blob: 5c0265ccf584f1537496ad00c8108ed01963b927 [file] [log] [blame]
Balamanikandan Gunasundarfe33c7d2022-10-25 16:21:01 +05301// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright 2022 ATMEL
4 * Copyright 2017 Free Electrons
5 *
6 * Author: Boris Brezillon <boris.brezillon@free-electrons.com>
7 *
8 * Derived from the atmel_nand.c driver which contained the following
9 * copyrights:
10 *
11 * Copyright 2003 Rick Bronson
12 *
13 * Derived from drivers/mtd/nand/autcpu12.c (removed in v3.8)
14 * Copyright 2001 Thomas Gleixner (gleixner@autronix.de)
15 *
16 * Derived from drivers/mtd/spia.c (removed in v3.8)
17 * Copyright 2000 Steven J. Hill (sjhill@cotw.com)
18 *
19 *
20 * Add Hardware ECC support for AT91SAM9260 / AT91SAM9263
21 * Richard Genoud (richard.genoud@gmail.com), Adeneo Copyright 2007
22 *
23 * Derived from Das U-Boot source code
24 * (u-boot-1.1.5/board/atmel/at91sam9263ek/nand.c)
25 * Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas
26 *
27 * Add Programmable Multibit ECC support for various AT91 SoC
28 * Copyright 2012 ATMEL, Hong Xu
29 *
30 * Add Nand Flash Controller support for SAMA5 SoC
31 * Copyright 2013 ATMEL, Josh Wu (josh.wu@atmel.com)
32 *
33 * Port from Linux
34 * Balamanikandan Gunasundar(balamanikandan.gunasundar@microchip.com)
35 * Copyright (C) 2022 Microchip Technology Inc.
36 *
37 * A few words about the naming convention in this file. This convention
38 * applies to structure and function names.
39 *
40 * Prefixes:
41 *
42 * - atmel_nand_: all generic structures/functions
43 * - atmel_smc_nand_: all structures/functions specific to the SMC interface
44 * (at91sam9 and avr32 SoCs)
45 * - atmel_hsmc_nand_: all structures/functions specific to the HSMC interface
46 * (sama5 SoCs and later)
47 * - atmel_nfc_: all structures/functions used to manipulate the NFC sub-block
48 * that is available in the HSMC block
49 * - <soc>_nand_: all SoC specific structures/functions
50 */
51
52#include <asm-generic/gpio.h>
53#include <clk.h>
54#include <dm/device_compat.h>
55#include <dm/devres.h>
56#include <dm/of_addr.h>
57#include <dm/of_access.h>
58#include <dm/uclass.h>
59#include <linux/completion.h>
60#include <linux/io.h>
61#include <linux/iopoll.h>
62#include <linux/ioport.h>
63#include <linux/mfd/syscon/atmel-matrix.h>
64#include <linux/mfd/syscon/atmel-smc.h>
65#include <linux/mtd/rawnand.h>
66#include <linux/mtd/mtd.h>
Igor Prusovc3421ea2023-11-09 20:10:04 +030067#include <linux/time.h>
Balamanikandan Gunasundarfe33c7d2022-10-25 16:21:01 +053068#include <mach/at91_sfr.h>
69#include <nand.h>
70#include <regmap.h>
71#include <syscon.h>
72
73#include "pmecc.h"
74
Balamanikandan Gunasundarfe33c7d2022-10-25 16:21:01 +053075#define ATMEL_HSMC_NFC_CFG 0x0
76#define ATMEL_HSMC_NFC_CFG_SPARESIZE(x) (((x) / 4) << 24)
77#define ATMEL_HSMC_NFC_CFG_SPARESIZE_MASK GENMASK(30, 24)
78#define ATMEL_HSMC_NFC_CFG_DTO(cyc, mul) (((cyc) << 16) | ((mul) << 20))
79#define ATMEL_HSMC_NFC_CFG_DTO_MAX GENMASK(22, 16)
80#define ATMEL_HSMC_NFC_CFG_RBEDGE BIT(13)
81#define ATMEL_HSMC_NFC_CFG_FALLING_EDGE BIT(12)
82#define ATMEL_HSMC_NFC_CFG_RSPARE BIT(9)
83#define ATMEL_HSMC_NFC_CFG_WSPARE BIT(8)
84#define ATMEL_HSMC_NFC_CFG_PAGESIZE_MASK GENMASK(2, 0)
85#define ATMEL_HSMC_NFC_CFG_PAGESIZE(x) (fls((x) / 512) - 1)
86
87#define ATMEL_HSMC_NFC_CTRL 0x4
88#define ATMEL_HSMC_NFC_CTRL_EN BIT(0)
89#define ATMEL_HSMC_NFC_CTRL_DIS BIT(1)
90
91#define ATMEL_HSMC_NFC_SR 0x8
92#define ATMEL_HSMC_NFC_IER 0xc
93#define ATMEL_HSMC_NFC_IDR 0x10
94#define ATMEL_HSMC_NFC_IMR 0x14
95#define ATMEL_HSMC_NFC_SR_ENABLED BIT(1)
96#define ATMEL_HSMC_NFC_SR_RB_RISE BIT(4)
97#define ATMEL_HSMC_NFC_SR_RB_FALL BIT(5)
98#define ATMEL_HSMC_NFC_SR_BUSY BIT(8)
99#define ATMEL_HSMC_NFC_SR_WR BIT(11)
100#define ATMEL_HSMC_NFC_SR_CSID GENMASK(14, 12)
101#define ATMEL_HSMC_NFC_SR_XFRDONE BIT(16)
102#define ATMEL_HSMC_NFC_SR_CMDDONE BIT(17)
103#define ATMEL_HSMC_NFC_SR_DTOE BIT(20)
104#define ATMEL_HSMC_NFC_SR_UNDEF BIT(21)
105#define ATMEL_HSMC_NFC_SR_AWB BIT(22)
106#define ATMEL_HSMC_NFC_SR_NFCASE BIT(23)
107#define ATMEL_HSMC_NFC_SR_ERRORS (ATMEL_HSMC_NFC_SR_DTOE | \
108 ATMEL_HSMC_NFC_SR_UNDEF | \
109 ATMEL_HSMC_NFC_SR_AWB | \
110 ATMEL_HSMC_NFC_SR_NFCASE)
111#define ATMEL_HSMC_NFC_SR_RBEDGE(x) BIT((x) + 24)
112
113#define ATMEL_HSMC_NFC_ADDR 0x18
114#define ATMEL_HSMC_NFC_BANK 0x1c
115
116#define ATMEL_NFC_MAX_RB_ID 7
117
118#define ATMEL_NFC_SRAM_SIZE 0x2400
119
120#define ATMEL_NFC_CMD(pos, cmd) ((cmd) << (((pos) * 8) + 2))
121#define ATMEL_NFC_VCMD2 BIT(18)
122#define ATMEL_NFC_ACYCLE(naddrs) ((naddrs) << 19)
123#define ATMEL_NFC_CSID(cs) ((cs) << 22)
124#define ATMEL_NFC_DATAEN BIT(25)
125#define ATMEL_NFC_NFCWR BIT(26)
126
127#define ATMEL_NFC_MAX_ADDR_CYCLES 5
128
129#define ATMEL_NAND_ALE_OFFSET BIT(21)
130#define ATMEL_NAND_CLE_OFFSET BIT(22)
131
132#define DEFAULT_TIMEOUT_MS 1000
133#define MIN_DMA_LEN 128
134
135static struct nand_ecclayout atmel_pmecc_oobinfo;
136
137struct nand_controller_ops {
138 int (*attach_chip)(struct nand_chip *chip);
139 int (*setup_data_interface)(struct mtd_info *mtd, int chipnr,
140 const struct nand_data_interface *conf);
141};
142
143struct nand_controller {
144 const struct nand_controller_ops *ops;
145};
146
147enum atmel_nand_rb_type {
148 ATMEL_NAND_NO_RB,
149 ATMEL_NAND_NATIVE_RB,
150 ATMEL_NAND_GPIO_RB,
151};
152
153struct atmel_nand_rb {
154 enum atmel_nand_rb_type type;
155 union {
156 struct gpio_desc gpio;
157 int id;
158 };
159};
160
161struct atmel_nand_cs {
162 int id;
163 struct atmel_nand_rb rb;
164 struct gpio_desc csgpio;
165 struct {
166 void __iomem *virt;
167 dma_addr_t dma;
168 } io;
169
170 struct atmel_smc_cs_conf smcconf;
171};
172
173struct atmel_nand {
174 struct list_head node;
175 struct udevice *dev;
176 struct nand_chip base;
177 struct atmel_nand_cs *activecs;
178 struct atmel_pmecc_user *pmecc;
179 struct gpio_desc cdgpio;
180 int numcs;
181 struct nand_controller *controller;
182 struct atmel_nand_cs cs[];
183};
184
185static inline struct atmel_nand *to_atmel_nand(struct nand_chip *chip)
186{
187 return container_of(chip, struct atmel_nand, base);
188}
189
190enum atmel_nfc_data_xfer {
191 ATMEL_NFC_NO_DATA,
192 ATMEL_NFC_READ_DATA,
193 ATMEL_NFC_WRITE_DATA,
194};
195
196struct atmel_nfc_op {
197 u8 cs;
198 u8 ncmds;
199 u8 cmds[2];
200 u8 naddrs;
201 u8 addrs[5];
202 enum atmel_nfc_data_xfer data;
203 u32 wait;
204 u32 errors;
205};
206
207struct atmel_nand_controller;
208struct atmel_nand_controller_caps;
209
210struct atmel_nand_controller_ops {
211 int (*probe)(struct udevice *udev,
212 const struct atmel_nand_controller_caps *caps);
213 int (*remove)(struct atmel_nand_controller *nc);
214 void (*nand_init)(struct atmel_nand_controller *nc,
215 struct atmel_nand *nand);
216 int (*ecc_init)(struct nand_chip *chip);
217 int (*setup_data_interface)(struct atmel_nand *nand, int csline,
218 const struct nand_data_interface *conf);
219};
220
221struct atmel_nand_controller_caps {
222 bool has_dma;
223 bool legacy_of_bindings;
224 u32 ale_offs;
225 u32 cle_offs;
226 const char *ebi_csa_regmap_name;
227 const struct atmel_nand_controller_ops *ops;
228};
229
230struct atmel_nand_controller {
231 struct nand_controller base;
232 const struct atmel_nand_controller_caps *caps;
233 struct udevice *dev;
234 struct regmap *smc;
235 struct dma_chan *dmac;
236 struct atmel_pmecc *pmecc;
237 struct list_head chips;
238 struct clk *mck;
239};
240
241static inline struct atmel_nand_controller *
242to_nand_controller(struct nand_controller *ctl)
243{
244 return container_of(ctl, struct atmel_nand_controller, base);
245}
246
247struct atmel_smc_nand_ebi_csa_cfg {
248 u32 offs;
249 u32 nfd0_on_d16;
250};
251
252struct atmel_smc_nand_controller {
253 struct atmel_nand_controller base;
254 struct regmap *ebi_csa_regmap;
255 struct atmel_smc_nand_ebi_csa_cfg *ebi_csa;
256};
257
258static inline struct atmel_smc_nand_controller *
259to_smc_nand_controller(struct nand_controller *ctl)
260{
261 return container_of(to_nand_controller(ctl),
262 struct atmel_smc_nand_controller, base);
263}
264
265struct atmel_hsmc_nand_controller {
266 struct atmel_nand_controller base;
267 struct {
268 struct gen_pool *pool;
269 void __iomem *virt;
270 dma_addr_t dma;
271 } sram;
272 const struct atmel_hsmc_reg_layout *hsmc_layout;
273 struct regmap *io;
274 struct atmel_nfc_op op;
275 struct completion complete;
276 int irq;
277
278 /* Only used when instantiating from legacy DT bindings. */
279 struct clk *clk;
280};
281
282static inline struct atmel_hsmc_nand_controller *
283to_hsmc_nand_controller(struct nand_controller *ctl)
284{
285 return container_of(to_nand_controller(ctl),
286 struct atmel_hsmc_nand_controller, base);
