blob: cdd54388c520d574dd73a69a15730091a65f0282 [file] [log] [blame]
Tom Warren795f9d72013-01-23 14:01:01 -07001/*
Jimmy Zhang2a544db2014-01-24 10:37:36 -07002 * Copyright (c) 2010-2014, NVIDIA CORPORATION. All rights reserved.
Tom Warren795f9d72013-01-23 14:01:01 -07003 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License
14 * along with this program. If not, see <http://www.gnu.org/licenses/>.
15 */
16
17/* Tegra SoC common clock control functions */
18
19#include <common.h>
20#include <asm/io.h>
21#include <asm/arch/clock.h>
22#include <asm/arch/tegra.h>
Stephen Warren8d1fb312015-01-19 16:25:52 -070023#include <asm/arch-tegra/ap.h>
Tom Warren795f9d72013-01-23 14:01:01 -070024#include <asm/arch-tegra/clk_rst.h>
25#include <asm/arch-tegra/timer.h>
26#include <div64.h>
27#include <fdtdec.h>
28
29/*
30 * This is our record of the current clock rate of each clock. We don't
31 * fill all of these in since we are only really interested in clocks which
32 * we use as parents.
33 */
34static unsigned pll_rate[CLOCK_ID_COUNT];
35
36/*
37 * The oscillator frequency is fixed to one of four set values. Based on this
38 * the other clocks are set up appropriately.
39 */
40static unsigned osc_freq[CLOCK_OSC_FREQ_COUNT] = {
41 13000000,
42 19200000,
43 12000000,
44 26000000,
45};
46
47/* return 1 if a peripheral ID is in range */
48#define clock_type_id_isvalid(id) ((id) >= 0 && \
49 (id) < CLOCK_TYPE_COUNT)
50
51char pllp_valid = 1; /* PLLP is set up correctly */
52
53/* return 1 if a periphc_internal_id is in range */
54#define periphc_internal_id_isvalid(id) ((id) >= 0 && \
55 (id) < PERIPHC_COUNT)
56
57/* number of clock outputs of a PLL */
58static const u8 pll_num_clkouts[] = {
59 1, /* PLLC */
60 1, /* PLLM */
61 4, /* PLLP */
62 1, /* PLLA */
63 0, /* PLLU */
64 0, /* PLLD */
65};
66
67int clock_get_osc_bypass(void)
68{
69 struct clk_rst_ctlr *clkrst =
70 (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
71 u32 reg;
72
73 reg = readl(&clkrst->crc_osc_ctrl);
74 return (reg & OSC_XOBP_MASK) >> OSC_XOBP_SHIFT;
75}
76
77/* Returns a pointer to the registers of the given pll */
78static struct clk_pll *get_pll(enum clock_id clkid)
79{
80 struct clk_rst_ctlr *clkrst =
81 (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
82
83 assert(clock_id_is_pll(clkid));
Simon Glass6017b9a2015-04-14 21:03:32 -060084 if (clkid >= (enum clock_id)TEGRA_CLK_PLLS) {
85 debug("%s: Invalid PLL\n", __func__);
86 return NULL;
87 }
Tom Warren795f9d72013-01-23 14:01:01 -070088 return &clkrst->crc_pll[clkid];
89}
90
Simon Glass6017b9a2015-04-14 21:03:32 -060091__weak struct clk_pll_simple *clock_get_simple_pll(enum clock_id clkid)
92{
93 return NULL;
94}
95
Tom Warren795f9d72013-01-23 14:01:01 -070096int clock_ll_read_pll(enum clock_id clkid, u32 *divm, u32 *divn,
97 u32 *divp, u32 *cpcon, u32 *lfcon)
98{
99 struct clk_pll *pll = get_pll(clkid);
100 u32 data;
101
102 assert(clkid != CLOCK_ID_USB);
103
104 /* Safety check, adds to code size but is small */
105 if (!clock_id_is_pll(clkid) || clkid == CLOCK_ID_USB)
106 return -1;
107 data = readl(&pll->pll_base);
108 *divm = (data & PLL_DIVM_MASK) >> PLL_DIVM_SHIFT;
109 *divn = (data & PLL_DIVN_MASK) >> PLL_DIVN_SHIFT;
110 *divp = (data & PLL_DIVP_MASK) >> PLL_DIVP_SHIFT;
111 data = readl(&pll->pll_misc);
112 *cpcon = (data & PLL_CPCON_MASK) >> PLL_CPCON_SHIFT;
113 *lfcon = (data & PLL_LFCON_MASK) >> PLL_LFCON_SHIFT;
114
115 return 0;
116}
117
118unsigned long clock_start_pll(enum clock_id clkid, u32 divm, u32 divn,
119 u32 divp, u32 cpcon, u32 lfcon)
120{
121 struct clk_pll *pll = get_pll(clkid);
Simon Glass6017b9a2015-04-14 21:03:32 -0600122 u32 misc_data, data;
Tom Warren795f9d72013-01-23 14:01:01 -0700123
124 /*
125 * We cheat by treating all PLL (except PLLU) in the same fashion.
