Balamanikandan Gunasundar | fe33c7d | 2022-10-25 16:21:01 +0530 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * Copyright 2022 ATMEL |
| 4 | * Copyright 2017 Free Electrons |
| 5 | * |
| 6 | * Author: Boris Brezillon <boris.brezillon@free-electrons.com> |
| 7 | * |
| 8 | * Derived from the atmel_nand.c driver which contained the following |
| 9 | * copyrights: |
| 10 | * |
| 11 | * Copyright 2003 Rick Bronson |
| 12 | * |
| 13 | * Derived from drivers/mtd/nand/autcpu12.c (removed in v3.8) |
| 14 | * Copyright 2001 Thomas Gleixner (gleixner@autronix.de) |
| 15 | * |
| 16 | * Derived from drivers/mtd/spia.c (removed in v3.8) |
| 17 | * Copyright 2000 Steven J. Hill (sjhill@cotw.com) |
| 18 | * |
| 19 | * |
| 20 | * Add Hardware ECC support for AT91SAM9260 / AT91SAM9263 |
| 21 | * Richard Genoud (richard.genoud@gmail.com), Adeneo Copyright 2007 |
| 22 | * |
| 23 | * Derived from Das U-Boot source code |
| 24 | * (u-boot-1.1.5/board/atmel/at91sam9263ek/nand.c) |
| 25 | * Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas |
| 26 | * |
| 27 | * Add Programmable Multibit ECC support for various AT91 SoC |
| 28 | * Copyright 2012 ATMEL, Hong Xu |
| 29 | * |
| 30 | * Add Nand Flash Controller support for SAMA5 SoC |
| 31 | * Copyright 2013 ATMEL, Josh Wu (josh.wu@atmel.com) |
| 32 | * |
| 33 | * Port from Linux |
| 34 | * Balamanikandan Gunasundar(balamanikandan.gunasundar@microchip.com) |
| 35 | * Copyright (C) 2022 Microchip Technology Inc. |
| 36 | * |
| 37 | * A few words about the naming convention in this file. This convention |
| 38 | * applies to structure and function names. |
| 39 | * |
| 40 | * Prefixes: |
| 41 | * |
| 42 | * - atmel_nand_: all generic structures/functions |
| 43 | * - atmel_smc_nand_: all structures/functions specific to the SMC interface |
| 44 | * (at91sam9 and avr32 SoCs) |
| 45 | * - atmel_hsmc_nand_: all structures/functions specific to the HSMC interface |
| 46 | * (sama5 SoCs and later) |
| 47 | * - atmel_nfc_: all structures/functions used to manipulate the NFC sub-block |
| 48 | * that is available in the HSMC block |
| 49 | * - <soc>_nand_: all SoC specific structures/functions |
| 50 | */ |
| 51 | |
| 52 | #include <asm-generic/gpio.h> |
| 53 | #include <clk.h> |
| 54 | #include <dm/device_compat.h> |
| 55 | #include <dm/devres.h> |
| 56 | #include <dm/of_addr.h> |
| 57 | #include <dm/of_access.h> |
| 58 | #include <dm/uclass.h> |
| 59 | #include <linux/completion.h> |
| 60 | #include <linux/io.h> |
| 61 | #include <linux/iopoll.h> |
| 62 | #include <linux/ioport.h> |
| 63 | #include <linux/mfd/syscon/atmel-matrix.h> |
| 64 | #include <linux/mfd/syscon/atmel-smc.h> |
| 65 | #include <linux/mtd/rawnand.h> |
| 66 | #include <linux/mtd/mtd.h> |
| 67 | #include <mach/at91_sfr.h> |
| 68 | #include <nand.h> |
| 69 | #include <regmap.h> |
| 70 | #include <syscon.h> |
| 71 | |
| 72 | #include "pmecc.h" |
| 73 | |
| 74 | #define NSEC_PER_SEC 1000000000L |
| 75 | |
| 76 | #define ATMEL_HSMC_NFC_CFG 0x0 |
| 77 | #define ATMEL_HSMC_NFC_CFG_SPARESIZE(x) (((x) / 4) << 24) |
| 78 | #define ATMEL_HSMC_NFC_CFG_SPARESIZE_MASK GENMASK(30, 24) |
| 79 | #define ATMEL_HSMC_NFC_CFG_DTO(cyc, mul) (((cyc) << 16) | ((mul) << 20)) |
| 80 | #define ATMEL_HSMC_NFC_CFG_DTO_MAX GENMASK(22, 16) |
| 81 | #define ATMEL_HSMC_NFC_CFG_RBEDGE BIT(13) |
| 82 | #define ATMEL_HSMC_NFC_CFG_FALLING_EDGE BIT(12) |
| 83 | #define ATMEL_HSMC_NFC_CFG_RSPARE BIT(9) |
| 84 | #define ATMEL_HSMC_NFC_CFG_WSPARE BIT(8) |
| 85 | #define ATMEL_HSMC_NFC_CFG_PAGESIZE_MASK GENMASK(2, 0) |
| 86 | #define ATMEL_HSMC_NFC_CFG_PAGESIZE(x) (fls((x) / 512) - 1) |
| 87 | |
| 88 | #define ATMEL_HSMC_NFC_CTRL 0x4 |
| 89 | #define ATMEL_HSMC_NFC_CTRL_EN BIT(0) |
| 90 | #define ATMEL_HSMC_NFC_CTRL_DIS BIT(1) |
| 91 | |
| 92 | #define ATMEL_HSMC_NFC_SR 0x8 |
| 93 | #define ATMEL_HSMC_NFC_IER 0xc |
| 94 | #define ATMEL_HSMC_NFC_IDR 0x10 |
| 95 | #define ATMEL_HSMC_NFC_IMR 0x14 |
| 96 | #define ATMEL_HSMC_NFC_SR_ENABLED BIT(1) |
| 97 | #define ATMEL_HSMC_NFC_SR_RB_RISE BIT(4) |
| 98 | #define ATMEL_HSMC_NFC_SR_RB_FALL BIT(5) |
| 99 | #define ATMEL_HSMC_NFC_SR_BUSY BIT(8) |
| 100 | #define ATMEL_HSMC_NFC_SR_WR BIT(11) |
| 101 | #define ATMEL_HSMC_NFC_SR_CSID GENMASK(14, 12) |
| 102 | #define ATMEL_HSMC_NFC_SR_XFRDONE BIT(16) |
| 103 | #define ATMEL_HSMC_NFC_SR_CMDDONE BIT(17) |
| 104 | #define ATMEL_HSMC_NFC_SR_DTOE BIT(20) |
| 105 | #define ATMEL_HSMC_NFC_SR_UNDEF BIT(21) |
| 106 | #define ATMEL_HSMC_NFC_SR_AWB BIT(22) |
| 107 | #define ATMEL_HSMC_NFC_SR_NFCASE BIT(23) |
| 108 | #define ATMEL_HSMC_NFC_SR_ERRORS (ATMEL_HSMC_NFC_SR_DTOE | \ |
| 109 | ATMEL_HSMC_NFC_SR_UNDEF | \ |
| 110 | ATMEL_HSMC_NFC_SR_AWB | \ |
| 111 | ATMEL_HSMC_NFC_SR_NFCASE) |
| 112 | #define ATMEL_HSMC_NFC_SR_RBEDGE(x) BIT((x) + 24) |
| 113 | |
| 114 | #define ATMEL_HSMC_NFC_ADDR 0x18 |
| 115 | #define ATMEL_HSMC_NFC_BANK 0x1c |
| 116 | |
| 117 | #define ATMEL_NFC_MAX_RB_ID 7 |
| 118 | |
| 119 | #define ATMEL_NFC_SRAM_SIZE 0x2400 |
| 120 | |
| 121 | #define ATMEL_NFC_CMD(pos, cmd) ((cmd) << (((pos) * 8) + 2)) |
| 122 | #define ATMEL_NFC_VCMD2 BIT(18) |
| 123 | #define ATMEL_NFC_ACYCLE(naddrs) ((naddrs) << 19) |
| 124 | #define ATMEL_NFC_CSID(cs) ((cs) << 22) |
| 125 | #define ATMEL_NFC_DATAEN BIT(25) |
| 126 | #define ATMEL_NFC_NFCWR BIT(26) |
| 127 | |
| 128 | #define ATMEL_NFC_MAX_ADDR_CYCLES 5 |
| 129 | |
| 130 | #define ATMEL_NAND_ALE_OFFSET BIT(21) |
| 131 | #define ATMEL_NAND_CLE_OFFSET BIT(22) |
| 132 | |
| 133 | #define DEFAULT_TIMEOUT_MS 1000 |
| 134 | #define MIN_DMA_LEN 128 |
| 135 | |
| 136 | static struct nand_ecclayout atmel_pmecc_oobinfo; |
| 137 | |
| 138 | struct nand_controller_ops { |
| 139 | int (*attach_chip)(struct nand_chip *chip); |
| 140 | int (*setup_data_interface)(struct mtd_info *mtd, int chipnr, |
| 141 | const struct nand_data_interface *conf); |
| 142 | }; |
| 143 | |
| 144 | struct nand_controller { |
| 145 | const struct nand_controller_ops *ops; |
| 146 | }; |
| 147 | |
| 148 | enum atmel_nand_rb_type { |
| 149 | ATMEL_NAND_NO_RB, |
| 150 | ATMEL_NAND_NATIVE_RB, |
| 151 | ATMEL_NAND_GPIO_RB, |
| 152 | }; |
| 153 | |
| 154 | struct atmel_nand_rb { |
| 155 | enum atmel_nand_rb_type type; |
| 156 | union { |
| 157 | struct gpio_desc gpio; |
| 158 | int id; |
| 159 | }; |
| 160 | }; |
| 161 | |
| 162 | struct atmel_nand_cs { |
| 163 | int id; |
| 164 | struct atmel_nand_rb rb; |
| 165 | struct gpio_desc csgpio; |
| 166 | struct { |
| 167 | void __iomem *virt; |
| 168 | dma_addr_t dma; |
| 169 | } io; |
| 170 | |
| 171 | struct atmel_smc_cs_conf smcconf; |
| 172 | }; |
| 173 | |
| 174 | struct atmel_nand { |
| 175 | struct list_head node; |
| 176 | struct udevice *dev; |
| 177 | struct nand_chip base; |
| 178 | struct atmel_nand_cs *activecs; |
| 179 | struct atmel_pmecc_user *pmecc; |
| 180 | struct gpio_desc cdgpio; |
| 181 | int numcs; |
| 182 | struct nand_controller *controller; |
| 183 | struct atmel_nand_cs cs[]; |
| 184 | }; |
| 185 | |
| 186 | static inline struct atmel_nand *to_atmel_nand(struct nand_chip *chip) |
| 187 | { |
| 188 | return container_of(chip, struct atmel_nand, base); |
| 189 | } |
| 190 | |
| 191 | enum atmel_nfc_data_xfer { |
| 192 | ATMEL_NFC_NO_DATA, |
| 193 | ATMEL_NFC_READ_DATA, |
| 194 | ATMEL_NFC_WRITE_DATA, |
| 195 | }; |
| 196 | |
| 197 | struct atmel_nfc_op { |
| 198 | u8 cs; |
| 199 | u8 ncmds; |
| 200 | u8 cmds[2]; |
| 201 | u8 naddrs; |
| 202 | u8 addrs[5]; |
| 203 | enum atmel_nfc_data_xfer data; |
| 204 | u32 wait; |
| 205 | u32 errors; |
| 206 | }; |
| 207 | |
| 208 | struct atmel_nand_controller; |
| 209 | struct atmel_nand_controller_caps; |
| 210 | |
| 211 | struct atmel_nand_controller_ops { |
| 212 | int (*probe)(struct udevice *udev, |
| 213 | const struct atmel_nand_controller_caps *caps); |
| 214 | int (*remove)(struct atmel_nand_controller *nc); |
| 215 | void (*nand_init)(struct atmel_nand_controller *nc, |
| 216 | struct atmel_nand *nand); |
| 217 | int (*ecc_init)(struct nand_chip *chip); |
| 218 | int (*setup_data_interface)(struct atmel_nand *nand, int csline, |
| 219 | const struct nand_data_interface *conf); |
| 220 | }; |
| 221 | |
| 222 | struct atmel_nand_controller_caps { |
| 223 | bool has_dma; |
| 224 | bool legacy_of_bindings; |
| 225 | u32 ale_offs; |
| 226 | u32 cle_offs; |
| 227 | const char *ebi_csa_regmap_name; |
| 228 | const struct atmel_nand_controller_ops *ops; |
| 229 | }; |
| 230 | |
| 231 | struct atmel_nand_controller { |
| 232 | struct nand_controller base; |
| 233 | const struct atmel_nand_controller_caps *caps; |
| 234 | struct udevice *dev; |
| 235 | struct regmap *smc; |
| 236 | struct dma_chan *dmac; |
| 237 | struct atmel_pmecc *pmecc; |
| 238 | struct list_head chips; |
| 239 | struct clk *mck; |
| 240 | }; |
| 241 | |
| 242 | static inline struct atmel_nand_controller * |
| 243 | to_nand_controller(struct nand_controller *ctl) |
| 244 | { |
| 245 | return container_of(ctl, struct atmel_nand_controller, base); |
| 246 | } |
| 247 | |
| 248 | struct atmel_smc_nand_ebi_csa_cfg { |
| 249 | u32 offs; |
| 250 | u32 nfd0_on_d16; |
| 251 | }; |
| 252 | |
| 253 | struct atmel_smc_nand_controller { |
| 254 | struct atmel_nand_controller base; |
| 255 | struct regmap *ebi_csa_regmap; |
| 256 | struct atmel_smc_nand_ebi_csa_cfg *ebi_csa; |
| 257 | }; |
| 258 | |
| 259 | static inline struct atmel_smc_nand_controller * |
| 260 | to_smc_nand_controller(struct nand_controller *ctl) |
| 261 | { |
| 262 | return container_of(to_nand_controller(ctl), |
| 263 | struct atmel_smc_nand_controller, base); |
| 264 | } |
| 265 | |
| 266 | struct atmel_hsmc_nand_controller { |
| 267 | struct atmel_nand_controller base; |
| 268 | struct { |
| 269 | struct gen_pool *pool; |
| 270 | void __iomem *virt; |
| 271 | dma_addr_t dma; |
| 272 | } sram; |
