Aubrey Li | 10ebdd9 | 2007-03-19 01:24:52 +0800 | [diff] [blame] | 1 | /**************************************************************** |
| 2 | * $ID: i2c.c 24 Oct 2006 12:00:00 +0800 $ * |
| 3 | * * |
| 4 | * Description: * |
| 5 | * * |
| 6 | * Maintainer: sonicz <sonic.zhang@analog.com> * |
| 7 | * * |
| 8 | * CopyRight (c) 2006 Analog Device * |
| 9 | * All rights reserved. * |
| 10 | * * |
| 11 | * This file is free software; * |
| 12 | * you are free to modify and/or redistribute it * |
| 13 | * under the terms of the GNU General Public Licence (GPL).* |
| 14 | * * |
| 15 | ****************************************************************/ |
| 16 | |
| 17 | #include <common.h> |
| 18 | |
| 19 | #ifdef CONFIG_HARD_I2C |
| 20 | |
| 21 | #include <asm/blackfin.h> |
| 22 | #include <i2c.h> |
| 23 | #include <asm/io.h> |
| 24 | |
| 25 | #define bfin_read16(addr) ({ unsigned __v; \ |
| 26 | __asm__ __volatile__ (\ |
| 27 | "%0 = w[%1] (z);\n\t"\ |
| 28 | : "=d"(__v) : "a"(addr)); (unsigned short)__v; }) |
| 29 | |
| 30 | #define bfin_write16(addr,val) ({\ |
| 31 | __asm__ __volatile__ (\ |
| 32 | "w[%0] = %1;\n\t"\ |
| 33 | : : "a"(addr) , "d"(val) : "memory");}) |
| 34 | |
| 35 | /* Two-Wire Interface (0xFFC01400 - 0xFFC014FF) */ |
| 36 | #define bfin_read_TWI_CLKDIV() bfin_read16(TWI_CLKDIV) |
| 37 | #define bfin_write_TWI_CLKDIV(val) bfin_write16(TWI_CLKDIV,val) |
| 38 | #define bfin_read_TWI_CONTROL() bfin_read16(TWI_CONTROL) |
| 39 | #define bfin_write_TWI_CONTROL(val) bfin_write16(TWI_CONTROL,val) |
| 40 | #define bfin_read_TWI_SLAVE_CTL() bfin_read16(TWI_SLAVE_CTL) |
| 41 | #define bfin_write_TWI_SLAVE_CTL(val) bfin_write16(TWI_SLAVE_CTL,val) |
| 42 | #define bfin_read_TWI_SLAVE_STAT() bfin_read16(TWI_SLAVE_STAT) |
| 43 | #define bfin_write_TWI_SLAVE_STAT(val) bfin_write16(TWI_SLAVE_STAT,val) |
| 44 | #define bfin_read_TWI_SLAVE_ADDR() bfin_read16(TWI_SLAVE_ADDR) |
| 45 | #define bfin_write_TWI_SLAVE_ADDR(val) bfin_write16(TWI_SLAVE_ADDR,val) |
| 46 | #define bfin_read_TWI_MASTER_CTL() bfin_read16(TWI_MASTER_CTL) |
| 47 | #define bfin_write_TWI_MASTER_CTL(val) bfin_write16(TWI_MASTER_CTL,val) |
| 48 | #define bfin_read_TWI_MASTER_STAT() bfin_read16(TWI_MASTER_STAT) |
| 49 | #define bfin_write_TWI_MASTER_STAT(val) bfin_write16(TWI_MASTER_STAT,val) |
| 50 | #define bfin_read_TWI_MASTER_ADDR() bfin_read16(TWI_MASTER_ADDR) |
| 51 | #define bfin_write_TWI_MASTER_ADDR(val) bfin_write16(TWI_MASTER_ADDR,val) |
| 52 | #define bfin_read_TWI_INT_STAT() bfin_read16(TWI_INT_STAT) |
| 53 | #define bfin_write_TWI_INT_STAT(val) bfin_write16(TWI_INT_STAT,val) |