126 * This works only because:
127 * - same fields are always mapped at same offsets, except DCCON
128 * - DCCON is always 0, doesn't conflict
129 * - M,N, P of PLLP values are ignored for PLLP
130 */
Simon Glass6017b9a2015-04-14 21:03:32 -0600131 misc_data = (cpcon << PLL_CPCON_SHIFT) | (lfcon << PLL_LFCON_SHIFT);
Tom Warren795f9d72013-01-23 14:01:01 -0700132
133 data = (divm << PLL_DIVM_SHIFT) | (divn << PLL_DIVN_SHIFT) |
134 (0 << PLL_BYPASS_SHIFT) | (1 << PLL_ENABLE_SHIFT);
135
136 if (clkid == CLOCK_ID_USB)
137 data |= divp << PLLU_VCO_FREQ_SHIFT;
138 else
139 data |= divp << PLL_DIVP_SHIFT;
Simon Glass6017b9a2015-04-14 21:03:32 -0600140 if (pll) {
141 writel(misc_data, &pll->pll_misc);
142 writel(data, &pll->pll_base);
143 } else {
144 struct clk_pll_simple *pll = clock_get_simple_pll(clkid);
145
146 if (!pll) {
147 debug("%s: Uknown simple PLL %d\n", __func__, clkid);
148 return 0;
149 }
150 writel(misc_data, &pll->pll_misc);
151 writel(data, &pll->pll_base);
152 }
Tom Warren795f9d72013-01-23 14:01:01 -0700153
154 /* calculate the stable time */
155 return timer_get_us() + CLOCK_PLL_STABLE_DELAY_US;
156}
157
158void clock_ll_set_source_divisor(enum periph_id periph_id, unsigned source,
159 unsigned divisor)
160{
161 u32 *reg = get_periph_source_reg(periph_id);
162 u32 value;
163
164 value = readl(reg);
165
Stephen Warrendf5ed452014-01-24 10:16:19 -0700166 value &= ~OUT_CLK_SOURCE_31_30_MASK;
167 value |= source << OUT_CLK_SOURCE_31_30_SHIFT;
Tom Warren795f9d72013-01-23 14:01:01 -0700168
169 value &= ~OUT_CLK_DIVISOR_MASK;
170 value |= divisor << OUT_CLK_DIVISOR_SHIFT;
171
172 writel(value, reg);
173}
174
Simon Glassd2d1c3f2015-04-14 21:03:33 -0600175int clock_ll_set_source_bits(enum periph_id periph_id, int mux_bits,
176 unsigned source)
Tom Warren795f9d72013-01-23 14:01:01 -0700177{
178 u32 *reg = get_periph_source_reg(periph_id);
179
Simon Glassd2d1c3f2015-04-14 21:03:33 -0600180 switch (mux_bits) {
181 case MASK_BITS_31_30:
182 clrsetbits_le32(reg, OUT_CLK_SOURCE_31_30_MASK,
183 source << OUT_CLK_SOURCE_31_30_SHIFT);
184 break;
185
186 case MASK_BITS_31_29:
187 clrsetbits_le32(reg, OUT_CLK_SOURCE_31_29_MASK,
188 source << OUT_CLK_SOURCE_31_29_SHIFT);
189 break;
190
191 case MASK_BITS_31_28:
192 clrsetbits_le32(reg, OUT_CLK_SOURCE_31_28_MASK,
193 source << OUT_CLK_SOURCE_31_28_SHIFT);
194 break;
195
196 default:
197 return -1;
198 }
199
200 return 0;
Tom Warren795f9d72013-01-23 14:01:01 -0700201}
202
Simon Glassd2d1c3f2015-04-14 21:03:33 -0600203void clock_ll_set_source(enum periph_id periph_id, unsigned source)
204{
205 clock_ll_set_source_bits(periph_id, MASK_BITS_31_30, source);
206}
207
Tom Warren795f9d72013-01-23 14:01:01 -0700208/**
209 * Given the parent's rate and the required rate for the children, this works
210 * out the peripheral clock divider to use, in 7.1 binary format.