287}
288
289static void pmecc_config_ecc_layout(struct nand_ecclayout *layout,
290 int oobsize, int ecc_len)
291{
292 int i;
293
294 layout->eccbytes = ecc_len;
295
296 /* ECC will occupy the last ecc_len bytes continuously */
297 for (i = 0; i < ecc_len; i++)
298 layout->eccpos[i] = oobsize - ecc_len + i;
299
300 layout->oobfree[0].offset = 2;
301 layout->oobfree[0].length =
302 oobsize - ecc_len - layout->oobfree[0].offset;
303}
304
305static bool atmel_nfc_op_done(struct atmel_nfc_op *op, u32 status)
306{
307 op->errors |= status & ATMEL_HSMC_NFC_SR_ERRORS;
308 op->wait ^= status & op->wait;
309
310 return !op->wait || op->errors;
311}
312
313static int atmel_nfc_wait(struct atmel_hsmc_nand_controller *nc, bool poll,
314 unsigned int timeout_ms)
315{
316 int ret;
317 u32 status;
318
319 if (!timeout_ms)
320 timeout_ms = DEFAULT_TIMEOUT_MS;
321
322 if (poll)
323 ret = regmap_read_poll_timeout(nc->base.smc,
324 ATMEL_HSMC_NFC_SR, status,
325 atmel_nfc_op_done(&nc->op,
326 status),
327 0, timeout_ms);
328 else
329 return -EOPNOTSUPP;
330
331 if (nc->op.errors & ATMEL_HSMC_NFC_SR_DTOE) {
332 dev_err(nc->base.dev, "Waiting NAND R/B Timeout\n");
333 ret = -ETIMEDOUT;
334 }
335
336 if (nc->op.errors & ATMEL_HSMC_NFC_SR_UNDEF) {
337 dev_err(nc->base.dev, "Access to an undefined area\n");
338 ret = -EIO;
339 }
340
341 if (nc->op.errors & ATMEL_HSMC_NFC_SR_AWB) {
342 dev_err(nc->base.dev, "Access while busy\n");
343 ret = -EIO;
344 }
345
346 if (nc->op.errors & ATMEL_HSMC_NFC_SR_NFCASE) {
347 dev_err(nc->base.dev, "Wrong access size\n");
348 ret = -EIO;
349 }
350
351 return ret;
352}
353
354static void iowrite8_rep(void *addr, const uint8_t *buf, int len)
355{
356 int i;
357
358 for (i = 0; i < len; i++)
359 writeb(buf[i], addr);
360}
361
362static void ioread8_rep(void *addr, uint8_t *buf, int len)
363{
364 int i;
365
366 for (i = 0; i < len; i++)
367 buf[i] = readb(addr);
368}
369
370static void ioread16_rep(void *addr, void *buf, int len)
371{
372 int i;
373 u16 *p = (u16 *)buf;
374
375 for (i = 0; i < len; i++)
376 p[i] = readw(addr);
377}
378
379static void iowrite16_rep(void *addr, const void *buf, int len)
380{
381 int i;
382 u16 *p = (u16 *)buf;
383
384 for (i = 0; i < len; i++)
385 writew(p[i], addr);
386}
387
388static u8 atmel_nand_read_byte(struct mtd_info *mtd)
389{
390 struct nand_chip *chip = mtd_to_nand(mtd);
391 struct atmel_nand *nand = to_atmel_nand(chip);
392
393 return ioread8(nand->activecs->io.virt);
394}
395
396static void atmel_nand_write_byte(struct mtd_info *mtd, u8 byte)
397{
398 struct nand_chip *chip = mtd_to_nand(mtd);
399 struct atmel_nand *nand = to_atmel_nand(chip);
400
401 if (chip->options & NAND_BUSWIDTH_16)
402 iowrite16(byte | (byte << 8), nand->activecs->io.virt);
403 else
404 iowrite8(byte, nand->activecs->io.virt);
405}
406
407static void atmel_nand_read_buf(struct mtd_info *mtd, u8 *buf, int len)
408{
409 struct nand_chip *chip = mtd_to_nand(mtd);
410 struct atmel_nand *nand = to_atmel_nand(chip);
411
412 if (chip->options & NAND_BUSWIDTH_16)
413 ioread16_rep(nand->activecs->io.virt, buf, len / 2);
414 else
415 ioread8_rep(nand->activecs->io.virt, buf, len);
416}
417
418static void atmel_nand_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
419{
420 struct nand_chip *chip = mtd_to_nand(mtd);
421 struct atmel_nand *nand = to_atmel_nand(chip);
422
423 if (chip->options & NAND_BUSWIDTH_16)
424 iowrite16_rep(nand->activecs->io.virt, buf, len / 2);
425 else
426 iowrite8_rep(nand->activecs->io.virt, buf, len);
427}
428
429static int atmel_nand_dev_ready(struct mtd_info *mtd)
430{
431 struct nand_chip *chip = mtd_to_nand(mtd);
432 struct atmel_nand *nand = to_atmel_nand(chip);
433
434 return dm_gpio_get_value(&nand->activecs->rb.gpio);
435}
436
437static void atmel_nand_select_chip(struct mtd_info *mtd, int cs)
438{
439 struct nand_chip *chip = mtd_to_nand(mtd);
440 struct atmel_nand *nand = to_atmel_nand(chip);
441
442 if (cs < 0 || cs >= nand->numcs) {
443 nand->activecs = NULL;
444 chip->dev_ready = NULL;
445 return;
446 }
447
448 nand->activecs = &nand->cs[cs];
449
450 if (nand->activecs->rb.type == ATMEL_NAND_GPIO_RB)
451 chip->dev_ready = atmel_nand_dev_ready;
452}
453
454static int atmel_hsmc_nand_dev_ready(struct mtd_info *mtd)
455{
456 struct nand_chip *chip = mtd_to_nand(mtd);
457 struct atmel_nand *nand = to_atmel_nand(chip);
458 struct atmel_hsmc_nand_controller *nc;
459 u32 status;
460
461 nc = to_hsmc_nand_controller(nand->controller);
462
463 regmap_read(nc->base.smc, ATMEL_HSMC_NFC_SR, &status);
464
465 return status & ATMEL_HSMC_NFC_SR_RBEDGE(nand->activecs->rb.id);
466}
467
468static void atmel_hsmc_nand_select_chip(struct mtd_info *mtd, int cs)
469{
470 struct nand_chip *chip = mtd_to_nand(mtd);
471 struct atmel_nand *nand = to_atmel_nand(chip);
472 struct atmel_hsmc_nand_controller *nc;
473
474 nc = to_hsmc_nand_controller(nand->controller);
475
476 atmel_nand_select_chip(mtd, cs);
477
478 if (!nand->activecs) {
479 regmap_write(nc->base.smc, ATMEL_HSMC_NFC_CTRL,
480 ATMEL_HSMC_NFC_CTRL_DIS);
481 return;
482 }
483
484 if (nand->activecs->rb.type == ATMEL_NAND_NATIVE_RB)
485 chip->dev_ready = atmel_hsmc_nand_dev_ready;
486
487 regmap_update_bits(nc->base.smc, ATMEL_HSMC_NFC_CFG,
488 ATMEL_HSMC_NFC_CFG_PAGESIZE_MASK |
489 ATMEL_HSMC_NFC_CFG_SPARESIZE_MASK |
490 ATMEL_HSMC_NFC_CFG_RSPARE |
491 ATMEL_HSMC_NFC_CFG_WSPARE,
492 ATMEL_HSMC_NFC_CFG_PAGESIZE(mtd->writesize) |
493 ATMEL_HSMC_NFC_CFG_SPARESIZE(mtd->oobsize) |
494 ATMEL_HSMC_NFC_CFG_RSPARE);
495 regmap_write(nc->base.smc, ATMEL_HSMC_NFC_CTRL,
496 ATMEL_HSMC_NFC_CTRL_EN);
497}
498
499static int atmel_nfc_exec_op(struct atmel_hsmc_nand_controller *nc, bool poll)
500{
501 u8 *addrs = nc->op.addrs;
502 unsigned int op = 0;
503 u32 addr, val;
504 int i, ret;
505
506 nc->op.wait = ATMEL_HSMC_NFC_SR_CMDDONE;
507
508 for (i = 0; i < nc->op.ncmds; i++)
509 op |= ATMEL_NFC_CMD(i, nc->op.cmds[i]);
510
511 if (nc->op.naddrs == ATMEL_NFC_MAX_ADDR_CYCLES)
512 regmap_write(nc->base.smc, ATMEL_HSMC_NFC_ADDR, *addrs++);
513
514 op |= ATMEL_NFC_CSID(nc->op.cs) |
515 ATMEL_NFC_ACYCLE(nc->op.naddrs);
516
517 if (nc->op.ncmds > 1)
518 op |= ATMEL_NFC_VCMD2;
519
520 addr = addrs[0] | (addrs[1] << 8) | (addrs[2] << 16) |
521 (addrs[3] << 24);
522
523 if (nc->op.data != ATMEL_NFC_NO_DATA) {
524 op |= ATMEL_NFC_DATAEN;
525 nc->op.wait |= ATMEL_HSMC_NFC_SR_XFRDONE;
526
527 if (nc->op.data == ATMEL_NFC_WRITE_DATA)
528 op |= ATMEL_NFC_NFCWR;
529 }
530
531 /* Clear all flags. */
532 regmap_read(nc->base.smc, ATMEL_HSMC_NFC_SR, &val);
533
534 /* Send the command. */
535 regmap_write(nc->io, op, addr);
536
537 ret = atmel_nfc_wait(nc, poll, 0);
538 if (ret)
539 dev_err(nc->base.dev,
540 "Failed to send NAND command (err = %d)!",
541 ret);
542
543 /* Reset the op state. */
544 memset(&nc->op, 0, sizeof(nc->op));
545
546 return ret;
547}
548
549static void atmel_hsmc_nand_cmd_ctrl(struct mtd_info *mtd, int dat,
550 unsigned int ctrl)
551{
552 struct nand_chip *chip = mtd_to_nand(mtd);
553 struct atmel_nand *nand = to_atmel_nand(chip);
554 struct atmel_hsmc_nand_controller *nc;
555
556 nc = to_hsmc_nand_controller(nand->controller);
557
558 if (ctrl & NAND_ALE) {
559 if (nc->op.naddrs == ATMEL_NFC_MAX_ADDR_CYCLES)
560 return;
561
562 nc->op.addrs[nc->op.naddrs++] = dat;
563 } else if (ctrl & NAND_CLE) {
564 if (nc->op.ncmds > 1)
565 return;
566
567 nc->op.cmds[nc->op.ncmds++] = dat;
568 }
569
570 if (dat == NAND_CMD_NONE) {
571 nc->op.cs = nand->activecs->id;
572 atmel_nfc_exec_op(nc, true);
573 }
574}
575
576static void atmel_nand_cmd_ctrl(struct mtd_info *mtd, int cmd,
577 unsigned int ctrl)
578{
579 struct nand_chip *chip = mtd_to_nand(mtd);
580 struct atmel_nand *nand = to_atmel_nand(chip);
581 struct atmel_nand_controller *nc;
582
583 nc = to_nand_controller(nand->controller);
584
585 if ((ctrl & NAND_CTRL_CHANGE) &&
586 dm_gpio_is_valid(&nand->activecs->csgpio)) {
587 if (ctrl & NAND_NCE)
588 dm_gpio_set_value(&nand->activecs->csgpio, 0);
589 else
590 dm_gpio_set_value(&nand->activecs->csgpio, 1);
591 }
592
593 if (ctrl & NAND_ALE)
594 writeb(cmd, nand->activecs->io.virt + nc->caps->ale_offs);
595 else if (ctrl & NAND_CLE)
596 writeb(cmd, nand->activecs->io.virt + nc->caps->cle_offs);
597}
598
599static void atmel_nfc_copy_to_sram(struct nand_chip *chip, const u8 *buf,
600 bool oob_required)
601{
602 struct mtd_info *mtd = nand_to_mtd(chip);
603 struct atmel_nand *nand = to_atmel_nand(chip);
604 struct atmel_hsmc_nand_controller *nc;
605 int ret = -EIO;
606
607 nc = to_hsmc_nand_controller(nand->controller);
608
609 if (ret)
610 memcpy_toio(nc->sram.virt, buf, mtd->writesize);
611
612 if (oob_required)
613 memcpy_toio(nc->sram.virt + mtd->writesize, chip->oob_poi,