| 273 | const struct atmel_hsmc_reg_layout *hsmc_layout; |
| 274 | struct regmap *io; |
| 275 | struct atmel_nfc_op op; |
| 276 | struct completion complete; |
| 277 | int irq; |
| 278 | |
| 279 | /* Only used when instantiating from legacy DT bindings. */ |
| 280 | struct clk *clk; |
| 281 | }; |
| 282 | |
| 283 | static inline struct atmel_hsmc_nand_controller * |
| 284 | to_hsmc_nand_controller(struct nand_controller *ctl) |
| 285 | { |
| 286 | return container_of(to_nand_controller(ctl), |
| 287 | struct atmel_hsmc_nand_controller, base); |
| 288 | } |
| 289 | |
| 290 | static void pmecc_config_ecc_layout(struct nand_ecclayout *layout, |
| 291 | int oobsize, int ecc_len) |
| 292 | { |
| 293 | int i; |
| 294 | |
| 295 | layout->eccbytes = ecc_len; |
| 296 | |
| 297 | /* ECC will occupy the last ecc_len bytes continuously */ |
| 298 | for (i = 0; i < ecc_len; i++) |
| 299 | layout->eccpos[i] = oobsize - ecc_len + i; |
| 300 | |
| 301 | layout->oobfree[0].offset = 2; |
| 302 | layout->oobfree[0].length = |
| 303 | oobsize - ecc_len - layout->oobfree[0].offset; |
| 304 | } |
| 305 | |
| 306 | static bool atmel_nfc_op_done(struct atmel_nfc_op *op, u32 status) |
| 307 | { |
| 308 | op->errors |= status & ATMEL_HSMC_NFC_SR_ERRORS; |
| 309 | op->wait ^= status & op->wait; |
| 310 | |
| 311 | return !op->wait || op->errors; |
| 312 | } |
| 313 | |
| 314 | static int atmel_nfc_wait(struct atmel_hsmc_nand_controller *nc, bool poll, |
| 315 | unsigned int timeout_ms) |
| 316 | { |
| 317 | int ret; |
| 318 | u32 status; |
| 319 | |
| 320 | if (!timeout_ms) |
| 321 | timeout_ms = DEFAULT_TIMEOUT_MS; |
| 322 | |
| 323 | if (poll) |
| 324 | ret = regmap_read_poll_timeout(nc->base.smc, |
| 325 | ATMEL_HSMC_NFC_SR, status, |
| 326 | atmel_nfc_op_done(&nc->op, |
| 327 | status), |
| 328 | 0, timeout_ms); |
| 329 | else |
| 330 | return -EOPNOTSUPP; |
| 331 | |
| 332 | if (nc->op.errors & ATMEL_HSMC_NFC_SR_DTOE) { |
| 333 | dev_err(nc->base.dev, "Waiting NAND R/B Timeout\n"); |
| 334 | ret = -ETIMEDOUT; |
| 335 | } |
| 336 | |
| 337 | if (nc->op.errors & ATMEL_HSMC_NFC_SR_UNDEF) { |
| 338 | dev_err(nc->base.dev, "Access to an undefined area\n"); |
| 339 | ret = -EIO; |
| 340 | } |
| 341 | |
| 342 | if (nc->op.errors & ATMEL_HSMC_NFC_SR_AWB) { |
| 343 | dev_err(nc->base.dev, "Access while busy\n"); |
| 344 | ret = -EIO; |
| 345 | } |
| 346 | |
| 347 | if (nc->op.errors & ATMEL_HSMC_NFC_SR_NFCASE) { |
| 348 | dev_err(nc->base.dev, "Wrong access size\n"); |
| 349 | ret = -EIO; |
| 350 | } |
| 351 | |
| 352 | return ret; |
| 353 | } |
| 354 | |
| 355 | static void iowrite8_rep(void *addr, const uint8_t *buf, int len) |
| 356 | { |
| 357 | int i; |
| 358 | |
| 359 | for (i = 0; i < len; i++) |
| 360 | writeb(buf[i], addr); |
| 361 | } |
| 362 | |
| 363 | static void ioread8_rep(void *addr, uint8_t *buf, int len) |
| 364 | { |
| 365 | int i; |
| 366 | |
| 367 | for (i = 0; i < len; i++) |
| 368 | buf[i] = readb(addr); |
| 369 | } |
| 370 | |
| 371 | static void ioread16_rep(void *addr, void *buf, int len) |
| 372 | { |
| 373 | int i; |
| 374 | u16 *p = (u16 *)buf; |
| 375 | |
| 376 | for (i = 0; i < len; i++) |
| 377 | p[i] = readw(addr); |
| 378 | } |
| 379 | |
| 380 | static void iowrite16_rep(void *addr, const void *buf, int len) |
| 381 | { |
| 382 | int i; |
| 383 | u16 *p = (u16 *)buf; |
| 384 | |
| 385 | for (i = 0; i < len; i++) |
| 386 | writew(p[i], addr); |
| 387 | } |
| 388 | |
| 389 | static u8 atmel_nand_read_byte(struct mtd_info *mtd) |
| 390 | { |
| 391 | struct nand_chip *chip = mtd_to_nand(mtd); |
| 392 | struct atmel_nand *nand = to_atmel_nand(chip); |
| 393 | |
| 394 | return ioread8(nand->activecs->io.virt); |
| 395 | } |
| 396 | |
| 397 | static void atmel_nand_write_byte(struct mtd_info *mtd, u8 byte) |
| 398 | { |
| 399 | struct nand_chip *chip = mtd_to_nand(mtd); |
| 400 | struct atmel_nand *nand = to_atmel_nand(chip); |
| 401 | |
| 402 | if (chip->options & NAND_BUSWIDTH_16) |
| 403 | iowrite16(byte | (byte << 8), nand->activecs->io.virt); |
| 404 | else |
| 405 | iowrite8(byte, nand->activecs->io.virt); |
| 406 | } |
| 407 | |
| 408 | static void atmel_nand_read_buf(struct mtd_info *mtd, u8 *buf, int len) |
| 409 | { |
| 410 | struct nand_chip *chip = mtd_to_nand(mtd); |
| 411 | struct atmel_nand *nand = to_atmel_nand(chip); |
| 412 | |
| 413 | if (chip->options & NAND_BUSWIDTH_16) |
| 414 | ioread16_rep(nand->activecs->io.virt, buf, len / 2); |
| 415 | else |
| 416 | ioread8_rep(nand->activecs->io.virt, buf, len); |
| 417 | } |
| 418 | |
| 419 | static void atmel_nand_write_buf(struct mtd_info *mtd, const u8 *buf, int len) |
| 420 | { |
| 421 | struct nand_chip *chip = mtd_to_nand(mtd); |
| 422 | struct atmel_nand *nand = to_atmel_nand(chip); |
| 423 | |
| 424 | if (chip->options & NAND_BUSWIDTH_16) |
| 425 | iowrite16_rep(nand->activecs->io.virt, buf, len / 2); |
| 426 | else |
| 427 | iowrite8_rep(nand->activecs->io.virt, buf, len); |
| 428 | } |
| 429 | |
| 430 | static int atmel_nand_dev_ready(struct mtd_info *mtd) |
| 431 | { |
| 432 | struct nand_chip *chip = mtd_to_nand(mtd); |
| 433 | struct atmel_nand *nand = to_atmel_nand(chip); |
| 434 | |
| 435 | return dm_gpio_get_value(&nand->activecs->rb.gpio); |
| 436 | } |
| 437 | |
| 438 | static void atmel_nand_select_chip(struct mtd_info *mtd, int cs) |
| 439 | { |
| 440 | struct nand_chip *chip = mtd_to_nand(mtd); |
| 441 | struct atmel_nand *nand = to_atmel_nand(chip); |
| 442 | |
| 443 | if (cs < 0 || cs >= nand->numcs) { |
| 444 | nand->activecs = NULL; |
| 445 | chip->dev_ready = NULL; |
| 446 | return; |
| 447 | } |
| 448 | |
| 449 | nand->activecs = &nand->cs[cs]; |
| 450 | |
| 451 | if (nand->activecs->rb.type == ATMEL_NAND_GPIO_RB) |
| 452 | chip->dev_ready = atmel_nand_dev_ready; |
| 453 | } |
| 454 | |
| 455 | static int atmel_hsmc_nand_dev_ready(struct mtd_info *mtd) |
| 456 | { |
| 457 | struct nand_chip *chip = mtd_to_nand(mtd); |
| 458 | struct atmel_nand *nand = to_atmel_nand(chip); |
| 459 | struct atmel_hsmc_nand_controller *nc; |
| 460 | u32 status; |
| 461 | |
| 462 | nc = to_hsmc_nand_controller(nand->controller); |
| 463 | |
| 464 | regmap_read(nc->base.smc, ATMEL_HSMC_NFC_SR, &status); |
| 465 | |
| 466 | return status & ATMEL_HSMC_NFC_SR_RBEDGE(nand->activecs->rb.id); |
| 467 | } |
| 468 | |
| 469 | static void atmel_hsmc_nand_select_chip(struct mtd_info *mtd, int cs) |
| 470 | { |
| 471 | struct nand_chip *chip = mtd_to_nand(mtd); |
| 472 | struct atmel_nand *nand = to_atmel_nand(chip); |
| 473 | struct atmel_hsmc_nand_controller *nc; |
| 474 | |
| 475 | nc = to_hsmc_nand_controller(nand->controller); |
| 476 | |
| 477 | atmel_nand_select_chip(mtd, cs); |
| 478 | |
| 479 | if (!nand->activecs) { |
| 480 | regmap_write(nc->base.smc, ATMEL_HSMC_NFC_CTRL, |
| 481 | ATMEL_HSMC_NFC_CTRL_DIS); |
| 482 | return; |
| 483 | } |
| 484 | |
| 485 | if (nand->activecs->rb.type == ATMEL_NAND_NATIVE_RB) |
| 486 | chip->dev_ready = atmel_hsmc_nand_dev_ready; |
| 487 | |
| 488 | regmap_update_bits(nc->base.smc, ATMEL_HSMC_NFC_CFG, |
| 489 | ATMEL_HSMC_NFC_CFG_PAGESIZE_MASK | |
| 490 | ATMEL_HSMC_NFC_CFG_SPARESIZE_MASK | |
| 491 | ATMEL_HSMC_NFC_CFG_RSPARE | |
| 492 | ATMEL_HSMC_NFC_CFG_WSPARE, |
| 493 | ATMEL_HSMC_NFC_CFG_PAGESIZE(mtd->writesize) | |
| 494 | ATMEL_HSMC_NFC_CFG_SPARESIZE(mtd->oobsize) | |
| 495 | ATMEL_HSMC_NFC_CFG_RSPARE); |
| 496 | regmap_write(nc->base.smc, ATMEL_HSMC_NFC_CTRL, |
| 497 | ATMEL_HSMC_NFC_CTRL_EN); |
| 498 | } |
| 499 | |
| 500 | static int atmel_nfc_exec_op(struct atmel_hsmc_nand_controller *nc, bool poll) |
| 501 | { |
| 502 | u8 *addrs = nc->op.addrs; |
| 503 | unsigned int op = 0; |
| 504 | u32 addr, val; |
| 505 | int i, ret; |
| 506 | |
| 507 | nc->op.wait = ATMEL_HSMC_NFC_SR_CMDDONE; |
| 508 | |
| 509 | for (i = 0; i < nc->op.ncmds; i++) |
| 510 | op |= ATMEL_NFC_CMD(i, nc->op.cmds[i]); |
| 511 | |
| 512 | if (nc->op.naddrs == ATMEL_NFC_MAX_ADDR_CYCLES) |
| 513 | regmap_write(nc->base.smc, ATMEL_HSMC_NFC_ADDR, *addrs++); |
| 514 | |
| 515 | op |= ATMEL_NFC_CSID(nc->op.cs) | |
| 516 | ATMEL_NFC_ACYCLE(nc->op.naddrs); |
| 517 | |
| 518 | if (nc->op.ncmds > 1) |
| 519 | op |= ATMEL_NFC_VCMD2; |
| 520 | |
| 521 | addr = addrs[0] | (addrs[1] << 8) | (addrs[2] << 16) | |
| 522 | (addrs[3] << 24); |
| 523 | |
| 524 | if (nc->op.data != ATMEL_NFC_NO_DATA) { |
| 525 | op |= ATMEL_NFC_DATAEN; |
| 526 | nc->op.wait |= ATMEL_HSMC_NFC_SR_XFRDONE; |
| 527 | |
| 528 | if (nc->op.data == ATMEL_NFC_WRITE_DATA) |
| 529 | op |= ATMEL_NFC_NFCWR; |
| 530 | } |
| 531 | |
| 532 | /* Clear all flags. */ |
| 533 | regmap_read(nc->base.smc, ATMEL_HSMC_NFC_SR, &val); |
| 534 | |
| 535 | /* Send the command. */ |
| 536 | regmap_write(nc->io, op, addr); |
| 537 | |
| 538 | ret = atmel_nfc_wait(nc, poll, 0); |
| 539 | if (ret) |
| 540 | dev_err(nc->base.dev, |
| 541 | "Failed to send NAND command (err = %d)!", |
| 542 | ret); |
| 543 | |
| 544 | /* Reset the op state. */ |
| 545 | memset(&nc->op, 0, sizeof(nc->op)); |
| 546 | |
| 547 | return ret; |
| 548 | } |
| 549 | |
| 550 | static void atmel_hsmc_nand_cmd_ctrl(struct mtd_info *mtd, int dat, |
| 551 | unsigned int ctrl) |
| 552 | { |
| 553 | struct nand_chip *chip = mtd_to_nand(mtd); |
| 554 | struct atmel_nand *nand = to_atmel_nand(chip); |
| 555 | struct atmel_hsmc_nand_controller *nc; |
| 556 | |
| 557 | nc = to_hsmc_nand_controller(nand->controller); |
| 558 | |
| 559 | if (ctrl & NAND_ALE) { |
| 560 | if (nc->op.naddrs == ATMEL_NFC_MAX_ADDR_CYCLES) |
| 561 | return; |
| 562 | |
| 563 | nc->op.addrs[nc->op.naddrs++] = dat; |
| 564 | } else if (ctrl & NAND_CLE) { |
| 565 | if (nc->op.ncmds > 1) |
| 566 | return; |
| 567 | |
| 568 | nc->op.cmds[nc->op.ncmds++] = dat; |
| 569 | } |
| 570 | |
| 571 | if (dat == NAND_CMD_NONE) { |
| 572 | nc->op.cs = nand->activecs->id; |
| 573 | atmel_nfc_exec_op(nc, true); |
