Jernej Skrabec | e4aa24b | 2021-01-11 21:11:43 +0100 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0+ |
| 2 | /* |
| 3 | * sun50i H616 platform dram controller driver |
| 4 | * |
| 5 | * While controller is very similar to that in H6, PHY is completely |
| 6 | * unknown. That's why this driver has plenty of magic numbers. Some |
| 7 | * meaning was nevertheless deduced from strings found in boot0 and |
| 8 | * known meaning of some dram parameters. |
| 9 | * This driver only supports DDR3 memory and omits logic for all |
| 10 | * other supported types supported by hardware. |
| 11 | * |
| 12 | * (C) Copyright 2020 Jernej Skrabec <jernej.skrabec@siol.net> |
| 13 | * |
| 14 | */ |
| 15 | #include <common.h> |
| 16 | #include <init.h> |
| 17 | #include <log.h> |
| 18 | #include <asm/io.h> |
| 19 | #include <asm/arch/clock.h> |
| 20 | #include <asm/arch/dram.h> |
| 21 | #include <asm/arch/cpu.h> |
| 22 | #include <linux/bitops.h> |
| 23 | #include <linux/delay.h> |
| 24 | #include <linux/kconfig.h> |
| 25 | |
| 26 | enum { |
| 27 | MBUS_QOS_LOWEST = 0, |
| 28 | MBUS_QOS_LOW, |
| 29 | MBUS_QOS_HIGH, |
| 30 | MBUS_QOS_HIGHEST |
| 31 | }; |
| 32 | |
| 33 | inline void mbus_configure_port(u8 port, |
| 34 | bool bwlimit, |
| 35 | bool priority, |
| 36 | u8 qos, |
| 37 | u8 waittime, |
| 38 | u8 acs, |
| 39 | u16 bwl0, |
| 40 | u16 bwl1, |
| 41 | u16 bwl2) |
| 42 | { |
| 43 | struct sunxi_mctl_com_reg * const mctl_com = |
| 44 | (struct sunxi_mctl_com_reg *)SUNXI_DRAM_COM_BASE; |
| 45 | |
| 46 | const u32 cfg0 = ( (bwlimit ? (1 << 0) : 0) |
| 47 | | (priority ? (1 << 1) : 0) |
| 48 | | ((qos & 0x3) << 2) |
| 49 | | ((waittime & 0xf) << 4) |
| 50 | | ((acs & 0xff) << 8) |
| 51 | | (bwl0 << 16) ); |
| 52 | const u32 cfg1 = ((u32)bwl2 << 16) | (bwl1 & 0xffff); |
| 53 | |
| 54 | debug("MBUS port %d cfg0 %08x cfg1 %08x\n", port, cfg0, cfg1); |
| 55 | writel_relaxed(cfg0, &mctl_com->master[port].cfg0); |
| 56 | writel_relaxed(cfg1, &mctl_com->master[port].cfg1); |
| 57 | } |
| 58 | |
| 59 | #define MBUS_CONF(port, bwlimit, qos, acs, bwl0, bwl1, bwl2) \ |
| 60 | mbus_configure_port(port, bwlimit, false, \ |
| 61 | MBUS_QOS_ ## qos, 0, acs, bwl0, bwl1, bwl2) |
| 62 | |
| 63 | static void mctl_set_master_priority(void) |
| 64 | { |
| 65 | struct sunxi_mctl_com_reg * const mctl_com = |
| 66 | (struct sunxi_mctl_com_reg *)SUNXI_DRAM_COM_BASE; |
| 67 | |
| 68 | /* enable bandwidth limit windows and set windows size 1us */ |
| 69 | writel(399, &mctl_com->tmr); |
| 70 | writel(BIT(16), &mctl_com->bwcr); |
| 71 | |
| 72 | MBUS_CONF( 0, true, HIGHEST, 0, 256, 128, 100); |
| 73 | MBUS_CONF( 1, true, HIGH, 0, 1536, 1400, 256); |
| 74 | MBUS_CONF( 2, true, HIGHEST, 0, 512, 256, 96); |
| 75 | MBUS_CONF( 3, true, HIGH, 0, 256, 100, 80); |
| 76 | MBUS_CONF( 4, true, HIGH, 2, 8192, 5500, 5000); |
| 77 | MBUS_CONF( 5, true, HIGH, 2, 100, 64, 32); |
| 78 | MBUS_CONF( 6, true, HIGH, 2, 100, 64, 32); |
| 79 | MBUS_CONF( 8, true, HIGH, 0, 256, 128, 64); |
| 80 | MBUS_CONF(11, true, HIGH, 0, 256, 128, 100); |
| 81 | MBUS_CONF(14, true, HIGH, 0, 1024, 256, 64); |
| 82 | MBUS_CONF(16, true, HIGHEST, 6, 8192, 2800, 2400); |
| 83 | MBUS_CONF(21, true, HIGHEST, 6, 2048, 768, 512); |
| 84 | MBUS_CONF(25, true, HIGHEST, 0, 100, 64, 32); |
| 85 | MBUS_CONF(26, true, HIGH, 2, 8192, 5500, 5000); |
| 86 | MBUS_CONF(37, true, HIGH, 0, 256, 128, 64); |
| 87 | MBUS_CONF(38, true, HIGH, 2, 100, 64, 32); |
| 88 | MBUS_CONF(39, true, HIGH, 2, 8192, 5500, 5000); |
| 89 | MBUS_CONF(40, true, HIGH, 2, 100, 64, 32); |
| 90 | |
| 91 | dmb(); |
| 92 | } |
| 93 | |
| 94 | static void mctl_sys_init(struct dram_para *para) |
| 95 | { |
| 96 | struct sunxi_ccm_reg * const ccm = |
| 97 | (struct sunxi_ccm_reg *)SUNXI_CCM_BASE; |
| 98 | struct sunxi_mctl_com_reg * const mctl_com = |
| 99 | (struct sunxi_mctl_com_reg *)SUNXI_DRAM_COM_BASE; |
| 100 | struct sunxi_mctl_ctl_reg * const mctl_ctl = |
| 101 | (struct sunxi_mctl_ctl_reg *)SUNXI_DRAM_CTL0_BASE; |
| 102 | |
| 103 | /* Put all DRAM-related blocks to reset state */ |
| 104 | clrbits_le32(&ccm->mbus_cfg, MBUS_ENABLE); |
| 105 | clrbits_le32(&ccm->mbus_cfg, MBUS_RESET); |
| 106 | clrbits_le32(&ccm->dram_gate_reset, BIT(GATE_SHIFT)); |
| 107 | udelay(5); |
| 108 | clrbits_le32(&ccm->dram_gate_reset, BIT(RESET_SHIFT)); |
| 109 | clrbits_le32(&ccm->pll5_cfg, CCM_PLL5_CTRL_EN); |
| 110 | clrbits_le32(&ccm->dram_clk_cfg, DRAM_MOD_RESET); |
| 111 | |
| 112 | udelay(5); |
| 113 | |
| 114 | /* Set PLL5 rate to doubled DRAM clock rate */ |
| 115 | writel(CCM_PLL5_CTRL_EN | CCM_PLL5_LOCK_EN | CCM_PLL5_OUT_EN | |
