split we add their lnum/offs to the old_idx tree. |
| 1877 | */ |
| 1878 | if (n == 0) |
| 1879 | znode->alt = 1; |
| 1880 | } |
| 1881 | |
| 1882 | /** |
| 1883 | * tnc_insert - insert a node into TNC. |
| 1884 | * @c: UBIFS file-system description object |
| 1885 | * @znode: znode to insert into |
| 1886 | * @zbr: branch to insert |
| 1887 | * @n: slot number to insert new zbranch to |
| 1888 | * |
| 1889 | * This function inserts a new node described by @zbr into znode @znode. If |
| 1890 | * znode does not have a free slot for new zbranch, it is split. Parent znodes |
| 1891 | * are splat as well if needed. Returns zero in case of success or a negative |
| 1892 | * error code in case of failure. |
| 1893 | */ |
| 1894 | static int tnc_insert(struct ubifs_info *c, struct ubifs_znode *znode, |
| 1895 | struct ubifs_zbranch *zbr, int n) |
| 1896 | { |
| 1897 | struct ubifs_znode *zn, *zi, *zp; |
| 1898 | int i, keep, move, appending = 0; |
| 1899 | union ubifs_key *key = &zbr->key, *key1; |
| 1900 | |
| 1901 | ubifs_assert(n >= 0 && n <= c->fanout); |
| 1902 | |
| 1903 | /* Implement naive insert for now */ |
| 1904 | again: |
| 1905 | zp = znode->parent; |
| 1906 | if (znode->child_cnt < c->fanout) { |
| 1907 | ubifs_assert(n != c->fanout); |
| 1908 | dbg_tnc("inserted at %d level %d, key %s", n, znode->level, |
| 1909 | DBGKEY(key)); |
| 1910 | |
| 1911 | insert_zbranch(znode, zbr, n); |
| 1912 | |
| 1913 | /* Ensure parent's key is correct */ |
| 1914 | if (n == 0 && zp && znode->iip == 0) |
| 1915 | correct_parent_keys(c, znode); |
| 1916 | |
| 1917 | return 0; |
| 1918 | } |
| 1919 | |
| 1920 | /* |
| 1921 | * Unfortunately, @znode does not have more empty slots and we have to |
| 1922 | * split it. |
| 1923 | */ |
| 1924 | dbg_tnc("splitting level %d, key %s", znode->level, DBGKEY(key)); |
| 1925 | |
| 1926 | if (znode->alt) |
| 1927 | /* |
| 1928 | * We can no longer be sure of finding this znode by key, so we |
| 1929 | * record it in the old_idx tree. |
| 1930 | */ |
| 1931 | ins_clr_old_idx_znode(c, znode); |
| 1932 | |
| 1933 | zn = kzalloc(c->max_znode_sz, GFP_NOFS); |
| 1934 | if (!zn) |
| 1935 | return -ENOMEM; |
| 1936 | zn->parent = zp; |
| 1937 | zn->level = znode->level; |
| 1938 | |
| 1939 | /* Decide where to split */ |
| 1940 | if (znode->level == 0 && key_type(c, key) == UBIFS_DATA_KEY) { |
| 1941 | /* Try not to split consecutive data keys */ |
| 1942 | if (n == c->fanout) { |
| 1943 | key1 = &znode->zbranch[n - 1].key; |
| 1944 | if (key_inum(c, key1) == key_inum(c, key) && |
| 1945 | key_type(c, key1) == UBIFS_DATA_KEY) |
| 1946 | appending = 1; |
| 1947 | } else |
| 1948 | goto check_split; |
| 1949 | } else if (appending && n != c->fanout) { |
| 1950 | /* Try not to split consecutive data keys */ |
| 1951 | appending = 0; |
| 1952 | check_split: |
| 1953 | if (n >= (c->fanout + 1) / 2) { |
| 1954 | key1 = &znode->zbranch[0].key; |
| 1955 | if (key_inum(c, key1) == key_inum(c, key) && |
| 1956 | key_type(c, key1) == UBIFS_DATA_KEY) { |
| 1957 | key1 = &znode->zbranch[n].key; |
| 1958 | if (key_inum(c, key1) != key_inum(c, key) || |
| 1959 | key_type(c, key1) != UBIFS_DATA_KEY) { |
| 1960 | keep = n; |
| 1961 | move = c->fanout - keep; |
| 1962 | zi = znode; |
| 1963 | goto do_split; |
| 1964 | } |
| 1965 | } |
| 1966 | } |
| 1967 | } |
| 1968 | |
| 1969 | if (appending) { |
| 1970 | keep = c->fanout; |
| 1971 | move = 0; |
| 1972 | } else { |
| 1973 | keep = (c->fanout + 1) / 2; |
| 1974 | move = c->fanout - keep; |
| 1975 | } |
| 1976 | |
| 1977 | /* |
| 1978 | * Although we don't at present, we could look at the neighbors and see |
| 1979 | * if we can move some zbranches there. |
| 1980 | */ |
| 1981 | |
| 1982 | if (n < keep) { |
