blob: fb6c779abbfe18b1c2f16375c1965bf228fb75ea [file] [log] [blame]
Tom Rini10e47792018-05-06 17:58:06 -04001// SPDX-License-Identifier: GPL-2.0+
Kyungmin Parkf6d5e252008-11-19 16:20:36 +01002/*
3 * Core registration and callback routines for MTD
4 * drivers and users.
5 *
Heiko Schocherf5895d12014-06-24 10:10:04 +02006 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
7 * Copyright © 2006 Red Hat UK Limited
8 *
Kyungmin Parkf6d5e252008-11-19 16:20:36 +01009 */
10
Heiko Schocherf5895d12014-06-24 10:10:04 +020011#ifndef __UBOOT__
12#include <linux/module.h>
13#include <linux/kernel.h>
14#include <linux/ptrace.h>
15#include <linux/seq_file.h>
16#include <linux/string.h>
17#include <linux/timer.h>
18#include <linux/major.h>
19#include <linux/fs.h>
20#include <linux/err.h>
21#include <linux/ioctl.h>
22#include <linux/init.h>
23#include <linux/proc_fs.h>
24#include <linux/idr.h>
25#include <linux/backing-dev.h>
26#include <linux/gfp.h>
27#include <linux/slab.h>
28#else
Heiko Schocherf5895d12014-06-24 10:10:04 +020029#include <linux/err.h>
Kyungmin Parkf6d5e252008-11-19 16:20:36 +010030#include <ubi_uboot.h>
Heiko Schocherf5895d12014-06-24 10:10:04 +020031#endif
32
Fabio Estevam0297d1e2015-11-05 12:43:39 -020033#include <linux/log2.h>
Heiko Schocherf5895d12014-06-24 10:10:04 +020034#include <linux/mtd/mtd.h>
35#include <linux/mtd/partitions.h>
36
37#include "mtdcore.h"
38
39#ifndef __UBOOT__
40/*
41 * backing device capabilities for non-mappable devices (such as NAND flash)
42 * - permits private mappings, copies are taken of the data
43 */
44static struct backing_dev_info mtd_bdi_unmappable = {
45 .capabilities = BDI_CAP_MAP_COPY,
46};
47
48/*
49 * backing device capabilities for R/O mappable devices (such as ROM)
50 * - permits private mappings, copies are taken of the data
51 * - permits non-writable shared mappings
52 */
53static struct backing_dev_info mtd_bdi_ro_mappable = {
54 .capabilities = (BDI_CAP_MAP_COPY | BDI_CAP_MAP_DIRECT |
55 BDI_CAP_EXEC_MAP | BDI_CAP_READ_MAP),
56};
57
58/*
59 * backing device capabilities for writable mappable devices (such as RAM)
60 * - permits private mappings, copies are taken of the data
61 * - permits non-writable shared mappings
62 */
63static struct backing_dev_info mtd_bdi_rw_mappable = {
64 .capabilities = (BDI_CAP_MAP_COPY | BDI_CAP_MAP_DIRECT |
65 BDI_CAP_EXEC_MAP | BDI_CAP_READ_MAP |
66 BDI_CAP_WRITE_MAP),
67};
68
69static int mtd_cls_suspend(struct device *dev, pm_message_t state);
70static int mtd_cls_resume(struct device *dev);
Kyungmin Parkf6d5e252008-11-19 16:20:36 +010071
Heiko Schocherf5895d12014-06-24 10:10:04 +020072static struct class mtd_class = {
73 .name = "mtd",
74 .owner = THIS_MODULE,
75 .suspend = mtd_cls_suspend,
76 .resume = mtd_cls_resume,
77};
78#else
Kyungmin Parkf6d5e252008-11-19 16:20:36 +010079struct mtd_info *mtd_table[MAX_MTD_DEVICES];
80
Heiko Schocherf5895d12014-06-24 10:10:04 +020081#define MAX_IDR_ID 64
82
83struct idr_layer {
84 int used;
85 void *ptr;
86};
87
88struct idr {
89 struct idr_layer id[MAX_IDR_ID];
90};
91
92#define DEFINE_IDR(name) struct idr name;
93
94void idr_remove(struct idr *idp, int id)
95{
96 if (idp->id[id].used)
97 idp->id[id].used = 0;
98
99 return;
100}
101void *idr_find(struct idr *idp, int id)
102{
103 if (idp->id[id].used)
104 return idp->id[id].ptr;
105
106 return NULL;
107}
108
109void *idr_get_next(struct idr *idp, int *next)
110{
111 void *ret;
112 int id = *next;
113
114 ret = idr_find(idp, id);
115 if (ret) {
116 id ++;
117 if (!idp->id[id].used)
118 id = 0;
119 *next = id;
120 } else {
121 *next = 0;
122 }
123
124 return ret;
125}
126
127int idr_alloc(struct idr *idp, void *ptr, int start, int end, gfp_t gfp_mask)
128{
129 struct idr_layer *idl;
130 int i = 0;
131
132 while (i < MAX_IDR_ID) {
133 idl = &idp->id[i];
134 if (idl->used == 0) {
135 idl->used = 1;
136 idl->ptr = ptr;
137 return i;
138 }
139 i++;
140 }
141 return -ENOSPC;
142}
143#endif
144
145static DEFINE_IDR(mtd_idr);
146
147/* These are exported solely for the purpose of mtd_blkdevs.c. You
148 should not use them for _anything_ else */
149DEFINE_MUTEX(mtd_table_mutex);
150EXPORT_SYMBOL_GPL(mtd_table_mutex);
151
152struct mtd_info *__mtd_next_device(int i)
153{
154 return idr_get_next(&mtd_idr, &i);
155}
156EXPORT_SYMBOL_GPL(__mtd_next_device);
157
158#ifndef __UBOOT__
159static LIST_HEAD(mtd_notifiers);
160
161
162#define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
163
164/* REVISIT once MTD uses the driver model better, whoever allocates
165 * the mtd_info will probably want to use the release() hook...