Andre Przywara | 0f7c8bc | 2021-05-05 13:53:05 +0100 | [diff] [blame] | 116 | CCM_PLL5_CTRL_N(para->clk * 2 / 24), &ccm->pll5_cfg); |
Jernej Skrabec | e4aa24b | 2021-01-11 21:11:43 +0100 | [diff] [blame] | 117 | mctl_await_completion(&ccm->pll5_cfg, CCM_PLL5_LOCK, CCM_PLL5_LOCK); |
| 118 | |
| 119 | /* Configure DRAM mod clock */ |
| 120 | writel(DRAM_CLK_SRC_PLL5, &ccm->dram_clk_cfg); |
| 121 | writel(BIT(RESET_SHIFT), &ccm->dram_gate_reset); |
| 122 | udelay(5); |
| 123 | setbits_le32(&ccm->dram_gate_reset, BIT(GATE_SHIFT)); |
| 124 | |
| 125 | /* Disable all channels */ |
| 126 | writel(0, &mctl_com->maer0); |
| 127 | writel(0, &mctl_com->maer1); |
| 128 | writel(0, &mctl_com->maer2); |
| 129 | |
| 130 | /* Configure MBUS and enable DRAM mod reset */ |
| 131 | setbits_le32(&ccm->mbus_cfg, MBUS_RESET); |
| 132 | setbits_le32(&ccm->mbus_cfg, MBUS_ENABLE); |
| 133 | |
| 134 | clrbits_le32(&mctl_com->unk_0x500, BIT(25)); |
| 135 | |
| 136 | setbits_le32(&ccm->dram_clk_cfg, DRAM_MOD_RESET); |
| 137 | udelay(5); |
| 138 | |
| 139 | /* Unknown hack, which enables access of mctl_ctl regs */ |
| 140 | writel(0x8000, &mctl_ctl->clken); |
| 141 | } |
| 142 | |
| 143 | static void mctl_set_addrmap(struct dram_para *para) |
| 144 | { |
| 145 | struct sunxi_mctl_ctl_reg * const mctl_ctl = |
| 146 | (struct sunxi_mctl_ctl_reg *)SUNXI_DRAM_CTL0_BASE; |
| 147 | u8 cols = para->cols; |
| 148 | u8 rows = para->rows; |
| 149 | u8 ranks = para->ranks; |
| 150 | |
| 151 | if (!para->bus_full_width) |
| 152 | cols -= 1; |
| 153 | |
| 154 | /* Ranks */ |
| 155 | if (ranks == 2) |
| 156 | mctl_ctl->addrmap[0] = rows + cols - 3; |
| 157 | else |
| 158 | mctl_ctl->addrmap[0] = 0x1F; |
| 159 | |
| 160 | /* Banks, hardcoded to 8 banks now */ |
| 161 | mctl_ctl->addrmap[1] = (cols - 2) | (cols - 2) << 8 | (cols - 2) << 16; |
| 162 | |
| 163 | /* Columns */ |
| 164 | mctl_ctl->addrmap[2] = 0; |
| 165 | switch (cols) { |
| 166 | case 7: |
| 167 | mctl_ctl->addrmap[3] = 0x1F1F1F00; |
| 168 | mctl_ctl->addrmap[4] = 0x1F1F; |
| 169 | break; |
| 170 | case 8: |
| 171 | mctl_ctl->addrmap[3] = 0x1F1F0000; |
| 172 | mctl_ctl->addrmap[4] = 0x1F1F; |
| 173 | break; |
| 174 | case 9: |
| 175 | mctl_ctl->addrmap[3] = 0x1F000000; |
| 176 | mctl_ctl->addrmap[4] = 0x1F1F; |
| 177 | break; |
| 178 | case 10: |
| 179 | mctl_ctl->addrmap[3] = 0; |
| 180 | mctl_ctl->addrmap[4] = 0x1F1F; |
| 181 | break; |
| 182 | case 11: |
| 183 | mctl_ctl->addrmap[3] = 0; |
| 184 | mctl_ctl->addrmap[4] = 0x1F00; |
| 185 | break; |
| 186 | case 12: |
| 187 | mctl_ctl->addrmap[3] = 0; |
| 188 | mctl_ctl->addrmap[4] = 0; |
| 189 | break; |
| 190 | default: |
| 191 | panic("Unsupported DRAM configuration: column number invalid\n"); |
| 192 | } |
| 193 | |
| 194 | /* Rows */ |
| 195 | mctl_ctl->addrmap[5] = (cols - 3) | ((cols - 3) << 8) | ((cols - 3) << 16) | ((cols - 3) << 24); |
| 196 | switch (rows) { |
| 197 | case 13: |
| 198 | mctl_ctl->addrmap[6] = (cols - 3) | 0x0F0F0F00; |
| 199 | mctl_ctl->addrmap[7] = 0x0F0F; |
| 200 | break; |
| 201 | case 14: |
| 202 | mctl_ctl->addrmap[6] = (cols - 3) | ((cols - 3) << 8) | 0x0F0F0000; |
| 203 | mctl_ctl->addrmap[7] = 0x0F0F; |
| 204 | break; |
| 205 | case 15: |
| 206 | mctl_ctl->addrmap[6] = (cols - 3) | ((cols - 3) << 8) | ((cols - 3) << 16) | 0x0F000000; |
| 207 | mctl_ctl->addrmap[7] = 0x0F0F; |
| 208 | break; |
| 209 | case 16: |
| 210 | mctl_ctl->addrmap[6] = (cols - 3) | ((cols - 3) << 8) | ((cols - 3) << 16) | ((cols - 3) << 24); |
| 211 | mctl_ctl->addrmap[7] = 0x0F0F; |
| 212 | break; |
| 213 | case 17: |
| 214 | mctl_ctl->addrmap[6] = (cols - 3) | ((cols - 3) << 8) | ((cols - 3) << 16) | ((cols - 3) << 24); |
| 215 | mctl_ctl->addrmap[7] = (cols - 3) | 0x0F00; |
| 216 | break; |
| 217 | case 18: |
| 218 | mctl_ctl->addrmap[6] = (cols - 3) | ((cols - 3) << 8) | ((cols - 3) << 16) | ((cols - 3) << 24); |
| 219 | mctl_ctl->addrmap[7] = (cols - 3) | ((cols - 3) << 8); |
| 220 | break; |
| 221 | default: |
| 222 | panic("Unsupported DRAM configuration: row number invalid\n"); |
| 223 | } |
| 224 | |
| 225 | /* Bank groups, DDR4 only */ |
| 226 | mctl_ctl->addrmap[8] = 0x3F3F; |
| 227 | } |
| 228 | |
| 229 | static const u8 phy_init[] = { |
| 230 | 0x07, 0x0b, 0x02, 0x16, 0x0d, 0x0e, 0x14, 0x19, |
| 231 | 0x0a, 0x15, 0x03, 0x13, 0x04, 0x0c, 0x10, 0x06, |
| 232 | 0x0f, 0x11, 0x1a, 0x01, 0x12, 0x17, 0x00, 0x08, |
| 233 | 0x09, 0x05, 0x18 |
| 234 | }; |
| 235 | |
| 236 | static void mctl_phy_configure_odt(void) |
| 237 | { |
| 238 | writel_relaxed(0xe, SUNXI_DRAM_PHY0_BASE + 0x388); |
| 239 | writel_relaxed(0xe, SUNXI_DRAM_PHY0_BASE + 0x38c); |
| 240 | |
