blob: 0e61c7b5d7fad1164efe5f51e4c267e904df9a36 [file] [log] [blame]
Tom Rini10e47792018-05-06 17:58:06 -04001// SPDX-License-Identifier: GPL-2.0+
Simon Glassa9a44262015-04-29 22:25:59 -06002/*
3 * Copyright (C) 2015 Google, Inc
4 *
Simon Glassa9a44262015-04-29 22:25:59 -06005 * Based on code from the coreboot file of the same name
6 */
7
8#include <common.h>
9#include <cpu.h>
10#include <dm.h>
11#include <errno.h>
Simon Glass0f2af882020-05-10 11:40:05 -060012#include <log.h>
Simon Glassa9a44262015-04-29 22:25:59 -060013#include <malloc.h>
Miao Yan92106272016-05-22 19:37:17 -070014#include <qfw.h>
Simon Glassa9a44262015-04-29 22:25:59 -060015#include <asm/atomic.h>
16#include <asm/cpu.h>
17#include <asm/interrupt.h>
Simon Glass4a30bbb2020-07-17 08:48:16 -060018#include <asm/io.h>
Simon Glassa9a44262015-04-29 22:25:59 -060019#include <asm/lapic.h>
Simon Glassc17d4502016-03-11 22:07:09 -070020#include <asm/microcode.h>
Simon Glassa9a44262015-04-29 22:25:59 -060021#include <asm/mp.h>
Bin Menge5d05002015-06-23 12:18:50 +080022#include <asm/msr.h>
Simon Glassa9a44262015-04-29 22:25:59 -060023#include <asm/mtrr.h>
Bin Menge5d05002015-06-23 12:18:50 +080024#include <asm/processor.h>
Simon Glassa9a44262015-04-29 22:25:59 -060025#include <asm/sipi.h>
26#include <dm/device-internal.h>
27#include <dm/uclass-internal.h>
Miao Yan35f54b22016-01-07 01:32:04 -080028#include <dm/lists.h>
29#include <dm/root.h>
Simon Glassdbd79542020-05-10 11:40:11 -060030#include <linux/delay.h>
Simon Glassa9a44262015-04-29 22:25:59 -060031#include <linux/linkage.h>
32
Simon Glassdaa93d92015-07-31 09:31:31 -060033DECLARE_GLOBAL_DATA_PTR;
34
Simon Glass00906cb2020-07-17 08:48:30 -060035/*
36 * Setting up multiprocessing
37 *
38 * See https://www.intel.com/content/www/us/en/intelligent-systems/intel-boot-loader-development-kit/minimal-intel-architecture-boot-loader-paper.html
39 *
40 * Note that this file refers to the boot CPU (the one U-Boot is running on) as
41 * the BSP (BootStrap Processor) and the others as APs (Application Processors).
42 *
43 * This module works by loading some setup code into RAM at AP_DEFAULT_BASE and
44 * telling each AP to execute it. The code that each AP runs is in
45 * sipi_vector.S (see ap_start16) which includes a struct sipi_params at the
46 * end of it. Those parameters are set up by the C code.
47
48 * Setting up is handled by load_sipi_vector(). It inits the common block of
49 * parameters (sipi_params) which tell the APs what to do. This block includes
50 * microcode and the MTTRs (Memory-Type-Range Registers) from the main CPU.
51 * There is also an ap_count which each AP increments as it starts up, so the
52 * BSP can tell how many checked in.
53 *
54 * The APs are started with a SIPI (Startup Inter-Processor Interrupt) which
55 * tells an AP to start executing at a particular address, in this case
56 * AP_DEFAULT_BASE which contains the code copied from ap_start16. This protocol
57 * is handled by start_aps().
58 *
59 * After being started, each AP runs the code in ap_start16, switches to 32-bit
60 * mode, runs the code at ap_start, then jumps to c_handler which is ap_init().
61 * This runs a very simple 'flight plan' described in mp_steps(). This sets up
62 * the CPU and waits for further instructions by looking at its entry in
63 * ap_callbacks[]. Note that the flight plan is only actually run for each CPU
64 * in bsp_do_flight_plan(): once the BSP completes each flight record, it sets
65 * mp_flight_record->barrier to 1 to allow the APs to executed the record one
66 * by one.
67 *
68 * CPUS are numbered sequentially from 0 using the device tree:
69 *
70 * cpus {
71 * u-boot,dm-pre-reloc;
72 * #address-cells = <1>;
73 * #size-cells = <0>;
74 *
75 * cpu@0 {
76 * u-boot,dm-pre-reloc;
77 * device_type = "cpu";
78 * compatible = "intel,apl-cpu";
79 * reg = <0>;
80 * intel,apic-id = <0>;
81 * };
82 *
83 * cpu@1 {
84 * device_type = "cpu";
85 * compatible = "intel,apl-cpu";
86 * reg = <1>;
87 * intel,apic-id = <2>;
88 * };
89 *
Simon Glass6feac812020-12-16 21:20:22 -070090 * Here the 'reg' property is the CPU number and then is placed in dev_seq(cpu)
Simon Glass00906cb2020-07-17 08:48:30 -060091 * so that we can index into ap_callbacks[] using that. The APIC ID is different
92 * and may not be sequential (it typically is if hyperthreading is supported).
93 *
94 * Once APs are inited they wait in ap_wait_for_instruction() for instructions.