166 */
167static void mtd_release(struct device *dev)
168{
169 struct mtd_info __maybe_unused *mtd = dev_get_drvdata(dev);
170 dev_t index = MTD_DEVT(mtd->index);
171
172 /* remove /dev/mtdXro node if needed */
173 if (index)
174 device_destroy(&mtd_class, index + 1);
175}
176
177static int mtd_cls_suspend(struct device *dev, pm_message_t state)
178{
179 struct mtd_info *mtd = dev_get_drvdata(dev);
180
181 return mtd ? mtd_suspend(mtd) : 0;
182}
183
184static int mtd_cls_resume(struct device *dev)
185{
186 struct mtd_info *mtd = dev_get_drvdata(dev);
187
188 if (mtd)
189 mtd_resume(mtd);
190 return 0;
191}
192
193static ssize_t mtd_type_show(struct device *dev,
194 struct device_attribute *attr, char *buf)
195{
196 struct mtd_info *mtd = dev_get_drvdata(dev);
197 char *type;
198
199 switch (mtd->type) {
200 case MTD_ABSENT:
201 type = "absent";
202 break;
203 case MTD_RAM:
204 type = "ram";
205 break;
206 case MTD_ROM:
207 type = "rom";
208 break;
209 case MTD_NORFLASH:
210 type = "nor";
211 break;
212 case MTD_NANDFLASH:
213 type = "nand";
214 break;
215 case MTD_DATAFLASH:
216 type = "dataflash";
217 break;
218 case MTD_UBIVOLUME:
219 type = "ubi";
220 break;
221 case MTD_MLCNANDFLASH:
222 type = "mlc-nand";
223 break;
224 default:
225 type = "unknown";
226 }
227
228 return snprintf(buf, PAGE_SIZE, "%s\n", type);
229}
230static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL);
231
232static ssize_t mtd_flags_show(struct device *dev,
233 struct device_attribute *attr, char *buf)
234{
235 struct mtd_info *mtd = dev_get_drvdata(dev);
236
237 return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags);
238
239}
240static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL);
241
242static ssize_t mtd_size_show(struct device *dev,
243 struct device_attribute *attr, char *buf)
244{
245 struct mtd_info *mtd = dev_get_drvdata(dev);
246
247 return snprintf(buf, PAGE_SIZE, "%llu\n",
248 (unsigned long long)mtd->size);
249
250}
251static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL);
252
253static ssize_t mtd_erasesize_show(struct device *dev,
254 struct device_attribute *attr, char *buf)
255{
256 struct mtd_info *mtd = dev_get_drvdata(dev);
257
258 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize);
259
260}
261static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL);
262
263static ssize_t mtd_writesize_show(struct device *dev,
264 struct device_attribute *attr, char *buf)
265{
266 struct mtd_info *mtd = dev_get_drvdata(dev);
267
268 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize);
269
270}
271static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL);
272
273static ssize_t mtd_subpagesize_show(struct device *dev,
274 struct device_attribute *attr, char *buf)
275{
276 struct mtd_info *mtd = dev_get_drvdata(dev);
277 unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
278
279 return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize);
280
281}
282static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL);
283
284static ssize_t mtd_oobsize_show(struct device *dev,
285 struct device_attribute *attr, char *buf)
286{
287 struct mtd_info *mtd = dev_get_drvdata(dev);
288
289 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize);
290
291}
292static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL);
293
294static ssize_t mtd_numeraseregions_show(struct device *dev,
295 struct device_attribute *attr, char *buf)
296{
297 struct mtd_info *mtd = dev_get_drvdata(dev);
298
299 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions);
300
301}
302static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show,
303 NULL);
304
305static ssize_t mtd_name_show(struct device *dev,
306 struct device_attribute *attr, char *buf)
307{
308 struct mtd_info *mtd = dev_get_drvdata(dev);
309
310 return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name);
311
312}
313static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL);
314
315static ssize_t mtd_ecc_strength_show(struct device *dev,
316 struct device_attribute *attr, char *buf)
317{
318 struct mtd_info *mtd = dev_get_drvdata(dev);
319
320 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength);
321}
322static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL);
323
324static ssize_t mtd_bitflip_threshold_show(struct device *dev,
325 struct device_attribute *attr,