| 54 | #define bfin_read_TWI_INT_MASK() bfin_read16(TWI_INT_MASK) |
| 55 | #define bfin_write_TWI_INT_MASK(val) bfin_write16(TWI_INT_MASK,val) |
| 56 | #define bfin_read_TWI_FIFO_CTL() bfin_read16(TWI_FIFO_CTL) |
| 57 | #define bfin_write_TWI_FIFO_CTL(val) bfin_write16(TWI_FIFO_CTL,val) |
| 58 | #define bfin_read_TWI_FIFO_STAT() bfin_read16(TWI_FIFO_STAT) |
| 59 | #define bfin_write_TWI_FIFO_STAT(val) bfin_write16(TWI_FIFO_STAT,val) |
| 60 | #define bfin_read_TWI_XMT_DATA8() bfin_read16(TWI_XMT_DATA8) |
| 61 | #define bfin_write_TWI_XMT_DATA8(val) bfin_write16(TWI_XMT_DATA8,val) |
| 62 | #define bfin_read_TWI_XMT_DATA16() bfin_read16(TWI_XMT_DATA16) |
| 63 | #define bfin_write_TWI_XMT_DATA16(val) bfin_write16(TWI_XMT_DATA16,val) |
| 64 | #define bfin_read_TWI_RCV_DATA8() bfin_read16(TWI_RCV_DATA8) |
| 65 | #define bfin_write_TWI_RCV_DATA8(val) bfin_write16(TWI_RCV_DATA8,val) |
| 66 | #define bfin_read_TWI_RCV_DATA16() bfin_read16(TWI_RCV_DATA16) |
| 67 | #define bfin_write_TWI_RCV_DATA16(val) bfin_write16(TWI_RCV_DATA16,val) |
| 68 | |
| 69 | #ifdef DEBUG_I2C |
| 70 | #define PRINTD(fmt,args...) do { \ |
| 71 | DECLARE_GLOBAL_DATA_PTR; \ |
| 72 | if (gd->have_console) \ |
| 73 | printf(fmt ,##args); \ |
| 74 | } while (0) |
| 75 | #else |
| 76 | #define PRINTD(fmt,args...) |
| 77 | #endif |
| 78 | |
| 79 | #ifndef CONFIG_TWICLK_KHZ |
| 80 | #define CONFIG_TWICLK_KHZ 50 |
| 81 | #endif |
| 82 | |
| 83 | /* All transfers are described by this data structure */ |
| 84 | struct i2c_msg { |
| 85 | u16 addr; /* slave address */ |
| 86 | u16 flags; |
| 87 | #define I2C_M_STOP 0x2 |
| 88 | #define I2C_M_RD 0x1 |
| 89 | u16 len; /* msg length */ |
| 90 | u8 *buf; /* pointer to msg data */ |
| 91 | }; |
| 92 | |
| 93 | /** |
| 94 | * i2c_reset: - reset the host controller |
| 95 | * |
| 96 | */ |
| 97 | |
| 98 | static void i2c_reset(void) |
| 99 | { |
| 100 | /* Disable TWI */ |
| 101 | bfin_write_TWI_CONTROL(0); |
| 102 | sync(); |
| 103 | |
| 104 | /* Set TWI internal clock as 10MHz */ |
| 105 | bfin_write_TWI_CONTROL(((get_sclk() / 1024 / 1024 + 5) / 10) & 0x7F); |
| 106 | |
| 107 | /* Set Twi interface clock as specified */ |
| 108 | if (CONFIG_TWICLK_KHZ > 400) |
| 109 | bfin_write_TWI_CLKDIV(((5 * 1024 / 400) << 8) | ((5 * 1024 / |
| 110 | 400) & 0xFF)); |
| 111 | else |
| 112 | bfin_write_TWI_CLKDIV(((5 * 1024 / |
| 113 | CONFIG_TWICLK_KHZ) << 8) | ((5 * 1024 / |
| 114 | CONFIG_TWICLK_KHZ) |
| 115 | & 0xFF)); |
| 116 | |
| 117 | /* Enable TWI */ |
| 118 | bfin_write_TWI_CONTROL(bfin_read_TWI_CONTROL() | TWI_ENA); |
| 119 | sync(); |
| 120 | } |
| 121 | |