95 * Instructions come in the form of a function to run. This logic is in
96 * mp_run_on_cpus() which supports running on any one AP, all APs, just the BSP
97 * or all CPUs. The BSP logic is handled directly in mp_run_on_cpus(), by
98 * calling the function. For the APs, callback information is stored in a
99 * single, common struct mp_callback and a pointer to this is written to each
100 * AP's slot in ap_callbacks[] by run_ap_work(). All APs get the message even
101 * if it is only for one of them. When an AP notices a message it checks whether
102 * it should call the function (see check in ap_wait_for_instruction()) and then
103 * does so if needed. After that it sets its slot to NULL to indicate it is
104 * done.
105 *
106 * While U-Boot is running it can use mp_run_on_cpus() to run code on the APs.
107 * An example of this is the 'mtrr' command which allows reading and changing
108 * the MTRRs on all CPUs.
109 *
110 * Before U-Boot exits it calls mp_park_aps() which tells all CPUs to halt by
111 * executing a 'hlt' instruction. That allows them to be used by Linux when it
112 * starts up.
113 */
114
Simon Glassa9a44262015-04-29 22:25:59 -0600115/* This also needs to match the sipi.S assembly code for saved MSR encoding */
Simon Glass00906cb2020-07-17 08:48:30 -0600116struct __packed saved_msr {
Simon Glassa9a44262015-04-29 22:25:59 -0600117 uint32_t index;
118 uint32_t lo;
119 uint32_t hi;
Simon Glass00906cb2020-07-17 08:48:30 -0600120};
Simon Glassa9a44262015-04-29 22:25:59 -0600121
Simon Glass00906cb2020-07-17 08:48:30 -0600122/**
123 * struct mp_flight_plan - Holds the flight plan
124 *
125 * @num_records: Number of flight records
126 * @records: Pointer to each record
127 */
Simon Glassa9a44262015-04-29 22:25:59 -0600128struct mp_flight_plan {
129 int num_records;
130 struct mp_flight_record *records;
131};
132
Simon Glass4a30bbb2020-07-17 08:48:16 -0600133/**
134 * struct mp_callback - Callback information for APs
135 *
136 * @func: Function to run
137 * @arg: Argument to pass to the function
Simon Glass6feac812020-12-16 21:20:22 -0700138 * @logical_cpu_number: Either a CPU number (i.e. dev_seq(cpu) or a special
Simon Glass4a30bbb2020-07-17 08:48:16 -0600139 * value like MP_SELECT_BSP. It tells the AP whether it should process this
140 * callback
141 */
142struct mp_callback {
Simon Glass6871dff2020-07-17 08:48:19 -0600143 mp_run_func func;
Simon Glass4a30bbb2020-07-17 08:48:16 -0600144 void *arg;
145 int logical_cpu_number;
146};
147
Simon Glass00906cb2020-07-17 08:48:30 -0600148/* Stores the flight plan so that APs can find it */
Simon Glassa9a44262015-04-29 22:25:59 -0600149static struct mp_flight_plan mp_info;
150
Simon Glass4a30bbb2020-07-17 08:48:16 -0600151/*
152 * ap_callbacks - Callback mailbox array
153 *
154 * Array of callback, one entry for each available CPU, indexed by the CPU
Simon Glass6feac812020-12-16 21:20:22 -0700155 * number, which is dev_seq(cpu). The entry for the main CPU is never used.
Simon Glass4a30bbb2020-07-17 08:48:16 -0600156 * When this is NULL, there is no pending work for the CPU to run. When
157 * non-NULL it points to the mp_callback structure. This is shared between all
158 * CPUs, so should only be written by the main CPU.
159 */
160static struct mp_callback **ap_callbacks;
Simon Glassa9a44262015-04-29 22:25:59 -0600161
162static inline void barrier_wait(atomic_t *b)
163{
164 while (atomic_read(b) == 0)
165 asm("pause");
166 mfence();
167}
168
169static inline void release_barrier(atomic_t *b)
170{
171 mfence();
172 atomic_set(b, 1);
173}
174
Bin Menge5d05002015-06-23 12:18:50 +0800175static inline void stop_this_cpu(void)
176{
177 /* Called by an AP when it is ready to halt and wait for a new task */
178 for (;;)
179 cpu_hlt();
180}
181