| 241 | writel_relaxed(0xe, SUNXI_DRAM_PHY0_BASE + 0x3c8); |
| 242 | writel_relaxed(0xe, SUNXI_DRAM_PHY0_BASE + 0x3cc); |
| 243 | |
| 244 | writel_relaxed(0xe, SUNXI_DRAM_PHY0_BASE + 0x408); |
| 245 | writel_relaxed(0xe, SUNXI_DRAM_PHY0_BASE + 0x40c); |
| 246 | |
| 247 | writel_relaxed(0xe, SUNXI_DRAM_PHY0_BASE + 0x448); |
| 248 | writel_relaxed(0xe, SUNXI_DRAM_PHY0_BASE + 0x44c); |
| 249 | |
| 250 | writel_relaxed(0xe, SUNXI_DRAM_PHY0_BASE + 0x340); |
| 251 | writel_relaxed(0xe, SUNXI_DRAM_PHY0_BASE + 0x344); |
| 252 | |
| 253 | writel_relaxed(0xe, SUNXI_DRAM_PHY0_BASE + 0x348); |
| 254 | writel_relaxed(0xe, SUNXI_DRAM_PHY0_BASE + 0x34c); |
| 255 | |
| 256 | writel_relaxed(0x8, SUNXI_DRAM_PHY0_BASE + 0x380); |
| 257 | writel_relaxed(0x8, SUNXI_DRAM_PHY0_BASE + 0x384); |
| 258 | |
| 259 | writel_relaxed(0x8, SUNXI_DRAM_PHY0_BASE + 0x3c0); |
| 260 | writel_relaxed(0x8, SUNXI_DRAM_PHY0_BASE + 0x3c4); |
| 261 | |
| 262 | writel_relaxed(0x8, SUNXI_DRAM_PHY0_BASE + 0x400); |
| 263 | writel_relaxed(0x8, SUNXI_DRAM_PHY0_BASE + 0x404); |
| 264 | |
| 265 | writel_relaxed(0x8, SUNXI_DRAM_PHY0_BASE + 0x440); |
| 266 | writel_relaxed(0x8, SUNXI_DRAM_PHY0_BASE + 0x444); |
| 267 | |
| 268 | dmb(); |
| 269 | } |
| 270 | |
| 271 | static bool mctl_phy_write_leveling(struct dram_para *para) |
| 272 | { |
| 273 | bool result = true; |
| 274 | u32 val; |
| 275 | |
| 276 | clrsetbits_le32(SUNXI_DRAM_PHY0_BASE + 8, 0xc0, 0x80); |
| 277 | writel(4, SUNXI_DRAM_PHY0_BASE + 0xc); |
| 278 | writel(0x40, SUNXI_DRAM_PHY0_BASE + 0x10); |
| 279 | |
| 280 | setbits_le32(SUNXI_DRAM_PHY0_BASE + 8, 4); |
| 281 | |
| 282 | if (para->bus_full_width) |
| 283 | val = 0xf; |
| 284 | else |
| 285 | val = 3; |
| 286 | |
| 287 | mctl_await_completion((u32*)(SUNXI_DRAM_PHY0_BASE + 0x188), val, val); |
| 288 | |
| 289 | clrbits_le32(SUNXI_DRAM_PHY0_BASE + 8, 4); |
| 290 | |
| 291 | val = readl(SUNXI_DRAM_PHY0_BASE + 0x258); |
| 292 | if (val == 0 || val == 0x3f) |
| 293 | result = false; |
| 294 | val = readl(SUNXI_DRAM_PHY0_BASE + 0x25c); |
| 295 | if (val == 0 || val == 0x3f) |
| 296 | result = false; |
| 297 | val = readl(SUNXI_DRAM_PHY0_BASE + 0x318); |
| 298 | if (val == 0 || val == 0x3f) |
| 299 | result = false; |
| 300 | val = readl(SUNXI_DRAM_PHY0_BASE + 0x31c); |
| 301 | if (val == 0 || val == 0x3f) |
| 302 | result = false; |
| 303 | |
| 304 | clrbits_le32(SUNXI_DRAM_PHY0_BASE + 8, 0xc0); |
| 305 | |
| 306 | if (para->ranks == 2) { |
| 307 | clrsetbits_le32(SUNXI_DRAM_PHY0_BASE + 8, 0xc0, 0x40); |
| 308 | |
| 309 | setbits_le32(SUNXI_DRAM_PHY0_BASE + 8, 4); |
| 310 | |
| 311 | if (para->bus_full_width) |
| 312 | val = 0xf; |
| 313 | else |
| 314 | val = 3; |
| 315 | |
| 316 | mctl_await_completion((u32*)(SUNXI_DRAM_PHY0_BASE + 0x188), val, val); |
| 317 | |
| 318 | clrbits_le32(SUNXI_DRAM_PHY0_BASE + 8, 4); |
| 319 | } |
| 320 | |
| 321 | clrbits_le32(SUNXI_DRAM_PHY0_BASE + 8, 0xc0); |
| 322 | |
| 323 | return result; |
| 324 | } |
| 325 | |
| 326 | static bool mctl_phy_read_calibration(struct dram_para *para) |
| 327 | { |
| 328 | bool result = true; |
| 329 | u32 val, tmp; |
| 330 | |
| 331 | clrsetbits_le32(SUNXI_DRAM_PHY0_BASE + 8, 0x30, 0x20); |
| 332 | |
| 333 | setbits_le32(SUNXI_DRAM_PHY0_BASE + 8, 1); |
| 334 | |
| 335 | if (para->bus_full_width) |
| 336 | val = 0xf; |
| 337 | else |
| 338 | val = 3; |
| 339 | |
| 340 | while ((readl(SUNXI_DRAM_PHY0_BASE + 0x184) & val) != val) { |
| 341 | if (readl(SUNXI_DRAM_PHY0_BASE + 0x184) & 0x20) { |
| 342 | result = false; |
| 343 | break; |
| 344 | } |
| 345 | } |
| 346 | |
| 347 | clrbits_le32(SUNXI_DRAM_PHY0_BASE + 8, 1); |
| 348 | |
| 349 | clrbits_le32(SUNXI_DRAM_PHY0_BASE + 8, 0x30); |
| 350 | |
| 351 | if (para->ranks == 2) { |
| 352 | clrsetbits_le32(SUNXI_DRAM_PHY0_BASE + 8, 0x30, 0x10); |
| 353 | |
| 354 | setbits_le32(SUNXI_DRAM_PHY0_BASE + 8, 1); |
| 355 | |
| 356 | while ((readl(SUNXI_DRAM_PHY0_BASE + 0x184) & val) != val) { |
| 357 | if (readl(SUNXI_DRAM_PHY0_BASE + 0x184) & 0x20) { |
| 358 | result = false; |
| 359 | break; |
| 360 | } |
| 361 | } |
| 362 | |
| 363 | setbits_le32(SUNXI_DRAM_PHY0_BASE + 8, 1); |
| 364 | } |
| 365 | |
| 366 | clrbits_le32(SUNXI_DRAM_PHY0_BASE + 8, 0x30); |
| 367 | |
| 368 | val = readl(SUNXI_DRAM_PHY0_BASE + 0x274) & 7; |
| 369 | tmp = readl(SUNXI_DRAM_PHY0_BASE + 0x26c) & 7; |
| 370 | if (val < tmp) |
| 371 | val = tmp; |
| 372 | tmp = readl(SUNXI_DRAM_PHY0_BASE + 0x32c) & 7; |
| 373 | if (val < tmp) |
| 374 | val = tmp; |
| 375 | tmp = readl(SUNXI_DRAM_PHY0_BASE + 0x334) & 7; |
| 376 | if (val < tmp) |
| 377 | val = tmp; |
| 378 | clrsetbits_le32(SUNXI_DRAM_PHY0_BASE + 0x38, 0x7, (val + 2) & 7); |
