Tom Rini | 10e4779 | 2018-05-06 17:58:06 -0400 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0+ |
Ruchika Gupta | b92ebab | 2015-01-23 16:01:50 +0530 | [diff] [blame] | 2 | /* |
| 3 | * Copyright (c) 2013, Google Inc. |
Ruchika Gupta | b92ebab | 2015-01-23 16:01:50 +0530 | [diff] [blame] | 4 | */ |
| 5 | |
| 6 | #ifndef USE_HOSTCC |
| 7 | #include <common.h> |
| 8 | #include <fdtdec.h> |
Simon Glass | 0f2af88 | 2020-05-10 11:40:05 -0600 | [diff] [blame] | 9 | #include <log.h> |
Ruchika Gupta | b92ebab | 2015-01-23 16:01:50 +0530 | [diff] [blame] | 10 | #include <asm/types.h> |
| 11 | #include <asm/byteorder.h> |
Masahiro Yamada | 56a931c | 2016-09-21 11:28:55 +0900 | [diff] [blame] | 12 | #include <linux/errno.h> |
Ruchika Gupta | b92ebab | 2015-01-23 16:01:50 +0530 | [diff] [blame] | 13 | #include <asm/types.h> |
| 14 | #include <asm/unaligned.h> |
| 15 | #else |
| 16 | #include "fdt_host.h" |
| 17 | #include "mkimage.h" |
| 18 | #include <fdt_support.h> |
| 19 | #endif |
| 20 | #include <u-boot/rsa.h> |
| 21 | #include <u-boot/rsa-mod-exp.h> |
| 22 | |
| 23 | #define UINT64_MULT32(v, multby) (((uint64_t)(v)) * ((uint32_t)(multby))) |
| 24 | |
| 25 | #define get_unaligned_be32(a) fdt32_to_cpu(*(uint32_t *)a) |
| 26 | #define put_unaligned_be32(a, b) (*(uint32_t *)(b) = cpu_to_fdt32(a)) |
| 27 | |
Rasmus Villemoes | b8aa0f8 | 2020-10-06 12:09:45 +0200 | [diff] [blame] | 28 | static inline uint64_t fdt64_to_cpup(const void *p) |
| 29 | { |
| 30 | fdt64_t w; |
| 31 | |
| 32 | memcpy(&w, p, sizeof(w)); |
| 33 | return fdt64_to_cpu(w); |
| 34 | } |
| 35 | |
Ruchika Gupta | b92ebab | 2015-01-23 16:01:50 +0530 | [diff] [blame] | 36 | /* Default public exponent for backward compatibility */ |
| 37 | #define RSA_DEFAULT_PUBEXP 65537 |
| 38 | |
| 39 | /** |
| 40 | * subtract_modulus() - subtract modulus from the given value |
| 41 | * |
| 42 | * @key: Key containing modulus to subtract |
| 43 | * @num: Number to subtract modulus from, as little endian word array |
| 44 | */ |
| 45 | static void subtract_modulus(const struct rsa_public_key *key, uint32_t num[]) |
| 46 | { |
| 47 | int64_t acc = 0; |
| 48 | uint i; |
| 49 | |
| 50 | for (i = 0; i < key->len; i++) { |
| 51 | acc += (uint64_t)num[i] - key->modulus[i]; |
| 52 | num[i] = (uint32_t)acc; |
| 53 | acc >>= 32; |
| 54 | } |
| 55 | } |
| 56 | |
| 57 | /** |
| 58 | * greater_equal_modulus() - check if a value is >= modulus |
| 59 | * |
| 60 | * @key: Key containing modulus to check |
| 61 | * @num: Number to check against modulus, as little endian word array |
Heinrich Schuchardt | 47b4c02 | 2022-01-19 18:05:50 +0100 | [diff] [blame] | 62 | * Return: 0 if num < modulus, 1 if num >= modulus |
Ruchika Gupta | b92ebab | 2015-01-23 16:01:50 +0530 | [diff] [blame] | 63 | */ |
| 64 | static int greater_equal_modulus(const struct rsa_public_key *key, |
| 65 | uint32_t num[]) |
| 66 | { |
| 67 | int i; |
| 68 | |
| 69 | for (i = (int)key->len - 1; i >= 0; i--) { |
| 70 | if (num[i] < key->modulus[i]) |
| 71 | return 0; |
| 72 | if (num[i] > key->modulus[i]) |
| 73 | return 1; |
| 74 | } |
| 75 | |
| 76 | return 1; /* equal */ |
| 77 | } |
| 78 | |
| 79 | /** |
| 80 | * montgomery_mul_add_step() - Perform montgomery multiply-add step |
| 81 | * |
| 82 | * Operation: montgomery result[] += a * b[] / n0inv % modulus |
| 83 | * |
| 84 | * @key: RSA key |
| 85 | * @result: Place to put result, as little endian word array |