Simon Glassa9a44262015-04-29 22:25:59 -0600182/* Returns 1 if timeout waiting for APs. 0 if target APs found */
183static int wait_for_aps(atomic_t *val, int target, int total_delay,
184 int delay_step)
185{
186 int timeout = 0;
187 int delayed = 0;
188
189 while (atomic_read(val) != target) {
190 udelay(delay_step);
191 delayed += delay_step;
192 if (delayed >= total_delay) {
193 timeout = 1;
194 break;
195 }
196 }
197
198 return timeout;
199}
200
201static void ap_do_flight_plan(struct udevice *cpu)
202{
203 int i;
204
205 for (i = 0; i < mp_info.num_records; i++) {
206 struct mp_flight_record *rec = &mp_info.records[i];
207
208 atomic_inc(&rec->cpus_entered);
209 barrier_wait(&rec->barrier);
210
211 if (rec->ap_call != NULL)
212 rec->ap_call(cpu, rec->ap_arg);
213 }
214}
215
Miao Yan2ee10002016-01-07 01:32:02 -0800216static int find_cpu_by_apic_id(int apic_id, struct udevice **devp)
Simon Glassa9a44262015-04-29 22:25:59 -0600217{
218 struct udevice *dev;
219
220 *devp = NULL;
221 for (uclass_find_first_device(UCLASS_CPU, &dev);
222 dev;
223 uclass_find_next_device(&dev)) {
Simon Glassb75b15b2020-12-03 16:55:23 -0700224 struct cpu_plat *plat = dev_get_parent_plat(dev);
Simon Glassa9a44262015-04-29 22:25:59 -0600225
226 if (plat->cpu_id == apic_id) {
227 *devp = dev;
228 return 0;
229 }
230 }
231
232 return -ENOENT;
233}
234
235/*
236 * By the time APs call ap_init() caching has been setup, and microcode has
237 * been loaded
238 */
239static void ap_init(unsigned int cpu_index)
240{
241 struct udevice *dev;
242 int apic_id;
243 int ret;
244
245 /* Ensure the local apic is enabled */
246 enable_lapic();
247
248 apic_id = lapicid();
Miao Yan2ee10002016-01-07 01:32:02 -0800249 ret = find_cpu_by_apic_id(apic_id, &dev);
Simon Glassa9a44262015-04-29 22:25:59 -0600250 if (ret) {
251 debug("Unknown CPU apic_id %x\n", apic_id);
252 goto done;
253 }
254
255 debug("AP: slot %d apic_id %x, dev %s\n", cpu_index, apic_id,
256 dev ? dev->name : "(apic_id not found)");
257
Simon Glass4a30bbb2020-07-17 08:48:16 -0600258 /*
259 * Walk the flight plan, which only returns if CONFIG_SMP_AP_WORK is not
260 * enabled
261 */
Simon Glassa9a44262015-04-29 22:25:59 -0600262 ap_do_flight_plan(dev);
263
Simon Glassa9a44262015-04-29 22:25:59 -0600264done:
265 stop_this_cpu();
266}
267
268static const unsigned int fixed_mtrrs[NUM_FIXED_MTRRS] = {
269 MTRR_FIX_64K_00000_MSR, MTRR_FIX_16K_80000_MSR, MTRR_FIX_16K_A0000_MSR,
270 MTRR_FIX_4K_C0000_MSR, MTRR_FIX_4K_C8000_MSR, MTRR_FIX_4K_D0000_MSR,
271 MTRR_FIX_4K_D8000_MSR, MTRR_FIX_4K_E0000_MSR, MTRR_FIX_4K_E8000_MSR,
272 MTRR_FIX_4K_F0000_MSR, MTRR_FIX_4K_F8000_MSR,
273};
274
275static inline struct saved_msr *save_msr(int index, struct saved_msr *entry)
276{
277 msr_t msr;
278
279 msr = msr_read(index);
280 entry->index = index;
281 entry->lo = msr.lo;
282 entry->hi = msr.hi;
283
284 /* Return the next entry */
285 entry++;
286 return entry;
287}
288
289static int save_bsp_msrs(char *start, int size)
290{
291 int msr_count;
292 int num_var_mtrrs;
293 struct saved_msr *msr_entry;
294 int i;
295 msr_t msr;
296
297 /* Determine number of MTRRs need to be saved */
298 msr = msr_read(MTRR_CAP_MSR);
299 num_var_mtrrs = msr.lo & 0xff;
300
301 /* 2 * num_var_mtrrs for base and mask. +1 for IA32_MTRR_DEF_TYPE */
302 msr_count = 2 * num_var_mtrrs + NUM_FIXED_MTRRS + 1;
303
304 if ((msr_count * sizeof(struct saved_msr)) > size) {
Simon Glass17dbe892016-03-06 19:28:22 -0700305 printf("Cannot mirror all %d msrs\n", msr_count);
Simon Glassa9a44262015-04-29 22:25:59 -0600306 return -ENOSPC;
307 }
308
309 msr_entry = (void *)start;
310 for (i = 0; i < NUM_FIXED_MTRRS; i++)
311 msr_entry = save_msr(fixed_mtrrs[i], msr_entry);
312
313 for (i = 0; i < num_var_mtrrs; i++) {
314 msr_entry = save_msr(MTRR_PHYS_BASE_MSR(i), msr_entry);