614 mtd->oobsize);
615}
616
617static void atmel_nfc_copy_from_sram(struct nand_chip *chip, u8 *buf,
618 bool oob_required)
619{
620 struct mtd_info *mtd = nand_to_mtd(chip);
621 struct atmel_nand *nand = to_atmel_nand(chip);
622 struct atmel_hsmc_nand_controller *nc;
623 int ret = -EIO;
624
625 nc = to_hsmc_nand_controller(nand->controller);
626
627 if (ret)
628 memcpy_fromio(buf, nc->sram.virt, mtd->writesize);
629
630 if (oob_required)
631 memcpy_fromio(chip->oob_poi, nc->sram.virt + mtd->writesize,
632 mtd->oobsize);
633}
634
635static void atmel_nfc_set_op_addr(struct nand_chip *chip, int page, int column)
636{
637 struct mtd_info *mtd = nand_to_mtd(chip);
638 struct atmel_nand *nand = to_atmel_nand(chip);
639 struct atmel_hsmc_nand_controller *nc;
640
641 nc = to_hsmc_nand_controller(nand->controller);
642
643 if (column >= 0) {
644 nc->op.addrs[nc->op.naddrs++] = column;
645
646 /*
647 * 2 address cycles for the column offset on large page NANDs.
648 */
649 if (mtd->writesize > 512)
650 nc->op.addrs[nc->op.naddrs++] = column >> 8;
651 }
652
653 if (page >= 0) {
654 nc->op.addrs[nc->op.naddrs++] = page;
655 nc->op.addrs[nc->op.naddrs++] = page >> 8;
656
657 if (chip->options & NAND_ROW_ADDR_3)
658 nc->op.addrs[nc->op.naddrs++] = page >> 16;
659 }
660}
661
662static int atmel_nand_pmecc_enable(struct nand_chip *chip, int op, bool raw)
663{
664 struct atmel_nand *nand = to_atmel_nand(chip);
665 struct atmel_nand_controller *nc;
666 int ret;
667
668 nc = to_nand_controller(nand->controller);
669
670 if (raw)
671 return 0;
672
673 ret = atmel_pmecc_enable(nand->pmecc, op);
674 if (ret)
675 dev_err(nc->dev,
676 "Failed to enable ECC engine (err = %d)\n", ret);
677
678 return ret;
679}
680
681static void atmel_nand_pmecc_disable(struct nand_chip *chip, bool raw)
682{
683 struct atmel_nand *nand = to_atmel_nand(chip);
684
685 if (!raw)
686 atmel_pmecc_disable(nand->pmecc);
687}
688
689static int atmel_nand_pmecc_generate_eccbytes(struct nand_chip *chip, bool raw)
690{
691 struct atmel_nand *nand = to_atmel_nand(chip);
692 struct mtd_info *mtd = nand_to_mtd(chip);
693 struct atmel_nand_controller *nc;
694 struct mtd_oob_region oobregion;
695 void *eccbuf;
696 int ret, i;
697
698 nc = to_nand_controller(nand->controller);
699
700 if (raw)
701 return 0;
702
703 ret = atmel_pmecc_wait_rdy(nand->pmecc);
704 if (ret) {
705 dev_err(nc->dev,
706 "Failed to transfer NAND page data (err = %d)\n",
707 ret);
708 return ret;
709 }
710
711 mtd_ooblayout_ecc(mtd, 0, &oobregion);
712 eccbuf = chip->oob_poi + oobregion.offset;
713
714 for (i = 0; i < chip->ecc.steps; i++) {
715 atmel_pmecc_get_generated_eccbytes(nand->pmecc, i,
716 eccbuf);
717 eccbuf += chip->ecc.bytes;
718 }
719
720 return 0;
721}
722
723static int atmel_nand_pmecc_correct_data(struct nand_chip *chip, void *buf,
724 bool raw)
725{
726 struct atmel_nand *nand = to_atmel_nand(chip);
727 struct mtd_info *mtd = nand_to_mtd(chip);
728 struct atmel_nand_controller *nc;
729 struct mtd_oob_region oobregion;
730 int ret, i, max_bitflips = 0;
731 void *databuf, *eccbuf;
732
733 nc = to_nand_controller(nand->controller);
734
735 if (raw)
736 return 0;
737
738 ret = atmel_pmecc_wait_rdy(nand->pmecc);
739 if (ret) {
740 dev_err(nc->dev,
741 "Failed to read NAND page data (err = %d)\n", ret);
742 return ret;
743 }
744
745 mtd_ooblayout_ecc(mtd, 0, &oobregion);
746 eccbuf = chip->oob_poi + oobregion.offset;
747 databuf = buf;
748
749 for (i = 0; i < chip->ecc.steps; i++) {
750 ret = atmel_pmecc_correct_sector(nand->pmecc, i, databuf,
751 eccbuf);
752 if (ret < 0 && !atmel_pmecc_correct_erased_chunks(nand->pmecc))
753 ret = nand_check_erased_ecc_chunk(databuf,
754 chip->ecc.size,
755 eccbuf,
756 chip->ecc.bytes,
757 NULL, 0,
758 chip->ecc.strength);
759
760 if (ret >= 0)
761 max_bitflips = max(ret, max_bitflips);
762 else
763 mtd->ecc_stats.failed++;
764
765 databuf += chip->ecc.size;
766 eccbuf += chip->ecc.bytes;
767 }
768
769 return max_bitflips;
770}
771
772static int atmel_nand_pmecc_write_pg(struct nand_chip *chip, const u8 *buf,
773 bool oob_required, int page, bool raw)
774{
775 struct mtd_info *mtd = nand_to_mtd(chip);
776 struct atmel_nand *nand = to_atmel_nand(chip);
777 int ret;
778
779 nand_prog_page_begin_op(chip, page, 0, NULL, 0);
780
781 ret = atmel_nand_pmecc_enable(chip, NAND_ECC_WRITE, raw);
782 if (ret)
783 return ret;
784
785 atmel_nand_write_buf(mtd, buf, mtd->writesize);
786
787 ret = atmel_nand_pmecc_generate_eccbytes(chip, raw);
788 if (ret) {
789 atmel_pmecc_disable(nand->pmecc);
790 return ret;
791 }
792
793 atmel_nand_pmecc_disable(chip, raw);
794
795 atmel_nand_write_buf(mtd, chip->oob_poi, mtd->oobsize);
796
797 return nand_prog_page_end_op(chip);
798}
799
800static int atmel_nand_pmecc_write_page(struct mtd_info *mtd,
801 struct nand_chip *chip, const u8 *buf,
802 int oob_required, int page)
803{
804 return atmel_nand_pmecc_write_pg(chip, buf, oob_required, page, false);
805}
806
807static int atmel_nand_pmecc_write_page_raw(struct mtd_info *mtd,
808 struct nand_chip *chip,
809 const u8 *buf, int oob_required,
810 int page)
811{
812 return atmel_nand_pmecc_write_pg(chip, buf, oob_required, page, true);
813}
814
815static int atmel_nand_pmecc_read_pg(struct nand_chip *chip, u8 *buf,
816 bool oob_required, int page, bool raw)
817{
818 struct mtd_info *mtd = nand_to_mtd(chip);
819 int ret;
820
821 nand_read_page_op(chip, page, 0, NULL, 0);
822
823 ret = atmel_nand_pmecc_enable(chip, NAND_ECC_READ, raw);
824 if (ret)
825 return ret;
826
827 atmel_nand_read_buf(mtd, buf, mtd->writesize);
828 atmel_nand_read_buf(mtd, chip->oob_poi, mtd->oobsize);
829
830 ret = atmel_nand_pmecc_correct_data(chip, buf, raw);
831
832 atmel_nand_pmecc_disable(chip, raw);
833
834 return ret;
835}
836
837static int atmel_nand_pmecc_read_page(struct mtd_info *mtd,
838 struct nand_chip *chip, u8 *buf,
839 int oob_required, int page)
840{
841 return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page, false);
842}
843
844static int atmel_nand_pmecc_read_page_raw(struct mtd_info *mtd,
845 struct nand_chip *chip, u8 *buf,
846 int oob_required, int page)
847{
848 return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page, true);
849}
850
851static int atmel_hsmc_nand_pmecc_write_pg(struct nand_chip *chip,
852 const u8 *buf, bool oob_required,
853 int page, bool raw)
854{
855 struct mtd_info *mtd = nand_to_mtd(chip);
856 struct atmel_nand *nand = to_atmel_nand(chip);
857 struct atmel_hsmc_nand_controller *nc;
858 int ret, status;
859
860 nc = to_hsmc_nand_controller(nand->controller);
861
862 atmel_nfc_copy_to_sram(chip, buf, false);
863
864 nc->op.cmds[0] = NAND_CMD_SEQIN;
865 nc->op.ncmds = 1;
866 atmel_nfc_set_op_addr(chip, page, 0x0);
867 nc->op.cs = nand->activecs->id;
868 nc->op.data = ATMEL_NFC_WRITE_DATA;
869
870 ret = atmel_nand_pmecc_enable(chip, NAND_ECC_WRITE, raw);
871 if (ret)
872 return ret;
873
874 ret = atmel_nfc_exec_op(nc, true);
875 if (ret) {
876 atmel_nand_pmecc_disable(chip, raw);
877 dev_err(nc->base.dev,
878 "Failed to transfer NAND page data (err = %d)\n",
879 ret);
880 return ret;
881 }
882
883 ret = atmel_nand_pmecc_generate_eccbytes(chip, raw);
884
885 atmel_nand_pmecc_disable(chip, raw);
886
887 if (ret)
888 return ret;
889
890 atmel_nand_write_buf(mtd, chip->oob_poi, mtd->oobsize);
891
892 nc->op.cmds[0] = NAND_CMD_PAGEPROG;
893 nc->op.ncmds = 1;
894 nc->op.cs = nand->activecs->id;
895 ret = atmel_nfc_exec_op(nc, true);
896 if (ret)
897 dev_err(nc->base.dev, "Failed to program NAND page (err = %d)\n",
898 ret);
899
900 status = chip->waitfunc(mtd, chip);
901 if (status & NAND_STATUS_FAIL)
902 return -EIO;
903
904 return ret;
905}
906
907static int
908atmel_hsmc_nand_pmecc_write_page(struct mtd_info *mtd, struct nand_chip *chip,
909 const u8 *buf, int oob_required,
910 int page)
911{
912 return atmel_hsmc_nand_pmecc_write_pg(chip, buf, oob_required, page,
913 false);
914}
915
916static int
917atmel_hsmc_nand_pmecc_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
918 const u8 *buf,
919 int oob_required, int page)
920{
921 return atmel_hsmc_nand_pmecc_write_pg(chip, buf, oob_required, page,
922 true);
923}
924
925static int atmel_hsmc_nand_pmecc_read_pg(struct nand_chip *chip, u8 *buf,
926 bool oob_required, int page,
927 bool raw)
928{
929 struct mtd_info *mtd = nand_to_mtd(chip);
930 struct atmel_nand *nand = to_atmel_nand(chip);
931 struct atmel_hsmc_nand_controller *nc;
932 int ret;
933
934 nc = to_hsmc_nand_controller(nand->controller);
935
936 /*
937 * Optimized read page accessors only work when the NAND R/B pin is
938 * connected to a native SoC R/B pin. If that's not the case, fallback
939 * to the non-optimized one.