| 379 | |
| 380 | setbits_le32(SUNXI_DRAM_PHY0_BASE + 4, 0x20); |
| 381 | |
| 382 | return result; |
| 383 | } |
| 384 | |
| 385 | static bool mctl_phy_read_training(struct dram_para *para) |
| 386 | { |
| 387 | u32 val1, val2, *ptr1, *ptr2; |
| 388 | bool result = true; |
| 389 | int i; |
| 390 | |
| 391 | clrsetbits_le32(SUNXI_DRAM_PHY0_BASE + 0x198, 3, 2); |
| 392 | clrsetbits_le32(SUNXI_DRAM_PHY0_BASE + 0x804, 0x3f, 0xf); |
| 393 | clrsetbits_le32(SUNXI_DRAM_PHY0_BASE + 0x808, 0x3f, 0xf); |
| 394 | clrsetbits_le32(SUNXI_DRAM_PHY0_BASE + 0xa04, 0x3f, 0xf); |
| 395 | clrsetbits_le32(SUNXI_DRAM_PHY0_BASE + 0xa08, 0x3f, 0xf); |
| 396 | |
| 397 | setbits_le32(SUNXI_DRAM_PHY0_BASE + 0x190, 6); |
| 398 | setbits_le32(SUNXI_DRAM_PHY0_BASE + 0x190, 1); |
| 399 | |
| 400 | mctl_await_completion((u32*)(SUNXI_DRAM_PHY0_BASE + 0x840), 0xc, 0xc); |
| 401 | if (readl(SUNXI_DRAM_PHY0_BASE + 0x840) & 3) |
| 402 | result = false; |
| 403 | |
| 404 | if (para->bus_full_width) { |
| 405 | mctl_await_completion((u32*)(SUNXI_DRAM_PHY0_BASE + 0xa40), 0xc, 0xc); |
| 406 | if (readl(SUNXI_DRAM_PHY0_BASE + 0xa40) & 3) |
| 407 | result = false; |
| 408 | } |
| 409 | |
| 410 | ptr1 = (u32*)(SUNXI_DRAM_PHY0_BASE + 0x898); |
| 411 | ptr2 = (u32*)(SUNXI_DRAM_PHY0_BASE + 0x850); |
| 412 | for (i = 0; i < 9; i++) { |
| 413 | val1 = readl(&ptr1[i]); |
| 414 | val2 = readl(&ptr2[i]); |
| 415 | if (val1 - val2 <= 6) |
| 416 | result = false; |
| 417 | } |
| 418 | ptr1 = (u32*)(SUNXI_DRAM_PHY0_BASE + 0x8bc); |
| 419 | ptr2 = (u32*)(SUNXI_DRAM_PHY0_BASE + 0x874); |
| 420 | for (i = 0; i < 9; i++) { |
| 421 | val1 = readl(&ptr1[i]); |
| 422 | val2 = readl(&ptr2[i]); |
| 423 | if (val1 - val2 <= 6) |
| 424 | result = false; |
| 425 | } |
| 426 | |
| 427 | if (para->bus_full_width) { |
| 428 | ptr1 = (u32*)(SUNXI_DRAM_PHY0_BASE + 0xa98); |
| 429 | ptr2 = (u32*)(SUNXI_DRAM_PHY0_BASE + 0xa50); |
| 430 | for (i = 0; i < 9; i++) { |
| 431 | val1 = readl(&ptr1[i]); |
| 432 | val2 = readl(&ptr2[i]); |
| 433 | if (val1 - val2 <= 6) |
| 434 | result = false; |
| 435 | } |
| 436 | |
| 437 | ptr1 = (u32*)(SUNXI_DRAM_PHY0_BASE + 0xabc); |
| 438 | ptr2 = (u32*)(SUNXI_DRAM_PHY0_BASE + 0xa74); |
| 439 | for (i = 0; i < 9; i++) { |
| 440 | val1 = readl(&ptr1[i]); |
| 441 | val2 = readl(&ptr2[i]); |
| 442 | if (val1 - val2 <= 6) |
| 443 | result = false; |
| 444 | } |
| 445 | } |
| 446 | |
| 447 | clrbits_le32(SUNXI_DRAM_PHY0_BASE + 0x190, 3); |
| 448 | |
| 449 | if (para->ranks == 2) { |
| 450 | /* maybe last parameter should be 1? */ |
| 451 | clrsetbits_le32(SUNXI_DRAM_PHY0_BASE + 0x198, 3, 2); |
| 452 | |
| 453 | setbits_le32(SUNXI_DRAM_PHY0_BASE + 0x190, 6); |
| 454 | setbits_le32(SUNXI_DRAM_PHY0_BASE + 0x190, 1); |
| 455 | |
| 456 | mctl_await_completion((u32*)(SUNXI_DRAM_PHY0_BASE + 0x840), 0xc, 0xc); |
| 457 | if (readl(SUNXI_DRAM_PHY0_BASE + 0x840) & 3) |
| 458 | result = false; |
| 459 | |
| 460 | if (para->bus_full_width) { |
| 461 | mctl_await_completion((u32*)(SUNXI_DRAM_PHY0_BASE + 0xa40), 0xc, 0xc); |
| 462 | if (readl(SUNXI_DRAM_PHY0_BASE + 0xa40) & 3) |
| 463 | result = false; |
| 464 | } |
| 465 | |
| 466 | clrbits_le32(SUNXI_DRAM_PHY0_BASE + 0x190, 3); |
| 467 | } |
| 468 | |
| 469 | clrbits_le32(SUNXI_DRAM_PHY0_BASE + 0x198, 3); |
| 470 | |
| 471 | return result; |
| 472 | } |
| 473 | |
| 474 | static bool mctl_phy_write_training(struct dram_para *para) |
| 475 | { |
| 476 | u32 val1, val2, *ptr1, *ptr2; |
| 477 | bool result = true; |
| 478 | int i; |
| 479 | |
| 480 | writel(0, SUNXI_DRAM_PHY0_BASE + 0x134); |
| 481 | writel(0, SUNXI_DRAM_PHY0_BASE + 0x138); |
| 482 | writel(0, SUNXI_DRAM_PHY0_BASE + 0x19c); |
| 483 | writel(0, SUNXI_DRAM_PHY0_BASE + 0x1a0); |
| 484 | |
| 485 | clrsetbits_le32(SUNXI_DRAM_PHY0_BASE + 0x198, 0xc, 8); |
| 486 | |
| 487 | setbits_le32(SUNXI_DRAM_PHY0_BASE + 0x190, 0x10); |
| 488 | setbits_le32(SUNXI_DRAM_PHY0_BASE + 0x190, 0x20); |
| 489 | |
| 490 | mctl_await_completion((u32*)(SUNXI_DRAM_PHY0_BASE + 0x8e0), 3, 3); |
| 491 | if (readl(SUNXI_DRAM_PHY0_BASE + 0x8e0) & 0xc) |
| 492 | result = false; |
| 493 | |
| 494 | if (para->bus_full_width) { |
| 495 | mctl_await_completion((u32*)(SUNXI_DRAM_PHY0_BASE + 0xae0), 3, 3); |
| 496 | if (readl(SUNXI_DRAM_PHY0_BASE + 0xae0) & 0xc) |
| 497 | result = false; |
| 498 | } |
| 499 | |
| 500 | ptr1 = (u32*)(SUNXI_DRAM_PHY0_BASE + 0x938); |
| 501 | ptr2 = (u32*)(SUNXI_DRAM_PHY0_BASE + 0x8f0); |
| 502 | for (i = 0; i < 9; i++) { |
| 503 | val1 = readl(&ptr1[i]); |
| 504 | val2 = readl(&ptr2[i]); |
| 505 | if (val1 - val2 <= 6) |
| 506 | result = false; |
| 507 | } |