315 msr_entry = save_msr(MTRR_PHYS_MASK_MSR(i), msr_entry);
316 }
317
318 msr_entry = save_msr(MTRR_DEF_TYPE_MSR, msr_entry);
319
320 return msr_count;
321}
322
Miao Yan60677622016-01-07 01:32:03 -0800323static int load_sipi_vector(atomic_t **ap_countp, int num_cpus)
Simon Glassa9a44262015-04-29 22:25:59 -0600324{
325 struct sipi_params_16bit *params16;
326 struct sipi_params *params;
327 static char msr_save[512];
328 char *stack;
329 ulong addr;
330 int code_len;
331 int size;
332 int ret;
333
334 /* Copy in the code */
335 code_len = ap_start16_code_end - ap_start16;
336 debug("Copying SIPI code to %x: %d bytes\n", AP_DEFAULT_BASE,
337 code_len);
338 memcpy((void *)AP_DEFAULT_BASE, ap_start16, code_len);
339
340 addr = AP_DEFAULT_BASE + (ulong)sipi_params_16bit - (ulong)ap_start16;
341 params16 = (struct sipi_params_16bit *)addr;
342 params16->ap_start = (uint32_t)ap_start;
343 params16->gdt = (uint32_t)gd->arch.gdt;
344 params16->gdt_limit = X86_GDT_SIZE - 1;
345 debug("gdt = %x, gdt_limit = %x\n", params16->gdt, params16->gdt_limit);
346
347 params = (struct sipi_params *)sipi_params;
348 debug("SIPI 32-bit params at %p\n", params);
349 params->idt_ptr = (uint32_t)x86_get_idt();
350
351 params->stack_size = CONFIG_AP_STACK_SIZE;
Miao Yan60677622016-01-07 01:32:03 -0800352 size = params->stack_size * num_cpus;
Stephen Warren5923b592016-02-12 14:27:56 -0700353 stack = memalign(4096, size);
Simon Glassa9a44262015-04-29 22:25:59 -0600354 if (!stack)
355 return -ENOMEM;
356 params->stack_top = (u32)(stack + size);
Andy Shevchenko43b3ac52017-02-17 16:49:00 +0300357#if !defined(CONFIG_QEMU) && !defined(CONFIG_HAVE_FSP) && \
358 !defined(CONFIG_INTEL_MID)
Simon Glass8dda5872016-03-11 22:07:11 -0700359 params->microcode_ptr = ucode_base;
360 debug("Microcode at %x\n", params->microcode_ptr);
361#endif
Simon Glassa9a44262015-04-29 22:25:59 -0600362 params->msr_table_ptr = (u32)msr_save;
363 ret = save_bsp_msrs(msr_save, sizeof(msr_save));
364 if (ret < 0)
365 return ret;
366 params->msr_count = ret;
367
368 params->c_handler = (uint32_t)&ap_init;
369
370 *ap_countp = &params->ap_count;
371 atomic_set(*ap_countp, 0);
372 debug("SIPI vector is ready\n");
373
374 return 0;
375}
376
377static int check_cpu_devices(int expected_cpus)
378{
379 int i;
380
381 for (i = 0; i < expected_cpus; i++) {
382 struct udevice *dev;
383 int ret;
384
385 ret = uclass_find_device(UCLASS_CPU, i, &dev);
386 if (ret) {
387 debug("Cannot find CPU %d in device tree\n", i);
388 return ret;
389 }
390 }
391
392 return 0;
393}
394
395/* Returns 1 for timeout. 0 on success */
Simon Glass17dbe892016-03-06 19:28:22 -0700396static int apic_wait_timeout(int total_delay, const char *msg)
Simon Glassa9a44262015-04-29 22:25:59 -0600397{
398 int total = 0;
Simon Glassa9a44262015-04-29 22:25:59 -0600399
Simon Glass17dbe892016-03-06 19:28:22 -0700400 if (!(lapic_read(LAPIC_ICR) & LAPIC_ICR_BUSY))
401 return 0;
402
403 debug("Waiting for %s...", msg);
Simon Glassa9a44262015-04-29 22:25:59 -0600404 while (lapic_read(LAPIC_ICR) & LAPIC_ICR_BUSY) {
Simon Glass17dbe892016-03-06 19:28:22 -0700405 udelay(50);
406 total += 50;
Simon Glassa9a44262015-04-29 22:25:59 -0600407 if (total >= total_delay) {
Simon Glass17dbe892016-03-06 19:28:22 -0700408 debug("timed out: aborting\n");
409 return -ETIMEDOUT;
Simon Glassa9a44262015-04-29 22:25:59 -0600410 }
411 }
Simon Glass17dbe892016-03-06 19:28:22 -0700412 debug("done\n");
Simon Glassa9a44262015-04-29 22:25:59 -0600413
Simon Glass17dbe892016-03-06 19:28:22 -0700414 return 0;
Simon Glassa9a44262015-04-29 22:25:59 -0600415}
416
Simon Glassa3ee7b82020-07-17 08:48:10 -0600417/**
418 * start_aps() - Start up the APs and count how many we find
419 *
420 * This is called on the boot processor to start up all the other processors
421 * (here called APs).