| 86 | * @a: Multiplier |
| 87 | * @b: Multiplicand, as little endian word array |
| 88 | */ |
| 89 | static void montgomery_mul_add_step(const struct rsa_public_key *key, |
| 90 | uint32_t result[], const uint32_t a, const uint32_t b[]) |
| 91 | { |
| 92 | uint64_t acc_a, acc_b; |
| 93 | uint32_t d0; |
| 94 | uint i; |
| 95 | |
| 96 | acc_a = (uint64_t)a * b[0] + result[0]; |
| 97 | d0 = (uint32_t)acc_a * key->n0inv; |
| 98 | acc_b = (uint64_t)d0 * key->modulus[0] + (uint32_t)acc_a; |
| 99 | for (i = 1; i < key->len; i++) { |
| 100 | acc_a = (acc_a >> 32) + (uint64_t)a * b[i] + result[i]; |
| 101 | acc_b = (acc_b >> 32) + (uint64_t)d0 * key->modulus[i] + |
| 102 | (uint32_t)acc_a; |
| 103 | result[i - 1] = (uint32_t)acc_b; |
| 104 | } |
| 105 | |
| 106 | acc_a = (acc_a >> 32) + (acc_b >> 32); |
| 107 | |
| 108 | result[i - 1] = (uint32_t)acc_a; |
| 109 | |
| 110 | if (acc_a >> 32) |
| 111 | subtract_modulus(key, result); |
| 112 | } |
| 113 | |
| 114 | /** |
| 115 | * montgomery_mul() - Perform montgomery mutitply |
| 116 | * |
| 117 | * Operation: montgomery result[] = a[] * b[] / n0inv % modulus |
| 118 | * |
| 119 | * @key: RSA key |
| 120 | * @result: Place to put result, as little endian word array |
| 121 | * @a: Multiplier, as little endian word array |
| 122 | * @b: Multiplicand, as little endian word array |
| 123 | */ |
| 124 | static void montgomery_mul(const struct rsa_public_key *key, |
| 125 | uint32_t result[], uint32_t a[], const uint32_t b[]) |
| 126 | { |
| 127 | uint i; |
| 128 | |
| 129 | for (i = 0; i < key->len; ++i) |
| 130 | result[i] = 0; |
| 131 | for (i = 0; i < key->len; ++i) |
| 132 | montgomery_mul_add_step(key, result, a[i], b); |
| 133 | } |
| 134 | |
| 135 | /** |
| 136 | * num_pub_exponent_bits() - Number of bits in the public exponent |
| 137 | * |
| 138 | * @key: RSA key |
| 139 | * @num_bits: Storage for the number of public exponent bits |
| 140 | */ |
| 141 | static int num_public_exponent_bits(const struct rsa_public_key *key, |
| 142 | int *num_bits) |
| 143 | { |
| 144 | uint64_t exponent; |
| 145 | int exponent_bits; |
| 146 | const uint max_bits = (sizeof(exponent) * 8); |
| 147 | |
| 148 | exponent = key->exponent; |
| 149 | exponent_bits = 0; |
| 150 | |
| 151 | if (!exponent) { |
| 152 | *num_bits = exponent_bits; |
| 153 | return 0; |
| 154 | } |
| 155 | |
| 156 | for (exponent_bits = 1; exponent_bits < max_bits + 1; ++exponent_bits) |
| 157 | if (!(exponent >>= 1)) { |
| 158 | *num_bits = exponent_bits; |
| 159 | return 0; |
| 160 | } |
| 161 | |
| 162 | return -EINVAL; |
| 163 | } |
| 164 | |
| 165 | /** |
| 166 | * is_public_exponent_bit_set() - Check if a bit in the public exponent is set |
| 167 | * |
| 168 | * @key: RSA key |
| 169 | * @pos: The bit position to check |
| 170 | */ |
| 171 | static int is_public_exponent_bit_set(const struct rsa_public_key *key, |
| 172 | int pos) |
| 173 | { |
| 174 | return key->exponent & (1ULL << pos); |
| 175 | } |
| 176 | |
| 177 | /** |
| 178 | * pow_mod() - in-place public exponentiation |
| 179 | * |
| 180 | * @key: RSA key |
| 181 | * @inout: Big-endian word array containing value and result |
| 182 | */ |
| 183 | static int pow_mod(const struct rsa_public_key *key, uint32_t *inout) |
| 184 | { |
| 185 | uint32_t *result, *ptr; |
| 186 | uint i; |
| 187 | int j, k; |
| 188 | |
| 189 | /* Sanity check for stack size - key->len is in 32-bit words */ |