| 122 | int wait_for_completion(struct i2c_msg *msg, int timeout_count) |
| 123 | { |
| 124 | unsigned short twi_int_stat; |
| 125 | unsigned short mast_stat; |
| 126 | int i; |
| 127 | |
| 128 | for (i = 0; i < timeout_count; i++) { |
| 129 | twi_int_stat = bfin_read_TWI_INT_STAT(); |
| 130 | mast_stat = bfin_read_TWI_MASTER_STAT(); |
| 131 | |
| 132 | if (XMTSERV & twi_int_stat) { |
| 133 | /* Transmit next data */ |
| 134 | if (msg->len > 0) { |
| 135 | bfin_write_TWI_XMT_DATA8(*(msg->buf++)); |
| 136 | msg->len--; |
| 137 | } else if (msg->flags & I2C_M_STOP) |
| 138 | bfin_write_TWI_MASTER_CTL |
| 139 | (bfin_read_TWI_MASTER_CTL() | STOP); |
| 140 | sync(); |
| 141 | /* Clear status */ |
| 142 | bfin_write_TWI_INT_STAT(XMTSERV); |
| 143 | sync(); |
| 144 | i = 0; |
| 145 | } |
| 146 | if (RCVSERV & twi_int_stat) { |
| 147 | if (msg->len > 0) { |
| 148 | /* Receive next data */ |
| 149 | *(msg->buf++) = bfin_read_TWI_RCV_DATA8(); |
| 150 | msg->len--; |
| 151 | } else if (msg->flags & I2C_M_STOP) { |
| 152 | bfin_write_TWI_MASTER_CTL |
| 153 | (bfin_read_TWI_MASTER_CTL() | STOP); |
| 154 | sync(); |
| 155 | } |
| 156 | /* Clear interrupt source */ |
| 157 | bfin_write_TWI_INT_STAT(RCVSERV); |
| 158 | sync(); |
| 159 | i = 0; |
| 160 | } |
| 161 | if (MERR & twi_int_stat) { |
| 162 | bfin_write_TWI_INT_STAT(MERR); |
| 163 | bfin_write_TWI_INT_MASK(0); |
| 164 | bfin_write_TWI_MASTER_STAT(0x3e); |
| 165 | bfin_write_TWI_MASTER_CTL(0); |
| 166 | sync(); |
| 167 | /* |
| 168 | * if both err and complete int stats are set, |
| 169 | * return proper results. |
| 170 | */ |
| 171 | if (MCOMP & twi_int_stat) { |
| 172 | bfin_write_TWI_INT_STAT(MCOMP); |
| 173 | bfin_write_TWI_INT_MASK(0); |
| 174 | bfin_write_TWI_MASTER_CTL(0); |
| 175 | sync(); |
| 176 | /* |
| 177 | * If it is a quick transfer, |
| 178 | * only address bug no data, not an err. |
| 179 | */ |
| 180 | if (msg->len == 0 && mast_stat & BUFRDERR) |
| 181 | return 0; |
| 182 | /* |
| 183 | * If address not acknowledged return -3, |
| 184 | * else return 0. |
| 185 | */ |
| 186 | else if (!(mast_stat & ANAK)) |
| 187 | return 0; |
| 188 | else |
| 189 | return -3; |
| 190 | } |
| 191 | return -1; |
| 192 | } |
| 193 | if (MCOMP & twi_int_stat) { |
| 194 | bfin_write_TWI_INT_STAT(MCOMP); |
| 195 | sync(); |
| 196 | bfin_write_TWI_INT_MASK(0); |
| 197 | bfin_write_TWI_MASTER_CTL(0); |
| 198 | sync(); |
| 199 | return 0; |
| 200 | } |
| 201 | } |
| 202 | if (msg->flags & I2C_M_RD) |
| 203 | return -4; |
| 204 | else |
| 205 | return -2; |
| 206 | } |
| 207 | |
| 208 | /** |
| 209 | * i2c_transfer: - Transfer one byte over the i2c bus |
| 210 | * |
