blob: f97dc664391a476198e756c1413920cf4cf58fb8 [file] [log] [blame]
wdenk591dda52002-11-18 00:14:45 +00001#ifndef _I386_BITOPS_H
2#define _I386_BITOPS_H
3
4/*
5 * Copyright 1992, Linus Torvalds.
6 */
7
wdenk591dda52002-11-18 00:14:45 +00008
9/*
10 * These have to be done with inline assembly: that way the bit-setting
11 * is guaranteed to be atomic. All bit operations return 0 if the bit
12 * was cleared before the operation and != 0 if it was not.
13 *
14 * bit 0 is the LSB of addr; bit 32 is the LSB of (addr+1).
15 */
16
Fabio Estevam15eaa972015-11-05 12:43:25 -020017#include <asm-generic/bitops/fls.h>
18#include <asm-generic/bitops/__fls.h>
19#include <asm-generic/bitops/fls64.h>
20
wdenk591dda52002-11-18 00:14:45 +000021#ifdef CONFIG_SMP
22#define LOCK_PREFIX "lock ; "
23#else
24#define LOCK_PREFIX ""
25#endif
26
27#define ADDR (*(volatile long *) addr)
28
29/**
30 * set_bit - Atomically set a bit in memory
31 * @nr: the bit to set
32 * @addr: the address to start counting from
33 *
34 * This function is atomic and may not be reordered. See __set_bit()
35 * if you do not require the atomic guarantees.
36 * Note that @nr may be almost arbitrarily large; this function is not
37 * restricted to acting on a single-word quantity.
38 */
39static __inline__ void set_bit(int nr, volatile void * addr)
40{
41 __asm__ __volatile__( LOCK_PREFIX
42 "btsl %1,%0"
43 :"=m" (ADDR)
44 :"Ir" (nr));
45}
46
47/**
48 * __set_bit - Set a bit in memory
49 * @nr: the bit to set
50 * @addr: the address to start counting from
51 *
52 * Unlike set_bit(), this function is non-atomic and may be reordered.
53 * If it's called on the same region of memory simultaneously, the effect
54 * may be that only one operation succeeds.
55 */
56static __inline__ void __set_bit(int nr, volatile void * addr)
57{
58 __asm__(
59 "btsl %1,%0"
60 :"=m" (ADDR)
61 :"Ir" (nr));
62}
63
64/**
65 * clear_bit - Clears a bit in memory
66 * @nr: Bit to clear
67 * @addr: Address to start counting from
68 *
69 * clear_bit() is atomic and may not be reordered. However, it does
70 * not contain a memory barrier, so if it is used for locking purposes,
71 * you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit()
72 * in order to ensure changes are visible on other processors.
73 */
74static __inline__ void clear_bit(int nr, volatile void * addr)
75{
76 __asm__ __volatile__( LOCK_PREFIX
77 "btrl %1,%0"
78 :"=m" (ADDR)
79 :"Ir" (nr));
80}
81#define smp_mb__before_clear_bit() barrier()
82#define smp_mb__after_clear_bit() barrier()
83
84/**
85 * __change_bit - Toggle a bit in memory
86 * @nr: the bit to set
87 * @addr: the address to start counting from
88 *
89 * Unlike change_bit(), this function is non-atomic and may be reordered.
90 * If it's called on the same region of memory simultaneously, the effect
91 * may be that only one operation succeeds.
92 */
93static __inline__ void __change_bit(int nr, volatile void * addr)
94{
95 __asm__ __volatile__(
96 "btcl %1,%0"
97 :"=m" (ADDR)
98 :"Ir" (nr));
99}
100
101/**
102 * change_bit - Toggle a bit in memory
103 * @nr: Bit to clear
104 * @addr: Address to start counting from
105 *
106 * change_bit() is atomic and may not be reordered.
107 * Note that @nr may be almost arbitrarily large; this function is not
108 * restricted to acting on a single-word quantity.
109 */
110static __inline__ void change_bit(int nr, volatile void * addr)
111{
112 __asm__ __volatile__( LOCK_PREFIX
113 "btcl %1,%0"
114 :"=m" (ADDR)
115 :"Ir" (nr));
116}
117
118/**
119 * test_and_set_bit - Set a bit and return its old value
120 * @nr: Bit to set
121 * @addr: Address to count from
122 *
wdenk57b2d802003-06-27 21:31:46 +0000123 * This operation is atomic and cannot be reordered.
wdenk591dda52002-11-18 00:14:45 +0000124 * It also implies a memory barrier.
125 */
126static __inline__ int test_and_set_bit(int nr, volatile void * addr)
127{
128 int oldbit;
129
130 __asm__ __volatile__( LOCK_PREFIX
131 "btsl %2,%1\n\tsbbl %0,%0"
132 :"=r" (oldbit),"=m" (ADDR)
133 :"Ir" (nr) : "memory");
134 return oldbit;
135}
136
137/**
138 * __test_and_set_bit - Set a bit and return its old value
139 * @nr: Bit to set
140 * @addr: Address to count from
141 *
wdenk57b2d802003-06-27 21:31:46 +0000142 * This operation is non-atomic and can be reordered.
wdenk591dda52002-11-18 00:14:45 +0000143 * If two examples of this operation race, one can appear to succeed
144 * but actually fail. You must protect multiple accesses with a lock.