| 1983 | /* Insert into existing znode */ |
| 1984 | zi = znode; |
| 1985 | move += 1; |
| 1986 | keep -= 1; |
| 1987 | } else { |
| 1988 | /* Insert into new znode */ |
| 1989 | zi = zn; |
| 1990 | n -= keep; |
| 1991 | /* Re-parent */ |
| 1992 | if (zn->level != 0) |
| 1993 | zbr->znode->parent = zn; |
| 1994 | } |
| 1995 | |
| 1996 | do_split: |
| 1997 | |
| 1998 | __set_bit(DIRTY_ZNODE, &zn->flags); |
| 1999 | atomic_long_inc(&c->dirty_zn_cnt); |
| 2000 | |
| 2001 | zn->child_cnt = move; |
| 2002 | znode->child_cnt = keep; |
| 2003 | |
| 2004 | dbg_tnc("moving %d, keeping %d", move, keep); |
| 2005 | |
| 2006 | /* Move zbranch */ |
| 2007 | for (i = 0; i < move; i++) { |
| 2008 | zn->zbranch[i] = znode->zbranch[keep + i]; |
| 2009 | /* Re-parent */ |
| 2010 | if (zn->level != 0) |
| 2011 | if (zn->zbranch[i].znode) { |
| 2012 | zn->zbranch[i].znode->parent = zn; |
| 2013 | zn->zbranch[i].znode->iip = i; |
| 2014 | } |
| 2015 | } |
| 2016 | |
| 2017 | /* Insert new key and branch */ |
| 2018 | dbg_tnc("inserting at %d level %d, key %s", n, zn->level, DBGKEY(key)); |
| 2019 | |
| 2020 | insert_zbranch(zi, zbr, n); |
| 2021 | |
| 2022 | /* Insert new znode (produced by spitting) into the parent */ |
| 2023 | if (zp) { |
| 2024 | if (n == 0 && zi == znode && znode->iip == 0) |
| 2025 | correct_parent_keys(c, znode); |
| 2026 | |
| 2027 | /* Locate insertion point */ |
| 2028 | n = znode->iip + 1; |
| 2029 | |
| 2030 | /* Tail recursion */ |
| 2031 | zbr->key = zn->zbranch[0].key; |
| 2032 | zbr->znode = zn; |
| 2033 | zbr->lnum = 0; |
| 2034 | zbr->offs = 0; |
| 2035 | zbr->len = 0; |
| 2036 | znode = zp; |
| 2037 | |
| 2038 | goto again; |
| 2039 | } |
| 2040 | |
| 2041 | /* We have to split root znode */ |
| 2042 | dbg_tnc("creating new zroot at level %d", znode->level + 1); |
| 2043 | |
| 2044 | zi = kzalloc(c->max_znode_sz, GFP_NOFS); |
| 2045 | if (!zi) |
| 2046 | return -ENOMEM; |
| 2047 | |
| 2048 | zi->child_cnt = 2; |
| 2049 | zi->level = znode->level + 1; |
| 2050 | |
| 2051 | __set_bit(DIRTY_ZNODE, &zi->flags); |
| 2052 | atomic_long_inc(&c->dirty_zn_cnt); |
| 2053 | |
| 2054 | zi->zbranch[0].key = znode->zbranch[0].key; |
| 2055 | zi->zbranch[0].znode = znode; |
| 2056 | zi->zbranch[0].lnum = c->zroot.lnum; |
| 2057 | zi->zbranch[0].offs = c->zroot.offs; |
| 2058 | zi->zbranch[0].len = c->zroot.len; |
| 2059 | zi->zbranch[1].key = zn->zbranch[0].key; |
| 2060 | zi->zbranch[1].znode = zn; |
| 2061 | |
| 2062 | c->zroot.lnum = 0; |
| 2063 | c->zroot.offs = 0; |
| 2064 | c->zroot.len = 0; |
| 2065 | c->zroot.znode = zi; |
| 2066 | |
| 2067 | zn->parent = zi; |
| 2068 | zn->iip = 1; |
| 2069 | znode->parent = zi; |
| 2070 | znode->iip = 0; |
| 2071 | |
| 2072 | return 0; |
| 2073 | } |
| 2074 | |
| 2075 | /** |
| 2076 | * ubifs_tnc_add - add a node to TNC. |
| 2077 | * @c: UBIFS file-system description object |
| 2078 | * @key: key to add |
| 2079 | * @lnum: LEB number of node |
| 2080 | * @offs: node offset |
| 2081 | * @len: node length |
| 2082 | * |
| 2083 | * This function adds a node with key @key to TNC. The node may be new or it may |
| 2084 | * obsolete some existing one. Returns %0 on success or negative error code on |
| 2085 | * failure. |
| 2086 | */ |
| 2087 | int ubifs_tnc_add(struct ubifs_info *c, const union ubifs_key *key, int lnum, |
| 2088 | int offs, int len) |
| 2089 | { |
| 2090 | int found, n, err = 0; |
| 2091 | struct ubifs_znode *znode; |
| 2092 | |
| 2093 | mutex_lock(&c->tnc_mutex); |
| 2094 | dbg_tnc("%d:%d, len %d, key %s", lnum, offs, len, DBGKEY(key)); |
| 2095 | found = lookup_level0_dirty(c, key, &znode, &n); |
| 2096 | if (!found) { |
| 2097 | struct ubifs_zbranch zbr; |
| 2098 | |
| 2099 | zbr.znode = NULL; |
| 2100 | zbr.lnum = lnum; |