| 508 | ptr1 = (u32*)(SUNXI_DRAM_PHY0_BASE + 0x95c); |
| 509 | ptr2 = (u32*)(SUNXI_DRAM_PHY0_BASE + 0x914); |
| 510 | for (i = 0; i < 9; i++) { |
| 511 | val1 = readl(&ptr1[i]); |
| 512 | val2 = readl(&ptr2[i]); |
| 513 | if (val1 - val2 <= 6) |
| 514 | result = false; |
| 515 | } |
| 516 | |
| 517 | if (para->bus_full_width) { |
| 518 | ptr1 = (u32*)(SUNXI_DRAM_PHY0_BASE + 0xb38); |
| 519 | ptr2 = (u32*)(SUNXI_DRAM_PHY0_BASE + 0xaf0); |
| 520 | for (i = 0; i < 9; i++) { |
| 521 | val1 = readl(&ptr1[i]); |
| 522 | val2 = readl(&ptr2[i]); |
| 523 | if (val1 - val2 <= 6) |
| 524 | result = false; |
| 525 | } |
| 526 | ptr1 = (u32*)(SUNXI_DRAM_PHY0_BASE + 0xb5c); |
| 527 | ptr2 = (u32*)(SUNXI_DRAM_PHY0_BASE + 0xb14); |
| 528 | for (i = 0; i < 9; i++) { |
| 529 | val1 = readl(&ptr1[i]); |
| 530 | val2 = readl(&ptr2[i]); |
| 531 | if (val1 - val2 <= 6) |
| 532 | result = false; |
| 533 | } |
| 534 | } |
| 535 | |
| 536 | clrbits_le32(SUNXI_DRAM_PHY0_BASE + 0x190, 0x60); |
| 537 | |
| 538 | if (para->ranks == 2) { |
| 539 | clrsetbits_le32(SUNXI_DRAM_PHY0_BASE + 0x198, 0xc, 4); |
| 540 | |
| 541 | setbits_le32(SUNXI_DRAM_PHY0_BASE + 0x190, 0x10); |
| 542 | setbits_le32(SUNXI_DRAM_PHY0_BASE + 0x190, 0x20); |
| 543 | |
| 544 | mctl_await_completion((u32*)(SUNXI_DRAM_PHY0_BASE + 0x8e0), 3, 3); |
| 545 | if (readl(SUNXI_DRAM_PHY0_BASE + 0x8e0) & 0xc) |
| 546 | result = false; |
| 547 | |
| 548 | if (para->bus_full_width) { |
| 549 | mctl_await_completion((u32*)(SUNXI_DRAM_PHY0_BASE + 0xae0), 3, 3); |
| 550 | if (readl(SUNXI_DRAM_PHY0_BASE + 0xae0) & 0xc) |
| 551 | result = false; |
| 552 | } |
| 553 | |
| 554 | clrbits_le32(SUNXI_DRAM_PHY0_BASE + 0x190, 0x60); |
| 555 | } |
| 556 | |
| 557 | clrbits_le32(SUNXI_DRAM_PHY0_BASE + 0x198, 0xc); |
| 558 | |
| 559 | return result; |
| 560 | } |
| 561 | |
| 562 | static bool mctl_phy_bit_delay_compensation(struct dram_para *para) |
| 563 | { |
| 564 | u32 *ptr; |
| 565 | int i; |
| 566 | |
| 567 | clrbits_le32(SUNXI_DRAM_PHY0_BASE + 0x60, 1); |
| 568 | setbits_le32(SUNXI_DRAM_PHY0_BASE + 8, 8); |
| 569 | clrbits_le32(SUNXI_DRAM_PHY0_BASE + 0x190, 0x10); |
| 570 | |
| 571 | ptr = (u32*)(SUNXI_DRAM_PHY0_BASE + 0x484); |
| 572 | for (i = 0; i < 9; i++) { |
| 573 | writel_relaxed(0x16, ptr); |
| 574 | writel_relaxed(0x16, ptr + 0x30); |
| 575 | ptr += 2; |
| 576 | } |
| 577 | writel_relaxed(0x1c, SUNXI_DRAM_PHY0_BASE + 0x4d0); |
| 578 | writel_relaxed(0x1c, SUNXI_DRAM_PHY0_BASE + 0x590); |
| 579 | writel_relaxed(0x1c, SUNXI_DRAM_PHY0_BASE + 0x4cc); |
| 580 | writel_relaxed(0x1c, SUNXI_DRAM_PHY0_BASE + 0x58c); |
| 581 | |
| 582 | ptr = (u32*)(SUNXI_DRAM_PHY0_BASE + 0x4d8); |
| 583 | for (i = 0; i < 9; i++) { |
| 584 | writel_relaxed(0x1a, ptr); |
| 585 | writel_relaxed(0x1a, ptr + 0x30); |
| 586 | ptr += 2; |
| 587 | } |
| 588 | writel_relaxed(0x1e, SUNXI_DRAM_PHY0_BASE + 0x524); |
| 589 | writel_relaxed(0x1e, SUNXI_DRAM_PHY0_BASE + 0x5e4); |
| 590 | writel_relaxed(0x1e, SUNXI_DRAM_PHY0_BASE + 0x520); |
| 591 | writel_relaxed(0x1e, SUNXI_DRAM_PHY0_BASE + 0x5e0); |
| 592 | |
| 593 | ptr = (u32*)(SUNXI_DRAM_PHY0_BASE + 0x604); |
| 594 | for (i = 0; i < 9; i++) { |
| 595 | writel_relaxed(0x1a, ptr); |
| 596 | writel_relaxed(0x1a, ptr + 0x30); |
| 597 | ptr += 2; |
| 598 | } |
| 599 | writel_relaxed(0x1e, SUNXI_DRAM_PHY0_BASE + 0x650); |
| 600 | writel_relaxed(0x1e, SUNXI_DRAM_PHY0_BASE + 0x710); |
| 601 | writel_relaxed(0x1e, SUNXI_DRAM_PHY0_BASE + 0x64c); |
| 602 | writel_relaxed(0x1e, SUNXI_DRAM_PHY0_BASE + 0x70c); |
| 603 | |
| 604 | ptr = (u32*)(SUNXI_DRAM_PHY0_BASE + 0x658); |
| 605 | for (i = 0; i < 9; i++) { |
| 606 | writel_relaxed(0x1a, ptr); |
| 607 | writel_relaxed(0x1a, ptr + 0x30); |
| 608 | ptr += 2; |
| 609 | } |
| 610 | writel_relaxed(0x1e, SUNXI_DRAM_PHY0_BASE + 0x6a4); |
| 611 | writel_relaxed(0x1e, SUNXI_DRAM_PHY0_BASE + 0x764); |
| 612 | writel_relaxed(0x1e, SUNXI_DRAM_PHY0_BASE + 0x6a0); |
| 613 | writel_relaxed(0x1e, SUNXI_DRAM_PHY0_BASE + 0x760); |
| 614 | |
| 615 | dmb(); |
| 616 | |
| 617 | setbits_le32(SUNXI_DRAM_PHY0_BASE + 0x60, 1); |
| 618 | |
| 619 | /* second part */ |
| 620 | clrbits_le32(SUNXI_DRAM_PHY0_BASE + 0x54, 0x80); |
| 621 | clrbits_le32(SUNXI_DRAM_PHY0_BASE + 0x190, 4); |
| 622 | |
| 623 | ptr = (u32*)(SUNXI_DRAM_PHY0_BASE + 0x480); |
| 624 | for (i = 0; i < 9; i++) { |
| 625 | writel_relaxed(0x10, ptr); |
| 626 | writel_relaxed(0x10, ptr + 0x30); |
| 627 | ptr += 2; |
| 628 | } |
| 629 | writel_relaxed(0x18, SUNXI_DRAM_PHY0_BASE + 0x528); |
| 630 | writel_relaxed(0x18, SUNXI_DRAM_PHY0_BASE + 0x5e8); |
| 631 | writel_relaxed(0x18, SUNXI_DRAM_PHY0_BASE + 0x4c8); |