145 */
146static __inline__ int __test_and_set_bit(int nr, volatile void * addr)
147{
148 int oldbit;
149
150 __asm__(
151 "btsl %2,%1\n\tsbbl %0,%0"
152 :"=r" (oldbit),"=m" (ADDR)
153 :"Ir" (nr));
154 return oldbit;
155}
156
157/**
158 * test_and_clear_bit - Clear a bit and return its old value
159 * @nr: Bit to set
160 * @addr: Address to count from
161 *
wdenk57b2d802003-06-27 21:31:46 +0000162 * This operation is atomic and cannot be reordered.
wdenk591dda52002-11-18 00:14:45 +0000163 * It also implies a memory barrier.
164 */
165static __inline__ int test_and_clear_bit(int nr, volatile void * addr)
166{
167 int oldbit;
168
169 __asm__ __volatile__( LOCK_PREFIX
170 "btrl %2,%1\n\tsbbl %0,%0"
171 :"=r" (oldbit),"=m" (ADDR)
172 :"Ir" (nr) : "memory");
173 return oldbit;
174}
175
176/**
177 * __test_and_clear_bit - Clear a bit and return its old value
178 * @nr: Bit to set
179 * @addr: Address to count from
180 *
wdenk57b2d802003-06-27 21:31:46 +0000181 * This operation is non-atomic and can be reordered.
wdenk591dda52002-11-18 00:14:45 +0000182 * If two examples of this operation race, one can appear to succeed
183 * but actually fail. You must protect multiple accesses with a lock.
184 */
185static __inline__ int __test_and_clear_bit(int nr, volatile void * addr)
186{
187 int oldbit;
188
189 __asm__(
190 "btrl %2,%1\n\tsbbl %0,%0"
191 :"=r" (oldbit),"=m" (ADDR)
192 :"Ir" (nr));
193 return oldbit;
194}
195
196/* WARNING: non atomic and it can be reordered! */
197static __inline__ int __test_and_change_bit(int nr, volatile void * addr)
198{
199 int oldbit;
200
201 __asm__ __volatile__(
202 "btcl %2,%1\n\tsbbl %0,%0"
203 :"=r" (oldbit),"=m" (ADDR)
204 :"Ir" (nr) : "memory");
205 return oldbit;
206}
207
208/**
209 * test_and_change_bit - Change a bit and return its new value
210 * @nr: Bit to set
211 * @addr: Address to count from
212 *
wdenk57b2d802003-06-27 21:31:46 +0000213 * This operation is atomic and cannot be reordered.
wdenk591dda52002-11-18 00:14:45 +0000214 * It also implies a memory barrier.
215 */
216static __inline__ int test_and_change_bit(int nr, volatile void * addr)
217{
218 int oldbit;
219
220 __asm__ __volatile__( LOCK_PREFIX
221 "btcl %2,%1\n\tsbbl %0,%0"
222 :"=r" (oldbit),"=m" (ADDR)
223 :"Ir" (nr) : "memory");
224 return oldbit;
225}
226
227#if 0 /* Fool kernel-doc since it doesn't do macros yet */
228/**
229 * test_bit - Determine whether a bit is set
230 * @nr: bit number to test
231 * @addr: Address to start counting from
232 */
233static int test_bit(int nr, const volatile void * addr);
234#endif
235
236static __inline__ int constant_test_bit(int nr, const volatile void * addr)
237{
238 return ((1UL << (nr & 31)) & (((const volatile unsigned int *) addr)[nr >> 5])) != 0;
239}
240
241static __inline__ int variable_test_bit(int nr, volatile void * addr)
242{
243 int oldbit;
244
245 __asm__ __volatile__(
246 "btl %2,%1\n\tsbbl %0,%0"
247 :"=r" (oldbit)
248 :"m" (ADDR),"Ir" (nr));
249 return oldbit;
250}
251
252#define test_bit(nr,addr) \
253(__builtin_constant_p(nr) ? \
254 constant_test_bit((nr),(addr)) : \
255 variable_test_bit((nr),(addr)))
256
257/**
258 * find_first_zero_bit - find the first zero bit in a memory region
259 * @addr: The address to start the search at
260 * @size: The maximum size to search
261 *
262 * Returns the bit-number of the first zero bit, not the number of the byte
263 * containing a bit.