| 2101 | zbr.offs = offs; |
| 2102 | zbr.len = len; |
| 2103 | key_copy(c, key, &zbr.key); |
| 2104 | err = tnc_insert(c, znode, &zbr, n + 1); |
| 2105 | } else if (found == 1) { |
| 2106 | struct ubifs_zbranch *zbr = &znode->zbranch[n]; |
| 2107 | |
| 2108 | lnc_free(zbr); |
| 2109 | err = ubifs_add_dirt(c, zbr->lnum, zbr->len); |
| 2110 | zbr->lnum = lnum; |
| 2111 | zbr->offs = offs; |
| 2112 | zbr->len = len; |
| 2113 | } else |
| 2114 | err = found; |
| 2115 | if (!err) |
| 2116 | err = dbg_check_tnc(c, 0); |
| 2117 | mutex_unlock(&c->tnc_mutex); |
| 2118 | |
| 2119 | return err; |
| 2120 | } |
| 2121 | |
| 2122 | /** |
| 2123 | * ubifs_tnc_replace - replace a node in the TNC only if the old node is found. |
| 2124 | * @c: UBIFS file-system description object |
| 2125 | * @key: key to add |
| 2126 | * @old_lnum: LEB number of old node |
| 2127 | * @old_offs: old node offset |
| 2128 | * @lnum: LEB number of node |
| 2129 | * @offs: node offset |
| 2130 | * @len: node length |
| 2131 | * |
| 2132 | * This function replaces a node with key @key in the TNC only if the old node |
| 2133 | * is found. This function is called by garbage collection when node are moved. |
| 2134 | * Returns %0 on success or negative error code on failure. |
| 2135 | */ |
| 2136 | int ubifs_tnc_replace(struct ubifs_info *c, const union ubifs_key *key, |
| 2137 | int old_lnum, int old_offs, int lnum, int offs, int len) |
| 2138 | { |
| 2139 | int found, n, err = 0; |
| 2140 | struct ubifs_znode *znode; |
| 2141 | |
| 2142 | mutex_lock(&c->tnc_mutex); |
| 2143 | dbg_tnc("old LEB %d:%d, new LEB %d:%d, len %d, key %s", old_lnum, |
| 2144 | old_offs, lnum, offs, len, DBGKEY(key)); |
| 2145 | found = lookup_level0_dirty(c, key, &znode, &n); |
| 2146 | if (found < 0) { |
| 2147 | err = found; |
| 2148 | goto out_unlock; |
| 2149 | } |
| 2150 | |
| 2151 | if (found == 1) { |
| 2152 | struct ubifs_zbranch *zbr = &znode->zbranch[n]; |
| 2153 | |
| 2154 | found = 0; |
| 2155 | if (zbr->lnum == old_lnum && zbr->offs == old_offs) { |
| 2156 | lnc_free(zbr); |
| 2157 | err = ubifs_add_dirt(c, zbr->lnum, zbr->len); |
| 2158 | if (err) |
| 2159 | goto out_unlock; |
| 2160 | zbr->lnum = lnum; |
| 2161 | zbr->offs = offs; |
| 2162 | zbr->len = len; |
| 2163 | found = 1; |
| 2164 | } else if (is_hash_key(c, key)) { |
| 2165 | found = resolve_collision_directly(c, key, &znode, &n, |
| 2166 | old_lnum, old_offs); |
| 2167 | dbg_tnc("rc returned %d, znode %p, n %d, LEB %d:%d", |
| 2168 | found, znode, n, old_lnum, old_offs); |
| 2169 | if (found < 0) { |
| 2170 | err = found; |
| 2171 | goto out_unlock; |
| 2172 | } |
| 2173 | |
| 2174 | if (found) { |
| 2175 | /* Ensure the znode is dirtied */ |
| 2176 | if (znode->cnext || !ubifs_zn_dirty(znode)) { |
| 2177 | znode = dirty_cow_bottom_up(c, znode); |
| 2178 | if (IS_ERR(znode)) { |
| 2179 | err = PTR_ERR(znode); |
| 2180 | goto out_unlock; |
| 2181 | } |
| 2182 | } |
| 2183 | zbr = &znode->zbranch[n]; |
| 2184 | lnc_free(zbr); |
| 2185 | err = ubifs_add_dirt(c, zbr->lnum, |
| 2186 | zbr->len); |
| 2187 | if (err) |
| 2188 | goto out_unlock; |
| 2189 | zbr->lnum = lnum; |
| 2190 | zbr->offs = offs; |
| 2191 | zbr->len = len; |
| 2192 | } |
| 2193 | } |
| 2194 | } |
| 2195 | |
| 2196 | if (!found) |
| 2197 | err = ubifs_add_dirt(c, lnum, len); |
| 2198 | |
| 2199 | if (!err) |
| 2200 | err = dbg_check_tnc(c, 0); |
| 2201 | |
| 2202 | out_unlock: |
| 2203 | mutex_unlock(&c->tnc_mutex); |
| 2204 | return err; |
| 2205 | } |
| 2206 | |
| 2207 | /** |
| 2208 | * ubifs_tnc_add_nm - add a "hashed" node to TNC. |
| 2209 | * @c: UBIFS file-system description object |
| 2210 | * @key: key to add |
| 2211 | * @lnum: LEB number of node |
| 2212 | * @offs: node offset |
| 2213 | * @len: node length |