| 211 | * This function can tranfer a byte over the i2c bus in both directions. |
| 212 | * It is used by the public API functions. |
| 213 | * |
| 214 | * @return: 0: transfer successful |
| 215 | * -1: transfer fail |
| 216 | * -2: transmit timeout |
| 217 | * -3: ACK missing |
| 218 | * -4: receive timeout |
| 219 | * -5: controller not ready |
| 220 | */ |
| 221 | int i2c_transfer(struct i2c_msg *msg) |
| 222 | { |
| 223 | int ret = 0; |
| 224 | int timeout_count = 10000; |
| 225 | int len = msg->len; |
| 226 | |
| 227 | if (!(bfin_read_TWI_CONTROL() & TWI_ENA)) { |
| 228 | ret = -5; |
| 229 | goto transfer_error; |
| 230 | } |
| 231 | |
| 232 | while (bfin_read_TWI_MASTER_STAT() & BUSBUSY) ; |
| 233 | |
| 234 | /* Set Transmit device address */ |
| 235 | bfin_write_TWI_MASTER_ADDR(msg->addr); |
| 236 | |
| 237 | /* |
| 238 | * FIFO Initiation. |
| 239 | * Data in FIFO should be discarded before start a new operation. |
| 240 | */ |
| 241 | bfin_write_TWI_FIFO_CTL(0x3); |
| 242 | sync(); |
| 243 | bfin_write_TWI_FIFO_CTL(0); |
| 244 | sync(); |
| 245 | |
| 246 | if (!(msg->flags & I2C_M_RD)) { |
| 247 | /* Transmit first data */ |
| 248 | if (msg->len > 0) { |
| 249 | PRINTD("1 in i2c_transfer: buf=%d, len=%d\n", *msg->buf, |
| 250 | len); |
| 251 | bfin_write_TWI_XMT_DATA8(*(msg->buf++)); |
| 252 | msg->len--; |
| 253 | sync(); |
| 254 | } |
| 255 | } |
| 256 | |
| 257 | /* clear int stat */ |
| 258 | bfin_write_TWI_INT_STAT(MERR | MCOMP | XMTSERV | RCVSERV); |
| 259 | |
| 260 | /* Interrupt mask . Enable XMT, RCV interrupt */ |
| 261 | bfin_write_TWI_INT_MASK(MCOMP | MERR | |
| 262 | ((msg->flags & I2C_M_RD) ? RCVSERV : XMTSERV)); |
| 263 | sync(); |
| 264 | |
| 265 | if (len > 0 && len <= 255) |
| 266 | bfin_write_TWI_MASTER_CTL((len << 6)); |
| 267 | else if (msg->len > 255) { |
| 268 | bfin_write_TWI_MASTER_CTL((0xff << 6)); |
| 269 | msg->flags &= I2C_M_STOP; |
| 270 | } else |
| 271 | bfin_write_TWI_MASTER_CTL(0); |
| 272 | |
| 273 | /* Master enable */ |
| 274 | bfin_write_TWI_MASTER_CTL(bfin_read_TWI_MASTER_CTL() | MEN | |
| 275 | ((msg->flags & I2C_M_RD) |
| 276 | ? MDIR : 0) | ((CONFIG_TWICLK_KHZ > |
| 277 | 100) ? FAST : 0)); |
| 278 | sync(); |
| 279 | |
| 280 | ret = wait_for_completion(msg, timeout_count); |
| 281 | PRINTD("3 in i2c_transfer: ret=%d\n", ret); |
| 282 | |
| 283 | transfer_error: |
| 284 | switch (ret) { |
| 285 | case 1: |
| 286 | PRINTD(("i2c_transfer: error: transfer fail\n")); |
| 287 | break; |
| 288 | case 2: |
| 289 | PRINTD(("i2c_transfer: error: transmit timeout\n")); |
| 290 | break; |
| 291 | case 3: |