940 */
941 if (nand->activecs->rb.type != ATMEL_NAND_NATIVE_RB) {
942 nand_read_page_op(chip, page, 0, NULL, 0);
943
944 return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page,
945 raw);
946 }
947
948 nc->op.cmds[nc->op.ncmds++] = NAND_CMD_READ0;
949
950 if (mtd->writesize > 512)
951 nc->op.cmds[nc->op.ncmds++] = NAND_CMD_READSTART;
952
953 atmel_nfc_set_op_addr(chip, page, 0x0);
954 nc->op.cs = nand->activecs->id;
955 nc->op.data = ATMEL_NFC_READ_DATA;
956
957 ret = atmel_nand_pmecc_enable(chip, NAND_ECC_READ, raw);
958 if (ret)
959 return ret;
960
961 ret = atmel_nfc_exec_op(nc, true);
962 if (ret) {
963 atmel_nand_pmecc_disable(chip, raw);
964 dev_err(nc->base.dev,
965 "Failed to load NAND page data (err = %d)\n",
966 ret);
967 return ret;
968 }
969
970 atmel_nfc_copy_from_sram(chip, buf, true);
971
972 ret = atmel_nand_pmecc_correct_data(chip, buf, raw);
973
974 atmel_nand_pmecc_disable(chip, raw);
975
976 return ret;
977}
978
979static int atmel_hsmc_nand_pmecc_read_page(struct mtd_info *mtd,
980 struct nand_chip *chip, u8 *buf,
981 int oob_required, int page)
982{
983 return atmel_hsmc_nand_pmecc_read_pg(chip, buf, oob_required, page,
984 false);
985}
986
987static int atmel_hsmc_nand_pmecc_read_page_raw(struct mtd_info *mtd,
988 struct nand_chip *chip,
989 u8 *buf, int oob_required,
990 int page)
991{
992 return atmel_hsmc_nand_pmecc_read_pg(chip, buf, oob_required, page,
993 true);
994}
995
996static int nand_ooblayout_ecc_lp(struct mtd_info *mtd, int section,
997 struct mtd_oob_region *oobregion)
998{
999 struct nand_chip *chip = mtd_to_nand(mtd);
1000 struct nand_ecc_ctrl *ecc = &chip->ecc;
1001
1002 if (section || !ecc->total)
1003 return -ERANGE;
1004
1005 oobregion->length = ecc->total;
1006 oobregion->offset = mtd->oobsize - oobregion->length;
1007
1008 return 0;
1009}
1010
1011static int nand_ooblayout_free_lp(struct mtd_info *mtd, int section,
1012 struct mtd_oob_region *oobregion)
1013{
1014 struct nand_chip *chip = mtd_to_nand(mtd);
1015 struct nand_ecc_ctrl *ecc = &chip->ecc;
1016
1017 if (section)
1018 return -ERANGE;
1019
1020 oobregion->length = mtd->oobsize - ecc->total - 2;
1021 oobregion->offset = 2;
1022
1023 return 0;
1024}
1025
1026static const struct mtd_ooblayout_ops nand_ooblayout_lp_ops = {
1027 .ecc = nand_ooblayout_ecc_lp,
1028 .rfree = nand_ooblayout_free_lp,
1029};
1030
1031const struct mtd_ooblayout_ops *nand_get_large_page_ooblayout(void)
1032{
1033 return &nand_ooblayout_lp_ops;
1034}
1035
1036static int atmel_nand_pmecc_init(struct nand_chip *chip)
1037{
1038 struct mtd_info *mtd = nand_to_mtd(chip);
1039 struct atmel_nand *nand = to_atmel_nand(chip);
1040 struct atmel_nand_controller *nc;
1041 struct atmel_pmecc_user_req req;
1042
1043 nc = to_nand_controller(nand->controller);
1044
1045 if (!nc->pmecc) {
1046 dev_err(nc->dev, "HW ECC not supported\n");
1047 return -EOPNOTSUPP;
1048 }
1049
1050 if (nc->caps->legacy_of_bindings) {
1051 u32 val;
1052
1053 if (!ofnode_read_u32(nc->dev->node_, "atmel,pmecc-cap", &val))
1054 chip->ecc.strength = val;
1055
1056 if (!ofnode_read_u32(nc->dev->node_,
1057 "atmel,pmecc-sector-size",
1058 &val))
1059 chip->ecc.size = val;
1060 }
1061
1062 if (chip->ecc.options & NAND_ECC_MAXIMIZE)
1063 req.ecc.strength = ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH;
1064 else if (chip->ecc.strength)
1065 req.ecc.strength = chip->ecc.strength;
1066 else
1067 req.ecc.strength = ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH;
1068
1069 if (chip->ecc.size)
1070 req.ecc.sectorsize = chip->ecc.size;
1071 else
1072 req.ecc.sectorsize = ATMEL_PMECC_SECTOR_SIZE_AUTO;
1073
1074 req.pagesize = mtd->writesize;
1075 req.oobsize = mtd->oobsize;
1076
1077 if (mtd->writesize <= 512) {
1078 req.ecc.bytes = 4;
1079 req.ecc.ooboffset = 0;
1080 } else {
1081 req.ecc.bytes = mtd->oobsize - 2;
1082 req.ecc.ooboffset = ATMEL_PMECC_OOBOFFSET_AUTO;
1083 }
1084
1085 nand->pmecc = atmel_pmecc_create_user(nc->pmecc, &req);
1086 if (IS_ERR(nand->pmecc))
1087 return PTR_ERR(nand->pmecc);
1088
1089 chip->ecc.algo = NAND_ECC_BCH;
1090 chip->ecc.size = req.ecc.sectorsize;
1091 chip->ecc.bytes = req.ecc.bytes / req.ecc.nsectors;
1092 chip->ecc.strength = req.ecc.strength;
1093
1094 chip->options |= NAND_NO_SUBPAGE_WRITE;
1095
1096 mtd_set_ooblayout(mtd, nand_get_large_page_ooblayout());
1097 pmecc_config_ecc_layout(&atmel_pmecc_oobinfo,
1098 mtd->oobsize,
1099 chip->ecc.bytes);
1100 chip->ecc.layout = &atmel_pmecc_oobinfo;
1101
1102 return 0;
1103}
1104
1105static int atmel_nand_ecc_init(struct nand_chip *chip)
1106{
1107 struct atmel_nand_controller *nc;
1108 struct atmel_nand *nand = to_atmel_nand(chip);
1109 int ret;
1110
1111 nc = to_nand_controller(nand->controller);
1112
1113 switch (chip->ecc.mode) {
1114 case NAND_ECC_NONE:
1115 case NAND_ECC_SOFT:
1116 /*
1117 * Nothing to do, the core will initialize everything for us.
1118 */
1119 break;
1120
1121 case NAND_ECC_HW:
1122 ret = atmel_nand_pmecc_init(chip);
1123 if (ret)
1124 return ret;
1125
1126 chip->ecc.read_page = atmel_nand_pmecc_read_page;
1127 chip->ecc.write_page = atmel_nand_pmecc_write_page;
1128 chip->ecc.read_page_raw = atmel_nand_pmecc_read_page_raw;
1129 chip->ecc.write_page_raw = atmel_nand_pmecc_write_page_raw;
1130 break;
1131
1132 default:
1133 /* Other modes are not supported. */
1134 dev_err(nc->dev, "Unsupported ECC mode: %d\n",
1135 chip->ecc.mode);
1136 return -EOPNOTSUPP;
1137 }
1138
1139 return 0;
1140}
1141
1142static int atmel_hsmc_nand_ecc_init(struct nand_chip *chip)
1143{
1144 int ret;
1145
1146 ret = atmel_nand_ecc_init(chip);
1147 if (ret)
1148 return ret;
1149
1150 if (chip->ecc.mode != NAND_ECC_HW)
1151 return 0;
1152
1153 /* Adjust the ECC operations for the HSMC IP. */
1154 chip->ecc.read_page = atmel_hsmc_nand_pmecc_read_page;
1155 chip->ecc.write_page = atmel_hsmc_nand_pmecc_write_page;
1156 chip->ecc.read_page_raw = atmel_hsmc_nand_pmecc_read_page_raw;
1157 chip->ecc.write_page_raw = atmel_hsmc_nand_pmecc_write_page_raw;
1158
1159 return 0;
1160}
1161
1162static int atmel_smc_nand_prepare_smcconf(struct atmel_nand *nand,
1163 const struct nand_data_interface *conf,
1164 struct atmel_smc_cs_conf *smcconf)
1165{
1166 u32 ncycles, totalcycles, timeps, mckperiodps;
1167 struct atmel_nand_controller *nc;
1168 int ret;
1169
1170 nc = to_nand_controller(nand->controller);
1171
1172 /* DDR interface not supported. */
1173 if (conf->type != NAND_SDR_IFACE)
1174 return -EOPNOTSUPP;
1175
1176 /*
1177 * tRC < 30ns implies EDO mode. This controller does not support this
1178 * mode.