422 *
423 * @num_aps: Number of APs we expect to find
424 * @ap_count: Initially zero. Incremented by this function for each AP found
425 * @return 0 if all APs were set up correctly or there are none to set up,
426 * -ENOSPC if the SIPI vector is too high in memory,
427 * -ETIMEDOUT if the ICR is busy or the second SIPI fails to complete
428 * -EIO if not all APs check in correctly
429 */
430static int start_aps(int num_aps, atomic_t *ap_count)
Simon Glassa9a44262015-04-29 22:25:59 -0600431{
432 int sipi_vector;
433 /* Max location is 4KiB below 1MiB */
434 const int max_vector_loc = ((1 << 20) - (1 << 12)) >> 12;
435
Simon Glassa3ee7b82020-07-17 08:48:10 -0600436 if (num_aps == 0)
Simon Glassa9a44262015-04-29 22:25:59 -0600437 return 0;
438
439 /* The vector is sent as a 4k aligned address in one byte */
440 sipi_vector = AP_DEFAULT_BASE >> 12;
441
442 if (sipi_vector > max_vector_loc) {
443 printf("SIPI vector too large! 0x%08x\n",
444 sipi_vector);
Simon Glassf9b58002019-04-25 21:58:41 -0600445 return -ENOSPC;
Simon Glassa9a44262015-04-29 22:25:59 -0600446 }
447
Simon Glassa3ee7b82020-07-17 08:48:10 -0600448 debug("Attempting to start %d APs\n", num_aps);
Simon Glassa9a44262015-04-29 22:25:59 -0600449
Simon Glass17dbe892016-03-06 19:28:22 -0700450 if (apic_wait_timeout(1000, "ICR not to be busy"))
451 return -ETIMEDOUT;
Simon Glassa9a44262015-04-29 22:25:59 -0600452
453 /* Send INIT IPI to all but self */
Bin Menge5d05002015-06-23 12:18:50 +0800454 lapic_write(LAPIC_ICR2, SET_LAPIC_DEST_FIELD(0));
455 lapic_write(LAPIC_ICR, LAPIC_DEST_ALLBUT | LAPIC_INT_ASSERT |
456 LAPIC_DM_INIT);
Simon Glass17dbe892016-03-06 19:28:22 -0700457 debug("Waiting for 10ms after sending INIT\n");
Simon Glassa9a44262015-04-29 22:25:59 -0600458 mdelay(10);
459
460 /* Send 1st SIPI */
Simon Glass17dbe892016-03-06 19:28:22 -0700461 if (apic_wait_timeout(1000, "ICR not to be busy"))
462 return -ETIMEDOUT;
Simon Glassa9a44262015-04-29 22:25:59 -0600463
Bin Menge5d05002015-06-23 12:18:50 +0800464 lapic_write(LAPIC_ICR2, SET_LAPIC_DEST_FIELD(0));
465 lapic_write(LAPIC_ICR, LAPIC_DEST_ALLBUT | LAPIC_INT_ASSERT |
466 LAPIC_DM_STARTUP | sipi_vector);
Simon Glass17dbe892016-03-06 19:28:22 -0700467 if (apic_wait_timeout(10000, "first SIPI to complete"))
468 return -ETIMEDOUT;
Simon Glassa9a44262015-04-29 22:25:59 -0600469
470 /* Wait for CPUs to check in up to 200 us */
Simon Glassa3ee7b82020-07-17 08:48:10 -0600471 wait_for_aps(ap_count, num_aps, 200, 15);
Simon Glassa9a44262015-04-29 22:25:59 -0600472
473 /* Send 2nd SIPI */
Simon Glass17dbe892016-03-06 19:28:22 -0700474 if (apic_wait_timeout(1000, "ICR not to be busy"))
475 return -ETIMEDOUT;
Simon Glassa9a44262015-04-29 22:25:59 -0600476
Bin Menge5d05002015-06-23 12:18:50 +0800477 lapic_write(LAPIC_ICR2, SET_LAPIC_DEST_FIELD(0));
478 lapic_write(LAPIC_ICR, LAPIC_DEST_ALLBUT | LAPIC_INT_ASSERT |
479 LAPIC_DM_STARTUP | sipi_vector);
Simon Glass17dbe892016-03-06 19:28:22 -0700480 if (apic_wait_timeout(10000, "second SIPI to complete"))
481 return -ETIMEDOUT;
Simon Glassa9a44262015-04-29 22:25:59 -0600482
483 /* Wait for CPUs to check in */
Simon Glassa3ee7b82020-07-17 08:48:10 -0600484 if (wait_for_aps(ap_count, num_aps, 10000, 50)) {
Simon Glass17dbe892016-03-06 19:28:22 -0700485 debug("Not all APs checked in: %d/%d\n",
Simon Glassa3ee7b82020-07-17 08:48:10 -0600486 atomic_read(ap_count), num_aps);
Simon Glassf9b58002019-04-25 21:58:41 -0600487 return -EIO;
Simon Glassa9a44262015-04-29 22:25:59 -0600488 }
489
490 return 0;
491}
492
Simon Glass3307d0c2020-07-17 08:48:11 -0600493/**
494 * bsp_do_flight_plan() - Do the flight plan on the BSP
495 *
496 * This runs the flight plan on the main CPU used to boot U-Boot
497 *
498 * @cpu: Device for the main CPU
499 * @plan: Flight plan to run
500 * @num_aps: Number of APs (CPUs other than the BSP)
501 * @returns 0 on success, -ETIMEDOUT if an AP failed to come up
502 */
503static int bsp_do_flight_plan(struct udevice *cpu, struct mp_flight_plan *plan,
504 int num_aps)
Simon Glassa9a44262015-04-29 22:25:59 -0600505{
506 int i;
507 int ret = 0;
508 const int timeout_us = 100000;
509 const int step_us = 100;
Simon Glassa9a44262015-04-29 22:25:59 -0600510
Simon Glasse40633d2020-07-17 08:48:08 -0600511 for (i = 0; i < plan->num_records; i++) {
512 struct mp_flight_record *rec = &plan->records[i];