211 *
212 * @param divider_bits number of divider bits (8 or 16)
213 * @param parent_rate clock rate of parent clock in Hz
214 * @param rate required clock rate for this clock
215 * @return divider which should be used
216 */
217static int clk_get_divider(unsigned divider_bits, unsigned long parent_rate,
218 unsigned long rate)
219{
220 u64 divider = parent_rate * 2;
221 unsigned max_divider = 1 << divider_bits;
222
223 divider += rate - 1;
224 do_div(divider, rate);
225
226 if ((s64)divider - 2 < 0)
227 return 0;
228
229 if ((s64)divider - 2 >= max_divider)
230 return -1;
231
232 return divider - 2;
233}
234
235int clock_set_pllout(enum clock_id clkid, enum pll_out_id pllout, unsigned rate)
236{
237 struct clk_pll *pll = get_pll(clkid);
238 int data = 0, div = 0, offset = 0;
239
240 if (!clock_id_is_pll(clkid))
241 return -1;
242
243 if (pllout + 1 > pll_num_clkouts[clkid])
244 return -1;
245
246 div = clk_get_divider(8, pll_rate[clkid], rate);
247
248 if (div < 0)
249 return -1;
250
251 /* out2 and out4 are in the high part of the register */
252 if (pllout == PLL_OUT2 || pllout == PLL_OUT4)
253 offset = 16;
254
255 data = (div << PLL_OUT_RATIO_SHIFT) |
256 PLL_OUT_OVRRIDE | PLL_OUT_CLKEN | PLL_OUT_RSTN;
257 clrsetbits_le32(&pll->pll_out[pllout >> 1],
258 PLL_OUT_RATIO_MASK << offset, data << offset);
259
260 return 0;
261}
262
263/**
264 * Given the parent's rate and the divider in 7.1 format, this works out the
265 * resulting peripheral clock rate.
266 *
267 * @param parent_rate clock rate of parent clock in Hz
268 * @param divider which should be used in 7.1 format
269 * @return effective clock rate of peripheral
270 */
271static unsigned long get_rate_from_divider(unsigned long parent_rate,
272 int divider)
273{
274 u64 rate;
275
276 rate = (u64)parent_rate * 2;
277 do_div(rate, divider + 2);
278 return rate;
279}
280
281unsigned long clock_get_periph_rate(enum periph_id periph_id,
282 enum clock_id parent)
283{
284 u32 *reg = get_periph_source_reg(periph_id);
285
286 return get_rate_from_divider(pll_rate[parent],
287 (readl(reg) & OUT_CLK_DIVISOR_MASK) >> OUT_CLK_DIVISOR_SHIFT);
288}
289
290/**
291 * Find the best available 7.1 format divisor given a parent clock rate and
292 * required child clock rate. This function assumes that a second-stage
293 * divisor is available which can divide by powers of 2 from 1 to 256.
294 *
295 * @param divider_bits number of divider bits (8 or 16)
296 * @param parent_rate clock rate of parent clock in Hz
297 * @param rate required clock rate for this clock
298 * @param extra_div value for the second-stage divisor (not set if this
299 * function returns -1.
300 * @return divider which should be used, or -1 if nothing is valid
301 *
302 */
303static int find_best_divider(unsigned divider_bits, unsigned long parent_rate,
304 unsigned long rate, int *extra_div)
305{
306 int shift;
307 int best_divider = -1;
308 int best_error = rate;
309
310 /* try dividers from 1 to 256 and find closest match */
311 for (shift = 0; shift <= 8 && best_error > 0; shift++) {
312 unsigned divided_parent = parent_rate >> shift;
313 int divider = clk_get_divider(divider_bits, divided_parent,
314 rate);
315 unsigned effective_rate = get_rate_from_divider(divided_parent,
316 divider);
317 int error = rate - effective_rate;
318
319 /* Given a valid divider, look for the lowest error */
320 if (divider != -1 && error < best_error) {
321 best_error = error;
322 *extra_div = 1 << shift;
323 best_divider = divider;
324 }
325 }
326
327 /* return what we found - *extra_div will already be set */
328 return best_divider;
329}
330
331/**
332 * Adjust peripheral PLL to use the given divider and source.