| 632 | writel_relaxed(0x18, SUNXI_DRAM_PHY0_BASE + 0x588); |
| 633 | |
| 634 | ptr = (u32*)(SUNXI_DRAM_PHY0_BASE + 0x4d4); |
| 635 | for (i = 0; i < 9; i++) { |
| 636 | writel_relaxed(0x12, ptr); |
| 637 | writel_relaxed(0x12, ptr + 0x30); |
| 638 | ptr += 2; |
| 639 | } |
| 640 | writel_relaxed(0x1a, SUNXI_DRAM_PHY0_BASE + 0x52c); |
| 641 | writel_relaxed(0x1a, SUNXI_DRAM_PHY0_BASE + 0x5ec); |
| 642 | writel_relaxed(0x1a, SUNXI_DRAM_PHY0_BASE + 0x51c); |
| 643 | writel_relaxed(0x1a, SUNXI_DRAM_PHY0_BASE + 0x5dc); |
| 644 | |
| 645 | ptr = (u32*)(SUNXI_DRAM_PHY0_BASE + 0x600); |
| 646 | for (i = 0; i < 9; i++) { |
| 647 | writel_relaxed(0x12, ptr); |
| 648 | writel_relaxed(0x12, ptr + 0x30); |
| 649 | ptr += 2; |
| 650 | } |
| 651 | writel_relaxed(0x1a, SUNXI_DRAM_PHY0_BASE + 0x6a8); |
| 652 | writel_relaxed(0x1a, SUNXI_DRAM_PHY0_BASE + 0x768); |
| 653 | writel_relaxed(0x1a, SUNXI_DRAM_PHY0_BASE + 0x648); |
| 654 | writel_relaxed(0x1a, SUNXI_DRAM_PHY0_BASE + 0x708); |
| 655 | |
| 656 | ptr = (u32*)(SUNXI_DRAM_PHY0_BASE + 0x654); |
| 657 | for (i = 0; i < 9; i++) { |
| 658 | writel_relaxed(0x14, ptr); |
| 659 | writel_relaxed(0x14, ptr + 0x30); |
| 660 | ptr += 2; |
| 661 | } |
| 662 | writel_relaxed(0x1c, SUNXI_DRAM_PHY0_BASE + 0x6ac); |
| 663 | writel_relaxed(0x1c, SUNXI_DRAM_PHY0_BASE + 0x76c); |
| 664 | writel_relaxed(0x1c, SUNXI_DRAM_PHY0_BASE + 0x69c); |
| 665 | writel_relaxed(0x1c, SUNXI_DRAM_PHY0_BASE + 0x75c); |
| 666 | |
| 667 | dmb(); |
| 668 | |
| 669 | setbits_le32(SUNXI_DRAM_PHY0_BASE + 0x54, 0x80); |
| 670 | |
| 671 | return true; |
| 672 | } |
| 673 | |
| 674 | static bool mctl_phy_init(struct dram_para *para) |
| 675 | { |
| 676 | struct sunxi_mctl_com_reg * const mctl_com = |
| 677 | (struct sunxi_mctl_com_reg *)SUNXI_DRAM_COM_BASE; |
| 678 | struct sunxi_mctl_ctl_reg * const mctl_ctl = |
| 679 | (struct sunxi_mctl_ctl_reg *)SUNXI_DRAM_CTL0_BASE; |
| 680 | u32 val, *ptr; |
| 681 | int i; |
| 682 | |
| 683 | if (para->bus_full_width) |
| 684 | val = 0xf; |
| 685 | else |
| 686 | val = 3; |
| 687 | clrsetbits_le32(SUNXI_DRAM_PHY0_BASE + 0x3c, 0xf, val); |
| 688 | |
| 689 | writel(0xd, SUNXI_DRAM_PHY0_BASE + 0x14); |
| 690 | writel(0xd, SUNXI_DRAM_PHY0_BASE + 0x35c); |
| 691 | writel(0xd, SUNXI_DRAM_PHY0_BASE + 0x368); |
| 692 | writel(0xd, SUNXI_DRAM_PHY0_BASE + 0x374); |
| 693 | |
| 694 | writel(0, SUNXI_DRAM_PHY0_BASE + 0x18); |
| 695 | writel(0, SUNXI_DRAM_PHY0_BASE + 0x360); |
| 696 | writel(0, SUNXI_DRAM_PHY0_BASE + 0x36c); |
| 697 | writel(0, SUNXI_DRAM_PHY0_BASE + 0x378); |
| 698 | |
| 699 | writel(9, SUNXI_DRAM_PHY0_BASE + 0x1c); |
| 700 | writel(9, SUNXI_DRAM_PHY0_BASE + 0x364); |
| 701 | writel(9, SUNXI_DRAM_PHY0_BASE + 0x370); |
| 702 | writel(9, SUNXI_DRAM_PHY0_BASE + 0x37c); |
| 703 | |
| 704 | ptr = (u32*)(SUNXI_DRAM_PHY0_BASE + 0xc0); |
| 705 | for (i = 0; i < ARRAY_SIZE(phy_init); i++) |
| 706 | writel(phy_init[i], &ptr[i]); |
| 707 | |
| 708 | if (IS_ENABLED(CONFIG_DRAM_SUN50I_H616_UNKNOWN_FEATURE)) { |
| 709 | ptr = (u32*)(SUNXI_DRAM_PHY0_BASE + 0x780); |
| 710 | for (i = 0; i < 32; i++) |
| 711 | writel(0x16, &ptr[i]); |
| 712 | writel(0xe, SUNXI_DRAM_PHY0_BASE + 0x78c); |
| 713 | writel(0xe, SUNXI_DRAM_PHY0_BASE + 0x7a4); |
| 714 | writel(0xe, SUNXI_DRAM_PHY0_BASE + 0x7b8); |
| 715 | writel(0x8, SUNXI_DRAM_PHY0_BASE + 0x7d4); |
| 716 | writel(0xe, SUNXI_DRAM_PHY0_BASE + 0x7dc); |
| 717 | writel(0xe, SUNXI_DRAM_PHY0_BASE + 0x7e0); |
| 718 | } |
| 719 | |
| 720 | writel(0x80, SUNXI_DRAM_PHY0_BASE + 0x3dc); |
| 721 | writel(0x80, SUNXI_DRAM_PHY0_BASE + 0x45c); |
| 722 | |
| 723 | if (IS_ENABLED(DRAM_ODT_EN)) |
| 724 | mctl_phy_configure_odt(); |
| 725 | |
| 726 | clrsetbits_le32(SUNXI_DRAM_PHY0_BASE + 4, 7, 0xa); |
| 727 | |
| 728 | if (para->clk <= 672) |
| 729 | writel(0xf, SUNXI_DRAM_PHY0_BASE + 0x20); |
| 730 | if (para->clk > 500) { |
| 731 | clrbits_le32(SUNXI_DRAM_PHY0_BASE + 0x144, BIT(7)); |
| 732 | clrbits_le32(SUNXI_DRAM_PHY0_BASE + 0x14c, 0xe0); |
| 733 | } else { |
| 734 | setbits_le32(SUNXI_DRAM_PHY0_BASE + 0x144, BIT(7)); |
| 735 | clrsetbits_le32(SUNXI_DRAM_PHY0_BASE + 0x14c, 0xe0, 0x20); |
| 736 | } |
| 737 | |
| 738 | clrbits_le32(SUNXI_DRAM_PHY0_BASE + 0x14c, 8); |
| 739 | |
| 740 | mctl_await_completion((u32*)(SUNXI_DRAM_PHY0_BASE + 0x180), 4, 4); |
| 741 | |
| 742 | writel(0x37, SUNXI_DRAM_PHY0_BASE + 0x58); |
| 743 | clrbits_le32(&mctl_com->unk_0x500, 0x200); |
| 744 | |
| 745 | writel(0, &mctl_ctl->swctl); |
| 746 | setbits_le32(&mctl_ctl->dfimisc, 1); |
| 747 | |
| 748 | /* start DFI init */ |
| 749 | setbits_le32(&mctl_ctl->dfimisc, 0x20); |
| 750 | writel(1, &mctl_ctl->swctl); |