| 2214 | * @nm: node name |
| 2215 | * |
| 2216 | * This is the same as 'ubifs_tnc_add()' but it should be used with keys which |
| 2217 | * may have collisions, like directory entry keys. |
| 2218 | */ |
| 2219 | int ubifs_tnc_add_nm(struct ubifs_info *c, const union ubifs_key *key, |
| 2220 | int lnum, int offs, int len, const struct qstr *nm) |
| 2221 | { |
| 2222 | int found, n, err = 0; |
| 2223 | struct ubifs_znode *znode; |
| 2224 | |
| 2225 | mutex_lock(&c->tnc_mutex); |
| 2226 | dbg_tnc("LEB %d:%d, name '%.*s', key %s", lnum, offs, nm->len, nm->name, |
| 2227 | DBGKEY(key)); |
| 2228 | found = lookup_level0_dirty(c, key, &znode, &n); |
| 2229 | if (found < 0) { |
| 2230 | err = found; |
| 2231 | goto out_unlock; |
| 2232 | } |
| 2233 | |
| 2234 | if (found == 1) { |
| 2235 | if (c->replaying) |
| 2236 | found = fallible_resolve_collision(c, key, &znode, &n, |
| 2237 | nm, 1); |
| 2238 | else |
| 2239 | found = resolve_collision(c, key, &znode, &n, nm); |
| 2240 | dbg_tnc("rc returned %d, znode %p, n %d", found, znode, n); |
| 2241 | if (found < 0) { |
| 2242 | err = found; |
| 2243 | goto out_unlock; |
| 2244 | } |
| 2245 | |
| 2246 | /* Ensure the znode is dirtied */ |
| 2247 | if (znode->cnext || !ubifs_zn_dirty(znode)) { |
| 2248 | znode = dirty_cow_bottom_up(c, znode); |
| 2249 | if (IS_ERR(znode)) { |
| 2250 | err = PTR_ERR(znode); |
| 2251 | goto out_unlock; |
| 2252 | } |
| 2253 | } |
| 2254 | |
| 2255 | if (found == 1) { |
| 2256 | struct ubifs_zbranch *zbr = &znode->zbranch[n]; |
| 2257 | |
| 2258 | lnc_free(zbr); |
| 2259 | err = ubifs_add_dirt(c, zbr->lnum, zbr->len); |
| 2260 | zbr->lnum = lnum; |
| 2261 | zbr->offs = offs; |
| 2262 | zbr->len = len; |
| 2263 | goto out_unlock; |
| 2264 | } |
| 2265 | } |
| 2266 | |
| 2267 | if (!found) { |
| 2268 | struct ubifs_zbranch zbr; |
| 2269 | |
| 2270 | zbr.znode = NULL; |
| 2271 | zbr.lnum = lnum; |
| 2272 | zbr.offs = offs; |
| 2273 | zbr.len = len; |
| 2274 | key_copy(c, key, &zbr.key); |
| 2275 | err = tnc_insert(c, znode, &zbr, n + 1); |
| 2276 | if (err) |
| 2277 | goto out_unlock; |
| 2278 | if (c->replaying) { |
| 2279 | /* |
| 2280 | * We did not find it in the index so there may be a |
| 2281 | * dangling branch still in the index. So we remove it |
| 2282 | * by passing 'ubifs_tnc_remove_nm()' the same key but |
| 2283 | * an unmatchable name. |
| 2284 | */ |
| 2285 | struct qstr noname = { .len = 0, .name = "" }; |
| 2286 | |
| 2287 | err = dbg_check_tnc(c, 0); |
| 2288 | mutex_unlock(&c->tnc_mutex); |
| 2289 | if (err) |
| 2290 | return err; |
| 2291 | return ubifs_tnc_remove_nm(c, key, &noname); |
| 2292 | } |
| 2293 | } |
| 2294 | |
| 2295 | out_unlock: |
| 2296 | if (!err) |
| 2297 | err = dbg_check_tnc(c, 0); |
| 2298 | mutex_unlock(&c->tnc_mutex); |
| 2299 | return err; |
| 2300 | } |
| 2301 | |
| 2302 | /** |
| 2303 | * tnc_delete - delete a znode form TNC. |
| 2304 | * @c: UBIFS file-system description object |
| 2305 | * @znode: znode to delete from |
| 2306 | * @n: zbranch slot number to delete |
| 2307 | * |
| 2308 | * This function deletes a leaf node from @n-th slot of @znode. Returns zero in |
| 2309 | * case of success and a negative error code in case of failure. |
| 2310 | */ |
| 2311 | static int tnc_delete(struct ubifs_info *c, struct ubifs_znode *znode, int n) |
| 2312 | { |
| 2313 | struct ubifs_zbranch *zbr; |
| 2314 | struct ubifs_znode *zp; |
| 2315 | int i, err; |
| 2316 | |
| 2317 | /* Delete without merge for now */ |
| 2318 | ubifs_assert(znode->level == 0); |
| 2319 | ubifs_assert(n >= 0 && n < c->fanout); |
| 2320 | dbg_tnc("deleting %s", DBGKEY(&znode->zbranch[n].key)); |
| 2321 | |
| 2322 | zbr = &znode->zbranch[n]; |
| 2323 | lnc_free(zbr); |
| 2324 | |