333 *
334 * @param periph_id peripheral to adjust
335 * @param source Source number (0-3 or 0-7)
336 * @param mux_bits Number of mux bits (2 or 4)
337 * @param divider Required divider in 7.1 or 15.1 format
338 * @return 0 if ok, -1 on error (requesting a parent clock which is not valid
339 * for this peripheral)
340 */
341static int adjust_periph_pll(enum periph_id periph_id, int source,
342 int mux_bits, unsigned divider)
343{
344 u32 *reg = get_periph_source_reg(periph_id);
345
346 clrsetbits_le32(reg, OUT_CLK_DIVISOR_MASK,
347 divider << OUT_CLK_DIVISOR_SHIFT);
348 udelay(1);
349
350 /* work out the source clock and set it */
351 if (source < 0)
352 return -1;
Tom Warren2fde44e2014-01-24 10:16:22 -0700353
Simon Glassd2d1c3f2015-04-14 21:03:33 -0600354 clock_ll_set_source_bits(periph_id, mux_bits, source);
Tom Warren2fde44e2014-01-24 10:16:22 -0700355
Tom Warren795f9d72013-01-23 14:01:01 -0700356 udelay(2);
357 return 0;
358}
359
360unsigned clock_adjust_periph_pll_div(enum periph_id periph_id,
361 enum clock_id parent, unsigned rate, int *extra_div)
362{
363 unsigned effective_rate;
364 int mux_bits, divider_bits, source;
365 int divider;
Allen Martin810a4e42013-05-10 16:56:55 +0000366 int xdiv = 0;
Tom Warren795f9d72013-01-23 14:01:01 -0700367
368 /* work out the source clock and set it */
369 source = get_periph_clock_source(periph_id, parent, &mux_bits,
370 &divider_bits);
371
Allen Martin810a4e42013-05-10 16:56:55 +0000372 divider = find_best_divider(divider_bits, pll_rate[parent],
373 rate, &xdiv);
Tom Warren795f9d72013-01-23 14:01:01 -0700374 if (extra_div)
Allen Martin810a4e42013-05-10 16:56:55 +0000375 *extra_div = xdiv;
376
Tom Warren795f9d72013-01-23 14:01:01 -0700377 assert(divider >= 0);
378 if (adjust_periph_pll(periph_id, source, mux_bits, divider))
379 return -1U;
380 debug("periph %d, rate=%d, reg=%p = %x\n", periph_id, rate,
381 get_periph_source_reg(periph_id),
382 readl(get_periph_source_reg(periph_id)));
383
384 /* Check what we ended up with. This shouldn't matter though */
385 effective_rate = clock_get_periph_rate(periph_id, parent);
386 if (extra_div)
387 effective_rate /= *extra_div;
388 if (rate != effective_rate)
389 debug("Requested clock rate %u not honored (got %u)\n",
390 rate, effective_rate);
391 return effective_rate;
392}
393
394unsigned clock_start_periph_pll(enum periph_id periph_id,
395 enum clock_id parent, unsigned rate)
396{
397 unsigned effective_rate;
398
399 reset_set_enable(periph_id, 1);
400 clock_enable(periph_id);
401
402 effective_rate = clock_adjust_periph_pll_div(periph_id, parent, rate,
403 NULL);
404
405 reset_set_enable(periph_id, 0);
406 return effective_rate;
407}
408
409void clock_enable(enum periph_id clkid)
410{
411 clock_set_enable(clkid, 1);
412}
413
414void clock_disable(enum periph_id clkid)
415{
416 clock_set_enable(clkid, 0);
417}
418
419void reset_periph(enum periph_id periph_id, int us_delay)
420{