| 751 | mctl_await_completion(&mctl_ctl->swstat, 1, 1); |
| 752 | /* poll DFI init complete */ |
| 753 | mctl_await_completion(&mctl_ctl->dfistat, 1, 1); |
| 754 | writel(0, &mctl_ctl->swctl); |
| 755 | clrbits_le32(&mctl_ctl->dfimisc, 0x20); |
| 756 | |
| 757 | clrbits_le32(&mctl_ctl->pwrctl, 0x20); |
| 758 | writel(1, &mctl_ctl->swctl); |
| 759 | mctl_await_completion(&mctl_ctl->swstat, 1, 1); |
| 760 | mctl_await_completion(&mctl_ctl->statr, 3, 1); |
| 761 | |
| 762 | writel(0, &mctl_ctl->swctl); |
| 763 | clrbits_le32(&mctl_ctl->dfimisc, 1); |
| 764 | |
| 765 | writel(1, &mctl_ctl->swctl); |
| 766 | mctl_await_completion(&mctl_ctl->swstat, 1, 1); |
| 767 | |
| 768 | writel(0x1f14, &mctl_ctl->mrctrl1); |
| 769 | writel(0x80000030, &mctl_ctl->mrctrl0); |
| 770 | mctl_await_completion(&mctl_ctl->mrctrl0, BIT(31), 0); |
| 771 | |
| 772 | writel(4, &mctl_ctl->mrctrl1); |
| 773 | writel(0x80001030, &mctl_ctl->mrctrl0); |
| 774 | mctl_await_completion(&mctl_ctl->mrctrl0, BIT(31), 0); |
| 775 | |
| 776 | writel(0x20, &mctl_ctl->mrctrl1); |
| 777 | writel(0x80002030, &mctl_ctl->mrctrl0); |
| 778 | mctl_await_completion(&mctl_ctl->mrctrl0, BIT(31), 0); |
| 779 | |
| 780 | writel(0, &mctl_ctl->mrctrl1); |
| 781 | writel(0x80003030, &mctl_ctl->mrctrl0); |
| 782 | mctl_await_completion(&mctl_ctl->mrctrl0, BIT(31), 0); |
| 783 | |
| 784 | writel(0, SUNXI_DRAM_PHY0_BASE + 0x54); |
| 785 | |
| 786 | writel(0, &mctl_ctl->swctl); |
| 787 | clrbits_le32(&mctl_ctl->rfshctl3, 1); |
| 788 | writel(1, &mctl_ctl->swctl); |
| 789 | |
| 790 | if (IS_ENABLED(CONFIG_DRAM_SUN50I_H616_WRITE_LEVELING)) { |
| 791 | for (i = 0; i < 5; i++) |
| 792 | if (mctl_phy_write_leveling(para)) |
| 793 | break; |
| 794 | if (i == 5) { |
| 795 | debug("write leveling failed!\n"); |
| 796 | return false; |
| 797 | } |
| 798 | } |
| 799 | |
| 800 | if (IS_ENABLED(CONFIG_DRAM_SUN50I_H616_READ_CALIBRATION)) { |
| 801 | for (i = 0; i < 5; i++) |
| 802 | if (mctl_phy_read_calibration(para)) |
| 803 | break; |
| 804 | if (i == 5) { |
| 805 | debug("read calibration failed!\n"); |
| 806 | return false; |
| 807 | } |
| 808 | } |
| 809 | |
| 810 | if (IS_ENABLED(CONFIG_DRAM_SUN50I_H616_READ_TRAINING)) { |
| 811 | for (i = 0; i < 5; i++) |
| 812 | if (mctl_phy_read_training(para)) |
| 813 | break; |
| 814 | if (i == 5) { |
| 815 | debug("read training failed!\n"); |
| 816 | return false; |
| 817 | } |
| 818 | } |
| 819 | |
| 820 | if (IS_ENABLED(CONFIG_DRAM_SUN50I_H616_WRITE_TRAINING)) { |
| 821 | for (i = 0; i < 5; i++) |
| 822 | if (mctl_phy_write_training(para)) |
| 823 | break; |
| 824 | if (i == 5) { |
| 825 | debug("write training failed!\n"); |
| 826 | return false; |
| 827 | } |
| 828 | } |
| 829 | |
| 830 | if (IS_ENABLED(CONFIG_DRAM_SUN50I_H616_BIT_DELAY_COMPENSATION)) |
| 831 | mctl_phy_bit_delay_compensation(para); |
| 832 | |
| 833 | clrbits_le32(SUNXI_DRAM_PHY0_BASE + 0x60, 4); |
| 834 | |
| 835 | return true; |
| 836 | } |
| 837 | |
| 838 | static bool mctl_ctrl_init(struct dram_para *para) |
| 839 | { |
| 840 | struct sunxi_mctl_com_reg * const mctl_com = |
| 841 | (struct sunxi_mctl_com_reg *)SUNXI_DRAM_COM_BASE; |
| 842 | struct sunxi_mctl_ctl_reg * const mctl_ctl = |
| 843 | (struct sunxi_mctl_ctl_reg *)SUNXI_DRAM_CTL0_BASE; |
| 844 | u32 reg_val; |
| 845 | |
| 846 | clrsetbits_le32(&mctl_com->unk_0x500, BIT(24), 0x200); |
| 847 | writel(0x8000, &mctl_ctl->clken); |
| 848 | |
| 849 | setbits_le32(&mctl_com->unk_0x008, 0xff00); |
| 850 | |
| 851 | clrsetbits_le32(&mctl_ctl->sched[0], 0xff00, 0x3000); |
| 852 | |
| 853 | writel(0, &mctl_ctl->hwlpctl); |
| 854 | |
| 855 | setbits_le32(&mctl_com->unk_0x008, 0xff00); |
| 856 | |
| 857 | reg_val = MSTR_BURST_LENGTH(8) | MSTR_ACTIVE_RANKS(para->ranks); |
| 858 | reg_val |= MSTR_DEVICETYPE_DDR3 | MSTR_2TMODE; |
| 859 | if (para->bus_full_width) |
| 860 | reg_val |= MSTR_BUSWIDTH_FULL; |
| 861 | else |
| 862 | reg_val |= MSTR_BUSWIDTH_HALF; |
| 863 | writel(BIT(31) | BIT(30) | reg_val, &mctl_ctl->mstr); |
| 864 | |
| 865 | if (para->ranks == 2) |
| 866 | writel(0x0303, &mctl_ctl->odtmap); |
| 867 | else |
| 868 | writel(0x0201, &mctl_ctl->odtmap); |
| 869 | |
| 870 | writel(0x06000400, &mctl_ctl->odtcfg); |
| 871 | writel(0x06000400, &mctl_ctl->unk_0x2240); |
| 872 | writel(0x06000400, &mctl_ctl->unk_0x3240); |
| 873 | writel(0x06000400, &mctl_ctl->unk_0x4240); |
| 874 | |
| 875 | setbits_le32(&mctl_com->cr, BIT(31)); |
| 876 | |
| 877 | mctl_set_addrmap(para); |
| 878 | |
| 879 | mctl_set_timing_params(para); |
| 880 | |
| 881 | writel(0, &mctl_ctl->pwrctl); |
| 882 | |
| 883 | setbits_le32(&mctl_ctl->dfiupd[0], BIT(31) | BIT(30)); |