Simon Glassa9a44262015-04-29 22:25:59 -0600513
514 /* Wait for APs if the record is not released */
515 if (atomic_read(&rec->barrier) == 0) {
516 /* Wait for the APs to check in */
517 if (wait_for_aps(&rec->cpus_entered, num_aps,
518 timeout_us, step_us)) {
Simon Glass17dbe892016-03-06 19:28:22 -0700519 debug("MP record %d timeout\n", i);
Simon Glassf9b58002019-04-25 21:58:41 -0600520 ret = -ETIMEDOUT;
Simon Glassa9a44262015-04-29 22:25:59 -0600521 }
522 }
523
524 if (rec->bsp_call != NULL)
525 rec->bsp_call(cpu, rec->bsp_arg);
526
527 release_barrier(&rec->barrier);
528 }
Simon Glass3307d0c2020-07-17 08:48:11 -0600529
Simon Glassa9a44262015-04-29 22:25:59 -0600530 return ret;
531}
532
Simon Glass653781b2020-07-17 08:48:14 -0600533/**
534 * get_bsp() - Get information about the bootstrap processor
535 *
536 * @devp: If non-NULL, returns CPU device corresponding to the BSP
537 * @cpu_countp: If non-NULL, returns the total number of CPUs
538 * @return CPU number of the BSP, or -ve on error. If multiprocessing is not
539 * enabled, returns 0
540 */
541static int get_bsp(struct udevice **devp, int *cpu_countp)
Simon Glassa9a44262015-04-29 22:25:59 -0600542{
543 char processor_name[CPU_MAX_NAME_LEN];
Simon Glass653781b2020-07-17 08:48:14 -0600544 struct udevice *dev;
Simon Glassa9a44262015-04-29 22:25:59 -0600545 int apic_id;
546 int ret;
547
548 cpu_get_name(processor_name);
Simon Glass17dbe892016-03-06 19:28:22 -0700549 debug("CPU: %s\n", processor_name);
Simon Glassa9a44262015-04-29 22:25:59 -0600550
Simon Glassa9a44262015-04-29 22:25:59 -0600551 apic_id = lapicid();
Simon Glass653781b2020-07-17 08:48:14 -0600552 ret = find_cpu_by_apic_id(apic_id, &dev);
553 if (ret < 0) {
Simon Glassa9a44262015-04-29 22:25:59 -0600554 printf("Cannot find boot CPU, APIC ID %d\n", apic_id);
555 return ret;
556 }
Simon Glass653781b2020-07-17 08:48:14 -0600557 ret = cpu_get_count(dev);
558 if (ret < 0)
559 return log_msg_ret("count", ret);
560 if (devp)
561 *devp = dev;
562 if (cpu_countp)
563 *cpu_countp = ret;
Simon Glassa9a44262015-04-29 22:25:59 -0600564
Simon Glass6feac812020-12-16 21:20:22 -0700565 return dev_seq(dev) >= 0 ? dev_seq(dev) : 0;
Simon Glassa9a44262015-04-29 22:25:59 -0600566}
567
Simon Glass4a30bbb2020-07-17 08:48:16 -0600568/**
569 * read_callback() - Read the pointer in a callback slot
570 *
571 * This is called by APs to read their callback slot to see if there is a
572 * pointer to new instructions
573 *
574 * @slot: Pointer to the AP's callback slot
575 * @return value of that pointer
576 */
577static struct mp_callback *read_callback(struct mp_callback **slot)
578{
579 dmb();
580
581 return *slot;
582}
583
584/**
585 * store_callback() - Store a pointer to the callback slot
586 *
587 * This is called by APs to write NULL into the callback slot when they have
588 * finished the work requested by the BSP.
589 *
590 * @slot: Pointer to the AP's callback slot
591 * @val: Value to write (e.g. NULL)
592 */
593static void store_callback(struct mp_callback **slot, struct mp_callback *val)
594{
595 *slot = val;
596 dmb();
597}
598
599/**
Simon Glass6871dff2020-07-17 08:48:19 -0600600 * run_ap_work() - Run a callback on selected APs
601 *
602 * This writes @callback to all APs and waits for them all to acknowledge it,
603 * Note that whether each AP actually calls the callback depends on the value
604 * of logical_cpu_number (see struct mp_callback). The logical CPU number is
605 * the CPU device's req->seq value.
606 *
607 * @callback: Callback information to pass to all APs
608 * @bsp: CPU device for the BSP
609 * @num_cpus: The number of CPUs in the system (= number of APs + 1)
610 * @expire_ms: Timeout to wait for all APs to finish, in milliseconds, or 0 for
611 * no timeout
612 * @return 0 if OK, -ETIMEDOUT if one or more APs failed to respond in time
613 */
614static int run_ap_work(struct mp_callback *callback, struct udevice *bsp,
615 int num_cpus, uint expire_ms)
616{
Simon Glass6feac812020-12-16 21:20:22 -0700617 int cur_cpu = dev_seq(bsp);
Simon Glass6871dff2020-07-17 08:48:19 -0600618 int num_aps = num_cpus - 1; /* number of non-BSPs to get this message */
619 int cpus_accepted;
620 ulong start;
621 int i;
622
623 if (!IS_ENABLED(CONFIG_SMP_AP_WORK)) {
624 printf("APs already parked. CONFIG_SMP_AP_WORK not enabled\n");
625 return -ENOTSUPP;
626 }
627
628 /* Signal to all the APs to run the func. */