326 char *buf)
327{
328 struct mtd_info *mtd = dev_get_drvdata(dev);
329
330 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold);
331}
332
333static ssize_t mtd_bitflip_threshold_store(struct device *dev,
334 struct device_attribute *attr,
335 const char *buf, size_t count)
336{
337 struct mtd_info *mtd = dev_get_drvdata(dev);
338 unsigned int bitflip_threshold;
339 int retval;
340
341 retval = kstrtouint(buf, 0, &bitflip_threshold);
342 if (retval)
343 return retval;
344
345 mtd->bitflip_threshold = bitflip_threshold;
346 return count;
347}
348static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR,
349 mtd_bitflip_threshold_show,
350 mtd_bitflip_threshold_store);
351
352static ssize_t mtd_ecc_step_size_show(struct device *dev,
353 struct device_attribute *attr, char *buf)
354{
355 struct mtd_info *mtd = dev_get_drvdata(dev);
356
357 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_step_size);
358
359}
360static DEVICE_ATTR(ecc_step_size, S_IRUGO, mtd_ecc_step_size_show, NULL);
361
362static struct attribute *mtd_attrs[] = {
363 &dev_attr_type.attr,
364 &dev_attr_flags.attr,
365 &dev_attr_size.attr,
366 &dev_attr_erasesize.attr,
367 &dev_attr_writesize.attr,
368 &dev_attr_subpagesize.attr,
369 &dev_attr_oobsize.attr,
370 &dev_attr_numeraseregions.attr,
371 &dev_attr_name.attr,
372 &dev_attr_ecc_strength.attr,
373 &dev_attr_ecc_step_size.attr,
374 &dev_attr_bitflip_threshold.attr,
375 NULL,
376};
377ATTRIBUTE_GROUPS(mtd);
378
379static struct device_type mtd_devtype = {
380 .name = "mtd",
381 .groups = mtd_groups,
382 .release = mtd_release,
383};
384#endif
385
386/**
387 * add_mtd_device - register an MTD device
388 * @mtd: pointer to new MTD device info structure
389 *
390 * Add a device to the list of MTD devices present in the system, and
391 * notify each currently active MTD 'user' of its arrival. Returns
392 * zero on success or 1 on failure, which currently will only happen
393 * if there is insufficient memory or a sysfs error.
394 */
395
Kyungmin Parkf6d5e252008-11-19 16:20:36 +0100396int add_mtd_device(struct mtd_info *mtd)
397{
Heiko Schocherf5895d12014-06-24 10:10:04 +0200398#ifndef __UBOOT__
399 struct mtd_notifier *not;
400#endif
401 int i, error;
402
403#ifndef __UBOOT__
404 if (!mtd->backing_dev_info) {
405 switch (mtd->type) {
406 case MTD_RAM:
407 mtd->backing_dev_info = &mtd_bdi_rw_mappable;
408 break;
409 case MTD_ROM:
410 mtd->backing_dev_info = &mtd_bdi_ro_mappable;
411 break;
412 default:
413 mtd->backing_dev_info = &mtd_bdi_unmappable;
414 break;
415 }
416 }
417#endif
Kyungmin Parkf6d5e252008-11-19 16:20:36 +0100418
419 BUG_ON(mtd->writesize == 0);
Heiko Schocherf5895d12014-06-24 10:10:04 +0200420 mutex_lock(&mtd_table_mutex);
Kyungmin Parkf6d5e252008-11-19 16:20:36 +0100421
Heiko Schocherf5895d12014-06-24 10:10:04 +0200422 i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
423 if (i < 0)
424 goto fail_locked;
Kyungmin Parkf6d5e252008-11-19 16:20:36 +0100425
Heiko Schocherf5895d12014-06-24 10:10:04 +0200426 mtd->index = i;
427 mtd->usecount = 0;
Sergey Lapin3a38a552013-01-14 03:46:50 +0000428
Miquel Raynal6382e0c2018-09-29 12:58:27 +0200429 INIT_LIST_HEAD(&mtd->partitions);
430
Heiko Schocherf5895d12014-06-24 10:10:04 +0200431 /* default value if not set by driver */
432 if (mtd->bitflip_threshold == 0)
433 mtd->bitflip_threshold = mtd->ecc_strength;
Sergey Lapin3a38a552013-01-14 03:46:50 +0000434
Heiko Schocherf5895d12014-06-24 10:10:04 +0200435 if (is_power_of_2(mtd->erasesize))
436 mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
437 else
438 mtd->erasesize_shift = 0;
Kyungmin Parkf6d5e252008-11-19 16:20:36 +0100439
Heiko Schocherf5895d12014-06-24 10:10:04 +0200440 if (is_power_of_2(mtd->writesize))
441 mtd->writesize_shift = ffs(mtd->writesize) - 1;
442 else
443 mtd->writesize_shift = 0;
444
445 mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
446 mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
447
448 /* Some chips always power up locked. Unlock them now */
449 if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
450 error = mtd_unlock(mtd, 0, mtd->size);
451 if (error && error != -EOPNOTSUPP)
452 printk(KERN_WARNING
453 "%s: unlock failed, writes may not work\n",
454 mtd->name);
455 }
456
457#ifndef __UBOOT__
458 /* Caller should have set dev.parent to match the
459 * physical device.