| 292 | PRINTD(("i2c_transfer: error: ACK missing\n")); |
| 293 | break; |
| 294 | case 4: |
| 295 | PRINTD(("i2c_transfer: error: receive timeout\n")); |
| 296 | break; |
| 297 | case 5: |
| 298 | PRINTD(("i2c_transfer: error: controller not ready\n")); |
| 299 | i2c_reset(); |
| 300 | break; |
| 301 | default: |
| 302 | break; |
| 303 | } |
| 304 | return ret; |
| 305 | |
| 306 | } |
| 307 | |
| 308 | /* ---------------------------------------------------------------------*/ |
| 309 | /* API Functions */ |
| 310 | /* ---------------------------------------------------------------------*/ |
| 311 | |
| 312 | void i2c_init(int speed, int slaveaddr) |
| 313 | { |
| 314 | i2c_reset(); |
| 315 | } |
| 316 | |
| 317 | /** |
| 318 | * i2c_probe: - Test if a chip answers for a given i2c address |
| 319 | * |
| 320 | * @chip: address of the chip which is searched for |
| 321 | * @return: 0 if a chip was found, -1 otherwhise |
| 322 | */ |
| 323 | |
| 324 | int i2c_probe(uchar chip) |
| 325 | { |
| 326 | struct i2c_msg msg; |
| 327 | u8 probebuf; |
| 328 | |
| 329 | i2c_reset(); |
| 330 | |
| 331 | probebuf = 0; |
| 332 | msg.addr = chip; |
| 333 | msg.flags = 0; |
| 334 | msg.len = 1; |
| 335 | msg.buf = &probebuf; |
| 336 | if (i2c_transfer(&msg)) |
| 337 | return -1; |
| 338 | |
| 339 | msg.addr = chip; |
| 340 | msg.flags = I2C_M_RD; |
| 341 | msg.len = 1; |
| 342 | msg.buf = &probebuf; |
| 343 | if (i2c_transfer(&msg)) |
| 344 | return -1; |
| 345 | |
| 346 | return 0; |
| 347 | } |
| 348 | |
| 349 | /** |
| 350 | * i2c_read: - Read multiple bytes from an i2c device |
| 351 | * |
| 352 | * chip: I2C chip address, range 0..127 |
| 353 | * addr: Memory (register) address within the chip |
| 354 | * alen: Number of bytes to use for addr (typically 1, 2 for larger |
| 355 | * memories, 0 for register type devices with only one |
| 356 | * register) |
| 357 | * buffer: Where to read/write the data |
| 358 | * len: How many bytes to read/write |
| 359 | * |
| 360 | * Returns: 0 on success, not 0 on failure |
| 361 | */ |
| 362 | |
| 363 | int i2c_read(uchar chip, uint addr, int alen, uchar * buffer, int len) |
| 364 | { |
| 365 | struct i2c_msg msg; |
| 366 | u8 addr_bytes[3]; /* lowest...highest byte of data address */ |
| 367 | |
| 368 | PRINTD("i2c_read: chip=0x%x, addr=0x%x, alen=0x%x, len=0x%x\n", chip, |
| 369 | addr, alen, len); |
| 370 | |
| 371 | if (alen > 0) { |
| 372 | addr_bytes[0] = (u8) ((addr >> 0) & 0x000000FF); |
| 373 | addr_bytes[1] = (u8) ((addr >> 8) & 0x000000FF); |
| 374 | addr_bytes[2] = (u8) ((addr >> 16) & 0x000000FF); |
| 375 | msg.addr = chip; |
| 376 | msg.flags = 0; |