| 2325 | err = ubifs_add_dirt(c, zbr->lnum, zbr->len); |
| 2326 | if (err) { |
| 2327 | dbg_dump_znode(c, znode); |
| 2328 | return err; |
| 2329 | } |
| 2330 | |
| 2331 | /* We do not "gap" zbranch slots */ |
| 2332 | for (i = n; i < znode->child_cnt - 1; i++) |
| 2333 | znode->zbranch[i] = znode->zbranch[i + 1]; |
| 2334 | znode->child_cnt -= 1; |
| 2335 | |
| 2336 | if (znode->child_cnt > 0) |
| 2337 | return 0; |
| 2338 | |
| 2339 | /* |
| 2340 | * This was the last zbranch, we have to delete this znode from the |
| 2341 | * parent. |
| 2342 | */ |
| 2343 | |
| 2344 | do { |
| 2345 | ubifs_assert(!test_bit(OBSOLETE_ZNODE, &znode->flags)); |
| 2346 | ubifs_assert(ubifs_zn_dirty(znode)); |
| 2347 | |
| 2348 | zp = znode->parent; |
| 2349 | n = znode->iip; |
| 2350 | |
| 2351 | atomic_long_dec(&c->dirty_zn_cnt); |
| 2352 | |
| 2353 | err = insert_old_idx_znode(c, znode); |
| 2354 | if (err) |
| 2355 | return err; |
| 2356 | |
| 2357 | if (znode->cnext) { |
| 2358 | __set_bit(OBSOLETE_ZNODE, &znode->flags); |
| 2359 | atomic_long_inc(&c->clean_zn_cnt); |
| 2360 | atomic_long_inc(&ubifs_clean_zn_cnt); |
| 2361 | } else |
| 2362 | kfree(znode); |
| 2363 | znode = zp; |
| 2364 | } while (znode->child_cnt == 1); /* while removing last child */ |
| 2365 | |
| 2366 | /* Remove from znode, entry n - 1 */ |
| 2367 | znode->child_cnt -= 1; |
| 2368 | ubifs_assert(znode->level != 0); |
| 2369 | for (i = n; i < znode->child_cnt; i++) { |
| 2370 | znode->zbranch[i] = znode->zbranch[i + 1]; |
| 2371 | if (znode->zbranch[i].znode) |
| 2372 | znode->zbranch[i].znode->iip = i; |
| 2373 | } |
| 2374 | |
| 2375 | /* |
| 2376 | * If this is the root and it has only 1 child then |
| 2377 | * collapse the tree. |
| 2378 | */ |
| 2379 | if (!znode->parent) { |
| 2380 | while (znode->child_cnt == 1 && znode->level != 0) { |
| 2381 | zp = znode; |
| 2382 | zbr = &znode->zbranch[0]; |
| 2383 | znode = get_znode(c, znode, 0); |
| 2384 | if (IS_ERR(znode)) |
| 2385 | return PTR_ERR(znode); |
| 2386 | znode = dirty_cow_znode(c, zbr); |
| 2387 | if (IS_ERR(znode)) |
| 2388 | return PTR_ERR(znode); |
| 2389 | znode->parent = NULL; |
| 2390 | znode->iip = 0; |
| 2391 | if (c->zroot.len) { |
| 2392 | err = insert_old_idx(c, c->zroot.lnum, |
| 2393 | c->zroot.offs); |
| 2394 | if (err) |
| 2395 | return err; |
| 2396 | } |
| 2397 | c->zroot.lnum = zbr->lnum; |
| 2398 | c->zroot.offs = zbr->offs; |
| 2399 | c->zroot.len = zbr->len; |
| 2400 | c->zroot.znode = znode; |
| 2401 | ubifs_assert(!test_bit(OBSOLETE_ZNODE, |
| 2402 | &zp->flags)); |
| 2403 | ubifs_assert(test_bit(DIRTY_ZNODE, &zp->flags)); |
| 2404 | atomic_long_dec(&c->dirty_zn_cnt); |
| 2405 | |
| 2406 | if (zp->cnext) { |
| 2407 | __set_bit(OBSOLETE_ZNODE, &zp->flags); |
| 2408 | atomic_long_inc(&c->clean_zn_cnt); |
| 2409 | atomic_long_inc(&ubifs_clean_zn_cnt); |
| 2410 | } else |
| 2411 | kfree(zp); |
| 2412 | } |
| 2413 | } |
| 2414 | |
| 2415 | return 0; |
| 2416 | } |
| 2417 | |
| 2418 | /** |
| 2419 | * ubifs_tnc_remove - remove an index entry of a node. |
| 2420 | * @c: UBIFS file-system description object |
| 2421 | * @key: key of node |
| 2422 | * |
| 2423 | * Returns %0 on success or negative error code on failure. |
| 2424 | */ |
| 2425 | int ubifs_tnc_remove(struct ubifs_info *c, const union ubifs_key *key) |
| 2426 | { |
| 2427 | int found, n, err = 0; |
| 2428 | struct ubifs_znode *znode; |
| 2429 | |
| 2430 | mutex_lock(&c->tnc_mutex); |
| 2431 | dbg_tnc("key %s", DBGKEY(key)); |
| 2432 | found = lookup_level0_dirty(c, key, &znode, &n); |
| 2433 | if (found < 0) { |
| 2434 | err = found; |
| 2435 | goto out_unlock; |
| 2436 | } |
| 2437 | if (found == 1) |
| 2438 | err = tnc_delete(c, znode, n); |
| 2439 | if (!err) |