460 */
461 mtd->dev.type = &mtd_devtype;
462 mtd->dev.class = &mtd_class;
463 mtd->dev.devt = MTD_DEVT(i);
464 dev_set_name(&mtd->dev, "mtd%d", i);
465 dev_set_drvdata(&mtd->dev, mtd);
466 if (device_register(&mtd->dev) != 0)
467 goto fail_added;
Kyungmin Parkf6d5e252008-11-19 16:20:36 +0100468
Heiko Schocherf5895d12014-06-24 10:10:04 +0200469 if (MTD_DEVT(i))
470 device_create(&mtd_class, mtd->dev.parent,
471 MTD_DEVT(i) + 1,
472 NULL, "mtd%dro", i);
473
474 pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
475 /* No need to get a refcount on the module containing
476 the notifier, since we hold the mtd_table_mutex */
477 list_for_each_entry(not, &mtd_notifiers, list)
478 not->add(mtd);
Heiko Schocherb24c4272014-07-15 16:08:42 +0200479#else
480 pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
Heiko Schocherf5895d12014-06-24 10:10:04 +0200481#endif
482
483 mutex_unlock(&mtd_table_mutex);
484 /* We _know_ we aren't being removed, because
485 our caller is still holding us here. So none
486 of this try_ nonsense, and no bitching about it
487 either. :) */
488 __module_get(THIS_MODULE);
489 return 0;
490
491#ifndef __UBOOT__
492fail_added:
493 idr_remove(&mtd_idr, i);
494#endif
495fail_locked:
496 mutex_unlock(&mtd_table_mutex);
Kyungmin Parkf6d5e252008-11-19 16:20:36 +0100497 return 1;
498}
499
500/**
Heiko Schocherf5895d12014-06-24 10:10:04 +0200501 * del_mtd_device - unregister an MTD device
502 * @mtd: pointer to MTD device info structure
Kyungmin Parkf6d5e252008-11-19 16:20:36 +0100503 *
Heiko Schocherf5895d12014-06-24 10:10:04 +0200504 * Remove a device from the list of MTD devices present in the system,
505 * and notify each currently active MTD 'user' of its departure.
506 * Returns zero on success or 1 on failure, which currently will happen
507 * if the requested device does not appear to be present in the list.
Kyungmin Parkf6d5e252008-11-19 16:20:36 +0100508 */
Heiko Schocherf5895d12014-06-24 10:10:04 +0200509
Kyungmin Parkf6d5e252008-11-19 16:20:36 +0100510int del_mtd_device(struct mtd_info *mtd)
511{
512 int ret;
Heiko Schocherf5895d12014-06-24 10:10:04 +0200513#ifndef __UBOOT__
514 struct mtd_notifier *not;
515#endif
Kyungmin Parkf6d5e252008-11-19 16:20:36 +0100516
Heiko Schocherf5895d12014-06-24 10:10:04 +0200517 mutex_lock(&mtd_table_mutex);
518
519 if (idr_find(&mtd_idr, mtd->index) != mtd) {
Kyungmin Parkf6d5e252008-11-19 16:20:36 +0100520 ret = -ENODEV;
Heiko Schocherf5895d12014-06-24 10:10:04 +0200521 goto out_error;
522 }
523
524#ifndef __UBOOT__
525 /* No need to get a refcount on the module containing
526 the notifier, since we hold the mtd_table_mutex */
527 list_for_each_entry(not, &mtd_notifiers, list)
528 not->remove(mtd);
529#endif
530
531 if (mtd->usecount) {
532 printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n",
533 mtd->index, mtd->name, mtd->usecount);
Kyungmin Parkf6d5e252008-11-19 16:20:36 +0100534 ret = -EBUSY;
535 } else {
Heiko Schocherf5895d12014-06-24 10:10:04 +0200536#ifndef __UBOOT__
537 device_unregister(&mtd->dev);
538#endif
Kyungmin Parkf6d5e252008-11-19 16:20:36 +0100539
Heiko Schocherf5895d12014-06-24 10:10:04 +0200540 idr_remove(&mtd_idr, mtd->index);
541
542 module_put(THIS_MODULE);
Kyungmin Parkf6d5e252008-11-19 16:20:36 +0100543 ret = 0;
544 }
545
Heiko Schocherf5895d12014-06-24 10:10:04 +0200546out_error:
547 mutex_unlock(&mtd_table_mutex);
Kyungmin Parkf6d5e252008-11-19 16:20:36 +0100548 return ret;
549}
Heiko Schocherf5895d12014-06-24 10:10:04 +0200550
551#ifndef __UBOOT__
552/**
553 * mtd_device_parse_register - parse partitions and register an MTD device.