421 /* Put peripheral into reset */
422 reset_set_enable(periph_id, 1);
423 udelay(us_delay);
424
425 /* Remove reset */
426 reset_set_enable(periph_id, 0);
427
428 udelay(us_delay);
429}
430
431void reset_cmplx_set_enable(int cpu, int which, int reset)
432{
433 struct clk_rst_ctlr *clkrst =
434 (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
435 u32 mask;
436
437 /* Form the mask, which depends on the cpu chosen (2 or 4) */
438 assert(cpu >= 0 && cpu < MAX_NUM_CPU);
439 mask = which << cpu;
440
441 /* either enable or disable those reset for that CPU */
442 if (reset)
443 writel(mask, &clkrst->crc_cpu_cmplx_set);
444 else
445 writel(mask, &clkrst->crc_cpu_cmplx_clr);
446}
447
448unsigned clock_get_rate(enum clock_id clkid)
449{
450 struct clk_pll *pll;
451 u32 base;
452 u32 divm;
453 u64 parent_rate;
454 u64 rate;
455
456 parent_rate = osc_freq[clock_get_osc_freq()];
457 if (clkid == CLOCK_ID_OSC)
458 return parent_rate;
459
460 pll = get_pll(clkid);
Simon Glass6017b9a2015-04-14 21:03:32 -0600461 if (!pll)
462 return 0;
Tom Warren795f9d72013-01-23 14:01:01 -0700463 base = readl(&pll->pll_base);
464
465 /* Oh for bf_unpack()... */
466 rate = parent_rate * ((base & PLL_DIVN_MASK) >> PLL_DIVN_SHIFT);
467 divm = (base & PLL_DIVM_MASK) >> PLL_DIVM_SHIFT;
468 if (clkid == CLOCK_ID_USB)
469 divm <<= (base & PLLU_VCO_FREQ_MASK) >> PLLU_VCO_FREQ_SHIFT;
470 else
471 divm <<= (base & PLL_DIVP_MASK) >> PLL_DIVP_SHIFT;
472 do_div(rate, divm);
473 return rate;
474}
475
476/**
477 * Set the output frequency you want for each PLL clock.
478 * PLL output frequencies are programmed by setting their N, M and P values.
479 * The governing equations are:
480 * VCO = (Fi / m) * n, Fo = VCO / (2^p)
481 * where Fo is the output frequency from the PLL.
482 * Example: Set the output frequency to 216Mhz(Fo) with 12Mhz OSC(Fi)
483 * 216Mhz = ((12Mhz / m) * n) / (2^p) so n=432,m=12,p=1
484 * Please see Tegra TRM section 5.3 to get the detail for PLL Programming
485 *
486 * @param n PLL feedback divider(DIVN)
487 * @param m PLL input divider(DIVN)
488 * @param p post divider(DIVP)
489 * @param cpcon base PLL charge pump(CPCON)
490 * @return 0 if ok, -1 on error (the requested PLL is incorrect and cannot
491 * be overriden), 1 if PLL is already correct
492 */
493int clock_set_rate(enum clock_id clkid, u32 n, u32 m, u32 p, u32 cpcon)
494{
495 u32 base_reg;
496 u32 misc_reg;
497 struct clk_pll *pll;
498
499 pll = get_pll(clkid);
500
501 base_reg = readl(&pll->pll_base);
502
503 /* Set BYPASS, m, n and p to PLL_BASE */
504 base_reg &= ~PLL_DIVM_MASK;
505 base_reg |= m << PLL_DIVM_SHIFT;
506
507 base_reg &= ~PLL_DIVN_MASK;
508 base_reg |= n << PLL_DIVN_SHIFT;
509
510 base_reg &= ~PLL_DIVP_MASK;
511 base_reg |= p << PLL_DIVP_SHIFT;
512
513 if (clkid == CLOCK_ID_PERIPH) {
514 /*
515 * If the PLL is already set up, check that it is correct
516 * and record this info for clock_verify() to check.