1179 */
1180 if (conf->timings.sdr.tRC_min < 30000)
1181 return -EOPNOTSUPP;
1182
1183 atmel_smc_cs_conf_init(smcconf);
1184
1185 mckperiodps = NSEC_PER_SEC / clk_get_rate(nc->mck);
1186 mckperiodps *= 1000;
1187
1188 /*
1189 * Set write pulse timing. This one is easy to extract:
1190 *
1191 * NWE_PULSE = tWP
1192 */
1193 ncycles = DIV_ROUND_UP(conf->timings.sdr.tWP_min, mckperiodps);
1194 totalcycles = ncycles;
1195 ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NWE_SHIFT,
1196 ncycles);
1197 if (ret)
1198 return ret;
1199
1200 /*
1201 * The write setup timing depends on the operation done on the NAND.
1202 * All operations goes through the same data bus, but the operation
1203 * type depends on the address we are writing to (ALE/CLE address
1204 * lines).
1205 * Since we have no way to differentiate the different operations at
1206 * the SMC level, we must consider the worst case (the biggest setup
1207 * time among all operation types):
1208 *
1209 * NWE_SETUP = max(tCLS, tCS, tALS, tDS) - NWE_PULSE
1210 */
1211 timeps = max3(conf->timings.sdr.tCLS_min, conf->timings.sdr.tCS_min,
1212 conf->timings.sdr.tALS_min);
1213 timeps = max(timeps, conf->timings.sdr.tDS_min);
1214 ncycles = DIV_ROUND_UP(timeps, mckperiodps);
1215 ncycles = ncycles > totalcycles ? ncycles - totalcycles : 0;
1216 totalcycles += ncycles;
1217 ret = atmel_smc_cs_conf_set_setup(smcconf, ATMEL_SMC_NWE_SHIFT,
1218 ncycles);
1219 if (ret)
1220 return ret;
1221
1222 /*
1223 * As for the write setup timing, the write hold timing depends on the
1224 * operation done on the NAND:
1225 *
1226 * NWE_HOLD = max(tCLH, tCH, tALH, tDH, tWH)
1227 */
1228 timeps = max3(conf->timings.sdr.tCLH_min, conf->timings.sdr.tCH_min,
1229 conf->timings.sdr.tALH_min);
1230 timeps = max3(timeps, conf->timings.sdr.tDH_min,
1231 conf->timings.sdr.tWH_min);
1232 ncycles = DIV_ROUND_UP(timeps, mckperiodps);
1233 totalcycles += ncycles;
1234
1235 /*
1236 * The write cycle timing is directly matching tWC, but is also
1237 * dependent on the other timings on the setup and hold timings we
1238 * calculated earlier, which gives:
1239 *
1240 * NWE_CYCLE = max(tWC, NWE_SETUP + NWE_PULSE + NWE_HOLD)
1241 */
1242 ncycles = DIV_ROUND_UP(conf->timings.sdr.tWC_min, mckperiodps);
1243 ncycles = max(totalcycles, ncycles);
1244 ret = atmel_smc_cs_conf_set_cycle(smcconf, ATMEL_SMC_NWE_SHIFT,
1245 ncycles);
1246 if (ret)
1247 return ret;
1248
1249 /*
1250 * We don't want the CS line to be toggled between each byte/word
1251 * transfer to the NAND. The only way to guarantee that is to have the
1252 * NCS_{WR,RD}_{SETUP,HOLD} timings set to 0, which in turn means:
1253 *
1254 * NCS_WR_PULSE = NWE_CYCLE
1255 */
1256 ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NCS_WR_SHIFT,
1257 ncycles);
1258 if (ret)
1259 return ret;
1260
1261 /*
1262 * As for the write setup timing, the read hold timing depends on the
1263 * operation done on the NAND:
1264 *
1265 * NRD_HOLD = max(tREH, tRHOH)
1266 */
1267 timeps = max(conf->timings.sdr.tREH_min, conf->timings.sdr.tRHOH_min);
1268 ncycles = DIV_ROUND_UP(timeps, mckperiodps);
1269 totalcycles = ncycles;
1270
1271 /*
1272 * TDF = tRHZ - NRD_HOLD
1273 */
1274 ncycles = DIV_ROUND_UP(conf->timings.sdr.tRHZ_max, mckperiodps);
1275 ncycles -= totalcycles;
1276
1277 /*
1278 * In ONFI 4.0 specs, tRHZ has been increased to support EDO NANDs and
1279 * we might end up with a config that does not fit in the TDF field.
1280 * Just take the max value in this case and hope that the NAND is more
1281 * tolerant than advertised.
1282 */
1283 if (ncycles > ATMEL_SMC_MODE_TDF_MAX)
1284 ncycles = ATMEL_SMC_MODE_TDF_MAX;
1285 else if (ncycles < ATMEL_SMC_MODE_TDF_MIN)
1286 ncycles = ATMEL_SMC_MODE_TDF_MIN;
1287
1288 smcconf->mode |= ATMEL_SMC_MODE_TDF(ncycles) |
1289 ATMEL_SMC_MODE_TDFMODE_OPTIMIZED;
1290
1291 /*
1292 * Read pulse timing directly matches tRP:
1293 *
1294 * NRD_PULSE = tRP
1295 */
1296 ncycles = DIV_ROUND_UP(conf->timings.sdr.tRP_min, mckperiodps);
1297 totalcycles += ncycles;
1298 ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NRD_SHIFT,
1299 ncycles);
1300 if (ret)
1301 return ret;
1302
1303 /*
1304 * The write cycle timing is directly matching tWC, but is also
1305 * dependent on the setup and hold timings we calculated earlier,
1306 * which gives:
1307 *
1308 * NRD_CYCLE = max(tRC, NRD_PULSE + NRD_HOLD)
1309 *
1310 * NRD_SETUP is always 0.
1311 */
1312 ncycles = DIV_ROUND_UP(conf->timings.sdr.tRC_min, mckperiodps);
1313 ncycles = max(totalcycles, ncycles);
1314 ret = atmel_smc_cs_conf_set_cycle(smcconf, ATMEL_SMC_NRD_SHIFT,
1315 ncycles);
1316 if (ret)
1317 return ret;
1318
1319 /*
1320 * We don't want the CS line to be toggled between each byte/word
1321 * transfer from the NAND. The only way to guarantee that is to have
1322 * the NCS_{WR,RD}_{SETUP,HOLD} timings set to 0, which in turn means:
1323 *
1324 * NCS_RD_PULSE = NRD_CYCLE
1325 */
1326 ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NCS_RD_SHIFT,
1327 ncycles);
1328 if (ret)
1329 return ret;
1330
1331 /* Txxx timings are directly matching tXXX ones. */
1332 ncycles = DIV_ROUND_UP(conf->timings.sdr.tCLR_min, mckperiodps);
1333 ret = atmel_smc_cs_conf_set_timing(smcconf,
1334 ATMEL_HSMC_TIMINGS_TCLR_SHIFT,
1335 ncycles);
1336 if (ret)
1337 return ret;
1338
1339 ncycles = DIV_ROUND_UP(conf->timings.sdr.tADL_min, mckperiodps);
1340 ret = atmel_smc_cs_conf_set_timing(smcconf,
1341 ATMEL_HSMC_TIMINGS_TADL_SHIFT,
1342 ncycles);
1343 /*
1344 * Version 4 of the ONFI spec mandates that tADL be at least 400
1345 * nanoseconds, but, depending on the master clock rate, 400 ns may not
1346 * fit in the tADL field of the SMC reg. We need to relax the check and
1347 * accept the -ERANGE return code.
1348 *
1349 * Note that previous versions of the ONFI spec had a lower tADL_min
1350 * (100 or 200 ns). It's not clear why this timing constraint got
1351 * increased but it seems most NANDs are fine with values lower than
1352 * 400ns, so we should be safe.