| 574 | } |
| 575 | } |
| 576 | |
| 577 | static void atmel_nand_cmd_ctrl(struct mtd_info *mtd, int cmd, |
| 578 | unsigned int ctrl) |
| 579 | { |
| 580 | struct nand_chip *chip = mtd_to_nand(mtd); |
| 581 | struct atmel_nand *nand = to_atmel_nand(chip); |
| 582 | struct atmel_nand_controller *nc; |
| 583 | |
| 584 | nc = to_nand_controller(nand->controller); |
| 585 | |
| 586 | if ((ctrl & NAND_CTRL_CHANGE) && |
| 587 | dm_gpio_is_valid(&nand->activecs->csgpio)) { |
| 588 | if (ctrl & NAND_NCE) |
| 589 | dm_gpio_set_value(&nand->activecs->csgpio, 0); |
| 590 | else |
| 591 | dm_gpio_set_value(&nand->activecs->csgpio, 1); |
| 592 | } |
| 593 | |
| 594 | if (ctrl & NAND_ALE) |
| 595 | writeb(cmd, nand->activecs->io.virt + nc->caps->ale_offs); |
| 596 | else if (ctrl & NAND_CLE) |
| 597 | writeb(cmd, nand->activecs->io.virt + nc->caps->cle_offs); |
| 598 | } |
| 599 | |
| 600 | static void atmel_nfc_copy_to_sram(struct nand_chip *chip, const u8 *buf, |
| 601 | bool oob_required) |
| 602 | { |
| 603 | struct mtd_info *mtd = nand_to_mtd(chip); |
| 604 | struct atmel_nand *nand = to_atmel_nand(chip); |
| 605 | struct atmel_hsmc_nand_controller *nc; |
| 606 | int ret = -EIO; |
| 607 | |
| 608 | nc = to_hsmc_nand_controller(nand->controller); |
| 609 | |
| 610 | if (ret) |
| 611 | memcpy_toio(nc->sram.virt, buf, mtd->writesize); |
| 612 | |
| 613 | if (oob_required) |
| 614 | memcpy_toio(nc->sram.virt + mtd->writesize, chip->oob_poi, |
| 615 | mtd->oobsize); |
| 616 | } |
| 617 | |
| 618 | static void atmel_nfc_copy_from_sram(struct nand_chip *chip, u8 *buf, |
| 619 | bool oob_required) |
| 620 | { |
| 621 | struct mtd_info *mtd = nand_to_mtd(chip); |
| 622 | struct atmel_nand *nand = to_atmel_nand(chip); |
| 623 | struct atmel_hsmc_nand_controller *nc; |
| 624 | int ret = -EIO; |
| 625 | |
| 626 | nc = to_hsmc_nand_controller(nand->controller); |
| 627 | |
| 628 | if (ret) |
| 629 | memcpy_fromio(buf, nc->sram.virt, mtd->writesize); |
| 630 | |
| 631 | if (oob_required) |
| 632 | memcpy_fromio(chip->oob_poi, nc->sram.virt + mtd->writesize, |
| 633 | mtd->oobsize); |
| 634 | } |
| 635 | |
| 636 | static void atmel_nfc_set_op_addr(struct nand_chip *chip, int page, int column) |
| 637 | { |
| 638 | struct mtd_info *mtd = nand_to_mtd(chip); |
| 639 | struct atmel_nand *nand = to_atmel_nand(chip); |
| 640 | struct atmel_hsmc_nand_controller *nc; |
| 641 | |
| 642 | nc = to_hsmc_nand_controller(nand->controller); |
| 643 | |
| 644 | if (column >= 0) { |
| 645 | nc->op.addrs[nc->op.naddrs++] = column; |
| 646 | |
| 647 | /* |
| 648 | * 2 address cycles for the column offset on large page NANDs. |
| 649 | */ |
| 650 | if (mtd->writesize > 512) |
| 651 | nc->op.addrs[nc->op.naddrs++] = column >> 8; |
| 652 | } |
| 653 | |
| 654 | if (page >= 0) { |
| 655 | nc->op.addrs[nc->op.naddrs++] = page; |
| 656 | nc->op.addrs[nc->op.naddrs++] = page >> 8; |
| 657 | |
| 658 | if (chip->options & NAND_ROW_ADDR_3) |
| 659 | nc->op.addrs[nc->op.naddrs++] = page >> 16; |
| 660 | } |
| 661 | } |
| 662 | |
| 663 | static int atmel_nand_pmecc_enable(struct nand_chip *chip, int op, bool raw) |
| 664 | { |
| 665 | struct atmel_nand *nand = to_atmel_nand(chip); |
| 666 | struct atmel_nand_controller *nc; |
| 667 | int ret; |
| 668 | |
| 669 | nc = to_nand_controller(nand->controller); |
| 670 | |
| 671 | if (raw) |
| 672 | return 0; |
| 673 | |
| 674 | ret = atmel_pmecc_enable(nand->pmecc, op); |
| 675 | if (ret) |
| 676 | dev_err(nc->dev, |
| 677 | "Failed to enable ECC engine (err = %d)\n", ret); |
| 678 | |
| 679 | return ret; |
| 680 | } |
| 681 | |
| 682 | static void atmel_nand_pmecc_disable(struct nand_chip *chip, bool raw) |
| 683 | { |
| 684 | struct atmel_nand *nand = to_atmel_nand(chip); |
| 685 | |
| 686 | if (!raw) |
| 687 | atmel_pmecc_disable(nand->pmecc); |
| 688 | } |
| 689 | |
| 690 | static int atmel_nand_pmecc_generate_eccbytes(struct nand_chip *chip, bool raw) |
| 691 | { |
| 692 | struct atmel_nand *nand = to_atmel_nand(chip); |
| 693 | struct mtd_info *mtd = nand_to_mtd(chip); |
| 694 | struct atmel_nand_controller *nc; |
| 695 | struct mtd_oob_region oobregion; |
| 696 | void *eccbuf; |
| 697 | int ret, i; |
| 698 | |
| 699 | nc = to_nand_controller(nand->controller); |
| 700 | |
| 701 | if (raw) |
| 702 | return 0; |
| 703 | |
| 704 | ret = atmel_pmecc_wait_rdy(nand->pmecc); |
| 705 | if (ret) { |
| 706 | dev_err(nc->dev, |
| 707 | "Failed to transfer NAND page data (err = %d)\n", |
| 708 | ret); |
| 709 | return ret; |
| 710 | } |
| 711 | |
| 712 | mtd_ooblayout_ecc(mtd, 0, &oobregion); |
| 713 | eccbuf = chip->oob_poi + oobregion.offset; |
| 714 | |
| 715 | for (i = 0; i < chip->ecc.steps; i++) { |
| 716 | atmel_pmecc_get_generated_eccbytes(nand->pmecc, i, |
| 717 | eccbuf); |
| 718 | eccbuf += chip->ecc.bytes; |
| 719 | } |
| 720 | |
| 721 | return 0; |
| 722 | } |
| 723 | |
| 724 | static int atmel_nand_pmecc_correct_data(struct nand_chip *chip, void *buf, |
| 725 | bool raw) |
| 726 | { |
| 727 | struct atmel_nand *nand = to_atmel_nand(chip); |
| 728 | struct mtd_info *mtd = nand_to_mtd(chip); |
| 729 | struct atmel_nand_controller *nc; |
| 730 | struct mtd_oob_region oobregion; |
| 731 | int ret, i, max_bitflips = 0; |
| 732 | void *databuf, *eccbuf; |
| 733 | |
| 734 | nc = to_nand_controller(nand->controller); |
| 735 | |
| 736 | if (raw) |
| 737 | return 0; |
| 738 | |
| 739 | ret = atmel_pmecc_wait_rdy(nand->pmecc); |
| 740 | if (ret) { |
| 741 | dev_err(nc->dev, |
| 742 | "Failed to read NAND page data (err = %d)\n", ret); |
| 743 | return ret; |
| 744 | } |
| 745 | |
| 746 | mtd_ooblayout_ecc(mtd, 0, &oobregion); |
| 747 | eccbuf = chip->oob_poi + oobregion.offset; |
| 748 | databuf = buf; |
| 749 | |
| 750 | for (i = 0; i < chip->ecc.steps; i++) { |
| 751 | ret = atmel_pmecc_correct_sector(nand->pmecc, i, databuf, |
| 752 | eccbuf); |
| 753 | if (ret < 0 && !atmel_pmecc_correct_erased_chunks(nand->pmecc)) |
| 754 | ret = nand_check_erased_ecc_chunk(databuf, |
| 755 | chip->ecc.size, |
| 756 | eccbuf, |
| 757 | chip->ecc.bytes, |
| 758 | NULL, 0, |
| 759 | chip->ecc.strength); |
| 760 | |
| 761 | if (ret >= 0) |
| 762 | max_bitflips = max(ret, max_bitflips); |
| 763 | else |
| 764 | mtd->ecc_stats.failed++; |
| 765 | |
| 766 | databuf += chip->ecc.size; |
| 767 | eccbuf += chip->ecc.bytes; |
| 768 | } |
| 769 | |
| 770 | return max_bitflips; |
| 771 | } |
| 772 | |
| 773 | static int atmel_nand_pmecc_write_pg(struct nand_chip *chip, const u8 *buf, |
| 774 | bool oob_required, int page, bool raw) |
| 775 | { |
| 776 | struct mtd_info *mtd = nand_to_mtd(chip); |
| 777 | struct atmel_nand *nand = to_atmel_nand(chip); |
| 778 | int ret; |
| 779 | |
| 780 | nand_prog_page_begin_op(chip, page, 0, NULL, 0); |
| 781 | |
| 782 | ret = atmel_nand_pmecc_enable(chip, NAND_ECC_WRITE, raw); |
| 783 | if (ret) |
| 784 | return ret; |
| 785 | |
| 786 | atmel_nand_write_buf(mtd, buf, mtd->writesize); |
| 787 | |
| 788 | ret = atmel_nand_pmecc_generate_eccbytes(chip, raw); |
| 789 | if (ret) { |
| 790 | atmel_pmecc_disable(nand->pmecc); |
| 791 | return ret; |
| 792 | } |
| 793 | |
| 794 | atmel_nand_pmecc_disable(chip, raw); |
| 795 | |
| 796 | atmel_nand_write_buf(mtd, chip->oob_poi, mtd->oobsize); |
| 797 | |
| 798 | return nand_prog_page_end_op(chip); |
| 799 | } |
| 800 | |
| 801 | static int atmel_nand_pmecc_write_page(struct mtd_info *mtd, |
| 802 | struct nand_chip *chip, const u8 *buf, |
| 803 | int oob_required, int page) |
| 804 | { |
| 805 | return atmel_nand_pmecc_write_pg(chip, buf, oob_required, page, false); |
| 806 | } |
| 807 | |
| 808 | static int atmel_nand_pmecc_write_page_raw(struct mtd_info *mtd, |
| 809 | struct nand_chip *chip, |
| 810 | const u8 *buf, int oob_required, |
| 811 | int page) |
| 812 | { |
| 813 | return atmel_nand_pmecc_write_pg(chip, buf, oob_required, page, true); |
| 814 | } |
| 815 | |
| 816 | static int atmel_nand_pmecc_read_pg(struct nand_chip *chip, u8 *buf, |
| 817 | bool oob_required, int page, bool raw) |
| 818 | { |
| 819 | struct mtd_info *mtd = nand_to_mtd(chip); |
| 820 | int ret; |
| 821 | |
| 822 | nand_read_page_op(chip, page, 0, NULL, 0); |
| 823 | |
| 824 | ret = atmel_nand_pmecc_enable(chip, NAND_ECC_READ, raw); |
| 825 | if (ret) |
| 826 | return ret; |
| 827 | |
| 828 | atmel_nand_read_buf(mtd, buf, mtd->writesize); |
| 829 | atmel_nand_read_buf(mtd, chip->oob_poi, mtd->oobsize); |
| 830 | |
| 831 | ret = atmel_nand_pmecc_correct_data(chip, buf, raw); |
| 832 | |
| 833 | atmel_nand_pmecc_disable(chip, raw); |
| 834 | |
| 835 | return ret; |
| 836 | } |
| 837 | |
| 838 | static int atmel_nand_pmecc_read_page(struct mtd_info *mtd, |
| 839 | struct nand_chip *chip, u8 *buf, |
| 840 | int oob_required, int page) |
| 841 | { |
| 842 | return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page, false); |
| 843 | } |
| 844 | |
| 845 | static int atmel_nand_pmecc_read_page_raw(struct mtd_info *mtd, |
| 846 | struct nand_chip *chip, u8 *buf, |
| 847 | int oob_required, int page) |
| 848 | { |
| 849 | return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page, true); |
| 850 | } |
| 851 | |
| 852 | static int atmel_hsmc_nand_pmecc_write_pg(struct nand_chip *chip, |
| 853 | const u8 *buf, bool oob_required, |
| 854 | int page, bool raw) |
| 855 | { |
| 856 | struct mtd_info *mtd = nand_to_mtd(chip); |
| 857 | struct atmel_nand *nand = to_atmel_nand(chip); |
| 858 | struct atmel_hsmc_nand_controller *nc; |
| 859 | int ret, status; |
| 860 | |
| 861 | nc = to_hsmc_nand_controller(nand->controller); |
| 862 | |
| 863 | atmel_nfc_copy_to_sram(chip, buf, false); |
| 864 | |
| 865 | nc->op.cmds[0] = NAND_CMD_SEQIN; |
| 866 | nc->op.ncmds = 1; |
| 867 | atmel_nfc_set_op_addr(chip, page, 0x0); |
| 868 | nc->op.cs = nand->activecs->id; |