| 190 | if (key->len > RSA_MAX_KEY_BITS / 32) { |
| 191 | debug("RSA key words %u exceeds maximum %d\n", key->len, |
| 192 | RSA_MAX_KEY_BITS / 32); |
| 193 | return -EINVAL; |
| 194 | } |
| 195 | |
| 196 | uint32_t val[key->len], acc[key->len], tmp[key->len]; |
| 197 | uint32_t a_scaled[key->len]; |
| 198 | result = tmp; /* Re-use location. */ |
| 199 | |
| 200 | /* Convert from big endian byte array to little endian word array. */ |
| 201 | for (i = 0, ptr = inout + key->len - 1; i < key->len; i++, ptr--) |
| 202 | val[i] = get_unaligned_be32(ptr); |
| 203 | |
| 204 | if (0 != num_public_exponent_bits(key, &k)) |
| 205 | return -EINVAL; |
| 206 | |
| 207 | if (k < 2) { |
| 208 | debug("Public exponent is too short (%d bits, minimum 2)\n", |
| 209 | k); |
| 210 | return -EINVAL; |
| 211 | } |
| 212 | |
| 213 | if (!is_public_exponent_bit_set(key, 0)) { |
| 214 | debug("LSB of RSA public exponent must be set.\n"); |
| 215 | return -EINVAL; |
| 216 | } |
| 217 | |
| 218 | /* the bit at e[k-1] is 1 by definition, so start with: C := M */ |
| 219 | montgomery_mul(key, acc, val, key->rr); /* acc = a * RR / R mod n */ |
| 220 | /* retain scaled version for intermediate use */ |
| 221 | memcpy(a_scaled, acc, key->len * sizeof(a_scaled[0])); |
| 222 | |
| 223 | for (j = k - 2; j > 0; --j) { |
| 224 | montgomery_mul(key, tmp, acc, acc); /* tmp = acc^2 / R mod n */ |
| 225 | |
| 226 | if (is_public_exponent_bit_set(key, j)) { |
| 227 | /* acc = tmp * val / R mod n */ |
| 228 | montgomery_mul(key, acc, tmp, a_scaled); |
| 229 | } else { |
| 230 | /* e[j] == 0, copy tmp back to acc for next operation */ |
| 231 | memcpy(acc, tmp, key->len * sizeof(acc[0])); |
| 232 | } |
| 233 | } |
| 234 | |
| 235 | /* the bit at e[0] is always 1 */ |
| 236 | montgomery_mul(key, tmp, acc, acc); /* tmp = acc^2 / R mod n */ |
| 237 | montgomery_mul(key, acc, tmp, val); /* acc = tmp * a / R mod M */ |
| 238 | memcpy(result, acc, key->len * sizeof(result[0])); |
| 239 | |
| 240 | /* Make sure result < mod; result is at most 1x mod too large. */ |
| 241 | if (greater_equal_modulus(key, result)) |
| 242 | subtract_modulus(key, result); |
| 243 | |
| 244 | /* Convert to bigendian byte array */ |
| 245 | for (i = key->len - 1, ptr = inout; (int)i >= 0; i--, ptr++) |
| 246 | put_unaligned_be32(result[i], ptr); |
| 247 | return 0; |
| 248 | } |
| 249 | |
| 250 | static void rsa_convert_big_endian(uint32_t *dst, const uint32_t *src, int len) |
| 251 | { |
| 252 | int i; |
| 253 | |
| 254 | for (i = 0; i < len; i++) |
| 255 | dst[i] = fdt32_to_cpu(src[len - 1 - i]); |
| 256 | } |
| 257 | |
| 258 | int rsa_mod_exp_sw(const uint8_t *sig, uint32_t sig_len, |
| 259 | struct key_prop *prop, uint8_t *out) |
| 260 | { |
| 261 | struct rsa_public_key key; |
| 262 | int ret; |
| 263 | |
| 264 | if (!prop) { |
| 265 | debug("%s: Skipping invalid prop", __func__); |
| 266 | return -EBADF; |
| 267 | } |
| 268 | key.n0inv = prop->n0inv; |
| 269 | key.len = prop->num_bits; |
| 270 | |
| 271 | if (!prop->public_exponent) |
| 272 | key.exponent = RSA_DEFAULT_PUBEXP; |
| 273 | else |
Rasmus Villemoes | b8aa0f8 | 2020-10-06 12:09:45 +0200 | [diff] [blame] | 274 | key.exponent = fdt64_to_cpup(prop->public_exponent); |
Ruchika Gupta | b92ebab | 2015-01-23 16:01:50 +0530 | [diff] [blame] | 275 | |
| 276 | if (!key.len || !prop->modulus || !prop->rr) { |
| 277 | debug("%s: Missing RSA key info", __func__); |