| 2440 | err = dbg_check_tnc(c, 0); |
| 2441 | |
| 2442 | out_unlock: |
| 2443 | mutex_unlock(&c->tnc_mutex); |
| 2444 | return err; |
| 2445 | } |
| 2446 | |
| 2447 | /** |
| 2448 | * ubifs_tnc_remove_nm - remove an index entry for a "hashed" node. |
| 2449 | * @c: UBIFS file-system description object |
| 2450 | * @key: key of node |
| 2451 | * @nm: directory entry name |
| 2452 | * |
| 2453 | * Returns %0 on success or negative error code on failure. |
| 2454 | */ |
| 2455 | int ubifs_tnc_remove_nm(struct ubifs_info *c, const union ubifs_key *key, |
| 2456 | const struct qstr *nm) |
| 2457 | { |
| 2458 | int n, err; |
| 2459 | struct ubifs_znode *znode; |
| 2460 | |
| 2461 | mutex_lock(&c->tnc_mutex); |
| 2462 | dbg_tnc("%.*s, key %s", nm->len, nm->name, DBGKEY(key)); |
| 2463 | err = lookup_level0_dirty(c, key, &znode, &n); |
| 2464 | if (err < 0) |
| 2465 | goto out_unlock; |
| 2466 | |
| 2467 | if (err) { |
| 2468 | if (c->replaying) |
| 2469 | err = fallible_resolve_collision(c, key, &znode, &n, |
| 2470 | nm, 0); |
| 2471 | else |
| 2472 | err = resolve_collision(c, key, &znode, &n, nm); |
| 2473 | dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n); |
| 2474 | if (err < 0) |
| 2475 | goto out_unlock; |
| 2476 | if (err) { |
| 2477 | /* Ensure the znode is dirtied */ |
| 2478 | if (znode->cnext || !ubifs_zn_dirty(znode)) { |
| 2479 | znode = dirty_cow_bottom_up(c, znode); |
| 2480 | if (IS_ERR(znode)) { |
| 2481 | err = PTR_ERR(znode); |
| 2482 | goto out_unlock; |
| 2483 | } |
| 2484 | } |
| 2485 | err = tnc_delete(c, znode, n); |
| 2486 | } |
| 2487 | } |
| 2488 | |
| 2489 | out_unlock: |
| 2490 | if (!err) |
| 2491 | err = dbg_check_tnc(c, 0); |
| 2492 | mutex_unlock(&c->tnc_mutex); |
| 2493 | return err; |
| 2494 | } |
| 2495 | |
| 2496 | /** |
| 2497 | * key_in_range - determine if a key falls within a range of keys. |
| 2498 | * @c: UBIFS file-system description object |
| 2499 | * @key: key to check |
| 2500 | * @from_key: lowest key in range |
| 2501 | * @to_key: highest key in range |
| 2502 | * |
| 2503 | * This function returns %1 if the key is in range and %0 otherwise. |
| 2504 | */ |
| 2505 | static int key_in_range(struct ubifs_info *c, union ubifs_key *key, |
| 2506 | union ubifs_key *from_key, union ubifs_key *to_key) |
| 2507 | { |
| 2508 | if (keys_cmp(c, key, from_key) < 0) |
| 2509 | return 0; |
| 2510 | if (keys_cmp(c, key, to_key) > 0) |
| 2511 | return 0; |
| 2512 | return 1; |
| 2513 | } |
| 2514 | |
| 2515 | /** |
| 2516 | * ubifs_tnc_remove_range - remove index entries in range. |
| 2517 | * @c: UBIFS file-system description object |
| 2518 | * @from_key: lowest key to remove |
| 2519 | * @to_key: highest key to remove |
| 2520 | * |
| 2521 | * This function removes index entries starting at @from_key and ending at |
| 2522 | * @to_key. This function returns zero in case of success and a negative error |
| 2523 | * code in case of failure. |
| 2524 | */ |
| 2525 | int ubifs_tnc_remove_range(struct ubifs_info *c, union ubifs_key *from_key, |
| 2526 | union ubifs_key *to_key) |
| 2527 | { |
| 2528 | int i, n, k, err = 0; |
| 2529 | struct ubifs_znode *znode; |
| 2530 | union ubifs_key *key; |
| 2531 | |
| 2532 | mutex_lock(&c->tnc_mutex); |
| 2533 | while (1) { |
| 2534 | /* Find first level 0 znode that contains keys to remove */ |
| 2535 | err = ubifs_lookup_level0(c, from_key, &znode, &n); |
| 2536 | if (err < 0) |
| 2537 | goto out_unlock; |
| 2538 | |
| 2539 | if (err) |
| 2540 | key = from_key; |
| 2541 | else { |
| 2542 | err = tnc_next(c, &znode, &n); |
| 2543 | if (err == -ENOENT) { |
| 2544 | err = 0; |
| 2545 | goto out_unlock; |
| 2546 | } |
| 2547 | if (err < 0) |
| 2548 | goto out_unlock; |
| 2549 | key = &znode->zbranch[n].key; |