| 869 | nc->op.data = ATMEL_NFC_WRITE_DATA; |
| 870 | |
| 871 | ret = atmel_nand_pmecc_enable(chip, NAND_ECC_WRITE, raw); |
| 872 | if (ret) |
| 873 | return ret; |
| 874 | |
| 875 | ret = atmel_nfc_exec_op(nc, true); |
| 876 | if (ret) { |
| 877 | atmel_nand_pmecc_disable(chip, raw); |
| 878 | dev_err(nc->base.dev, |
| 879 | "Failed to transfer NAND page data (err = %d)\n", |
| 880 | ret); |
| 881 | return ret; |
| 882 | } |
| 883 | |
| 884 | ret = atmel_nand_pmecc_generate_eccbytes(chip, raw); |
| 885 | |
| 886 | atmel_nand_pmecc_disable(chip, raw); |
| 887 | |
| 888 | if (ret) |
| 889 | return ret; |
| 890 | |
| 891 | atmel_nand_write_buf(mtd, chip->oob_poi, mtd->oobsize); |
| 892 | |
| 893 | nc->op.cmds[0] = NAND_CMD_PAGEPROG; |
| 894 | nc->op.ncmds = 1; |
| 895 | nc->op.cs = nand->activecs->id; |
| 896 | ret = atmel_nfc_exec_op(nc, true); |
| 897 | if (ret) |
| 898 | dev_err(nc->base.dev, "Failed to program NAND page (err = %d)\n", |
| 899 | ret); |
| 900 | |
| 901 | status = chip->waitfunc(mtd, chip); |
| 902 | if (status & NAND_STATUS_FAIL) |
| 903 | return -EIO; |
| 904 | |
| 905 | return ret; |
| 906 | } |
| 907 | |
| 908 | static int |
| 909 | atmel_hsmc_nand_pmecc_write_page(struct mtd_info *mtd, struct nand_chip *chip, |
| 910 | const u8 *buf, int oob_required, |
| 911 | int page) |
| 912 | { |
| 913 | return atmel_hsmc_nand_pmecc_write_pg(chip, buf, oob_required, page, |
| 914 | false); |
| 915 | } |
| 916 | |
| 917 | static int |
| 918 | atmel_hsmc_nand_pmecc_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip, |
| 919 | const u8 *buf, |
| 920 | int oob_required, int page) |
| 921 | { |
| 922 | return atmel_hsmc_nand_pmecc_write_pg(chip, buf, oob_required, page, |
| 923 | true); |
| 924 | } |
| 925 | |
| 926 | static int atmel_hsmc_nand_pmecc_read_pg(struct nand_chip *chip, u8 *buf, |
| 927 | bool oob_required, int page, |
| 928 | bool raw) |
| 929 | { |
| 930 | struct mtd_info *mtd = nand_to_mtd(chip); |
| 931 | struct atmel_nand *nand = to_atmel_nand(chip); |
| 932 | struct atmel_hsmc_nand_controller *nc; |
| 933 | int ret; |
| 934 | |
| 935 | nc = to_hsmc_nand_controller(nand->controller); |
| 936 | |
| 937 | /* |
| 938 | * Optimized read page accessors only work when the NAND R/B pin is |
| 939 | * connected to a native SoC R/B pin. If that's not the case, fallback |
| 940 | * to the non-optimized one. |
| 941 | */ |
| 942 | if (nand->activecs->rb.type != ATMEL_NAND_NATIVE_RB) { |
| 943 | nand_read_page_op(chip, page, 0, NULL, 0); |
| 944 | |
| 945 | return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page, |
| 946 | raw); |
| 947 | } |
| 948 | |
| 949 | nc->op.cmds[nc->op.ncmds++] = NAND_CMD_READ0; |
| 950 | |
| 951 | if (mtd->writesize > 512) |
| 952 | nc->op.cmds[nc->op.ncmds++] = NAND_CMD_READSTART; |
| 953 | |
| 954 | atmel_nfc_set_op_addr(chip, page, 0x0); |
| 955 | nc->op.cs = nand->activecs->id; |
| 956 | nc->op.data = ATMEL_NFC_READ_DATA; |
| 957 | |
| 958 | ret = atmel_nand_pmecc_enable(chip, NAND_ECC_READ, raw); |
| 959 | if (ret) |
| 960 | return ret; |
| 961 | |
| 962 | ret = atmel_nfc_exec_op(nc, true); |
| 963 | if (ret) { |
| 964 | atmel_nand_pmecc_disable(chip, raw); |
| 965 | dev_err(nc->base.dev, |
| 966 | "Failed to load NAND page data (err = %d)\n", |
| 967 | ret); |
| 968 | return ret; |
| 969 | } |
| 970 | |
| 971 | atmel_nfc_copy_from_sram(chip, buf, true); |
| 972 | |
| 973 | ret = atmel_nand_pmecc_correct_data(chip, buf, raw); |
| 974 | |
| 975 | atmel_nand_pmecc_disable(chip, raw); |
| 976 | |
| 977 | return ret; |
| 978 | } |
| 979 | |
| 980 | static int atmel_hsmc_nand_pmecc_read_page(struct mtd_info *mtd, |
| 981 | struct nand_chip *chip, u8 *buf, |
| 982 | int oob_required, int page) |
| 983 | { |
| 984 | return atmel_hsmc_nand_pmecc_read_pg(chip, buf, oob_required, page, |
| 985 | false); |
| 986 | } |
| 987 | |
| 988 | static int atmel_hsmc_nand_pmecc_read_page_raw(struct mtd_info *mtd, |
| 989 | struct nand_chip *chip, |
| 990 | u8 *buf, int oob_required, |
| 991 | int page) |
| 992 | { |
| 993 | return atmel_hsmc_nand_pmecc_read_pg(chip, buf, oob_required, page, |
| 994 | true); |
| 995 | } |
| 996 | |
| 997 | static int nand_ooblayout_ecc_lp(struct mtd_info *mtd, int section, |
| 998 | struct mtd_oob_region *oobregion) |
| 999 | { |
| 1000 | struct nand_chip *chip = mtd_to_nand(mtd); |
| 1001 | struct nand_ecc_ctrl *ecc = &chip->ecc; |
| 1002 | |
| 1003 | if (section || !ecc->total) |
| 1004 | return -ERANGE; |
| 1005 | |
| 1006 | oobregion->length = ecc->total; |
| 1007 | oobregion->offset = mtd->oobsize - oobregion->length; |
| 1008 | |
| 1009 | return 0; |
| 1010 | } |
| 1011 | |
| 1012 | static int nand_ooblayout_free_lp(struct mtd_info *mtd, int section, |
| 1013 | struct mtd_oob_region *oobregion) |
| 1014 | { |
| 1015 | struct nand_chip *chip = mtd_to_nand(mtd); |
| 1016 | struct nand_ecc_ctrl *ecc = &chip->ecc; |
| 1017 | |
| 1018 | if (section) |
| 1019 | return -ERANGE; |
| 1020 | |
| 1021 | oobregion->length = mtd->oobsize - ecc->total - 2; |
| 1022 | oobregion->offset = 2; |
| 1023 | |
| 1024 | return 0; |
| 1025 | } |
| 1026 | |
| 1027 | static const struct mtd_ooblayout_ops nand_ooblayout_lp_ops = { |
| 1028 | .ecc = nand_ooblayout_ecc_lp, |
| 1029 | .rfree = nand_ooblayout_free_lp, |
| 1030 | }; |
| 1031 | |
| 1032 | const struct mtd_ooblayout_ops *nand_get_large_page_ooblayout(void) |
| 1033 | { |
| 1034 | return &nand_ooblayout_lp_ops; |
| 1035 | } |
| 1036 | |
| 1037 | static int atmel_nand_pmecc_init(struct nand_chip *chip) |
| 1038 | { |
| 1039 | struct mtd_info *mtd = nand_to_mtd(chip); |
| 1040 | struct atmel_nand *nand = to_atmel_nand(chip); |
| 1041 | struct atmel_nand_controller *nc; |
| 1042 | struct atmel_pmecc_user_req req; |
| 1043 | |
| 1044 | nc = to_nand_controller(nand->controller); |
| 1045 | |
| 1046 | if (!nc->pmecc) { |
| 1047 | dev_err(nc->dev, "HW ECC not supported\n"); |
| 1048 | return -EOPNOTSUPP; |
| 1049 | } |
| 1050 | |
| 1051 | if (nc->caps->legacy_of_bindings) { |
| 1052 | u32 val; |
| 1053 | |
| 1054 | if (!ofnode_read_u32(nc->dev->node_, "atmel,pmecc-cap", &val)) |
| 1055 | chip->ecc.strength = val; |
| 1056 | |
| 1057 | if (!ofnode_read_u32(nc->dev->node_, |
| 1058 | "atmel,pmecc-sector-size", |
| 1059 | &val)) |
| 1060 | chip->ecc.size = val; |
| 1061 | } |
| 1062 | |
| 1063 | if (chip->ecc.options & NAND_ECC_MAXIMIZE) |
| 1064 | req.ecc.strength = ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH; |
| 1065 | else if (chip->ecc.strength) |
| 1066 | req.ecc.strength = chip->ecc.strength; |
| 1067 | else |
| 1068 | req.ecc.strength = ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH; |
| 1069 | |
| 1070 | if (chip->ecc.size) |
| 1071 | req.ecc.sectorsize = chip->ecc.size; |
| 1072 | else |
| 1073 | req.ecc.sectorsize = ATMEL_PMECC_SECTOR_SIZE_AUTO; |
| 1074 | |
| 1075 | req.pagesize = mtd->writesize; |
| 1076 | req.oobsize = mtd->oobsize; |
| 1077 | |
| 1078 | if (mtd->writesize <= 512) { |
| 1079 | req.ecc.bytes = 4; |
| 1080 | req.ecc.ooboffset = 0; |
| 1081 | } else { |
| 1082 | req.ecc.bytes = mtd->oobsize - 2; |
| 1083 | req.ecc.ooboffset = ATMEL_PMECC_OOBOFFSET_AUTO; |
| 1084 | } |
| 1085 | |
| 1086 | nand->pmecc = atmel_pmecc_create_user(nc->pmecc, &req); |
| 1087 | if (IS_ERR(nand->pmecc)) |
| 1088 | return PTR_ERR(nand->pmecc); |
| 1089 | |
| 1090 | chip->ecc.algo = NAND_ECC_BCH; |
| 1091 | chip->ecc.size = req.ecc.sectorsize; |
| 1092 | chip->ecc.bytes = req.ecc.bytes / req.ecc.nsectors; |
| 1093 | chip->ecc.strength = req.ecc.strength; |
| 1094 | |
| 1095 | chip->options |= NAND_NO_SUBPAGE_WRITE; |
| 1096 | |
| 1097 | mtd_set_ooblayout(mtd, nand_get_large_page_ooblayout()); |
| 1098 | pmecc_config_ecc_layout(&atmel_pmecc_oobinfo, |
| 1099 | mtd->oobsize, |
| 1100 | chip->ecc.bytes); |
| 1101 | chip->ecc.layout = &atmel_pmecc_oobinfo; |
| 1102 | |
| 1103 | return 0; |
| 1104 | } |
| 1105 | |
| 1106 | static int atmel_nand_ecc_init(struct nand_chip *chip) |
| 1107 | { |
| 1108 | struct atmel_nand_controller *nc; |
| 1109 | struct atmel_nand *nand = to_atmel_nand(chip); |
| 1110 | int ret; |
| 1111 | |
| 1112 | nc = to_nand_controller(nand->controller); |
| 1113 | |
| 1114 | switch (chip->ecc.mode) { |
| 1115 | case NAND_ECC_NONE: |
| 1116 | case NAND_ECC_SOFT: |
| 1117 | /* |
| 1118 | * Nothing to do, the core will initialize everything for us. |
| 1119 | */ |
| 1120 | break; |
| 1121 | |
| 1122 | case NAND_ECC_HW: |
| 1123 | ret = atmel_nand_pmecc_init(chip); |
| 1124 | if (ret) |
| 1125 | return ret; |
| 1126 | |
| 1127 | chip->ecc.read_page = atmel_nand_pmecc_read_page; |
| 1128 | chip->ecc.write_page = atmel_nand_pmecc_write_page; |
| 1129 | chip->ecc.read_page_raw = atmel_nand_pmecc_read_page_raw; |
| 1130 | chip->ecc.write_page_raw = atmel_nand_pmecc_write_page_raw; |
| 1131 | break; |
| 1132 | |
| 1133 | default: |
| 1134 | /* Other modes are not supported. */ |
| 1135 | dev_err(nc->dev, "Unsupported ECC mode: %d\n", |
| 1136 | chip->ecc.mode); |
| 1137 | return -EOPNOTSUPP; |
| 1138 | } |
| 1139 | |
| 1140 | return 0; |
| 1141 | } |
| 1142 | |
| 1143 | static int atmel_hsmc_nand_ecc_init(struct nand_chip *chip) |
| 1144 | { |
| 1145 | int ret; |
| 1146 | |
| 1147 | ret = atmel_nand_ecc_init(chip); |
| 1148 | if (ret) |
| 1149 | return ret; |
| 1150 | |
| 1151 | if (chip->ecc.mode != NAND_ECC_HW) |
| 1152 | return 0; |
| 1153 | |
| 1154 | /* Adjust the ECC operations for the HSMC IP. */ |
| 1155 | chip->ecc.read_page = atmel_hsmc_nand_pmecc_read_page; |
| 1156 | chip->ecc.write_page = atmel_hsmc_nand_pmecc_write_page; |
| 1157 | chip->ecc.read_page_raw = atmel_hsmc_nand_pmecc_read_page_raw; |
| 1158 | chip->ecc.write_page_raw = atmel_hsmc_nand_pmecc_write_page_raw; |
| 1159 | |
| 1160 | return 0; |
| 1161 | } |
| 1162 | |
| 1163 | static int atmel_smc_nand_prepare_smcconf(struct atmel_nand *nand, |