264 */
265static __inline__ int find_first_zero_bit(void * addr, unsigned size)
266{
267 int d0, d1, d2;
268 int res;
269
270 if (!size)
271 return 0;
272 /* This looks at memory. Mark it volatile to tell gcc not to move it around */
273 __asm__ __volatile__(
274 "movl $-1,%%eax\n\t"
275 "xorl %%edx,%%edx\n\t"
276 "repe; scasl\n\t"
277 "je 1f\n\t"
278 "xorl -4(%%edi),%%eax\n\t"
279 "subl $4,%%edi\n\t"
280 "bsfl %%eax,%%edx\n"
281 "1:\tsubl %%ebx,%%edi\n\t"
282 "shll $3,%%edi\n\t"
283 "addl %%edi,%%edx"
284 :"=d" (res), "=&c" (d0), "=&D" (d1), "=&a" (d2)
285 :"1" ((size + 31) >> 5), "2" (addr), "b" (addr));
286 return res;
287}
288
289/**
290 * find_next_zero_bit - find the first zero bit in a memory region
291 * @addr: The address to base the search on
292 * @offset: The bitnumber to start searching at
293 * @size: The maximum size to search
294 */
295static __inline__ int find_next_zero_bit (void * addr, int size, int offset)
296{
297 unsigned long * p = ((unsigned long *) addr) + (offset >> 5);
298 int set = 0, bit = offset & 31, res;
wdenk57b2d802003-06-27 21:31:46 +0000299
wdenk591dda52002-11-18 00:14:45 +0000300 if (bit) {
301 /*
302 * Look for zero in first byte
303 */
304 __asm__("bsfl %1,%0\n\t"
305 "jne 1f\n\t"
306 "movl $32, %0\n"
307 "1:"
308 : "=r" (set)
309 : "r" (~(*p >> bit)));
310 if (set < (32 - bit))
311 return set + offset;
312 set = 32 - bit;
313 p++;
314 }
315 /*
316 * No zero yet, search remaining full bytes for a zero
317 */
318 res = find_first_zero_bit (p, size - 32 * (p - (unsigned long *) addr));
319 return (offset + set + res);
320}
321
322/**
323 * ffz - find first zero in word.
324 * @word: The word to search
325 *
326 * Undefined if no zero exists, so code should check against ~0UL first.
327 */
328static __inline__ unsigned long ffz(unsigned long word)
329{
330 __asm__("bsfl %1,%0"
331 :"=r" (word)
332 :"r" (~word));
333 return word;
334}
335
336#ifdef __KERNEL__
337
338/**
Fabio Estevam15eaa972015-11-05 12:43:25 -0200339 * __ffs - find first set bit in word
340 * @word: The word to search
341 *
342 * Undefined if no bit exists, so code should check against 0 first.
343 */
344static inline unsigned long __ffs(unsigned long word)
345{
346 __asm__("rep; bsf %1,%0"
347 : "=r" (word)
348 : "rm" (word));
349 return word;
350}
351
352/**
wdenk591dda52002-11-18 00:14:45 +0000353 * ffs - find first bit set
354 * @x: the word to search
355 *
356 * This is defined the same way as
357 * the libc and compiler builtin ffs routines, therefore
358 * differs in spirit from the above ffz (man ffs).
359 */
360static __inline__ int ffs(int x)
361{
362 int r;
363
364 __asm__("bsfl %1,%0\n\t"
365 "jnz 1f\n\t"
366 "movl $-1,%0\n"
Fabio Estevam15eaa972015-11-05 12:43:25 -0200367 "1:" : "=r" (r) : "rm" (x));
368
wdenk591dda52002-11-18 00:14:45 +0000369 return r+1;
370}
Simon Kagstrom95a3c732009-09-17 15:15:52 +0200371#define PLATFORM_FFS
wdenk591dda52002-11-18 00:14:45 +0000372
Graeme Russ5c9bb122012-11-27 15:38:38 +0000373static inline int __ilog2(unsigned int x)
374{
375 return generic_fls(x) - 1;
376}
377
wdenk591dda52002-11-18 00:14:45 +0000378/**
379 * hweightN - returns the hamming weight of a N-bit word
380 * @x: the word to weigh
381 *
382 * The Hamming Weight of a number is the total number of bits set in it.
383 */
384
385#define hweight32(x) generic_hweight32(x)
386#define hweight16(x) generic_hweight16(x)
387#define hweight8(x) generic_hweight8(x)
388
389#endif /* __KERNEL__ */
390
391#ifdef __KERNEL__
392
393#define ext2_set_bit __test_and_set_bit
394#define ext2_clear_bit __test_and_clear_bit
395#define ext2_test_bit test_bit
396#define ext2_find_first_zero_bit find_first_zero_bit
397#define ext2_find_next_zero_bit find_next_zero_bit
398
399/* Bitmap functions for the minix filesystem. */
400#define minix_test_and_set_bit(nr,addr) __test_and_set_bit(nr,addr)
401#define minix_set_bit(nr,addr) __set_bit(nr,addr)
402#define minix_test_and_clear_bit(nr,addr) __test_and_clear_bit(nr,addr)
403#define minix_test_bit(nr,addr) test_bit(nr,addr)
404#define minix_find_first_zero_bit(addr,size) find_first_zero_bit(addr,size)
405
406#endif /* __KERNEL__ */
407
408#endif /* _I386_BITOPS_H */