517 */
518 if (base_reg & PLL_BASE_OVRRIDE_MASK) {
519 base_reg |= PLL_ENABLE_MASK;
520 if (base_reg != readl(&pll->pll_base))
521 pllp_valid = 0;
522 return pllp_valid ? 1 : -1;
523 }
524 base_reg |= PLL_BASE_OVRRIDE_MASK;
525 }
526
527 base_reg |= PLL_BYPASS_MASK;
528 writel(base_reg, &pll->pll_base);
529
530 /* Set cpcon to PLL_MISC */
531 misc_reg = readl(&pll->pll_misc);
532 misc_reg &= ~PLL_CPCON_MASK;
533 misc_reg |= cpcon << PLL_CPCON_SHIFT;
534 writel(misc_reg, &pll->pll_misc);
535
536 /* Enable PLL */
537 base_reg |= PLL_ENABLE_MASK;
538 writel(base_reg, &pll->pll_base);
539
540 /* Disable BYPASS */
541 base_reg &= ~PLL_BYPASS_MASK;
542 writel(base_reg, &pll->pll_base);
543
544 return 0;
545}
546
547void clock_ll_start_uart(enum periph_id periph_id)
548{
549 /* Assert UART reset and enable clock */
550 reset_set_enable(periph_id, 1);
551 clock_enable(periph_id);
552 clock_ll_set_source(periph_id, 0); /* UARTx_CLK_SRC = 00, PLLP_OUT0 */
553
554 /* wait for 2us */
555 udelay(2);
556
557 /* De-assert reset to UART */
558 reset_set_enable(periph_id, 0);
559}
560
561#ifdef CONFIG_OF_CONTROL
562int clock_decode_periph_id(const void *blob, int node)
563{
564 enum periph_id id;
565 u32 cell[2];
566 int err;
567
568 err = fdtdec_get_int_array(blob, node, "clocks", cell,
569 ARRAY_SIZE(cell));
570 if (err)
571 return -1;
572 id = clk_id_to_periph_id(cell[1]);
573 assert(clock_periph_id_isvalid(id));
574 return id;
575}
576#endif /* CONFIG_OF_CONTROL */
577
578int clock_verify(void)
579{
580 struct clk_pll *pll = get_pll(CLOCK_ID_PERIPH);
581 u32 reg = readl(&pll->pll_base);
582
583 if (!pllp_valid) {
584 printf("Warning: PLLP %x is not correct\n", reg);
585 return -1;
586 }
587 debug("PLLP %x is correct\n", reg);
588 return 0;
589}
590
591void clock_init(void)
592{
593 pll_rate[CLOCK_ID_MEMORY] = clock_get_rate(CLOCK_ID_MEMORY);
594 pll_rate[CLOCK_ID_PERIPH] = clock_get_rate(CLOCK_ID_PERIPH);
595 pll_rate[CLOCK_ID_CGENERAL] = clock_get_rate(CLOCK_ID_CGENERAL);
Simon Glass93a19952015-04-14 21:03:34 -0600596 pll_rate[CLOCK_ID_DISPLAY] = clock_get_rate(CLOCK_ID_DISPLAY);
Tom Warren795f9d72013-01-23 14:01:01 -0700597 pll_rate[CLOCK_ID_OSC] = clock_get_rate(CLOCK_ID_OSC);
598 pll_rate[CLOCK_ID_SFROM32KHZ] = 32768;
599 pll_rate[CLOCK_ID_XCPU] = clock_get_rate(CLOCK_ID_XCPU);
600 debug("Osc = %d\n", pll_rate[CLOCK_ID_OSC]);
601 debug("PLLM = %d\n", pll_rate[CLOCK_ID_MEMORY]);
602 debug("PLLP = %d\n", pll_rate[CLOCK_ID_PERIPH]);
603 debug("PLLC = %d\n", pll_rate[CLOCK_ID_CGENERAL]);
Simon Glass93a19952015-04-14 21:03:34 -0600604 debug("PLLD = %d\n", pll_rate[CLOCK_ID_DISPLAY]);
Tom Warren795f9d72013-01-23 14:01:01 -0700605 debug("PLLX = %d\n", pll_rate[CLOCK_ID_XCPU]);
Tom Warrenfbef3552013-04-01 15:48:54 -0700606
607 /* Do any special system timer/TSC setup */
Stephen Warren8d1fb312015-01-19 16:25:52 -0700608#if defined(CONFIG_TEGRA_SUPPORT_NON_SECURE)
609 if (!tegra_cpu_is_non_secure())
610#endif
611 arch_timer_init();
Tom Warren795f9d72013-01-23 14:01:01 -0700612}
Jimmy Zhang2a544db2014-01-24 10:37:36 -0700613
614static void set_avp_clock_source(u32 src)
615{
616 struct clk_rst_ctlr *clkrst =
617 (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
618 u32 val;
619
620 val = (src << SCLK_SWAKEUP_FIQ_SOURCE_SHIFT) |
621 (src << SCLK_SWAKEUP_IRQ_SOURCE_SHIFT) |
622 (src << SCLK_SWAKEUP_RUN_SOURCE_SHIFT) |
623 (src << SCLK_SWAKEUP_IDLE_SOURCE_SHIFT) |
624 (SCLK_SYS_STATE_RUN << SCLK_SYS_STATE_SHIFT);
625 writel(val, &clkrst->crc_sclk_brst_pol);
626 udelay(3);
627}
628
629/*
630 * This function is useful on Tegra30, and any later SoCs that have compatible
631 * PLLP configuration registers.