| 1164 | const struct nand_data_interface *conf, |
| 1165 | struct atmel_smc_cs_conf *smcconf) |
| 1166 | { |
| 1167 | u32 ncycles, totalcycles, timeps, mckperiodps; |
| 1168 | struct atmel_nand_controller *nc; |
| 1169 | int ret; |
| 1170 | |
| 1171 | nc = to_nand_controller(nand->controller); |
| 1172 | |
| 1173 | /* DDR interface not supported. */ |
| 1174 | if (conf->type != NAND_SDR_IFACE) |
| 1175 | return -EOPNOTSUPP; |
| 1176 | |
| 1177 | /* |
| 1178 | * tRC < 30ns implies EDO mode. This controller does not support this |
| 1179 | * mode. |
| 1180 | */ |
| 1181 | if (conf->timings.sdr.tRC_min < 30000) |
| 1182 | return -EOPNOTSUPP; |
| 1183 | |
| 1184 | atmel_smc_cs_conf_init(smcconf); |
| 1185 | |
| 1186 | mckperiodps = NSEC_PER_SEC / clk_get_rate(nc->mck); |
| 1187 | mckperiodps *= 1000; |
| 1188 | |
| 1189 | /* |
| 1190 | * Set write pulse timing. This one is easy to extract: |
| 1191 | * |
| 1192 | * NWE_PULSE = tWP |
| 1193 | */ |
| 1194 | ncycles = DIV_ROUND_UP(conf->timings.sdr.tWP_min, mckperiodps); |
| 1195 | totalcycles = ncycles; |
| 1196 | ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NWE_SHIFT, |
| 1197 | ncycles); |
| 1198 | if (ret) |
| 1199 | return ret; |
| 1200 | |
| 1201 | /* |
| 1202 | * The write setup timing depends on the operation done on the NAND. |
| 1203 | * All operations goes through the same data bus, but the operation |
| 1204 | * type depends on the address we are writing to (ALE/CLE address |
| 1205 | * lines). |
| 1206 | * Since we have no way to differentiate the different operations at |
| 1207 | * the SMC level, we must consider the worst case (the biggest setup |
| 1208 | * time among all operation types): |
| 1209 | * |
| 1210 | * NWE_SETUP = max(tCLS, tCS, tALS, tDS) - NWE_PULSE |
| 1211 | */ |
| 1212 | timeps = max3(conf->timings.sdr.tCLS_min, conf->timings.sdr.tCS_min, |
| 1213 | conf->timings.sdr.tALS_min); |
| 1214 | timeps = max(timeps, conf->timings.sdr.tDS_min); |
| 1215 | ncycles = DIV_ROUND_UP(timeps, mckperiodps); |
| 1216 | ncycles = ncycles > totalcycles ? ncycles - totalcycles : 0; |
| 1217 | totalcycles += ncycles; |
| 1218 | ret = atmel_smc_cs_conf_set_setup(smcconf, ATMEL_SMC_NWE_SHIFT, |
| 1219 | ncycles); |
| 1220 | if (ret) |
| 1221 | return ret; |
| 1222 | |
| 1223 | /* |
| 1224 | * As for the write setup timing, the write hold timing depends on the |
| 1225 | * operation done on the NAND: |
| 1226 | * |
| 1227 | * NWE_HOLD = max(tCLH, tCH, tALH, tDH, tWH) |
| 1228 | */ |
| 1229 | timeps = max3(conf->timings.sdr.tCLH_min, conf->timings.sdr.tCH_min, |
| 1230 | conf->timings.sdr.tALH_min); |
| 1231 | timeps = max3(timeps, conf->timings.sdr.tDH_min, |
| 1232 | conf->timings.sdr.tWH_min); |
| 1233 | ncycles = DIV_ROUND_UP(timeps, mckperiodps); |
| 1234 | totalcycles += ncycles; |
| 1235 | |
| 1236 | /* |
| 1237 | * The write cycle timing is directly matching tWC, but is also |
| 1238 | * dependent on the other timings on the setup and hold timings we |
| 1239 | * calculated earlier, which gives: |
| 1240 | * |
| 1241 | * NWE_CYCLE = max(tWC, NWE_SETUP + NWE_PULSE + NWE_HOLD) |
| 1242 | */ |
| 1243 | ncycles = DIV_ROUND_UP(conf->timings.sdr.tWC_min, mckperiodps); |
| 1244 | ncycles = max(totalcycles, ncycles); |
| 1245 | ret = atmel_smc_cs_conf_set_cycle(smcconf, ATMEL_SMC_NWE_SHIFT, |
| 1246 | ncycles); |
| 1247 | if (ret) |
| 1248 | return ret; |
| 1249 | |
| 1250 | /* |
| 1251 | * We don't want the CS line to be toggled between each byte/word |
| 1252 | * transfer to the NAND. The only way to guarantee that is to have the |
| 1253 | * NCS_{WR,RD}_{SETUP,HOLD} timings set to 0, which in turn means: |
| 1254 | * |
| 1255 | * NCS_WR_PULSE = NWE_CYCLE |
| 1256 | */ |
| 1257 | ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NCS_WR_SHIFT, |
| 1258 | ncycles); |
| 1259 | if (ret) |
| 1260 | return ret; |
| 1261 | |
| 1262 | /* |
| 1263 | * As for the write setup timing, the read hold timing depends on the |
| 1264 | * operation done on the NAND: |
| 1265 | * |
| 1266 | * NRD_HOLD = max(tREH, tRHOH) |
| 1267 | */ |
| 1268 | timeps = max(conf->timings.sdr.tREH_min, conf->timings.sdr.tRHOH_min); |
| 1269 | ncycles = DIV_ROUND_UP(timeps, mckperiodps); |
| 1270 | totalcycles = ncycles; |
| 1271 | |
| 1272 | /* |
| 1273 | * TDF = tRHZ - NRD_HOLD |
| 1274 | */ |
| 1275 | ncycles = DIV_ROUND_UP(conf->timings.sdr.tRHZ_max, mckperiodps); |
| 1276 | ncycles -= totalcycles; |
| 1277 | |
| 1278 | /* |
| 1279 | * In ONFI 4.0 specs, tRHZ has been increased to support EDO NANDs and |
| 1280 | * we might end up with a config that does not fit in the TDF field. |
| 1281 | * Just take the max value in this case and hope that the NAND is more |
| 1282 | * tolerant than advertised. |
| 1283 | */ |
| 1284 | if (ncycles > ATMEL_SMC_MODE_TDF_MAX) |
| 1285 | ncycles = ATMEL_SMC_MODE_TDF_MAX; |
| 1286 | else if (ncycles < ATMEL_SMC_MODE_TDF_MIN) |
| 1287 | ncycles = ATMEL_SMC_MODE_TDF_MIN; |
| 1288 | |
| 1289 | smcconf->mode |= ATMEL_SMC_MODE_TDF(ncycles) | |
| 1290 | ATMEL_SMC_MODE_TDFMODE_OPTIMIZED; |
| 1291 | |
| 1292 | /* |
| 1293 | * Read pulse timing directly matches tRP: |
| 1294 | * |
| 1295 | * NRD_PULSE = tRP |
| 1296 | */ |
| 1297 | ncycles = DIV_ROUND_UP(conf->timings.sdr.tRP_min, mckperiodps); |
| 1298 | totalcycles += ncycles; |
| 1299 | ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NRD_SHIFT, |
| 1300 | ncycles); |
| 1301 | if (ret) |
| 1302 | return ret; |
| 1303 | |
| 1304 | /* |
| 1305 | * The write cycle timing is directly matching tWC, but is also |
| 1306 | * dependent on the setup and hold timings we calculated earlier, |
| 1307 | * which gives: |
| 1308 | * |
| 1309 | * NRD_CYCLE = max(tRC, NRD_PULSE + NRD_HOLD) |
| 1310 | * |
| 1311 | * NRD_SETUP is always 0. |
| 1312 | */ |
| 1313 | ncycles = DIV_ROUND_UP(conf->timings.sdr.tRC_min, mckperiodps); |
| 1314 | ncycles = max(totalcycles, ncycles); |
| 1315 | ret = atmel_smc_cs_conf_set_cycle(smcconf, ATMEL_SMC_NRD_SHIFT, |
| 1316 | ncycles); |
| 1317 | if (ret) |
| 1318 | return ret; |
| 1319 | |
| 1320 | /* |
| 1321 | * We don't want the CS line to be toggled between each byte/word |
| 1322 | * transfer from the NAND. The only way to guarantee that is to have |
| 1323 | * the NCS_{WR,RD}_{SETUP,HOLD} timings set to 0, which in turn means: |
| 1324 | * |
| 1325 | * NCS_RD_PULSE = NRD_CYCLE |
| 1326 | */ |
| 1327 | ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NCS_RD_SHIFT, |
| 1328 | ncycles); |
| 1329 | if (ret) |
| 1330 | return ret; |
| 1331 | |
| 1332 | /* Txxx timings are directly matching tXXX ones. */ |
| 1333 | ncycles = DIV_ROUND_UP(conf->timings.sdr.tCLR_min, mckperiodps); |
| 1334 | ret = atmel_smc_cs_conf_set_timing(smcconf, |
| 1335 | ATMEL_HSMC_TIMINGS_TCLR_SHIFT, |
| 1336 | ncycles); |
| 1337 | if (ret) |
| 1338 | return ret; |
| 1339 | |
| 1340 | ncycles = DIV_ROUND_UP(conf->timings.sdr.tADL_min, mckperiodps); |
| 1341 | ret = atmel_smc_cs_conf_set_timing(smcconf, |
| 1342 | ATMEL_HSMC_TIMINGS_TADL_SHIFT, |
| 1343 | ncycles); |
| 1344 | /* |
| 1345 | * Version 4 of the ONFI spec mandates that tADL be at least 400 |
| 1346 | * nanoseconds, but, depending on the master clock rate, 400 ns may not |
| 1347 | * fit in the tADL field of the SMC reg. We need to relax the check and |
| 1348 | * accept the -ERANGE return code. |
| 1349 | * |
| 1350 | * Note that previous versions of the ONFI spec had a lower tADL_min |
| 1351 | * (100 or 200 ns). It's not clear why this timing constraint got |
| 1352 | * increased but it seems most NANDs are fine with values lower than |
| 1353 | * 400ns, so we should be safe. |
| 1354 | */ |
| 1355 | if (ret && ret != -ERANGE) |
| 1356 | return ret; |
| 1357 | |
| 1358 | ncycles = DIV_ROUND_UP(conf->timings.sdr.tAR_min, mckperiodps); |
| 1359 | ret = atmel_smc_cs_conf_set_timing(smcconf, |
| 1360 | ATMEL_HSMC_TIMINGS_TAR_SHIFT, |
| 1361 | ncycles); |
| 1362 | if (ret) |
| 1363 | return ret; |
| 1364 | |
| 1365 | ncycles = DIV_ROUND_UP(conf->timings.sdr.tRR_min, mckperiodps); |
| 1366 | ret = atmel_smc_cs_conf_set_timing(smcconf, |
| 1367 | ATMEL_HSMC_TIMINGS_TRR_SHIFT, |
| 1368 | ncycles); |
| 1369 | if (ret) |
| 1370 | return ret; |
| 1371 | |
| 1372 | ncycles = DIV_ROUND_UP(conf->timings.sdr.tWB_max, mckperiodps); |
| 1373 | ret = atmel_smc_cs_conf_set_timing(smcconf, |
| 1374 | ATMEL_HSMC_TIMINGS_TWB_SHIFT, |
| 1375 | ncycles); |
| 1376 | if (ret) |
| 1377 | return ret; |
| 1378 | |
| 1379 | /* Attach the CS line to the NFC logic. */ |
| 1380 | smcconf->timings |= ATMEL_HSMC_TIMINGS_NFSEL; |
| 1381 | |
| 1382 | /* Set the appropriate data bus width. */ |
| 1383 | if (nand->base.options & NAND_BUSWIDTH_16) |
| 1384 | smcconf->mode |= ATMEL_SMC_MODE_DBW_16; |
| 1385 | |
| 1386 | /* Operate in NRD/NWE READ/WRITEMODE. */ |
| 1387 | smcconf->mode |= ATMEL_SMC_MODE_READMODE_NRD | |
| 1388 | ATMEL_SMC_MODE_WRITEMODE_NWE; |
| 1389 | |
| 1390 | return 0; |
| 1391 | } |
| 1392 | |
| 1393 | static int |
| 1394 | atmel_smc_nand_setup_data_interface(struct atmel_nand *nand, |
| 1395 | int csline, |
| 1396 | const struct nand_data_interface *conf) |
| 1397 | { |
| 1398 | struct atmel_nand_controller *nc; |
| 1399 | struct atmel_smc_cs_conf smcconf; |
| 1400 | struct atmel_nand_cs *cs; |
| 1401 | int ret; |
| 1402 | |
| 1403 | nc = to_nand_controller(nand->controller); |
| 1404 | |
| 1405 | ret = atmel_smc_nand_prepare_smcconf(nand, conf, &smcconf); |
| 1406 | if (ret) |
| 1407 | return ret; |
| 1408 | |
| 1409 | if (csline == NAND_DATA_IFACE_CHECK_ONLY) |
| 1410 | return 0; |
| 1411 | |
| 1412 | cs = &nand->cs[csline]; |
| 1413 | cs->smcconf = smcconf; |
| 1414 | |
| 1415 | atmel_smc_cs_conf_apply(nc->smc, cs->id, &cs->smcconf); |
| 1416 | |
| 1417 | return 0; |
| 1418 | } |
| 1419 | |
| 1420 | static int |