| 377 | msg.len = alen; |
| 378 | msg.buf = addr_bytes; |
| 379 | if (i2c_transfer(&msg)) |
| 380 | return -1; |
| 381 | } |
| 382 | |
| 383 | /* start read sequence */ |
| 384 | PRINTD(("i2c_read: start read sequence\n")); |
| 385 | msg.addr = chip; |
| 386 | msg.flags = I2C_M_RD; |
| 387 | msg.len = len; |
| 388 | msg.buf = buffer; |
| 389 | if (i2c_transfer(&msg)) |
| 390 | return -1; |
| 391 | |
| 392 | return 0; |
| 393 | } |
| 394 | |
| 395 | /** |
| 396 | * i2c_write: - Write multiple bytes to an i2c device |
| 397 | * |
| 398 | * chip: I2C chip address, range 0..127 |
| 399 | * addr: Memory (register) address within the chip |
| 400 | * alen: Number of bytes to use for addr (typically 1, 2 for larger |
| 401 | * memories, 0 for register type devices with only one |
| 402 | * register) |
| 403 | * buffer: Where to read/write the data |
| 404 | * len: How many bytes to read/write |
| 405 | * |
| 406 | * Returns: 0 on success, not 0 on failure |
| 407 | */ |
| 408 | |
| 409 | int i2c_write(uchar chip, uint addr, int alen, uchar * buffer, int len) |
| 410 | { |
| 411 | struct i2c_msg msg; |
| 412 | u8 addr_bytes[3]; /* lowest...highest byte of data address */ |
| 413 | |
| 414 | PRINTD |
| 415 | ("i2c_write: chip=0x%x, addr=0x%x, alen=0x%x, len=0x%x, buf0=0x%x\n", |
| 416 | chip, addr, alen, len, buffer[0]); |
| 417 | |
| 418 | /* chip address write */ |
| 419 | if (alen > 0) { |
| 420 | addr_bytes[0] = (u8) ((addr >> 0) & 0x000000FF); |
| 421 | addr_bytes[1] = (u8) ((addr >> 8) & 0x000000FF); |
| 422 | addr_bytes[2] = (u8) ((addr >> 16) & 0x000000FF); |
| 423 | msg.addr = chip; |
| 424 | msg.flags = 0; |
| 425 | msg.len = alen; |
| 426 | msg.buf = addr_bytes; |
| 427 | if (i2c_transfer(&msg)) |
| 428 | return -1; |
| 429 | } |
| 430 | |
| 431 | /* start read sequence */ |
| 432 | PRINTD(("i2c_write: start write sequence\n")); |
| 433 | msg.addr = chip; |
| 434 | msg.flags = 0; |
| 435 | msg.len = len; |
| 436 | msg.buf = buffer; |
| 437 | if (i2c_transfer(&msg)) |
| 438 | return -1; |
| 439 | |
| 440 | return 0; |
| 441 | |
| 442 | } |
| 443 | |
| 444 | uchar i2c_reg_read(uchar chip, uchar reg) |
| 445 | { |
| 446 | uchar buf; |
| 447 | |
| 448 | PRINTD("i2c_reg_read: chip=0x%02x, reg=0x%02x\n", chip, reg); |
| 449 | i2c_read(chip, reg, 0, &buf, 1); |
| 450 | return (buf); |
| 451 | } |
| 452 | |
| 453 | void i2c_reg_write(uchar chip, uchar reg, uchar val) |
| 454 | { |
| 455 | PRINTD("i2c_reg_write: chip=0x%02x, reg=0x%02x, val=0x%02x\n", chip, |
| 456 | reg, val); |
| 457 | i2c_write(chip, reg, 0, &val, 1); |
| 458 | } |
| 459 | |
| 460 | #endif /* CONFIG_HARD_I2C */ |