554 *
555 * @mtd: the MTD device to register
556 * @types: the list of MTD partition probes to try, see
557 * 'parse_mtd_partitions()' for more information
558 * @parser_data: MTD partition parser-specific data
559 * @parts: fallback partition information to register, if parsing fails;
560 * only valid if %nr_parts > %0
561 * @nr_parts: the number of partitions in parts, if zero then the full
562 * MTD device is registered if no partition info is found
563 *
564 * This function aggregates MTD partitions parsing (done by
565 * 'parse_mtd_partitions()') and MTD device and partitions registering. It
566 * basically follows the most common pattern found in many MTD drivers:
567 *
568 * * It first tries to probe partitions on MTD device @mtd using parsers
569 * specified in @types (if @types is %NULL, then the default list of parsers
570 * is used, see 'parse_mtd_partitions()' for more information). If none are
571 * found this functions tries to fallback to information specified in
572 * @parts/@nr_parts.
573 * * If any partitioning info was found, this function registers the found
574 * partitions.
575 * * If no partitions were found this function just registers the MTD device
576 * @mtd and exits.
577 *
578 * Returns zero in case of success and a negative error code in case of failure.
579 */
580int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
581 struct mtd_part_parser_data *parser_data,
582 const struct mtd_partition *parts,
583 int nr_parts)
584{
585 int err;
586 struct mtd_partition *real_parts;
587
588 err = parse_mtd_partitions(mtd, types, &real_parts, parser_data);
589 if (err <= 0 && nr_parts && parts) {
590 real_parts = kmemdup(parts, sizeof(*parts) * nr_parts,
591 GFP_KERNEL);
592 if (!real_parts)
593 err = -ENOMEM;
594 else
595 err = nr_parts;
596 }
597
598 if (err > 0) {
599 err = add_mtd_partitions(mtd, real_parts, err);
600 kfree(real_parts);
601 } else if (err == 0) {
602 err = add_mtd_device(mtd);
603 if (err == 1)
604 err = -ENODEV;
605 }
606
607 return err;
608}
609EXPORT_SYMBOL_GPL(mtd_device_parse_register);
610
611/**
612 * mtd_device_unregister - unregister an existing MTD device.
613 *
614 * @master: the MTD device to unregister. This will unregister both the master
615 * and any partitions if registered.
616 */
617int mtd_device_unregister(struct mtd_info *master)
618{
619 int err;
620
621 err = del_mtd_partitions(master);
622 if (err)
623 return err;
624
625 if (!device_is_registered(&master->dev))
626 return 0;
627
628 return del_mtd_device(master);
629}
630EXPORT_SYMBOL_GPL(mtd_device_unregister);
Kyungmin Parkf6d5e252008-11-19 16:20:36 +0100631
632/**
Heiko Schocherf5895d12014-06-24 10:10:04 +0200633 * register_mtd_user - register a 'user' of MTD devices.
634 * @new: pointer to notifier info structure
635 *
636 * Registers a pair of callbacks function to be called upon addition
637 * or removal of MTD devices. Causes the 'add' callback to be immediately
638 * invoked for each MTD device currently present in the system.
639 */
640void register_mtd_user (struct mtd_notifier *new)
641{
642 struct mtd_info *mtd;
643
644 mutex_lock(&mtd_table_mutex);
645
646 list_add(&new->list, &mtd_notifiers);
647
648 __module_get(THIS_MODULE);
649
650 mtd_for_each_device(mtd)
651 new->add(mtd);
652
653 mutex_unlock(&mtd_table_mutex);
654}
655EXPORT_SYMBOL_GPL(register_mtd_user);
656
657/**
658 * unregister_mtd_user - unregister a 'user' of MTD devices.
659 * @old: pointer to notifier info structure
660 *
661 * Removes a callback function pair from the list of 'users' to be
662 * notified upon addition or removal of MTD devices. Causes the
663 * 'remove' callback to be immediately invoked for each MTD device
664 * currently present in the system.
665 */
666int unregister_mtd_user (struct mtd_notifier *old)
667{
668 struct mtd_info *mtd;
669
670 mutex_lock(&mtd_table_mutex);
671
672 module_put(THIS_MODULE);
673
674 mtd_for_each_device(mtd)
675 old->remove(mtd);
676
677 list_del(&old->list);
678 mutex_unlock(&mtd_table_mutex);
679 return 0;
680}
681EXPORT_SYMBOL_GPL(unregister_mtd_user);
682#endif
683
684/**
Kyungmin Parkf6d5e252008-11-19 16:20:36 +0100685 * get_mtd_device - obtain a validated handle for an MTD device
686 * @mtd: last known address of the required MTD device
687 * @num: internal device number of the required MTD device
688 *
689 * Given a number and NULL address, return the num'th entry in the device
Heiko Schocherf5895d12014-06-24 10:10:04 +0200690 * table, if any. Given an address and num == -1, search the device table
691 * for a device with that address and return if it's still present. Given
692 * both, return the num'th driver only if its address matches. Return
693 * error code if not.