| 2550 | if (!key_in_range(c, key, from_key, to_key)) { |
| 2551 | err = 0; |
| 2552 | goto out_unlock; |
| 2553 | } |
| 2554 | } |
| 2555 | |
| 2556 | /* Ensure the znode is dirtied */ |
| 2557 | if (znode->cnext || !ubifs_zn_dirty(znode)) { |
| 2558 | znode = dirty_cow_bottom_up(c, znode); |
| 2559 | if (IS_ERR(znode)) { |
| 2560 | err = PTR_ERR(znode); |
| 2561 | goto out_unlock; |
| 2562 | } |
| 2563 | } |
| 2564 | |
| 2565 | /* Remove all keys in range except the first */ |
| 2566 | for (i = n + 1, k = 0; i < znode->child_cnt; i++, k++) { |
| 2567 | key = &znode->zbranch[i].key; |
| 2568 | if (!key_in_range(c, key, from_key, to_key)) |
| 2569 | break; |
| 2570 | lnc_free(&znode->zbranch[i]); |
| 2571 | err = ubifs_add_dirt(c, znode->zbranch[i].lnum, |
| 2572 | znode->zbranch[i].len); |
| 2573 | if (err) { |
| 2574 | dbg_dump_znode(c, znode); |
| 2575 | goto out_unlock; |
| 2576 | } |
| 2577 | dbg_tnc("removing %s", DBGKEY(key)); |
| 2578 | } |
| 2579 | if (k) { |
| 2580 | for (i = n + 1 + k; i < znode->child_cnt; i++) |
| 2581 | znode->zbranch[i - k] = znode->zbranch[i]; |
| 2582 | znode->child_cnt -= k; |
| 2583 | } |
| 2584 | |
| 2585 | /* Now delete the first */ |
| 2586 | err = tnc_delete(c, znode, n); |
| 2587 | if (err) |
| 2588 | goto out_unlock; |
| 2589 | } |
| 2590 | |
| 2591 | out_unlock: |
| 2592 | if (!err) |
| 2593 | err = dbg_check_tnc(c, 0); |
| 2594 | mutex_unlock(&c->tnc_mutex); |
| 2595 | return err; |
| 2596 | } |
| 2597 | |
| 2598 | /** |
| 2599 | * ubifs_tnc_remove_ino - remove an inode from TNC. |
| 2600 | * @c: UBIFS file-system description object |
| 2601 | * @inum: inode number to remove |
| 2602 | * |
| 2603 | * This function remove inode @inum and all the extended attributes associated |
| 2604 | * with the anode from TNC and returns zero in case of success or a negative |
| 2605 | * error code in case of failure. |
| 2606 | */ |
| 2607 | int ubifs_tnc_remove_ino(struct ubifs_info *c, ino_t inum) |
| 2608 | { |
| 2609 | union ubifs_key key1, key2; |
| 2610 | struct ubifs_dent_node *xent, *pxent = NULL; |
| 2611 | struct qstr nm = { .name = NULL }; |
| 2612 | |
| 2613 | dbg_tnc("ino %lu", (unsigned long)inum); |
| 2614 | |
| 2615 | /* |
| 2616 | * Walk all extended attribute entries and remove them together with |
| 2617 | * corresponding extended attribute inodes. |
| 2618 | */ |
| 2619 | lowest_xent_key(c, &key1, inum); |
| 2620 | while (1) { |
| 2621 | ino_t xattr_inum; |
| 2622 | int err; |
| 2623 | |
| 2624 | xent = ubifs_tnc_next_ent(c, &key1, &nm); |
| 2625 | if (IS_ERR(xent)) { |
| 2626 | err = PTR_ERR(xent); |
| 2627 | if (err == -ENOENT) |
| 2628 | break; |
| 2629 | return err; |
| 2630 | } |
| 2631 | |
| 2632 | xattr_inum = le64_to_cpu(xent->inum); |
| 2633 | dbg_tnc("xent '%s', ino %lu", xent->name, |
| 2634 | (unsigned long)xattr_inum); |
| 2635 | |
| 2636 | nm.name = (char *)xent->name; |
| 2637 | nm.len = le16_to_cpu(xent->nlen); |
| 2638 | err = ubifs_tnc_remove_nm(c, &key1, &nm); |
| 2639 | if (err) { |
| 2640 | kfree(xent); |
| 2641 | return err; |
| 2642 | } |
| 2643 | |
| 2644 | lowest_ino_key(c, &key1, xattr_inum); |
| 2645 | highest_ino_key(c, &key2, xattr_inum); |
| 2646 | err = ubifs_tnc_remove_range(c, &key1, &key2); |
| 2647 | if (err) { |
| 2648 | kfree(xent); |
| 2649 | return err; |
| 2650 | } |
| 2651 | |
| 2652 | kfree(pxent); |
| 2653 | pxent = xent; |
| 2654 | key_read(c, &xent->key, &key1); |
| 2655 | } |
| 2656 | |
| 2657 | kfree(pxent); |
| 2658 | lowest_ino_key(c, &key1, inum); |
| 2659 | highest_ino_key(c, &key2, inum); |
| 2660 | |
| 2661 | return ubifs_tnc_remove_range(c, &key1, &key2); |
| 2662 | } |
| 2663 | |
| 2664 | /** |
| 2665 | * ubifs_tnc_next_ent - walk directory or extended attribute entries. |