| 1421 | atmel_hsmc_nand_setup_data_interface(struct atmel_nand *nand, |
| 1422 | int csline, |
| 1423 | const struct nand_data_interface *conf) |
| 1424 | { |
| 1425 | struct atmel_hsmc_nand_controller *nc; |
| 1426 | struct atmel_smc_cs_conf smcconf; |
| 1427 | struct atmel_nand_cs *cs; |
| 1428 | int ret; |
| 1429 | |
| 1430 | nc = to_hsmc_nand_controller(nand->controller); |
| 1431 | |
| 1432 | ret = atmel_smc_nand_prepare_smcconf(nand, conf, &smcconf); |
| 1433 | if (ret) |
| 1434 | return ret; |
| 1435 | |
| 1436 | if (csline == NAND_DATA_IFACE_CHECK_ONLY) |
| 1437 | return 0; |
| 1438 | |
| 1439 | cs = &nand->cs[csline]; |
| 1440 | cs->smcconf = smcconf; |
| 1441 | |
| 1442 | if (cs->rb.type == ATMEL_NAND_NATIVE_RB) |
| 1443 | cs->smcconf.timings |= ATMEL_HSMC_TIMINGS_RBNSEL(cs->rb.id); |
| 1444 | |
| 1445 | atmel_hsmc_cs_conf_apply(nc->base.smc, nc->hsmc_layout, cs->id, |
| 1446 | &cs->smcconf); |
| 1447 | |
| 1448 | return 0; |
| 1449 | } |
| 1450 | |
| 1451 | static int atmel_nand_setup_data_interface(struct mtd_info *mtd, int csline, |
| 1452 | const struct nand_data_interface *conf) |
| 1453 | { |
| 1454 | struct nand_chip *chip = mtd_to_nand(mtd); |
| 1455 | struct atmel_nand *nand = to_atmel_nand(chip); |
| 1456 | struct atmel_nand_controller *nc; |
| 1457 | |
| 1458 | nc = to_nand_controller(nand->controller); |
| 1459 | |
| 1460 | if (csline >= nand->numcs || |
| 1461 | (csline < 0 && csline != NAND_DATA_IFACE_CHECK_ONLY)) |
| 1462 | return -EINVAL; |
| 1463 | |
| 1464 | return nc->caps->ops->setup_data_interface(nand, csline, conf); |
| 1465 | } |
| 1466 | |
| 1467 | #define NAND_KEEP_TIMINGS 0x00800000 |
| 1468 | |
| 1469 | static void atmel_nand_init(struct atmel_nand_controller *nc, |
| 1470 | struct atmel_nand *nand) |
| 1471 | { |
| 1472 | struct nand_chip *chip = &nand->base; |
| 1473 | struct mtd_info *mtd = nand_to_mtd(chip); |
| 1474 | |
| 1475 | mtd->dev->parent = nc->dev; |
| 1476 | nand->controller = &nc->base; |
Balamanikandan Gunasundar | fe33c7d | 2022-10-25 16:21:01 +0530 | [diff] [blame] | 1477 | |
| 1478 | chip->cmd_ctrl = atmel_nand_cmd_ctrl; |
| 1479 | chip->read_byte = atmel_nand_read_byte; |
| 1480 | chip->write_byte = atmel_nand_write_byte; |
| 1481 | chip->read_buf = atmel_nand_read_buf; |
| 1482 | chip->write_buf = atmel_nand_write_buf; |
| 1483 | chip->select_chip = atmel_nand_select_chip; |
| 1484 | chip->setup_data_interface = atmel_nand_setup_data_interface; |
| 1485 | |
| 1486 | if (!nc->mck || !nc->caps->ops->setup_data_interface) |
| 1487 | chip->options |= NAND_KEEP_TIMINGS; |
| 1488 | |
| 1489 | /* Some NANDs require a longer delay than the default one (20us). */ |
| 1490 | chip->chip_delay = 40; |
| 1491 | |
| 1492 | /* Default to HW ECC if pmecc is available. */ |
| 1493 | if (nc->pmecc) |
| 1494 | chip->ecc.mode = NAND_ECC_HW; |
| 1495 | } |
| 1496 | |
| 1497 | static void atmel_smc_nand_init(struct atmel_nand_controller *nc, |
| 1498 | struct atmel_nand *nand) |
| 1499 | { |
| 1500 | struct atmel_smc_nand_controller *smc_nc; |
| 1501 | int i; |
| 1502 | |
| 1503 | atmel_nand_init(nc, nand); |
| 1504 | |
| 1505 | smc_nc = to_smc_nand_controller(nand->controller); |
| 1506 | if (!smc_nc->ebi_csa_regmap) |
| 1507 | return; |
| 1508 | |
| 1509 | /* Attach the CS to the NAND Flash logic. */ |
| 1510 | for (i = 0; i < nand->numcs; i++) |
| 1511 | regmap_update_bits(smc_nc->ebi_csa_regmap, |
| 1512 | smc_nc->ebi_csa->offs, |
| 1513 | BIT(nand->cs[i].id), BIT(nand->cs[i].id)); |
| 1514 | |
| 1515 | if (smc_nc->ebi_csa->nfd0_on_d16) |
| 1516 | regmap_update_bits(smc_nc->ebi_csa_regmap, |
| 1517 | smc_nc->ebi_csa->offs, |
| 1518 | smc_nc->ebi_csa->nfd0_on_d16, |
| 1519 | smc_nc->ebi_csa->nfd0_on_d16); |
| 1520 | } |
| 1521 | |
| 1522 | static void atmel_hsmc_nand_init(struct atmel_nand_controller *nc, |
| 1523 | struct atmel_nand *nand) |
| 1524 | { |
| 1525 | struct nand_chip *chip = &nand->base; |
| 1526 | |
| 1527 | atmel_nand_init(nc, nand); |
| 1528 | |
| 1529 | /* Overload some methods for the HSMC controller. */ |
| 1530 | chip->cmd_ctrl = atmel_hsmc_nand_cmd_ctrl; |
| 1531 | chip->select_chip = atmel_hsmc_nand_select_chip; |
| 1532 | } |
| 1533 | |
| 1534 | static int atmel_nand_controller_remove_nand(struct atmel_nand *nand) |
| 1535 | { |
| 1536 | list_del(&nand->node); |
| 1537 | |
| 1538 | return 0; |
| 1539 | } |
| 1540 | |
| 1541 | static struct atmel_nand *atmel_nand_create(struct atmel_nand_controller *nc, |
| 1542 | ofnode np, |
| 1543 | int reg_cells) |
| 1544 | { |
| 1545 | struct atmel_nand *nand; |
| 1546 | ofnode n; |
| 1547 | int numcs = 0; |
| 1548 | int ret, i; |
| 1549 | u32 val; |
| 1550 | fdt32_t faddr; |
| 1551 | phys_addr_t base; |
| 1552 | |
| 1553 | /* Count num of nand nodes */ |
| 1554 | ofnode_for_each_subnode(n, ofnode_get_parent(np)) |
| 1555 | numcs++; |
| 1556 | if (numcs < 1) { |
| 1557 | dev_err(nc->dev, "Missing or invalid reg property\n"); |
| 1558 | return ERR_PTR(-EINVAL); |
| 1559 | } |
| 1560 | |
| 1561 | nand = devm_kzalloc(nc->dev, |
| 1562 | sizeof(struct atmel_nand) + |
| 1563 | (numcs * sizeof(struct atmel_nand_cs)), |
| 1564 | GFP_KERNEL); |
| 1565 | if (!nand) { |
| 1566 | dev_err(nc->dev, "Failed to allocate NAND object\n"); |
| 1567 | return ERR_PTR(-ENOMEM); |
| 1568 | } |
| 1569 | |
| 1570 | nand->numcs = numcs; |
| 1571 | |
| 1572 | gpio_request_by_name_nodev(np, "det-gpios", 0, &nand->cdgpio, |
| 1573 | GPIOD_IS_IN); |
| 1574 | |
| 1575 | for (i = 0; i < numcs; i++) { |
| 1576 | ret = ofnode_read_u32(np, "reg", &val); |
| 1577 | if (ret) { |
| 1578 | dev_err(nc->dev, "Invalid reg property (err = %d)\n", |
| 1579 | ret); |
| 1580 | return ERR_PTR(ret); |
| 1581 | } |
| 1582 | nand->cs[i].id = val; |
| 1583 | |
| 1584 | /* Read base address */ |
| 1585 | struct resource res; |
| 1586 | |
| 1587 | if (ofnode_read_resource(np, 0, &res)) { |
| 1588 | dev_err(nc->dev, "Unable to read resource\n"); |
| 1589 | return ERR_PTR(-ENOMEM); |
| 1590 | } |
| 1591 | |
| 1592 | faddr = cpu_to_fdt32(val); |
| 1593 | base = ofnode_translate_address(np, &faddr); |
| 1594 | nand->cs[i].io.virt = (void *)base; |
| 1595 | |
| 1596 | if (!ofnode_read_u32(np, "atmel,rb", &val)) { |
| 1597 | if (val > ATMEL_NFC_MAX_RB_ID) |
| 1598 | return ERR_PTR(-EINVAL); |
| 1599 | |
| 1600 | nand->cs[i].rb.type = ATMEL_NAND_NATIVE_RB; |
| 1601 | nand->cs[i].rb.id = val; |
| 1602 | } else { |
Alexander Dahl | d8f077a | 2023-09-22 11:08:56 +0200 | [diff] [blame] | 1603 | ret = gpio_request_by_name_nodev(np, "rb-gpios", 0, |
| 1604 | &nand->cs[i].rb.gpio, |
| 1605 | GPIOD_IS_IN); |
| 1606 | if (ret && ret != -ENOENT) |
| 1607 | dev_err(nc->dev, "Failed to get R/B gpio (err = %d)\n", ret); |
| 1608 | if (!ret) |
| 1609 | nand->cs[i].rb.type = ATMEL_NAND_GPIO_RB; |
Balamanikandan Gunasundar | fe33c7d | 2022-10-25 16:21:01 +0530 | [diff] [blame] | 1610 | } |
| 1611 | |
| 1612 | gpio_request_by_name_nodev(np, "cs-gpios", 0, |
| 1613 | &nand->cs[i].csgpio, |
| 1614 | GPIOD_IS_OUT); |
| 1615 | } |
| 1616 | |
| 1617 | nand_set_flash_node(&nand->base, np); |
| 1618 | |
| 1619 | return nand; |
| 1620 | } |
| 1621 | |
| 1622 | static int nand_attach(struct nand_chip *chip) |
| 1623 | { |
| 1624 | struct atmel_nand *nand = to_atmel_nand(chip); |
| 1625 | |
| 1626 | if (nand->controller->ops && nand->controller->ops->attach_chip) |
| 1627 | return nand->controller->ops->attach_chip(chip); |
| 1628 | |
| 1629 | return 0; |
| 1630 | } |
| 1631 | |
| 1632 | int atmel_nand_scan(struct mtd_info *mtd, int maxchips) |
| 1633 | { |
| 1634 | int ret; |
| 1635 | |
| 1636 | ret = nand_scan_ident(mtd, maxchips, NULL); |
| 1637 | if (ret) |
| 1638 | return ret; |
| 1639 | |
| 1640 | ret = nand_attach(mtd_to_nand(mtd)); |
| 1641 | if (ret) |
| 1642 | return ret; |
| 1643 | |
| 1644 | ret = nand_scan_tail(mtd); |
| 1645 | return ret; |
| 1646 | } |
| 1647 | |
| 1648 | static int |
| 1649 | atmel_nand_controller_add_nand(struct atmel_nand_controller *nc, |
| 1650 | struct atmel_nand *nand) |
| 1651 | { |
| 1652 | struct nand_chip *chip = &nand->base; |
| 1653 | struct mtd_info *mtd = nand_to_mtd(chip); |
| 1654 | int ret; |
| 1655 | |
| 1656 | /* No card inserted, skip this NAND. */ |
| 1657 | if (dm_gpio_is_valid(&nand->cdgpio) && |
| 1658 | dm_gpio_get_value(&nand->cdgpio)) { |
| 1659 | dev_info(nc->dev, "No SmartMedia card inserted.\n"); |
| 1660 | return 0; |
| 1661 | } |
| 1662 | |
| 1663 | nc->caps->ops->nand_init(nc, nand); |
| 1664 | |
| 1665 | ret = atmel_nand_scan(mtd, nand->numcs); |
| 1666 | if (ret) { |
| 1667 | dev_err(nc->dev, "NAND scan failed: %d\n", ret); |
| 1668 | return ret; |
| 1669 | } |
| 1670 | |
| 1671 | ret = nand_register(0, mtd); |
| 1672 | if (ret) { |
| 1673 | dev_err(nc->dev, "nand register failed: %d\n", ret); |
| 1674 | return ret; |
| 1675 | } |
| 1676 | |
| 1677 | list_add_tail(&nand->node, &nc->chips); |
| 1678 | |
| 1679 | return 0; |
| 1680 | } |
| 1681 | |
| 1682 | static int |
| 1683 | atmel_nand_controller_remove_nands(struct atmel_nand_controller *nc) |
| 1684 | { |
| 1685 | struct atmel_nand *nand, *tmp; |
| 1686 | int ret; |
| 1687 | |
| 1688 | list_for_each_entry_safe(nand, tmp, &nc->chips, node) { |
| 1689 | ret = atmel_nand_controller_remove_nand(nand); |
| 1690 | if (ret) |
| 1691 | return ret; |
| 1692 | } |
| 1693 | |
| 1694 | return 0; |
| 1695 | } |
| 1696 | |
| 1697 | static int atmel_nand_controller_add_nands(struct atmel_nand_controller *nc) |
| 1698 | { |
| 1699 | ofnode np; |
| 1700 | ofnode nand_np; |
| 1701 | int ret, reg_cells; |
| 1702 | u32 val; |
| 1703 | |
| 1704 | /* TODO: |
| 1705 | * Add support for legacy nands |
| 1706 | */ |
| 1707 | |
| 1708 | np = nc->dev->node_; |
| 1709 | |
| 1710 | ret = ofnode_read_u32(np, "#address-cells", &val); |
| 1711 | if (ret) { |
| 1712 | dev_err(nc->dev, "missing #address-cells property\n"); |