Kyungmin Parkf6d5e252008-11-19 16:20:36 +0100694 */
695struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
696{
Heiko Schocherf5895d12014-06-24 10:10:04 +0200697 struct mtd_info *ret = NULL, *other;
698 int err = -ENODEV;
699
700 mutex_lock(&mtd_table_mutex);
Kyungmin Parkf6d5e252008-11-19 16:20:36 +0100701
702 if (num == -1) {
Heiko Schocherf5895d12014-06-24 10:10:04 +0200703 mtd_for_each_device(other) {
704 if (other == mtd) {
705 ret = mtd;
706 break;
707 }
708 }
709 } else if (num >= 0) {
710 ret = idr_find(&mtd_idr, num);
Kyungmin Parkf6d5e252008-11-19 16:20:36 +0100711 if (mtd && mtd != ret)
712 ret = NULL;
713 }
714
Heiko Schocherf5895d12014-06-24 10:10:04 +0200715 if (!ret) {
716 ret = ERR_PTR(err);
717 goto out;
718 }
Kyungmin Parkf6d5e252008-11-19 16:20:36 +0100719
Heiko Schocherf5895d12014-06-24 10:10:04 +0200720 err = __get_mtd_device(ret);
721 if (err)
722 ret = ERR_PTR(err);
723out:
724 mutex_unlock(&mtd_table_mutex);
Kyungmin Parkf6d5e252008-11-19 16:20:36 +0100725 return ret;
Heiko Schocherf5895d12014-06-24 10:10:04 +0200726}
727EXPORT_SYMBOL_GPL(get_mtd_device);
Kyungmin Parkf6d5e252008-11-19 16:20:36 +0100728
Heiko Schocherf5895d12014-06-24 10:10:04 +0200729
730int __get_mtd_device(struct mtd_info *mtd)
731{
732 int err;
733
734 if (!try_module_get(mtd->owner))
735 return -ENODEV;
736
737 if (mtd->_get_device) {
738 err = mtd->_get_device(mtd);
739
740 if (err) {
741 module_put(mtd->owner);
742 return err;
743 }
744 }
745 mtd->usecount++;
746 return 0;
Kyungmin Parkf6d5e252008-11-19 16:20:36 +0100747}
Heiko Schocherf5895d12014-06-24 10:10:04 +0200748EXPORT_SYMBOL_GPL(__get_mtd_device);
Kyungmin Parkf6d5e252008-11-19 16:20:36 +0100749
750/**
Heiko Schocherf5895d12014-06-24 10:10:04 +0200751 * get_mtd_device_nm - obtain a validated handle for an MTD device by
752 * device name
753 * @name: MTD device name to open
Kyungmin Parkf6d5e252008-11-19 16:20:36 +0100754 *
Heiko Schocherf5895d12014-06-24 10:10:04 +0200755 * This function returns MTD device description structure in case of
756 * success and an error code in case of failure.
Kyungmin Parkf6d5e252008-11-19 16:20:36 +0100757 */
758struct mtd_info *get_mtd_device_nm(const char *name)
759{
Heiko Schocherf5895d12014-06-24 10:10:04 +0200760 int err = -ENODEV;
761 struct mtd_info *mtd = NULL, *other;
Kyungmin Parkf6d5e252008-11-19 16:20:36 +0100762
Heiko Schocherf5895d12014-06-24 10:10:04 +0200763 mutex_lock(&mtd_table_mutex);
764
765 mtd_for_each_device(other) {
766 if (!strcmp(name, other->name)) {
767 mtd = other;
Kyungmin Parkf6d5e252008-11-19 16:20:36 +0100768 break;
769 }
770 }
771
772 if (!mtd)
773 goto out_unlock;
774
Heiko Schocherf5895d12014-06-24 10:10:04 +0200775 err = __get_mtd_device(mtd);
776 if (err)
777 goto out_unlock;
778
779 mutex_unlock(&mtd_table_mutex);
Kyungmin Parkf6d5e252008-11-19 16:20:36 +0100780 return mtd;
781
782out_unlock:
Heiko Schocherf5895d12014-06-24 10:10:04 +0200783 mutex_unlock(&mtd_table_mutex);
Kyungmin Parkf6d5e252008-11-19 16:20:36 +0100784 return ERR_PTR(err);
785}
Heiko Schocherf5895d12014-06-24 10:10:04 +0200786EXPORT_SYMBOL_GPL(get_mtd_device_nm);
Ben Gardiner50bae732010-08-31 17:48:01 -0400787
788#if defined(CONFIG_CMD_MTDPARTS_SPREAD)
789/**
790 * mtd_get_len_incl_bad
791 *
792 * Check if length including bad blocks fits into device.