1353 */
1354 if (ret && ret != -ERANGE)
1355 return ret;
1356
1357 ncycles = DIV_ROUND_UP(conf->timings.sdr.tAR_min, mckperiodps);
1358 ret = atmel_smc_cs_conf_set_timing(smcconf,
1359 ATMEL_HSMC_TIMINGS_TAR_SHIFT,
1360 ncycles);
1361 if (ret)
1362 return ret;
1363
1364 ncycles = DIV_ROUND_UP(conf->timings.sdr.tRR_min, mckperiodps);
1365 ret = atmel_smc_cs_conf_set_timing(smcconf,
1366 ATMEL_HSMC_TIMINGS_TRR_SHIFT,
1367 ncycles);
1368 if (ret)
1369 return ret;
1370
1371 ncycles = DIV_ROUND_UP(conf->timings.sdr.tWB_max, mckperiodps);
1372 ret = atmel_smc_cs_conf_set_timing(smcconf,
1373 ATMEL_HSMC_TIMINGS_TWB_SHIFT,
1374 ncycles);
1375 if (ret)
1376 return ret;
1377
1378 /* Attach the CS line to the NFC logic. */
1379 smcconf->timings |= ATMEL_HSMC_TIMINGS_NFSEL;
1380
1381 /* Set the appropriate data bus width. */
1382 if (nand->base.options & NAND_BUSWIDTH_16)
1383 smcconf->mode |= ATMEL_SMC_MODE_DBW_16;
1384
1385 /* Operate in NRD/NWE READ/WRITEMODE. */
1386 smcconf->mode |= ATMEL_SMC_MODE_READMODE_NRD |
1387 ATMEL_SMC_MODE_WRITEMODE_NWE;
1388
1389 return 0;
1390}
1391
1392static int
1393atmel_smc_nand_setup_data_interface(struct atmel_nand *nand,
1394 int csline,
1395 const struct nand_data_interface *conf)
1396{
1397 struct atmel_nand_controller *nc;
1398 struct atmel_smc_cs_conf smcconf;
1399 struct atmel_nand_cs *cs;
1400 int ret;
1401
1402 nc = to_nand_controller(nand->controller);
1403
1404 ret = atmel_smc_nand_prepare_smcconf(nand, conf, &smcconf);
1405 if (ret)
1406 return ret;
1407
1408 if (csline == NAND_DATA_IFACE_CHECK_ONLY)
1409 return 0;
1410
1411 cs = &nand->cs[csline];
1412 cs->smcconf = smcconf;
1413
1414 atmel_smc_cs_conf_apply(nc->smc, cs->id, &cs->smcconf);
1415
1416 return 0;
1417}
1418
1419static int
1420atmel_hsmc_nand_setup_data_interface(struct atmel_nand *nand,
1421 int csline,
1422 const struct nand_data_interface *conf)
1423{
1424 struct atmel_hsmc_nand_controller *nc;
1425 struct atmel_smc_cs_conf smcconf;
1426 struct atmel_nand_cs *cs;
1427 int ret;
1428
1429 nc = to_hsmc_nand_controller(nand->controller);
1430
1431 ret = atmel_smc_nand_prepare_smcconf(nand, conf, &smcconf);
1432 if (ret)
1433 return ret;
1434
1435 if (csline == NAND_DATA_IFACE_CHECK_ONLY)
1436 return 0;
1437
1438 cs = &nand->cs[csline];
1439 cs->smcconf = smcconf;
1440
1441 if (cs->rb.type == ATMEL_NAND_NATIVE_RB)
1442 cs->smcconf.timings |= ATMEL_HSMC_TIMINGS_RBNSEL(cs->rb.id);
1443
1444 atmel_hsmc_cs_conf_apply(nc->base.smc, nc->hsmc_layout, cs->id,
1445 &cs->smcconf);
1446
1447 return 0;
1448}
1449
1450static int atmel_nand_setup_data_interface(struct mtd_info *mtd, int csline,
1451 const struct nand_data_interface *conf)
1452{
1453 struct nand_chip *chip = mtd_to_nand(mtd);
1454 struct atmel_nand *nand = to_atmel_nand(chip);
1455 struct atmel_nand_controller *nc;
1456
1457 nc = to_nand_controller(nand->controller);
1458
1459 if (csline >= nand->numcs ||
1460 (csline < 0 && csline != NAND_DATA_IFACE_CHECK_ONLY))
1461 return -EINVAL;
1462
1463 return nc->caps->ops->setup_data_interface(nand, csline, conf);
1464}
1465
1466#define NAND_KEEP_TIMINGS 0x00800000
1467
1468static void atmel_nand_init(struct atmel_nand_controller *nc,
1469 struct atmel_nand *nand)
1470{
1471 struct nand_chip *chip = &nand->base;
1472 struct mtd_info *mtd = nand_to_mtd(chip);
1473
1474 mtd->dev->parent = nc->dev;
1475 nand->controller = &nc->base;
Balamanikandan Gunasundarfe33c7d2022-10-25 16:21:01 +05301476
1477 chip->cmd_ctrl = atmel_nand_cmd_ctrl;
1478 chip->read_byte = atmel_nand_read_byte;
1479 chip->write_byte = atmel_nand_write_byte;
1480 chip->read_buf = atmel_nand_read_buf;
1481 chip->write_buf = atmel_nand_write_buf;
1482 chip->select_chip = atmel_nand_select_chip;
1483 chip->setup_data_interface = atmel_nand_setup_data_interface;
1484
1485 if (!nc->mck || !nc->caps->ops->setup_data_interface)
1486 chip->options |= NAND_KEEP_TIMINGS;
1487
1488 /* Some NANDs require a longer delay than the default one (20us). */
1489 chip->chip_delay = 40;
1490
1491 /* Default to HW ECC if pmecc is available. */
1492 if (nc->pmecc)
1493 chip->ecc.mode = NAND_ECC_HW;
1494}
1495
1496static void atmel_smc_nand_init(struct atmel_nand_controller *nc,
1497 struct atmel_nand *nand)
1498{
1499 struct atmel_smc_nand_controller *smc_nc;
1500 int i;
1501
1502 atmel_nand_init(nc, nand);
1503
1504 smc_nc = to_smc_nand_controller(nand->controller);
1505 if (!smc_nc->ebi_csa_regmap)
1506 return;
1507
1508 /* Attach the CS to the NAND Flash logic. */
1509 for (i = 0; i < nand->numcs; i++)
1510 regmap_update_bits(smc_nc->ebi_csa_regmap,
1511 smc_nc->ebi_csa->offs,
1512 BIT(nand->cs[i].id), BIT(nand->cs[i].id));
1513
1514 if (smc_nc->ebi_csa->nfd0_on_d16)
1515 regmap_update_bits(smc_nc->ebi_csa_regmap,
1516 smc_nc->ebi_csa->offs,
1517 smc_nc->ebi_csa->nfd0_on_d16,
1518 smc_nc->ebi_csa->nfd0_on_d16);
1519}
1520
1521static void atmel_hsmc_nand_init(struct atmel_nand_controller *nc,
1522 struct atmel_nand *nand)
1523{
1524 struct nand_chip *chip = &nand->base;
1525
1526 atmel_nand_init(nc, nand);
1527
1528 /* Overload some methods for the HSMC controller. */
1529 chip->cmd_ctrl = atmel_hsmc_nand_cmd_ctrl;
1530 chip->select_chip = atmel_hsmc_nand_select_chip;
1531}
1532
1533static int atmel_nand_controller_remove_nand(struct atmel_nand *nand)
1534{
1535 list_del(&nand->node);
1536
1537 return 0;
1538}
1539
1540static struct atmel_nand *atmel_nand_create(struct atmel_nand_controller *nc,
1541 ofnode np,
1542 int reg_cells)
1543{
1544 struct atmel_nand *nand;
1545 ofnode n;
1546 int numcs = 0;
1547 int ret, i;
1548 u32 val;
1549 fdt32_t faddr;
1550 phys_addr_t base;
1551
1552 /* Count num of nand nodes */
1553 ofnode_for_each_subnode(n, ofnode_get_parent(np))
1554 numcs++;
1555 if (numcs < 1) {
1556 dev_err(nc->dev, "Missing or invalid reg property\n");
1557 return ERR_PTR(-EINVAL);
1558 }
1559
1560 nand = devm_kzalloc(nc->dev,
1561 sizeof(struct atmel_nand) +
1562 (numcs * sizeof(struct atmel_nand_cs)),
1563 GFP_KERNEL);
1564 if (!nand) {
1565 dev_err(nc->dev, "Failed to allocate NAND object\n");
1566 return ERR_PTR(-ENOMEM);
1567 }
1568
1569 nand->numcs = numcs;
1570
1571 gpio_request_by_name_nodev(np, "det-gpios", 0, &nand->cdgpio,
1572 GPIOD_IS_IN);
1573
1574 for (i = 0; i < numcs; i++) {
1575 ret = ofnode_read_u32(np, "reg", &val);
1576 if (ret) {
1577 dev_err(nc->dev, "Invalid reg property (err = %d)\n",
1578 ret);
1579 return ERR_PTR(ret);
1580 }
1581 nand->cs[i].id = val;
1582
1583 /* Read base address */
1584 struct resource res;
1585
1586 if (ofnode_read_resource(np, 0, &res)) {
1587 dev_err(nc->dev, "Unable to read resource\n");
1588 return ERR_PTR(-ENOMEM);
1589 }
1590
1591 faddr = cpu_to_fdt32(val);
1592 base = ofnode_translate_address(np, &faddr);
1593 nand->cs[i].io.virt = (void *)base;
1594
1595 if (!ofnode_read_u32(np, "atmel,rb", &val)) {
1596 if (val > ATMEL_NFC_MAX_RB_ID)
1597 return ERR_PTR(-EINVAL);
1598
1599 nand->cs[i].rb.type = ATMEL_NAND_NATIVE_RB;
1600 nand->cs[i].rb.id = val;
1601 } else {
Alexander Dahld8f077a2023-09-22 11:08:56 +02001602 ret = gpio_request_by_name_nodev(np, "rb-gpios", 0,
1603 &nand->cs[i].rb.gpio,
1604 GPIOD_IS_IN);
1605 if (ret && ret != -ENOENT)
1606 dev_err(nc->dev, "Failed to get R/B gpio (err = %d)\n", ret);
1607 if (!ret)
1608 nand->cs[i].rb.type = ATMEL_NAND_GPIO_RB;
Balamanikandan Gunasundarfe33c7d2022-10-25 16:21:01 +05301609 }
1610
1611 gpio_request_by_name_nodev(np, "cs-gpios", 0,
1612 &nand->cs[i].csgpio,
1613 GPIOD_IS_OUT);
1614 }
1615
1616 nand_set_flash_node(&nand->base, np);
1617
1618 return nand;
1619}
1620
1621static int nand_attach(struct nand_chip *chip)
1622{
1623 struct atmel_nand *nand = to_atmel_nand(chip);
1624
1625 if (nand->controller->ops && nand->controller->ops->attach_chip)
1626 return nand->controller->ops->attach_chip(chip);
1627
1628 return 0;
1629}
1630
1631int atmel_nand_scan(struct mtd_info *mtd, int maxchips)
1632{
1633 int ret;
1634
1635 ret = nand_scan_ident(mtd, maxchips, NULL);
1636 if (ret)
1637 return ret;
1638
1639 ret = nand_attach(mtd_to_nand(mtd));
1640 if (ret)
1641 return ret;
1642
1643 ret = nand_scan_tail(mtd);
1644 return ret;
1645}
1646
1647static int
1648atmel_nand_controller_add_nand(struct atmel_nand_controller *nc,
1649 struct atmel_nand *nand)