| 2666 | * @c: UBIFS file-system description object |
| 2667 | * @key: key of last entry |
| 2668 | * @nm: name of last entry found or %NULL |
| 2669 | * |
| 2670 | * This function finds and reads the next directory or extended attribute entry |
| 2671 | * after the given key (@key) if there is one. @nm is used to resolve |
| 2672 | * collisions. |
| 2673 | * |
| 2674 | * If the name of the current entry is not known and only the key is known, |
| 2675 | * @nm->name has to be %NULL. In this case the semantics of this function is a |
| 2676 | * little bit different and it returns the entry corresponding to this key, not |
| 2677 | * the next one. If the key was not found, the closest "right" entry is |
| 2678 | * returned. |
| 2679 | * |
| 2680 | * If the fist entry has to be found, @key has to contain the lowest possible |
| 2681 | * key value for this inode and @name has to be %NULL. |
| 2682 | * |
| 2683 | * This function returns the found directory or extended attribute entry node |
| 2684 | * in case of success, %-ENOENT is returned if no entry was found, and a |
| 2685 | * negative error code is returned in case of failure. |
| 2686 | */ |
| 2687 | struct ubifs_dent_node *ubifs_tnc_next_ent(struct ubifs_info *c, |
| 2688 | union ubifs_key *key, |
| 2689 | const struct qstr *nm) |
| 2690 | { |
| 2691 | int n, err, type = key_type(c, key); |
| 2692 | struct ubifs_znode *znode; |
| 2693 | struct ubifs_dent_node *dent; |
| 2694 | struct ubifs_zbranch *zbr; |
| 2695 | union ubifs_key *dkey; |
| 2696 | |
| 2697 | dbg_tnc("%s %s", nm->name ? (char *)nm->name : "(lowest)", DBGKEY(key)); |
| 2698 | ubifs_assert(is_hash_key(c, key)); |
| 2699 | |
| 2700 | mutex_lock(&c->tnc_mutex); |
| 2701 | err = ubifs_lookup_level0(c, key, &znode, &n); |
| 2702 | if (unlikely(err < 0)) |
| 2703 | goto out_unlock; |
| 2704 | |
| 2705 | if (nm->name) { |
| 2706 | if (err) { |
| 2707 | /* Handle collisions */ |
| 2708 | err = resolve_collision(c, key, &znode, &n, nm); |
| 2709 | dbg_tnc("rc returned %d, znode %p, n %d", |
| 2710 | err, znode, n); |
| 2711 | if (unlikely(err < 0)) |
| 2712 | goto out_unlock; |
| 2713 | } |
| 2714 | |
| 2715 | /* Now find next entry */ |
| 2716 | err = tnc_next(c, &znode, &n); |
| 2717 | if (unlikely(err)) |
| 2718 | goto out_unlock; |
| 2719 | } else { |
| 2720 | /* |
| 2721 | * The full name of the entry was not given, in which case the |
| 2722 | * behavior of this function is a little different and it |
| 2723 | * returns current entry, not the next one. |
| 2724 | */ |
| 2725 | if (!err) { |
| 2726 | /* |
| 2727 | * However, the given key does not exist in the TNC |
| 2728 | * tree and @znode/@n variables contain the closest |
| 2729 | * "preceding" element. Switch to the next one. |
| 2730 | */ |
| 2731 | err = tnc_next(c, &znode, &n); |
| 2732 | if (err) |
| 2733 | goto out_unlock; |
| 2734 | } |
| 2735 | } |
| 2736 | |
| 2737 | zbr = &znode->zbranch[n]; |
| 2738 | dent = kmalloc(zbr->len, GFP_NOFS); |
| 2739 | if (unlikely(!dent)) { |
| 2740 | err = -ENOMEM; |
| 2741 | goto out_unlock; |
| 2742 | } |
| 2743 | |
| 2744 | /* |
| 2745 | * The above 'tnc_next()' call could lead us to the next inode, check |
| 2746 | * this. |
| 2747 | */ |
| 2748 | dkey = &zbr->key; |
| 2749 | if (key_inum(c, dkey) != key_inum(c, key) || |
| 2750 | key_type(c, dkey) != type) { |
| 2751 | err = -ENOENT; |
| 2752 | goto out_free; |
| 2753 | } |
| 2754 | |
| 2755 | err = tnc_read_node_nm(c, zbr, dent); |
| 2756 | if (unlikely(err)) |
| 2757 | goto out_free; |
| 2758 | |
| 2759 | mutex_unlock(&c->tnc_mutex); |
| 2760 | return dent; |
| 2761 | |
| 2762 | out_free: |
| 2763 | kfree(dent); |
| 2764 | out_unlock: |
| 2765 | mutex_unlock(&c->tnc_mutex); |
| 2766 | return ERR_PTR(err); |
| 2767 | } |