793 *
794 * @param mtd an MTD device
795 * @param offset offset in flash
796 * @param length image length
797 * @return image length including bad blocks in *len_incl_bad and whether or not
798 * the length returned was truncated in *truncated
799 */
800void mtd_get_len_incl_bad(struct mtd_info *mtd, uint64_t offset,
801 const uint64_t length, uint64_t *len_incl_bad,
802 int *truncated)
803{
804 *truncated = 0;
805 *len_incl_bad = 0;
806
maxin.john@enea.comb5ee6e22014-09-08 19:04:16 +0200807 if (!mtd->_block_isbad) {
Ben Gardiner50bae732010-08-31 17:48:01 -0400808 *len_incl_bad = length;
809 return;
810 }
811
812 uint64_t len_excl_bad = 0;
813 uint64_t block_len;
814
815 while (len_excl_bad < length) {
Scott Wood10390ce2010-09-09 15:40:03 -0500816 if (offset >= mtd->size) {
817 *truncated = 1;
818 return;
819 }
820
Ben Gardiner50bae732010-08-31 17:48:01 -0400821 block_len = mtd->erasesize - (offset & (mtd->erasesize - 1));
822
maxin.john@enea.comb5ee6e22014-09-08 19:04:16 +0200823 if (!mtd->_block_isbad(mtd, offset & ~(mtd->erasesize - 1)))
Ben Gardiner50bae732010-08-31 17:48:01 -0400824 len_excl_bad += block_len;
825
826 *len_incl_bad += block_len;
827 offset += block_len;
Ben Gardiner50bae732010-08-31 17:48:01 -0400828 }
829}
830#endif /* defined(CONFIG_CMD_MTDPARTS_SPREAD) */
Sergey Lapin3a38a552013-01-14 03:46:50 +0000831
Heiko Schocherf5895d12014-06-24 10:10:04 +0200832void put_mtd_device(struct mtd_info *mtd)
833{
834 mutex_lock(&mtd_table_mutex);
835 __put_mtd_device(mtd);
836 mutex_unlock(&mtd_table_mutex);
837
838}
839EXPORT_SYMBOL_GPL(put_mtd_device);
840
841void __put_mtd_device(struct mtd_info *mtd)
842{
843 --mtd->usecount;
844 BUG_ON(mtd->usecount < 0);
845
846 if (mtd->_put_device)
847 mtd->_put_device(mtd);
848
849 module_put(mtd->owner);
850}
851EXPORT_SYMBOL_GPL(__put_mtd_device);
852
853/*
Sergey Lapin3a38a552013-01-14 03:46:50 +0000854 * Erase is an asynchronous operation. Device drivers are supposed
855 * to call instr->callback() whenever the operation completes, even
856 * if it completes with a failure.
857 * Callers are supposed to pass a callback function and wait for it
858 * to be called before writing to the block.
859 */
860int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
861{
862 if (instr->addr > mtd->size || instr->len > mtd->size - instr->addr)
863 return -EINVAL;
864 if (!(mtd->flags & MTD_WRITEABLE))
865 return -EROFS;
866 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
867 if (!instr->len) {
868 instr->state = MTD_ERASE_DONE;
869 mtd_erase_callback(instr);
870 return 0;
871 }
872 return mtd->_erase(mtd, instr);
873}
Heiko Schocherf5895d12014-06-24 10:10:04 +0200874EXPORT_SYMBOL_GPL(mtd_erase);
875
876#ifndef __UBOOT__
877/*
878 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
879 */
880int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
881 void **virt, resource_size_t *phys)
882{
883 *retlen = 0;
884 *virt = NULL;
885 if (phys)
886 *phys = 0;
887 if (!mtd->_point)
888 return -EOPNOTSUPP;
889 if (from < 0 || from > mtd->size || len > mtd->size - from)
890 return -EINVAL;
891 if (!len)
892 return 0;
893 return mtd->_point(mtd, from, len, retlen, virt, phys);
894}
895EXPORT_SYMBOL_GPL(mtd_point);
896
897/* We probably shouldn't allow XIP if the unpoint isn't a NULL */
898int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
899{
900 if (!mtd->_point)
901 return -EOPNOTSUPP;
902 if (from < 0 || from > mtd->size || len > mtd->size - from)
903 return -EINVAL;
904 if (!len)
905 return 0;
906 return mtd->_unpoint(mtd, from, len);
907}
908EXPORT_SYMBOL_GPL(mtd_unpoint);
909#endif
910
911/*
912 * Allow NOMMU mmap() to directly map the device (if not NULL)
913 * - return the address to which the offset maps
914 * - return -ENOSYS to indicate refusal to do the mapping
915 */
916unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
917 unsigned long offset, unsigned long flags)
918{
919 if (!mtd->_get_unmapped_area)
920 return -EOPNOTSUPP;
921 if (offset > mtd->size || len > mtd->size - offset)
922 return -EINVAL;
923 return mtd->_get_unmapped_area(mtd, len, offset, flags);
924}
925EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
Sergey Lapin3a38a552013-01-14 03:46:50 +0000926
927int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
928 u_char *buf)
929{
Paul Burton700a76c2013-09-04 15:16:56 +0100930 int ret_code;
Heiko Schocherf5895d12014-06-24 10:10:04 +0200931 *retlen = 0;
Sergey Lapin3a38a552013-01-14 03:46:50 +0000932 if (from < 0 || from > mtd->size || len > mtd->size - from)
933 return -EINVAL;
934 if (!len)
935 return 0;
Paul Burton700a76c2013-09-04 15:16:56 +0100936
937 /*
938 * In the absence of an error, drivers return a non-negative integer
939 * representing the maximum number of bitflips that were corrected on
940 * any one ecc region (if applicable; zero otherwise).