629 for (i = 0; i < num_cpus; i++) {
630 if (cur_cpu != i)
631 store_callback(&ap_callbacks[i], callback);
632 }
633 mfence();
634
635 /* Wait for all the APs to signal back that call has been accepted. */
636 start = get_timer(0);
637
638 do {
639 mdelay(1);
640 cpus_accepted = 0;
641
642 for (i = 0; i < num_cpus; i++) {
643 if (cur_cpu == i)
644 continue;
645 if (!read_callback(&ap_callbacks[i]))
646 cpus_accepted++;
647 }
648
649 if (expire_ms && get_timer(start) >= expire_ms) {
650 log(UCLASS_CPU, LOGL_CRIT,
651 "AP call expired; %d/%d CPUs accepted\n",
652 cpus_accepted, num_aps);
653 return -ETIMEDOUT;
654 }
655 } while (cpus_accepted != num_aps);
656
657 /* Make sure we can see any data written by the APs */
658 mfence();
659
660 return 0;
661}
662
663/**
Simon Glass4a30bbb2020-07-17 08:48:16 -0600664 * ap_wait_for_instruction() - Wait for and process requests from the main CPU
665 *
666 * This is called by APs (here, everything other than the main boot CPU) to
667 * await instructions. They arrive in the form of a function call and argument,
668 * which is then called. This uses a simple mailbox with atomic read/set
669 *
670 * @cpu: CPU that is waiting
671 * @unused: Optional argument provided by struct mp_flight_record, not used here
672 * @return Does not return
673 */
674static int ap_wait_for_instruction(struct udevice *cpu, void *unused)
675{
676 struct mp_callback lcb;
677 struct mp_callback **per_cpu_slot;
678
679 if (!IS_ENABLED(CONFIG_SMP_AP_WORK))
680 return 0;
681
Simon Glass6feac812020-12-16 21:20:22 -0700682 per_cpu_slot = &ap_callbacks[dev_seq(cpu)];
Simon Glass4a30bbb2020-07-17 08:48:16 -0600683
684 while (1) {
685 struct mp_callback *cb = read_callback(per_cpu_slot);
686
687 if (!cb) {
688 asm ("pause");
689 continue;
690 }
691
692 /* Copy to local variable before using the value */
693 memcpy(&lcb, cb, sizeof(lcb));
694 mfence();
695 if (lcb.logical_cpu_number == MP_SELECT_ALL ||
696 lcb.logical_cpu_number == MP_SELECT_APS ||
Simon Glass6feac812020-12-16 21:20:22 -0700697 dev_seq(cpu) == lcb.logical_cpu_number)
Simon Glass4a30bbb2020-07-17 08:48:16 -0600698 lcb.func(lcb.arg);
699
700 /* Indicate we are finished */
701 store_callback(per_cpu_slot, NULL);
702 }
703
704 return 0;
705}
706
Simon Glass35ee0de2020-07-17 08:48:09 -0600707static int mp_init_cpu(struct udevice *cpu, void *unused)
708{
Simon Glassb75b15b2020-12-03 16:55:23 -0700709 struct cpu_plat *plat = dev_get_parent_plat(cpu);
Simon Glass35ee0de2020-07-17 08:48:09 -0600710
Simon Glass35ee0de2020-07-17 08:48:09 -0600711 plat->ucode_version = microcode_read_rev();
712 plat->device_id = gd->arch.x86_device;
713
714 return device_probe(cpu);
715}
716
717static struct mp_flight_record mp_steps[] = {
718 MP_FR_BLOCK_APS(mp_init_cpu, NULL, mp_init_cpu, NULL),
Simon Glass4a30bbb2020-07-17 08:48:16 -0600719 MP_FR_BLOCK_APS(ap_wait_for_instruction, NULL, NULL, NULL),
Simon Glass35ee0de2020-07-17 08:48:09 -0600720};
721
Simon Glass6871dff2020-07-17 08:48:19 -0600722int mp_run_on_cpus(int cpu_select, mp_run_func func, void *arg)
723{
724 struct mp_callback lcb = {
725 .func = func,
726 .arg = arg,
727 .logical_cpu_number = cpu_select,
728 };
729 struct udevice *dev;
730 int num_cpus;
731 int ret;
732
733 ret = get_bsp(&dev, &num_cpus);
734 if (ret < 0)
735 return log_msg_ret("bsp", ret);
736 if (cpu_select == MP_SELECT_ALL || cpu_select == MP_SELECT_BSP ||
737 cpu_select == ret) {
738 /* Run on BSP first */
739 func(arg);
740 }
741
742 if (!IS_ENABLED(CONFIG_SMP_AP_WORK) ||
743 !(gd->flags & GD_FLG_SMP_READY)) {
744 /* Allow use of this function on the BSP only */
745 if (cpu_select == MP_SELECT_BSP || !cpu_select)
746 return 0;
747 return -ENOTSUPP;
748 }
749
750 /* Allow up to 1 second for all APs to finish */
751 ret = run_ap_work(&lcb, dev, num_cpus, 1000 /* ms */);
752 if (ret)
753 return log_msg_ret("aps", ret);
754
755 return 0;
756}
757
Simon Glass32d56952020-07-17 08:48:20 -0600758static void park_this_cpu(void *unused)
759{
760 stop_this_cpu();
761}
762
763int mp_park_aps(void)
764{
765 int ret;
766
767 ret = mp_run_on_cpus(MP_SELECT_APS, park_this_cpu, NULL);
768 if (ret)
769 return log_ret(ret);
770
771 return 0;
772}
773
Simon Glass44344f52020-07-17 08:48:21 -0600774int mp_first_cpu(int cpu_select)
775{
776 struct udevice *dev;
777 int num_cpus;
778 int ret;
779
780 /*