1650{
1651 struct nand_chip *chip = &nand->base;
1652 struct mtd_info *mtd = nand_to_mtd(chip);
1653 int ret;
1654
1655 /* No card inserted, skip this NAND. */
1656 if (dm_gpio_is_valid(&nand->cdgpio) &&
1657 dm_gpio_get_value(&nand->cdgpio)) {
1658 dev_info(nc->dev, "No SmartMedia card inserted.\n");
1659 return 0;
1660 }
1661
1662 nc->caps->ops->nand_init(nc, nand);
1663
1664 ret = atmel_nand_scan(mtd, nand->numcs);
1665 if (ret) {
1666 dev_err(nc->dev, "NAND scan failed: %d\n", ret);
1667 return ret;
1668 }
1669
1670 ret = nand_register(0, mtd);
1671 if (ret) {
1672 dev_err(nc->dev, "nand register failed: %d\n", ret);
1673 return ret;
1674 }
1675
1676 list_add_tail(&nand->node, &nc->chips);
1677
1678 return 0;
1679}
1680
1681static int
1682atmel_nand_controller_remove_nands(struct atmel_nand_controller *nc)
1683{
1684 struct atmel_nand *nand, *tmp;
1685 int ret;
1686
1687 list_for_each_entry_safe(nand, tmp, &nc->chips, node) {
1688 ret = atmel_nand_controller_remove_nand(nand);
1689 if (ret)
1690 return ret;
1691 }
1692
1693 return 0;
1694}
1695
1696static int atmel_nand_controller_add_nands(struct atmel_nand_controller *nc)
1697{
1698 ofnode np;
1699 ofnode nand_np;
1700 int ret, reg_cells;
1701 u32 val;
1702
1703 /* TODO:
1704 * Add support for legacy nands
1705 */
1706
1707 np = nc->dev->node_;
1708
1709 ret = ofnode_read_u32(np, "#address-cells", &val);
1710 if (ret) {
1711 dev_err(nc->dev, "missing #address-cells property\n");
1712 return ret;
1713 }
1714
1715 reg_cells = val;
1716
1717 ret = ofnode_read_u32(np, "#size-cells", &val);
1718 if (ret) {
1719 dev_err(nc->dev, "missing #size-cells property\n");
1720 return ret;
1721 }
1722
1723 reg_cells += val;
1724
1725 ofnode_for_each_subnode(nand_np, np) {
1726 struct atmel_nand *nand;
1727
1728 nand = atmel_nand_create(nc, nand_np, reg_cells);
1729 if (IS_ERR(nand)) {
1730 ret = PTR_ERR(nand);
1731 goto err;
1732 }
1733
1734 ret = atmel_nand_controller_add_nand(nc, nand);
1735 if (ret)
1736 goto err;
1737 }
1738
1739 return 0;
1740
1741err:
1742 atmel_nand_controller_remove_nands(nc);
1743
1744 return ret;
1745}
1746
1747static const struct atmel_smc_nand_ebi_csa_cfg at91sam9260_ebi_csa = {
1748 .offs = AT91SAM9260_MATRIX_EBICSA,
1749};
1750
1751static const struct atmel_smc_nand_ebi_csa_cfg at91sam9261_ebi_csa = {
1752 .offs = AT91SAM9261_MATRIX_EBICSA,
1753};
1754
1755static const struct atmel_smc_nand_ebi_csa_cfg at91sam9263_ebi_csa = {
1756 .offs = AT91SAM9263_MATRIX_EBI0CSA,
1757};
1758
1759static const struct atmel_smc_nand_ebi_csa_cfg at91sam9rl_ebi_csa = {
1760 .offs = AT91SAM9RL_MATRIX_EBICSA,
1761};
1762
1763static const struct atmel_smc_nand_ebi_csa_cfg at91sam9g45_ebi_csa = {
1764 .offs = AT91SAM9G45_MATRIX_EBICSA,
1765};
1766
1767static const struct atmel_smc_nand_ebi_csa_cfg at91sam9n12_ebi_csa = {
1768 .offs = AT91SAM9N12_MATRIX_EBICSA,
1769};
1770
1771static const struct atmel_smc_nand_ebi_csa_cfg at91sam9x5_ebi_csa = {
1772 .offs = AT91SAM9X5_MATRIX_EBICSA,
1773};
1774
1775static const struct atmel_smc_nand_ebi_csa_cfg sam9x60_ebi_csa = {
1776 .offs = AT91_SFR_CCFG_EBICSA,
1777 .nfd0_on_d16 = AT91_SFR_CCFG_NFD0_ON_D16,
1778};
1779
1780static const struct udevice_id atmel_ebi_csa_regmap_of_ids[] = {
1781 {
1782 .compatible = "atmel,at91sam9260-matrix",
1783 .data = (ulong)&at91sam9260_ebi_csa,
1784 },
1785 {
1786 .compatible = "atmel,at91sam9261-matrix",
1787 .data = (ulong)&at91sam9261_ebi_csa,
1788 },
1789 {
1790 .compatible = "atmel,at91sam9263-matrix",
1791 .data = (ulong)&at91sam9263_ebi_csa,
1792 },
1793 {
1794 .compatible = "atmel,at91sam9rl-matrix",
1795 .data = (ulong)&at91sam9rl_ebi_csa,
1796 },
1797 {
1798 .compatible = "atmel,at91sam9g45-matrix",
1799 .data = (ulong)&at91sam9g45_ebi_csa,
1800 },
1801 {
1802 .compatible = "atmel,at91sam9n12-matrix",
1803 .data = (ulong)&at91sam9n12_ebi_csa,
1804 },
1805 {
1806 .compatible = "atmel,at91sam9x5-matrix",
1807 .data = (ulong)&at91sam9x5_ebi_csa,
1808 },
1809 {
1810 .compatible = "microchip,sam9x60-sfr",
1811 .data = (ulong)&sam9x60_ebi_csa,
1812 },
1813 { /* sentinel */ },
1814};
1815
1816static int atmel_nand_attach_chip(struct nand_chip *chip)
1817{
1818 struct atmel_nand *nand = to_atmel_nand(chip);
1819 struct atmel_nand_controller *nc = to_nand_controller(nand->controller);
1820 struct mtd_info *mtd = nand_to_mtd(chip);
1821 int ret;
1822
1823 ret = nc->caps->ops->ecc_init(chip);
1824 if (ret)
1825 return ret;
1826
1827 if (nc->caps->legacy_of_bindings || !ofnode_valid(nc->dev->node_)) {
1828 /*
1829 * We keep the MTD name unchanged to avoid breaking platforms
1830 * where the MTD cmdline parser is used and the bootloader
1831 * has not been updated to use the new naming scheme.
1832 */
1833 mtd->name = "atmel_nand";
1834 } else if (!mtd->name) {
1835 /*
1836 * If the new bindings are used and the bootloader has not been
1837 * updated to pass a new mtdparts parameter on the cmdline, you
1838 * should define the following property in your nand node:
1839 *
1840 * label = "atmel_nand";
1841 *
1842 * This way, mtd->name will be set by the core when
1843 * nand_set_flash_node() is called.
1844 */
1845 sprintf(mtd->name, "%s:nand.%d", nc->dev->name, nand->cs[0].id);
1846 }
1847
1848 return 0;
1849}
1850
1851static const struct nand_controller_ops atmel_nand_controller_ops = {
1852 .attach_chip = atmel_nand_attach_chip,
1853};
1854
1855static int
1856atmel_nand_controller_init(struct atmel_nand_controller *nc,
1857 struct udevice *dev,
1858 const struct atmel_nand_controller_caps *caps)
1859{
1860 struct ofnode_phandle_args args;
1861 int ret;
1862
1863 nc->base.ops = &atmel_nand_controller_ops;
1864 INIT_LIST_HEAD(&nc->chips);
1865 nc->dev = dev;
1866 nc->caps = caps;
1867
1868 nc->pmecc = devm_atmel_pmecc_get(dev);
1869 if (IS_ERR(nc->pmecc)) {
1870 ret = PTR_ERR(nc->pmecc);
1871 if (ret != -EPROBE_DEFER)
1872 dev_err(dev, "Could not get PMECC object (err = %d)\n",
1873 ret);
1874 return ret;
1875 }
1876
1877 /* We do not retrieve the SMC syscon when parsing old DTs. */
1878 if (nc->caps->legacy_of_bindings)
1879 return 0;
1880
1881 nc->mck = devm_kzalloc(dev, sizeof(nc->mck), GFP_KERNEL);
1882 if (!nc->mck)
1883 return -ENOMEM;
1884
1885 clk_get_by_index(dev->parent, 0, nc->mck);
1886 if (IS_ERR(nc->mck)) {
1887 dev_err(dev, "Failed to retrieve MCK clk\n");
1888 return PTR_ERR(nc->mck);
1889 }
1890
1891 ret = ofnode_parse_phandle_with_args(dev->parent->node_,
1892 "atmel,smc", NULL, 0, 0, &args);
1893 if (ret) {
1894 dev_err(dev, "Missing or invalid atmel,smc property\n");
1895 return -EINVAL;
1896 }
1897
1898 nc->smc = syscon_node_to_regmap(args.node);
1899 if (IS_ERR(nc->smc)) {
1900 ret = PTR_ERR(nc->smc);
1901 dev_err(dev, "Could not get SMC regmap (err = %d)\n", ret);
1902 return 0;
1903 }
1904
1905 return 0;
1906}
1907
1908static int
1909atmel_smc_nand_controller_init(struct atmel_smc_nand_controller *nc)
1910{
1911 struct udevice *dev = nc->base.dev;
1912 struct ofnode_phandle_args args;
1913 const struct udevice_id *match = NULL;
1914 const char *name;
1915 int ret;
1916 int len;
1917 int i;
1918
1919 /* We do not retrieve the EBICSA regmap when parsing old DTs. */
1920 if (nc->base.caps->legacy_of_bindings)
1921 return 0;
1922
1923 ret = ofnode_parse_phandle_with_args(dev->parent->node_,
1924 nc->base.caps->ebi_csa_regmap_name,
1925 NULL, 0, 0, &args);
1926 if (ret) {
1927 dev_err(dev, "Unable to read ebi csa regmap\n");
1928 return -EINVAL;
1929 }
1930
1931 name = ofnode_get_property(args.node, "compatible", &len);
1932
1933 for (i = 0; i < ARRAY_SIZE(atmel_ebi_csa_regmap_of_ids); i++) {
1934 if (!strcmp(name, atmel_ebi_csa_regmap_of_ids[i].compatible)) {
1935 match = &atmel_ebi_csa_regmap_of_ids[i];
1936 break;
1937 }
1938 }
1939
1940 if (!match) {
1941 dev_err(dev, "Unable to find ebi csa conf");
1942 return -EINVAL;
1943 }
1944 nc->ebi_csa = (struct atmel_smc_nand_ebi_csa_cfg *)match->data;
1945
1946 nc->ebi_csa_regmap = syscon_node_to_regmap(args.node);
1947 if (IS_ERR(nc->ebi_csa_regmap)) {
1948 ret = PTR_ERR(nc->ebi_csa_regmap);
1949 dev_err(dev, "Could not get EBICSA regmap (err = %d)\n", ret);
1950 return ret;
1951 }
1952
1953 /* TODO:
1954 * The at91sam9263 has 2 EBIs, if the NAND controller is under EBI1
1955 * add 4 to ->ebi_csa->offs.