| 1713 | return ret; |
| 1714 | } |
| 1715 | |
| 1716 | reg_cells = val; |
| 1717 | |
| 1718 | ret = ofnode_read_u32(np, "#size-cells", &val); |
| 1719 | if (ret) { |
| 1720 | dev_err(nc->dev, "missing #size-cells property\n"); |
| 1721 | return ret; |
| 1722 | } |
| 1723 | |
| 1724 | reg_cells += val; |
| 1725 | |
| 1726 | ofnode_for_each_subnode(nand_np, np) { |
| 1727 | struct atmel_nand *nand; |
| 1728 | |
| 1729 | nand = atmel_nand_create(nc, nand_np, reg_cells); |
| 1730 | if (IS_ERR(nand)) { |
| 1731 | ret = PTR_ERR(nand); |
| 1732 | goto err; |
| 1733 | } |
| 1734 | |
| 1735 | ret = atmel_nand_controller_add_nand(nc, nand); |
| 1736 | if (ret) |
| 1737 | goto err; |
| 1738 | } |
| 1739 | |
| 1740 | return 0; |
| 1741 | |
| 1742 | err: |
| 1743 | atmel_nand_controller_remove_nands(nc); |
| 1744 | |
| 1745 | return ret; |
| 1746 | } |
| 1747 | |
| 1748 | static const struct atmel_smc_nand_ebi_csa_cfg at91sam9260_ebi_csa = { |
| 1749 | .offs = AT91SAM9260_MATRIX_EBICSA, |
| 1750 | }; |
| 1751 | |
| 1752 | static const struct atmel_smc_nand_ebi_csa_cfg at91sam9261_ebi_csa = { |
| 1753 | .offs = AT91SAM9261_MATRIX_EBICSA, |
| 1754 | }; |
| 1755 | |
| 1756 | static const struct atmel_smc_nand_ebi_csa_cfg at91sam9263_ebi_csa = { |
| 1757 | .offs = AT91SAM9263_MATRIX_EBI0CSA, |
| 1758 | }; |
| 1759 | |
| 1760 | static const struct atmel_smc_nand_ebi_csa_cfg at91sam9rl_ebi_csa = { |
| 1761 | .offs = AT91SAM9RL_MATRIX_EBICSA, |
| 1762 | }; |
| 1763 | |
| 1764 | static const struct atmel_smc_nand_ebi_csa_cfg at91sam9g45_ebi_csa = { |
| 1765 | .offs = AT91SAM9G45_MATRIX_EBICSA, |
| 1766 | }; |
| 1767 | |
| 1768 | static const struct atmel_smc_nand_ebi_csa_cfg at91sam9n12_ebi_csa = { |
| 1769 | .offs = AT91SAM9N12_MATRIX_EBICSA, |
| 1770 | }; |
| 1771 | |
| 1772 | static const struct atmel_smc_nand_ebi_csa_cfg at91sam9x5_ebi_csa = { |
| 1773 | .offs = AT91SAM9X5_MATRIX_EBICSA, |
| 1774 | }; |
| 1775 | |
| 1776 | static const struct atmel_smc_nand_ebi_csa_cfg sam9x60_ebi_csa = { |
| 1777 | .offs = AT91_SFR_CCFG_EBICSA, |
| 1778 | .nfd0_on_d16 = AT91_SFR_CCFG_NFD0_ON_D16, |
| 1779 | }; |
| 1780 | |
| 1781 | static const struct udevice_id atmel_ebi_csa_regmap_of_ids[] = { |
| 1782 | { |
| 1783 | .compatible = "atmel,at91sam9260-matrix", |
| 1784 | .data = (ulong)&at91sam9260_ebi_csa, |
| 1785 | }, |
| 1786 | { |
| 1787 | .compatible = "atmel,at91sam9261-matrix", |
| 1788 | .data = (ulong)&at91sam9261_ebi_csa, |
| 1789 | }, |
| 1790 | { |
| 1791 | .compatible = "atmel,at91sam9263-matrix", |
| 1792 | .data = (ulong)&at91sam9263_ebi_csa, |
| 1793 | }, |
| 1794 | { |
| 1795 | .compatible = "atmel,at91sam9rl-matrix", |
| 1796 | .data = (ulong)&at91sam9rl_ebi_csa, |
| 1797 | }, |
| 1798 | { |
| 1799 | .compatible = "atmel,at91sam9g45-matrix", |
| 1800 | .data = (ulong)&at91sam9g45_ebi_csa, |
| 1801 | }, |
| 1802 | { |
| 1803 | .compatible = "atmel,at91sam9n12-matrix", |
| 1804 | .data = (ulong)&at91sam9n12_ebi_csa, |
| 1805 | }, |
| 1806 | { |
| 1807 | .compatible = "atmel,at91sam9x5-matrix", |
| 1808 | .data = (ulong)&at91sam9x5_ebi_csa, |
| 1809 | }, |
| 1810 | { |
| 1811 | .compatible = "microchip,sam9x60-sfr", |
| 1812 | .data = (ulong)&sam9x60_ebi_csa, |
| 1813 | }, |
| 1814 | { /* sentinel */ }, |
| 1815 | }; |
| 1816 | |
| 1817 | static int atmel_nand_attach_chip(struct nand_chip *chip) |
| 1818 | { |
| 1819 | struct atmel_nand *nand = to_atmel_nand(chip); |
| 1820 | struct atmel_nand_controller *nc = to_nand_controller(nand->controller); |
| 1821 | struct mtd_info *mtd = nand_to_mtd(chip); |
| 1822 | int ret; |
| 1823 | |
| 1824 | ret = nc->caps->ops->ecc_init(chip); |
| 1825 | if (ret) |
| 1826 | return ret; |
| 1827 | |
| 1828 | if (nc->caps->legacy_of_bindings || !ofnode_valid(nc->dev->node_)) { |
| 1829 | /* |
| 1830 | * We keep the MTD name unchanged to avoid breaking platforms |
| 1831 | * where the MTD cmdline parser is used and the bootloader |
| 1832 | * has not been updated to use the new naming scheme. |
| 1833 | */ |
| 1834 | mtd->name = "atmel_nand"; |
| 1835 | } else if (!mtd->name) { |
| 1836 | /* |
| 1837 | * If the new bindings are used and the bootloader has not been |
| 1838 | * updated to pass a new mtdparts parameter on the cmdline, you |
| 1839 | * should define the following property in your nand node: |
| 1840 | * |
| 1841 | * label = "atmel_nand"; |
| 1842 | * |
| 1843 | * This way, mtd->name will be set by the core when |
| 1844 | * nand_set_flash_node() is called. |
| 1845 | */ |
| 1846 | sprintf(mtd->name, "%s:nand.%d", nc->dev->name, nand->cs[0].id); |
| 1847 | } |
| 1848 | |
| 1849 | return 0; |
| 1850 | } |
| 1851 | |
| 1852 | static const struct nand_controller_ops atmel_nand_controller_ops = { |
| 1853 | .attach_chip = atmel_nand_attach_chip, |
| 1854 | }; |
| 1855 | |
| 1856 | static int |
| 1857 | atmel_nand_controller_init(struct atmel_nand_controller *nc, |
| 1858 | struct udevice *dev, |
| 1859 | const struct atmel_nand_controller_caps *caps) |
| 1860 | { |
| 1861 | struct ofnode_phandle_args args; |
| 1862 | int ret; |
| 1863 | |
| 1864 | nc->base.ops = &atmel_nand_controller_ops; |
| 1865 | INIT_LIST_HEAD(&nc->chips); |
| 1866 | nc->dev = dev; |
| 1867 | nc->caps = caps; |
| 1868 | |
| 1869 | nc->pmecc = devm_atmel_pmecc_get(dev); |
| 1870 | if (IS_ERR(nc->pmecc)) { |
| 1871 | ret = PTR_ERR(nc->pmecc); |
| 1872 | if (ret != -EPROBE_DEFER) |
| 1873 | dev_err(dev, "Could not get PMECC object (err = %d)\n", |
| 1874 | ret); |
| 1875 | return ret; |
| 1876 | } |
| 1877 | |
| 1878 | /* We do not retrieve the SMC syscon when parsing old DTs. */ |
| 1879 | if (nc->caps->legacy_of_bindings) |
| 1880 | return 0; |
| 1881 | |
| 1882 | nc->mck = devm_kzalloc(dev, sizeof(nc->mck), GFP_KERNEL); |
| 1883 | if (!nc->mck) |
| 1884 | return -ENOMEM; |
| 1885 | |
| 1886 | clk_get_by_index(dev->parent, 0, nc->mck); |
| 1887 | if (IS_ERR(nc->mck)) { |
| 1888 | dev_err(dev, "Failed to retrieve MCK clk\n"); |
| 1889 | return PTR_ERR(nc->mck); |
| 1890 | } |
| 1891 | |
| 1892 | ret = ofnode_parse_phandle_with_args(dev->parent->node_, |
| 1893 | "atmel,smc", NULL, 0, 0, &args); |
| 1894 | if (ret) { |
| 1895 | dev_err(dev, "Missing or invalid atmel,smc property\n"); |
| 1896 | return -EINVAL; |
| 1897 | } |
| 1898 | |
| 1899 | nc->smc = syscon_node_to_regmap(args.node); |
| 1900 | if (IS_ERR(nc->smc)) { |
| 1901 | ret = PTR_ERR(nc->smc); |
| 1902 | dev_err(dev, "Could not get SMC regmap (err = %d)\n", ret); |
| 1903 | return 0; |
| 1904 | } |
| 1905 | |
| 1906 | return 0; |
| 1907 | } |
| 1908 | |
| 1909 | static int |
| 1910 | atmel_smc_nand_controller_init(struct atmel_smc_nand_controller *nc) |
| 1911 | { |
| 1912 | struct udevice *dev = nc->base.dev; |
| 1913 | struct ofnode_phandle_args args; |
| 1914 | const struct udevice_id *match = NULL; |
| 1915 | const char *name; |
| 1916 | int ret; |
| 1917 | int len; |
| 1918 | int i; |
| 1919 | |
| 1920 | /* We do not retrieve the EBICSA regmap when parsing old DTs. */ |
| 1921 | if (nc->base.caps->legacy_of_bindings) |
| 1922 | return 0; |
| 1923 | |
| 1924 | ret = ofnode_parse_phandle_with_args(dev->parent->node_, |
| 1925 | nc->base.caps->ebi_csa_regmap_name, |
| 1926 | NULL, 0, 0, &args); |
| 1927 | if (ret) { |
| 1928 | dev_err(dev, "Unable to read ebi csa regmap\n"); |
| 1929 | return -EINVAL; |
| 1930 | } |
| 1931 | |
| 1932 | name = ofnode_get_property(args.node, "compatible", &len); |
| 1933 | |
| 1934 | for (i = 0; i < ARRAY_SIZE(atmel_ebi_csa_regmap_of_ids); i++) { |
| 1935 | if (!strcmp(name, atmel_ebi_csa_regmap_of_ids[i].compatible)) { |
| 1936 | match = &atmel_ebi_csa_regmap_of_ids[i]; |
| 1937 | break; |
| 1938 | } |
| 1939 | } |
| 1940 | |
| 1941 | if (!match) { |
| 1942 | dev_err(dev, "Unable to find ebi csa conf"); |
| 1943 | return -EINVAL; |
| 1944 | } |
| 1945 | nc->ebi_csa = (struct atmel_smc_nand_ebi_csa_cfg *)match->data; |
| 1946 | |
| 1947 | nc->ebi_csa_regmap = syscon_node_to_regmap(args.node); |
| 1948 | if (IS_ERR(nc->ebi_csa_regmap)) { |
| 1949 | ret = PTR_ERR(nc->ebi_csa_regmap); |
| 1950 | dev_err(dev, "Could not get EBICSA regmap (err = %d)\n", ret); |
| 1951 | return ret; |
| 1952 | } |
| 1953 | |
| 1954 | /* TODO: |
| 1955 | * The at91sam9263 has 2 EBIs, if the NAND controller is under EBI1 |
| 1956 | * add 4 to ->ebi_csa->offs. |
| 1957 | */ |
| 1958 | |
| 1959 | return 0; |
| 1960 | } |
| 1961 | |
| 1962 | static int atmel_hsmc_nand_controller_init(struct atmel_hsmc_nand_controller *nc) |
| 1963 | { |
| 1964 | struct udevice *dev = nc->base.dev; |
| 1965 | struct ofnode_phandle_args args; |
| 1966 | struct clk smc_clk; |
| 1967 | int ret; |
| 1968 | u32 addr; |
| 1969 | |
| 1970 | ret = ofnode_parse_phandle_with_args(dev->parent->node_, |
| 1971 | "atmel,smc", NULL, 0, 0, &args); |
| 1972 | if (ret) { |
| 1973 | dev_err(dev, "Missing or invalid atmel,smc property\n"); |
| 1974 | return -EINVAL; |
| 1975 | } |
| 1976 | |
| 1977 | nc->hsmc_layout = atmel_hsmc_get_reg_layout(args.node); |
| 1978 | if (IS_ERR(nc->hsmc_layout)) { |
| 1979 | dev_err(dev, "Could not get hsmc layout\n"); |
| 1980 | return -EINVAL; |
| 1981 | } |
| 1982 | |
| 1983 | /* Enable smc clock */ |
| 1984 | ret = clk_get_by_index_nodev(args.node, 0, &smc_clk); |
| 1985 | if (ret) { |
| 1986 | dev_err(dev, "Unable to get smc clock (err = %d)", ret); |
| 1987 | return ret; |
| 1988 | } |
| 1989 | |
| 1990 | ret = clk_prepare_enable(&smc_clk); |
| 1991 | if (ret) |
| 1992 | return ret; |
| 1993 | |
| 1994 | ret = ofnode_parse_phandle_with_args(dev->node_, |
| 1995 | "atmel,nfc-io", NULL, 0, 0, &args); |
| 1996 | if (ret) { |
| 1997 | dev_err(dev, "Missing or invalid atmel,nfc-io property\n"); |
| 1998 | return -EINVAL; |
| 1999 | } |
| 2000 | |
| 2001 | nc->io = syscon_node_to_regmap(args.node); |
| 2002 | if (IS_ERR(nc->io)) { |