| 884 | setbits_le32(&mctl_ctl->zqctl[0], BIT(31) | BIT(30)); |
| 885 | setbits_le32(&mctl_ctl->unk_0x2180, BIT(31) | BIT(30)); |
| 886 | setbits_le32(&mctl_ctl->unk_0x3180, BIT(31) | BIT(30)); |
| 887 | setbits_le32(&mctl_ctl->unk_0x4180, BIT(31) | BIT(30)); |
| 888 | |
| 889 | setbits_le32(&mctl_ctl->rfshctl3, BIT(0)); |
| 890 | clrbits_le32(&mctl_ctl->dfimisc, BIT(0)); |
| 891 | |
| 892 | writel(0, &mctl_com->maer0); |
| 893 | writel(0, &mctl_com->maer1); |
| 894 | writel(0, &mctl_com->maer2); |
| 895 | |
| 896 | writel(0x20, &mctl_ctl->pwrctl); |
| 897 | setbits_le32(&mctl_ctl->clken, BIT(8)); |
| 898 | |
| 899 | clrsetbits_le32(&mctl_com->unk_0x500, BIT(24), 0x300); |
| 900 | /* this write seems to enable PHY MMIO region */ |
| 901 | setbits_le32(&mctl_com->unk_0x500, BIT(24)); |
| 902 | |
| 903 | if (!mctl_phy_init(para)) |
| 904 | return false; |
| 905 | |
| 906 | writel(0, &mctl_ctl->swctl); |
| 907 | clrbits_le32(&mctl_ctl->rfshctl3, BIT(0)); |
| 908 | |
| 909 | setbits_le32(&mctl_com->unk_0x014, BIT(31)); |
| 910 | writel(0xffffffff, &mctl_com->maer0); |
| 911 | writel(0x7ff, &mctl_com->maer1); |
| 912 | writel(0xffff, &mctl_com->maer2); |
| 913 | |
| 914 | writel(1, &mctl_ctl->swctl); |
| 915 | mctl_await_completion(&mctl_ctl->swstat, 1, 1); |
| 916 | |
| 917 | return true; |
| 918 | } |
| 919 | |
| 920 | static bool mctl_core_init(struct dram_para *para) |
| 921 | { |
| 922 | mctl_sys_init(para); |
| 923 | |
| 924 | return mctl_ctrl_init(para); |
| 925 | } |
| 926 | |
| 927 | static void mctl_auto_detect_rank_width(struct dram_para *para) |
| 928 | { |
| 929 | /* this is minimum size that it's supported */ |
| 930 | para->cols = 8; |
| 931 | para->rows = 13; |
| 932 | |
| 933 | /* |
| 934 | * Strategy here is to test most demanding combination first and least |
| 935 | * demanding last, otherwise HW might not be fully utilized. For |
| 936 | * example, half bus width and rank = 1 combination would also work |
| 937 | * on HW with full bus width and rank = 2, but only 1/4 RAM would be |
| 938 | * visible. |
| 939 | */ |
| 940 | |
| 941 | debug("testing 32-bit width, rank = 2\n"); |
| 942 | para->bus_full_width = 1; |
| 943 | para->ranks = 2; |
| 944 | if (mctl_core_init(para)) |
| 945 | return; |
| 946 | |
| 947 | debug("testing 32-bit width, rank = 1\n"); |
| 948 | para->bus_full_width = 1; |
| 949 | para->ranks = 1; |
| 950 | if (mctl_core_init(para)) |
| 951 | return; |
| 952 | |
| 953 | debug("testing 16-bit width, rank = 2\n"); |
| 954 | para->bus_full_width = 0; |
| 955 | para->ranks = 2; |
| 956 | if (mctl_core_init(para)) |
| 957 | return; |
| 958 | |
| 959 | debug("testing 16-bit width, rank = 1\n"); |
| 960 | para->bus_full_width = 0; |
| 961 | para->ranks = 1; |
| 962 | if (mctl_core_init(para)) |
| 963 | return; |
| 964 | |
| 965 | panic("This DRAM setup is currently not supported.\n"); |
| 966 | } |
| 967 | |
| 968 | static void mctl_auto_detect_dram_size(struct dram_para *para) |
| 969 | { |
| 970 | /* detect row address bits */ |
| 971 | para->cols = 8; |
| 972 | para->rows = 18; |
| 973 | mctl_core_init(para); |
| 974 | |
| 975 | for (para->rows = 13; para->rows < 18; para->rows++) { |
| 976 | /* 8 banks, 8 bit per byte and 16/32 bit width */ |
| 977 | if (mctl_mem_matches((1 << (para->rows + para->cols + |
| 978 | 4 + para->bus_full_width)))) |
| 979 | break; |
| 980 | } |
| 981 | |
| 982 | /* detect column address bits */ |
| 983 | para->cols = 11; |
| 984 | mctl_core_init(para); |
| 985 | |
| 986 | for (para->cols = 8; para->cols < 11; para->cols++) { |
| 987 | /* 8 bits per byte and 16/32 bit width */ |
| 988 | if (mctl_mem_matches(1 << (para->cols + 1 + |
| 989 | para->bus_full_width))) |
| 990 | break; |
| 991 | } |
| 992 | } |
| 993 | |
| 994 | static unsigned long mctl_calc_size(struct dram_para *para) |
| 995 | { |
| 996 | u8 width = para->bus_full_width ? 4 : 2; |
| 997 | |
| 998 | /* 8 banks */ |
| 999 | return (1ULL << (para->cols + para->rows + 3)) * width * para->ranks; |
| 1000 | } |
| 1001 | |
| 1002 | unsigned long sunxi_dram_init(void) |
| 1003 | { |
| 1004 | struct dram_para para = { |
| 1005 | .clk = CONFIG_DRAM_CLK, |
| 1006 | .type = SUNXI_DRAM_TYPE_DDR3, |
| 1007 | }; |
| 1008 | unsigned long size; |
| 1009 | |
| 1010 | setbits_le32(0x7010310, BIT(8)); |
| 1011 | clrbits_le32(0x7010318, 0x3f); |
| 1012 | |
| 1013 | mctl_auto_detect_rank_width(¶); |
| 1014 | mctl_auto_detect_dram_size(¶); |
| 1015 | |
| 1016 | mctl_core_init(¶); |
| 1017 | |
| 1018 | size = mctl_calc_size(¶); |
| 1019 | |
| 1020 | mctl_set_master_priority(); |
| 1021 | |
| 1022 | return size; |
| 1023 | }; |