781 * This assumes that CPUs are numbered from 0. This function tries to
782 * avoid assuming the CPU 0 is the boot CPU
783 */
784 if (cpu_select == MP_SELECT_ALL)
785 return 0; /* start with the first one */
786
787 ret = get_bsp(&dev, &num_cpus);
788 if (ret < 0)
789 return log_msg_ret("bsp", ret);
790
791 /* Return boot CPU if requested */
792 if (cpu_select == MP_SELECT_BSP)
793 return ret;
794
795 /* Return something other than the boot CPU, if APs requested */
796 if (cpu_select == MP_SELECT_APS && num_cpus > 1)
797 return ret == 0 ? 1 : 0;
798
799 /* Try to check for an invalid value */
800 if (cpu_select < 0 || cpu_select >= num_cpus)
801 return -EINVAL;
802
803 return cpu_select; /* return the only selected one */
804}
805
806int mp_next_cpu(int cpu_select, int prev_cpu)
807{
808 struct udevice *dev;
809 int num_cpus;
810 int ret;
811 int bsp;
812
813 /* If we selected the BSP or a particular single CPU, we are done */
814 if (!IS_ENABLED(CONFIG_SMP_AP_WORK) || cpu_select == MP_SELECT_BSP ||
815 cpu_select >= 0)
816 return -EFBIG;
817
818 /* Must be doing MP_SELECT_ALL or MP_SELECT_APS; return the next CPU */
819 ret = get_bsp(&dev, &num_cpus);
820 if (ret < 0)
821 return log_msg_ret("bsp", ret);
822 bsp = ret;
823
824 /* Move to the next CPU */
825 assert(prev_cpu >= 0);
826 ret = prev_cpu + 1;
827
828 /* Skip the BSP if needed */
829 if (cpu_select == MP_SELECT_APS && ret == bsp)
830 ret++;
831 if (ret >= num_cpus)
832 return -EFBIG;
833
834 return ret;
835}
836
Simon Glasse40633d2020-07-17 08:48:08 -0600837int mp_init(void)
Simon Glassa9a44262015-04-29 22:25:59 -0600838{
Simon Glass3307d0c2020-07-17 08:48:11 -0600839 int num_aps, num_cpus;
Simon Glassa9a44262015-04-29 22:25:59 -0600840 atomic_t *ap_count;
841 struct udevice *cpu;
Simon Glassebb239a2020-07-17 08:48:13 -0600842 int ret;
Simon Glassa9a44262015-04-29 22:25:59 -0600843
Simon Glass4c8243d2019-12-06 21:42:55 -0700844 if (IS_ENABLED(CONFIG_QFW)) {
845 ret = qemu_cpu_fixup();
846 if (ret)
847 return ret;
848 }
Miao Yan35f54b22016-01-07 01:32:04 -0800849
Simon Glass653781b2020-07-17 08:48:14 -0600850 ret = get_bsp(&cpu, &num_cpus);
851 if (ret < 0) {
Simon Glassa9a44262015-04-29 22:25:59 -0600852 debug("Cannot init boot CPU: err=%d\n", ret);
853 return ret;
854 }
855
Bin Mengf967f9a2015-06-17 11:15:36 +0800856 if (num_cpus < 2)
857 debug("Warning: Only 1 CPU is detected\n");
858
859 ret = check_cpu_devices(num_cpus);
Simon Glassa9a44262015-04-29 22:25:59 -0600860 if (ret)
Simon Glass653781b2020-07-17 08:48:14 -0600861 log_warning("Warning: Device tree does not describe all CPUs. Extra ones will not be started correctly\n");
Simon Glassa9a44262015-04-29 22:25:59 -0600862
Simon Glass4a30bbb2020-07-17 08:48:16 -0600863 ap_callbacks = calloc(num_cpus, sizeof(struct mp_callback *));
864 if (!ap_callbacks)
865 return -ENOMEM;
866
Simon Glassa9a44262015-04-29 22:25:59 -0600867 /* Copy needed parameters so that APs have a reference to the plan */
Simon Glasse40633d2020-07-17 08:48:08 -0600868 mp_info.num_records = ARRAY_SIZE(mp_steps);
869 mp_info.records = mp_steps;
Simon Glassa9a44262015-04-29 22:25:59 -0600870
871 /* Load the SIPI vector */
Miao Yan60677622016-01-07 01:32:03 -0800872 ret = load_sipi_vector(&ap_count, num_cpus);
Simon Glassa9a44262015-04-29 22:25:59 -0600873 if (ap_count == NULL)
Simon Glassf9b58002019-04-25 21:58:41 -0600874 return -ENOENT;
Simon Glassa9a44262015-04-29 22:25:59 -0600875
876 /*
877 * Make sure SIPI data hits RAM so the APs that come up will see
878 * the startup code even if the caches are disabled
879 */
880 wbinvd();
881
882 /* Start the APs providing number of APs and the cpus_entered field */
Bin Mengf967f9a2015-06-17 11:15:36 +0800883 num_aps = num_cpus - 1;
Simon Glassa9a44262015-04-29 22:25:59 -0600884 ret = start_aps(num_aps, ap_count);
885 if (ret) {
886 mdelay(1000);
887 debug("%d/%d eventually checked in?\n", atomic_read(ap_count),
888 num_aps);
889 return ret;
890 }
891
892 /* Walk the flight plan for the BSP */
Simon Glass3307d0c2020-07-17 08:48:11 -0600893 ret = bsp_do_flight_plan(cpu, &mp_info, num_aps);
Simon Glassa9a44262015-04-29 22:25:59 -0600894 if (ret) {
895 debug("CPU init failed: err=%d\n", ret);
896 return ret;
897 }
Simon Glass4943de62020-07-17 08:48:18 -0600898 gd->flags |= GD_FLG_SMP_READY;
Simon Glassa9a44262015-04-29 22:25:59 -0600899
900 return 0;
901}