| 2003 | ret = PTR_ERR(nc->io); |
| 2004 | dev_err(dev, "Could not get NFC IO regmap\n"); |
| 2005 | return ret; |
| 2006 | } |
| 2007 | |
| 2008 | ret = ofnode_parse_phandle_with_args(dev->node_, |
| 2009 | "atmel,nfc-sram", NULL, 0, 0, &args); |
| 2010 | if (ret) { |
| 2011 | dev_err(dev, "Missing or invalid atmel,nfc-sram property\n"); |
| 2012 | return ret; |
| 2013 | } |
| 2014 | |
| 2015 | ret = ofnode_read_u32(args.node, "reg", &addr); |
| 2016 | if (ret) { |
| 2017 | dev_err(dev, "Could not read reg addr of nfc sram"); |
| 2018 | return ret; |
| 2019 | } |
| 2020 | nc->sram.virt = (void *)addr; |
| 2021 | |
| 2022 | return 0; |
| 2023 | } |
| 2024 | |
| 2025 | static int |
| 2026 | atmel_hsmc_nand_controller_remove(struct atmel_nand_controller *nc) |
| 2027 | { |
| 2028 | struct atmel_hsmc_nand_controller *hsmc_nc; |
| 2029 | int ret; |
| 2030 | |
| 2031 | ret = atmel_nand_controller_remove_nands(nc); |
| 2032 | if (ret) |
| 2033 | return ret; |
| 2034 | |
| 2035 | hsmc_nc = container_of(nc, struct atmel_hsmc_nand_controller, base); |
| 2036 | |
| 2037 | if (hsmc_nc->clk) { |
| 2038 | clk_disable_unprepare(hsmc_nc->clk); |
| 2039 | devm_clk_put(nc->dev, hsmc_nc->clk); |
| 2040 | } |
| 2041 | |
| 2042 | return 0; |
| 2043 | } |
| 2044 | |
| 2045 | static int |
| 2046 | atmel_hsmc_nand_controller_probe(struct udevice *dev, |
| 2047 | const struct atmel_nand_controller_caps *caps) |
| 2048 | { |
| 2049 | struct atmel_hsmc_nand_controller *nc; |
| 2050 | int ret; |
| 2051 | |
| 2052 | nc = devm_kzalloc(dev, sizeof(*nc), GFP_KERNEL); |
| 2053 | if (!nc) |
| 2054 | return -ENOMEM; |
| 2055 | |
| 2056 | ret = atmel_nand_controller_init(&nc->base, dev, caps); |
| 2057 | if (ret) |
| 2058 | return ret; |
| 2059 | |
| 2060 | ret = atmel_hsmc_nand_controller_init(nc); |
| 2061 | if (ret) |
| 2062 | return ret; |
| 2063 | |
| 2064 | /* Make sure all irqs are masked before registering our IRQ handler. */ |
| 2065 | regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IDR, 0xffffffff); |
| 2066 | |
| 2067 | /* Initial NFC configuration. */ |
| 2068 | regmap_write(nc->base.smc, ATMEL_HSMC_NFC_CFG, |
| 2069 | ATMEL_HSMC_NFC_CFG_DTO_MAX); |
| 2070 | |
| 2071 | ret = atmel_nand_controller_add_nands(&nc->base); |
| 2072 | if (ret) |
| 2073 | goto err; |
| 2074 | |
| 2075 | return 0; |
| 2076 | |
| 2077 | err: |
| 2078 | atmel_hsmc_nand_controller_remove(&nc->base); |
| 2079 | |
| 2080 | return ret; |
| 2081 | } |
| 2082 | |
| 2083 | static const struct atmel_nand_controller_ops atmel_hsmc_nc_ops = { |
| 2084 | .probe = atmel_hsmc_nand_controller_probe, |
| 2085 | .remove = atmel_hsmc_nand_controller_remove, |
| 2086 | .ecc_init = atmel_hsmc_nand_ecc_init, |
| 2087 | .nand_init = atmel_hsmc_nand_init, |
| 2088 | .setup_data_interface = atmel_hsmc_nand_setup_data_interface, |
| 2089 | }; |
| 2090 | |
| 2091 | static const struct atmel_nand_controller_caps atmel_sama5_nc_caps = { |
| 2092 | .has_dma = true, |
| 2093 | .ale_offs = BIT(21), |
| 2094 | .cle_offs = BIT(22), |
| 2095 | .ops = &atmel_hsmc_nc_ops, |
| 2096 | }; |
| 2097 | |
| 2098 | static int |
| 2099 | atmel_smc_nand_controller_probe(struct udevice *dev, |
| 2100 | const struct atmel_nand_controller_caps *caps) |
| 2101 | { |
| 2102 | struct atmel_smc_nand_controller *nc; |
| 2103 | int ret; |
| 2104 | |
| 2105 | nc = devm_kzalloc(dev, sizeof(*nc), GFP_KERNEL); |
| 2106 | if (!nc) |
| 2107 | return -ENOMEM; |
| 2108 | |
| 2109 | ret = atmel_nand_controller_init(&nc->base, dev, caps); |
| 2110 | if (ret) |
| 2111 | return ret; |
| 2112 | |
| 2113 | ret = atmel_smc_nand_controller_init(nc); |
| 2114 | if (ret) |
| 2115 | return ret; |
| 2116 | |
| 2117 | return atmel_nand_controller_add_nands(&nc->base); |
| 2118 | } |
| 2119 | |
| 2120 | static int |
| 2121 | atmel_smc_nand_controller_remove(struct atmel_nand_controller *nc) |
| 2122 | { |
| 2123 | int ret; |
| 2124 | |
| 2125 | ret = atmel_nand_controller_remove_nands(nc); |
| 2126 | if (ret) |
| 2127 | return ret; |
| 2128 | |
| 2129 | return 0; |
| 2130 | } |
| 2131 | |
| 2132 | /* |
| 2133 | * The SMC reg layout of at91rm9200 is completely different which prevents us |
| 2134 | * from re-using atmel_smc_nand_setup_data_interface() for the |
| 2135 | * ->setup_data_interface() hook. |
| 2136 | * At this point, there's no support for the at91rm9200 SMC IP, so we leave |
| 2137 | * ->setup_data_interface() unassigned. |
| 2138 | */ |
| 2139 | static const struct atmel_nand_controller_ops at91rm9200_nc_ops = { |
| 2140 | .probe = atmel_smc_nand_controller_probe, |
| 2141 | .remove = atmel_smc_nand_controller_remove, |
| 2142 | .ecc_init = atmel_nand_ecc_init, |
| 2143 | .nand_init = atmel_smc_nand_init, |
| 2144 | }; |
| 2145 | |
| 2146 | static const struct atmel_nand_controller_caps atmel_rm9200_nc_caps = { |
| 2147 | .ale_offs = BIT(21), |
| 2148 | .cle_offs = BIT(22), |
| 2149 | .ebi_csa_regmap_name = "atmel,matrix", |
| 2150 | .ops = &at91rm9200_nc_ops, |
| 2151 | }; |
| 2152 | |
| 2153 | static const struct atmel_nand_controller_ops atmel_smc_nc_ops = { |
| 2154 | .probe = atmel_smc_nand_controller_probe, |
| 2155 | .remove = atmel_smc_nand_controller_remove, |
| 2156 | .ecc_init = atmel_nand_ecc_init, |
| 2157 | .nand_init = atmel_smc_nand_init, |
| 2158 | .setup_data_interface = atmel_smc_nand_setup_data_interface, |
| 2159 | }; |
| 2160 | |
| 2161 | static const struct atmel_nand_controller_caps atmel_sam9260_nc_caps = { |
| 2162 | .ale_offs = BIT(21), |
| 2163 | .cle_offs = BIT(22), |
| 2164 | .ebi_csa_regmap_name = "atmel,matrix", |
| 2165 | .ops = &atmel_smc_nc_ops, |
| 2166 | }; |
| 2167 | |
| 2168 | static const struct atmel_nand_controller_caps atmel_sam9261_nc_caps = { |
| 2169 | .ale_offs = BIT(22), |
| 2170 | .cle_offs = BIT(21), |
| 2171 | .ebi_csa_regmap_name = "atmel,matrix", |
| 2172 | .ops = &atmel_smc_nc_ops, |
| 2173 | }; |
| 2174 | |
| 2175 | static const struct atmel_nand_controller_caps atmel_sam9g45_nc_caps = { |
| 2176 | .has_dma = true, |
| 2177 | .ale_offs = BIT(21), |
| 2178 | .cle_offs = BIT(22), |
| 2179 | .ebi_csa_regmap_name = "atmel,matrix", |
| 2180 | .ops = &atmel_smc_nc_ops, |
| 2181 | }; |
| 2182 | |
| 2183 | static const struct atmel_nand_controller_caps microchip_sam9x60_nc_caps = { |
| 2184 | .has_dma = true, |
| 2185 | .ale_offs = BIT(21), |
| 2186 | .cle_offs = BIT(22), |
| 2187 | .ebi_csa_regmap_name = "microchip,sfr", |
| 2188 | .ops = &atmel_smc_nc_ops, |
| 2189 | }; |
| 2190 | |
| 2191 | /* Only used to parse old bindings. */ |
| 2192 | static const struct atmel_nand_controller_caps atmel_rm9200_nand_caps = { |
| 2193 | .ale_offs = BIT(21), |
| 2194 | .cle_offs = BIT(22), |
| 2195 | .ops = &atmel_smc_nc_ops, |
| 2196 | .legacy_of_bindings = true, |
| 2197 | }; |
| 2198 | |
| 2199 | static const struct udevice_id atmel_nand_controller_of_ids[] = { |
| 2200 | { |
| 2201 | .compatible = "atmel,at91rm9200-nand-controller", |
| 2202 | .data = (ulong)&atmel_rm9200_nc_caps, |
| 2203 | }, |
| 2204 | { |
| 2205 | .compatible = "atmel,at91sam9260-nand-controller", |
| 2206 | .data = (ulong)&atmel_sam9260_nc_caps, |
| 2207 | }, |
| 2208 | { |
| 2209 | .compatible = "atmel,at91sam9261-nand-controller", |
| 2210 | .data = (ulong)&atmel_sam9261_nc_caps, |
| 2211 | }, |
| 2212 | { |
| 2213 | .compatible = "atmel,at91sam9g45-nand-controller", |
| 2214 | .data = (ulong)&atmel_sam9g45_nc_caps, |
| 2215 | }, |
| 2216 | { |
| 2217 | .compatible = "atmel,sama5d3-nand-controller", |
| 2218 | .data = (ulong)&atmel_sama5_nc_caps, |
| 2219 | }, |
| 2220 | { |
| 2221 | .compatible = "microchip,sam9x60-nand-controller", |
| 2222 | .data = (ulong)µchip_sam9x60_nc_caps, |
| 2223 | }, |
| 2224 | /* Support for old/deprecated bindings: */ |
| 2225 | { |
| 2226 | .compatible = "atmel,at91rm9200-nand", |
| 2227 | .data = (ulong)&atmel_rm9200_nand_caps, |
| 2228 | }, |
| 2229 | { |
| 2230 | .compatible = "atmel,sama5d4-nand", |
| 2231 | .data = (ulong)&atmel_rm9200_nand_caps, |
| 2232 | }, |
| 2233 | { |
| 2234 | .compatible = "atmel,sama5d2-nand", |
| 2235 | .data = (ulong)&atmel_rm9200_nand_caps, |
| 2236 | }, |
| 2237 | { /* sentinel */ }, |
| 2238 | }; |
| 2239 | |
| 2240 | static int atmel_nand_controller_probe(struct udevice *dev) |
| 2241 | { |
| 2242 | const struct atmel_nand_controller_caps *caps; |
| 2243 | struct udevice *pmecc_dev; |
| 2244 | |
| 2245 | caps = (struct atmel_nand_controller_caps *)dev_get_driver_data(dev); |
| 2246 | if (!caps) { |
| 2247 | printf("Could not retrieve NFC caps\n"); |
| 2248 | return -EINVAL; |
| 2249 | } |
| 2250 | |
| 2251 | /* Probe pmecc driver */ |
| 2252 | if (uclass_get_device(UCLASS_MTD, 1, &pmecc_dev)) { |
| 2253 | printf("%s: get device fail\n", __func__); |
| 2254 | return -EINVAL; |
| 2255 | } |
| 2256 | |
| 2257 | return caps->ops->probe(dev, caps); |
| 2258 | } |
| 2259 | |
| 2260 | static int atmel_nand_controller_remove(struct udevice *dev) |
| 2261 | { |
| 2262 | struct atmel_nand_controller *nc; |
| 2263 | |
| 2264 | nc = (struct atmel_nand_controller *)dev_get_driver_data(dev); |
| 2265 | |
| 2266 | return nc->caps->ops->remove(nc); |
| 2267 | } |
| 2268 | |
| 2269 | U_BOOT_DRIVER(atmel_nand_controller) = { |
| 2270 | .name = "atmel-nand-controller", |
| 2271 | .id = UCLASS_MTD, |
| 2272 | .of_match = atmel_nand_controller_of_ids, |
| 2273 | .probe = atmel_nand_controller_probe, |
| 2274 | .remove = atmel_nand_controller_remove, |
| 2275 | }; |
| 2276 | |
| 2277 | void board_nand_init(void) |
| 2278 | { |
| 2279 | struct udevice *dev; |
| 2280 | int ret; |
| 2281 | |
| 2282 | ret = uclass_get_device_by_driver(UCLASS_MTD, |
| 2283 | DM_DRIVER_GET(atmel_nand_controller), |
| 2284 | &dev); |
| 2285 | if (ret && ret != -ENODEV) |
| 2286 | printf("Failed to initialize NAND controller. (error %d)\n", |
| 2287 | ret); |
| 2288 | } |