632 */
633void tegra30_set_up_pllp(void)
634{
635 struct clk_rst_ctlr *clkrst = (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
636 u32 reg;
637
638 /*
639 * Based on the Tegra TRM, the system clock (which is the AVP clock) can
640 * run up to 275MHz. On power on, the default sytem clock source is set
641 * to PLLP_OUT0. This function sets PLLP's (hence PLLP_OUT0's) rate to
642 * 408MHz which is beyond system clock's upper limit.
643 *
644 * The fix is to set the system clock to CLK_M before initializing PLLP,
645 * and then switch back to PLLP_OUT4, which has an appropriate divider
646 * configured, after PLLP has been configured
647 */
648 set_avp_clock_source(SCLK_SOURCE_CLKM);
649
650 /*
651 * PLLP output frequency set to 408Mhz
652 * PLLC output frequency set to 228Mhz
653 */
654 switch (clock_get_osc_freq()) {
655 case CLOCK_OSC_FREQ_12_0: /* OSC is 12Mhz */
656 clock_set_rate(CLOCK_ID_PERIPH, 408, 12, 0, 8);
657 clock_set_rate(CLOCK_ID_CGENERAL, 456, 12, 1, 8);
658 break;
659
660 case CLOCK_OSC_FREQ_26_0: /* OSC is 26Mhz */
661 clock_set_rate(CLOCK_ID_PERIPH, 408, 26, 0, 8);
662 clock_set_rate(CLOCK_ID_CGENERAL, 600, 26, 0, 8);
663 break;
664
665 case CLOCK_OSC_FREQ_13_0: /* OSC is 13Mhz */
666 clock_set_rate(CLOCK_ID_PERIPH, 408, 13, 0, 8);
667 clock_set_rate(CLOCK_ID_CGENERAL, 600, 13, 0, 8);
668 break;
669 case CLOCK_OSC_FREQ_19_2:
670 default:
671 /*
672 * These are not supported. It is too early to print a
673 * message and the UART likely won't work anyway due to the
674 * oscillator being wrong.
675 */
676 break;
677 }
678
679 /* Set PLLP_OUT1, 2, 3 & 4 freqs to 9.6, 48, 102 & 204MHz */
680
681 /* OUT1, 2 */
682 /* Assert RSTN before enable */
683 reg = PLLP_OUT2_RSTN_EN | PLLP_OUT1_RSTN_EN;
684 writel(reg, &clkrst->crc_pll[CLOCK_ID_PERIPH].pll_out[0]);
685 /* Set divisor and reenable */
686 reg = (IN_408_OUT_48_DIVISOR << PLLP_OUT2_RATIO)
687 | PLLP_OUT2_OVR | PLLP_OUT2_CLKEN | PLLP_OUT2_RSTN_DIS
688 | (IN_408_OUT_9_6_DIVISOR << PLLP_OUT1_RATIO)
689 | PLLP_OUT1_OVR | PLLP_OUT1_CLKEN | PLLP_OUT1_RSTN_DIS;
690 writel(reg, &clkrst->crc_pll[CLOCK_ID_PERIPH].pll_out[0]);
691
692 /* OUT3, 4 */
693 /* Assert RSTN before enable */
694 reg = PLLP_OUT4_RSTN_EN | PLLP_OUT3_RSTN_EN;
695 writel(reg, &clkrst->crc_pll[CLOCK_ID_PERIPH].pll_out[1]);
696 /* Set divisor and reenable */
697 reg = (IN_408_OUT_204_DIVISOR << PLLP_OUT4_RATIO)
698 | PLLP_OUT4_OVR | PLLP_OUT4_CLKEN | PLLP_OUT4_RSTN_DIS
699 | (IN_408_OUT_102_DIVISOR << PLLP_OUT3_RATIO)
700 | PLLP_OUT3_OVR | PLLP_OUT3_CLKEN | PLLP_OUT3_RSTN_DIS;
701 writel(reg, &clkrst->crc_pll[CLOCK_ID_PERIPH].pll_out[1]);
702
703 set_avp_clock_source(SCLK_SOURCE_PLLP_OUT4);
704}