1956 */
1957
1958 return 0;
1959}
1960
1961static int atmel_hsmc_nand_controller_init(struct atmel_hsmc_nand_controller *nc)
1962{
1963 struct udevice *dev = nc->base.dev;
1964 struct ofnode_phandle_args args;
1965 struct clk smc_clk;
1966 int ret;
1967 u32 addr;
1968
1969 ret = ofnode_parse_phandle_with_args(dev->parent->node_,
1970 "atmel,smc", NULL, 0, 0, &args);
1971 if (ret) {
1972 dev_err(dev, "Missing or invalid atmel,smc property\n");
1973 return -EINVAL;
1974 }
1975
1976 nc->hsmc_layout = atmel_hsmc_get_reg_layout(args.node);
1977 if (IS_ERR(nc->hsmc_layout)) {
1978 dev_err(dev, "Could not get hsmc layout\n");
1979 return -EINVAL;
1980 }
1981
1982 /* Enable smc clock */
1983 ret = clk_get_by_index_nodev(args.node, 0, &smc_clk);
1984 if (ret) {
1985 dev_err(dev, "Unable to get smc clock (err = %d)", ret);
1986 return ret;
1987 }
1988
1989 ret = clk_prepare_enable(&smc_clk);
1990 if (ret)
1991 return ret;
1992
1993 ret = ofnode_parse_phandle_with_args(dev->node_,
1994 "atmel,nfc-io", NULL, 0, 0, &args);
1995 if (ret) {
1996 dev_err(dev, "Missing or invalid atmel,nfc-io property\n");
1997 return -EINVAL;
1998 }
1999
2000 nc->io = syscon_node_to_regmap(args.node);
2001 if (IS_ERR(nc->io)) {
2002 ret = PTR_ERR(nc->io);
2003 dev_err(dev, "Could not get NFC IO regmap\n");
2004 return ret;
2005 }
2006
2007 ret = ofnode_parse_phandle_with_args(dev->node_,
2008 "atmel,nfc-sram", NULL, 0, 0, &args);
2009 if (ret) {
2010 dev_err(dev, "Missing or invalid atmel,nfc-sram property\n");
2011 return ret;
2012 }
2013
2014 ret = ofnode_read_u32(args.node, "reg", &addr);
2015 if (ret) {
2016 dev_err(dev, "Could not read reg addr of nfc sram");
2017 return ret;
2018 }
2019 nc->sram.virt = (void *)addr;
2020
2021 return 0;
2022}
2023
2024static int
2025atmel_hsmc_nand_controller_remove(struct atmel_nand_controller *nc)
2026{
2027 struct atmel_hsmc_nand_controller *hsmc_nc;
2028 int ret;
2029
2030 ret = atmel_nand_controller_remove_nands(nc);
2031 if (ret)
2032 return ret;
2033
2034 hsmc_nc = container_of(nc, struct atmel_hsmc_nand_controller, base);
2035
2036 if (hsmc_nc->clk) {
2037 clk_disable_unprepare(hsmc_nc->clk);
2038 devm_clk_put(nc->dev, hsmc_nc->clk);
2039 }
2040
2041 return 0;
2042}
2043
2044static int
2045atmel_hsmc_nand_controller_probe(struct udevice *dev,
2046 const struct atmel_nand_controller_caps *caps)
2047{
2048 struct atmel_hsmc_nand_controller *nc;
2049 int ret;
2050
2051 nc = devm_kzalloc(dev, sizeof(*nc), GFP_KERNEL);
2052 if (!nc)
2053 return -ENOMEM;
2054
2055 ret = atmel_nand_controller_init(&nc->base, dev, caps);
2056 if (ret)
2057 return ret;
2058
2059 ret = atmel_hsmc_nand_controller_init(nc);
2060 if (ret)
2061 return ret;
2062
2063 /* Make sure all irqs are masked before registering our IRQ handler. */
2064 regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IDR, 0xffffffff);
2065
2066 /* Initial NFC configuration. */
2067 regmap_write(nc->base.smc, ATMEL_HSMC_NFC_CFG,
2068 ATMEL_HSMC_NFC_CFG_DTO_MAX);
2069
2070 ret = atmel_nand_controller_add_nands(&nc->base);
2071 if (ret)
2072 goto err;
2073
2074 return 0;
2075
2076err:
2077 atmel_hsmc_nand_controller_remove(&nc->base);
2078
2079 return ret;
2080}
2081
2082static const struct atmel_nand_controller_ops atmel_hsmc_nc_ops = {
2083 .probe = atmel_hsmc_nand_controller_probe,
2084 .remove = atmel_hsmc_nand_controller_remove,
2085 .ecc_init = atmel_hsmc_nand_ecc_init,
2086 .nand_init = atmel_hsmc_nand_init,
2087 .setup_data_interface = atmel_hsmc_nand_setup_data_interface,
2088};
2089
2090static const struct atmel_nand_controller_caps atmel_sama5_nc_caps = {
2091 .has_dma = true,
2092 .ale_offs = BIT(21),
2093 .cle_offs = BIT(22),
2094 .ops = &atmel_hsmc_nc_ops,
2095};
2096
2097static int
2098atmel_smc_nand_controller_probe(struct udevice *dev,
2099 const struct atmel_nand_controller_caps *caps)
2100{
2101 struct atmel_smc_nand_controller *nc;
2102 int ret;
2103
2104 nc = devm_kzalloc(dev, sizeof(*nc), GFP_KERNEL);
2105 if (!nc)
2106 return -ENOMEM;
2107
2108 ret = atmel_nand_controller_init(&nc->base, dev, caps);
2109 if (ret)
2110 return ret;
2111
2112 ret = atmel_smc_nand_controller_init(nc);
2113 if (ret)
2114 return ret;
2115
2116 return atmel_nand_controller_add_nands(&nc->base);
2117}
2118
2119static int
2120atmel_smc_nand_controller_remove(struct atmel_nand_controller *nc)
2121{
2122 int ret;
2123
2124 ret = atmel_nand_controller_remove_nands(nc);
2125 if (ret)
2126 return ret;
2127
2128 return 0;
2129}
2130
2131/*
2132 * The SMC reg layout of at91rm9200 is completely different which prevents us
2133 * from re-using atmel_smc_nand_setup_data_interface() for the
2134 * ->setup_data_interface() hook.
2135 * At this point, there's no support for the at91rm9200 SMC IP, so we leave
2136 * ->setup_data_interface() unassigned.
2137 */
2138static const struct atmel_nand_controller_ops at91rm9200_nc_ops = {
2139 .probe = atmel_smc_nand_controller_probe,
2140 .remove = atmel_smc_nand_controller_remove,
2141 .ecc_init = atmel_nand_ecc_init,
2142 .nand_init = atmel_smc_nand_init,
2143};
2144
2145static const struct atmel_nand_controller_caps atmel_rm9200_nc_caps = {
2146 .ale_offs = BIT(21),
2147 .cle_offs = BIT(22),
2148 .ebi_csa_regmap_name = "atmel,matrix",
2149 .ops = &at91rm9200_nc_ops,
2150};
2151
2152static const struct atmel_nand_controller_ops atmel_smc_nc_ops = {
2153 .probe = atmel_smc_nand_controller_probe,
2154 .remove = atmel_smc_nand_controller_remove,
2155 .ecc_init = atmel_nand_ecc_init,
2156 .nand_init = atmel_smc_nand_init,
2157 .setup_data_interface = atmel_smc_nand_setup_data_interface,
2158};
2159
2160static const struct atmel_nand_controller_caps atmel_sam9260_nc_caps = {
2161 .ale_offs = BIT(21),
2162 .cle_offs = BIT(22),
2163 .ebi_csa_regmap_name = "atmel,matrix",
2164 .ops = &atmel_smc_nc_ops,
2165};
2166
2167static const struct atmel_nand_controller_caps atmel_sam9261_nc_caps = {
2168 .ale_offs = BIT(22),
2169 .cle_offs = BIT(21),
2170 .ebi_csa_regmap_name = "atmel,matrix",
2171 .ops = &atmel_smc_nc_ops,
2172};
2173
2174static const struct atmel_nand_controller_caps atmel_sam9g45_nc_caps = {
2175 .has_dma = true,
2176 .ale_offs = BIT(21),
2177 .cle_offs = BIT(22),
2178 .ebi_csa_regmap_name = "atmel,matrix",
2179 .ops = &atmel_smc_nc_ops,
2180};
2181
2182static const struct atmel_nand_controller_caps microchip_sam9x60_nc_caps = {
2183 .has_dma = true,
2184 .ale_offs = BIT(21),
2185 .cle_offs = BIT(22),
2186 .ebi_csa_regmap_name = "microchip,sfr",
2187 .ops = &atmel_smc_nc_ops,
2188};
2189
2190/* Only used to parse old bindings. */
2191static const struct atmel_nand_controller_caps atmel_rm9200_nand_caps = {
2192 .ale_offs = BIT(21),
2193 .cle_offs = BIT(22),
2194 .ops = &atmel_smc_nc_ops,
2195 .legacy_of_bindings = true,
2196};
2197
2198static const struct udevice_id atmel_nand_controller_of_ids[] = {
2199 {
2200 .compatible = "atmel,at91rm9200-nand-controller",
2201 .data = (ulong)&atmel_rm9200_nc_caps,
2202 },
2203 {
2204 .compatible = "atmel,at91sam9260-nand-controller",
2205 .data = (ulong)&atmel_sam9260_nc_caps,
2206 },
2207 {
2208 .compatible = "atmel,at91sam9261-nand-controller",
2209 .data = (ulong)&atmel_sam9261_nc_caps,
2210 },
2211 {
2212 .compatible = "atmel,at91sam9g45-nand-controller",
2213 .data = (ulong)&atmel_sam9g45_nc_caps,
2214 },
2215 {
2216 .compatible = "atmel,sama5d3-nand-controller",
2217 .data = (ulong)&atmel_sama5_nc_caps,
2218 },
2219 {
2220 .compatible = "microchip,sam9x60-nand-controller",
2221 .data = (ulong)&microchip_sam9x60_nc_caps,
2222 },
2223 /* Support for old/deprecated bindings: */
2224 {
2225 .compatible = "atmel,at91rm9200-nand",
2226 .data = (ulong)&atmel_rm9200_nand_caps,
2227 },
2228 {
2229 .compatible = "atmel,sama5d4-nand",
2230 .data = (ulong)&atmel_rm9200_nand_caps,
2231 },
2232 {
2233 .compatible = "atmel,sama5d2-nand",
2234 .data = (ulong)&atmel_rm9200_nand_caps,
2235 },
2236 { /* sentinel */ },
2237};
2238
2239static int atmel_nand_controller_probe(struct udevice *dev)
2240{
2241 const struct atmel_nand_controller_caps *caps;
2242 struct udevice *pmecc_dev;
2243
2244 caps = (struct atmel_nand_controller_caps *)dev_get_driver_data(dev);
2245 if (!caps) {
2246 printf("Could not retrieve NFC caps\n");
2247 return -EINVAL;
2248 }
2249
2250 /* Probe pmecc driver */
2251 if (uclass_get_device(UCLASS_MTD, 1, &pmecc_dev)) {
2252 printf("%s: get device fail\n", __func__);
2253 return -EINVAL;
2254 }
2255
2256 return caps->ops->probe(dev, caps);
2257}
2258
2259static int atmel_nand_controller_remove(struct udevice *dev)
2260{
2261 struct atmel_nand_controller *nc;
2262
2263 nc = (struct atmel_nand_controller *)dev_get_driver_data(dev);
2264
2265 return nc->caps->ops->remove(nc);
2266}
2267
2268U_BOOT_DRIVER(atmel_nand_controller) = {
2269 .name = "atmel-nand-controller",
2270 .id = UCLASS_MTD,
2271 .of_match = atmel_nand_controller_of_ids,
2272 .probe = atmel_nand_controller_probe,
2273 .remove = atmel_nand_controller_remove,
2274};
2275
2276void board_nand_init(void)
2277{
2278 struct udevice *dev;
2279 int ret;
2280
2281 ret = uclass_get_device_by_driver(UCLASS_MTD,
2282 DM_DRIVER_GET(atmel_nand_controller),
2283 &dev);
2284 if (ret && ret != -ENODEV)
2285 printf("Failed to initialize NAND controller. (error %d)\n",
2286 ret);
2287}