| 278 | return -EFAULT; |
| 279 | } |
| 280 | |
| 281 | /* Sanity check for stack size */ |
| 282 | if (key.len > RSA_MAX_KEY_BITS || key.len < RSA_MIN_KEY_BITS) { |
| 283 | debug("RSA key bits %u outside allowed range %d..%d\n", |
| 284 | key.len, RSA_MIN_KEY_BITS, RSA_MAX_KEY_BITS); |
| 285 | return -EFAULT; |
| 286 | } |
| 287 | key.len /= sizeof(uint32_t) * 8; |
| 288 | uint32_t key1[key.len], key2[key.len]; |
| 289 | |
| 290 | key.modulus = key1; |
| 291 | key.rr = key2; |
| 292 | rsa_convert_big_endian(key.modulus, (uint32_t *)prop->modulus, key.len); |
| 293 | rsa_convert_big_endian(key.rr, (uint32_t *)prop->rr, key.len); |
| 294 | if (!key.modulus || !key.rr) { |
| 295 | debug("%s: Out of memory", __func__); |
| 296 | return -ENOMEM; |
| 297 | } |
| 298 | |
| 299 | uint32_t buf[sig_len / sizeof(uint32_t)]; |
| 300 | |
| 301 | memcpy(buf, sig, sig_len); |
| 302 | |
| 303 | ret = pow_mod(&key, buf); |
| 304 | if (ret) |
| 305 | return ret; |
| 306 | |
| 307 | memcpy(out, buf, sig_len); |
| 308 | |
| 309 | return 0; |
| 310 | } |
Siva Durga Prasad Paladugu | e460352 | 2018-06-26 15:02:19 +0530 | [diff] [blame] | 311 | |
| 312 | #if defined(CONFIG_CMD_ZYNQ_RSA) |
| 313 | /** |
| 314 | * zynq_pow_mod - in-place public exponentiation |
| 315 | * |
| 316 | * @keyptr: RSA key |
| 317 | * @inout: Big-endian word array containing value and result |
Heinrich Schuchardt | 47b4c02 | 2022-01-19 18:05:50 +0100 | [diff] [blame] | 318 | * Return: 0 on successful calculation, otherwise failure error code |
Siva Durga Prasad Paladugu | e460352 | 2018-06-26 15:02:19 +0530 | [diff] [blame] | 319 | * |
| 320 | * FIXME: Use pow_mod() instead of zynq_pow_mod() |
| 321 | * pow_mod calculation required for zynq is bit different from |
| 322 | * pw_mod above here, hence defined zynq specific routine. |
| 323 | */ |
Michal Simek | 38e828e | 2020-10-22 10:59:08 +0200 | [diff] [blame] | 324 | int zynq_pow_mod(uint32_t *keyptr, uint32_t *inout) |
Siva Durga Prasad Paladugu | e460352 | 2018-06-26 15:02:19 +0530 | [diff] [blame] | 325 | { |
| 326 | u32 *result, *ptr; |
| 327 | uint i; |
| 328 | struct rsa_public_key *key; |
| 329 | u32 val[RSA2048_BYTES], acc[RSA2048_BYTES], tmp[RSA2048_BYTES]; |
| 330 | |
| 331 | key = (struct rsa_public_key *)keyptr; |
| 332 | |
| 333 | /* Sanity check for stack size - key->len is in 32-bit words */ |
| 334 | if (key->len > RSA_MAX_KEY_BITS / 32) { |
| 335 | debug("RSA key words %u exceeds maximum %d\n", key->len, |
| 336 | RSA_MAX_KEY_BITS / 32); |
| 337 | return -EINVAL; |
| 338 | } |
| 339 | |
| 340 | result = tmp; /* Re-use location. */ |
| 341 | |
| 342 | for (i = 0, ptr = inout; i < key->len; i++, ptr++) |
| 343 | val[i] = *(ptr); |
| 344 | |
| 345 | montgomery_mul(key, acc, val, key->rr); /* axx = a * RR / R mod M */ |
| 346 | for (i = 0; i < 16; i += 2) { |
| 347 | montgomery_mul(key, tmp, acc, acc); /* tmp = acc^2 / R mod M */ |
| 348 | montgomery_mul(key, acc, tmp, tmp); /* acc = tmp^2 / R mod M */ |
| 349 | } |
| 350 | montgomery_mul(key, result, acc, val); /* result = XX * a / R mod M */ |
| 351 | |
| 352 | /* Make sure result < mod; result is at most 1x mod too large. */ |
| 353 | if (greater_equal_modulus(key, result)) |
| 354 | subtract_modulus(key, result); |
| 355 | |
| 356 | for (i = 0, ptr = inout; i < key->len; i++, ptr++) |
| 357 | *ptr = result[i]; |
| 358 | |
| 359 | return 0; |
| 360 | } |
| 361 | #endif |