941 */
Boris Brezillon6c20df72018-08-16 17:29:59 +0200942 if (mtd->_read) {
943 ret_code = mtd->_read(mtd, from, len, retlen, buf);
944 } else if (mtd->_read_oob) {
945 struct mtd_oob_ops ops = {
946 .len = len,
947 .datbuf = buf,
948 };
949
950 ret_code = mtd->_read_oob(mtd, from, &ops);
951 *retlen = ops.retlen;
952 } else {
953 return -ENOTSUPP;
954 }
955
Paul Burton700a76c2013-09-04 15:16:56 +0100956 if (unlikely(ret_code < 0))
957 return ret_code;
958 if (mtd->ecc_strength == 0)
959 return 0; /* device lacks ecc */
960 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
Sergey Lapin3a38a552013-01-14 03:46:50 +0000961}
Heiko Schocherf5895d12014-06-24 10:10:04 +0200962EXPORT_SYMBOL_GPL(mtd_read);
Sergey Lapin3a38a552013-01-14 03:46:50 +0000963
964int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
965 const u_char *buf)
966{
967 *retlen = 0;
968 if (to < 0 || to > mtd->size || len > mtd->size - to)
969 return -EINVAL;
Boris Brezillon6c20df72018-08-16 17:29:59 +0200970 if ((!mtd->_write && !mtd->_write_oob) ||
971 !(mtd->flags & MTD_WRITEABLE))
Sergey Lapin3a38a552013-01-14 03:46:50 +0000972 return -EROFS;
973 if (!len)
974 return 0;
Boris Brezillon6c20df72018-08-16 17:29:59 +0200975
976 if (!mtd->_write) {
977 struct mtd_oob_ops ops = {
978 .len = len,
979 .datbuf = (u8 *)buf,
980 };
981 int ret;
982
983 ret = mtd->_write_oob(mtd, to, &ops);
984 *retlen = ops.retlen;
985 return ret;
986 }
987
Sergey Lapin3a38a552013-01-14 03:46:50 +0000988 return mtd->_write(mtd, to, len, retlen, buf);
989}
Heiko Schocherf5895d12014-06-24 10:10:04 +0200990EXPORT_SYMBOL_GPL(mtd_write);
Sergey Lapin3a38a552013-01-14 03:46:50 +0000991
992/*
993 * In blackbox flight recorder like scenarios we want to make successful writes
994 * in interrupt context. panic_write() is only intended to be called when its
995 * known the kernel is about to panic and we need the write to succeed. Since
996 * the kernel is not going to be running for much longer, this function can
997 * break locks and delay to ensure the write succeeds (but not sleep).
998 */
999int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1000 const u_char *buf)
1001{
1002 *retlen = 0;
1003 if (!mtd->_panic_write)
1004 return -EOPNOTSUPP;
1005 if (to < 0 || to > mtd->size || len > mtd->size - to)
1006 return -EINVAL;
1007 if (!(mtd->flags & MTD_WRITEABLE))
1008 return -EROFS;
1009 if (!len)
1010 return 0;
1011 return mtd->_panic_write(mtd, to, len, retlen, buf);
1012}
Heiko Schocherf5895d12014-06-24 10:10:04 +02001013EXPORT_SYMBOL_GPL(mtd_panic_write);
Sergey Lapin3a38a552013-01-14 03:46:50 +00001014
Boris Brezillonb74b94f2018-08-16 17:30:01 +02001015static int mtd_check_oob_ops(struct mtd_info *mtd, loff_t offs,
1016 struct mtd_oob_ops *ops)
1017{
1018 /*
1019 * Some users are setting ->datbuf or ->oobbuf to NULL, but are leaving
1020 * ->len or ->ooblen uninitialized. Force ->len and ->ooblen to 0 in
1021 * this case.
1022 */
1023 if (!ops->datbuf)
1024 ops->len = 0;
1025
1026 if (!ops->oobbuf)
1027 ops->ooblen = 0;
1028
1029 if (offs < 0 || offs + ops->len > mtd->size)
1030 return -EINVAL;
1031
1032 if (ops->ooblen) {
1033 u64 maxooblen;
1034
1035 if (ops->ooboffs >= mtd_oobavail(mtd, ops))
1036 return -EINVAL;
1037
1038 maxooblen = ((mtd_div_by_ws(mtd->size, mtd) -
1039 mtd_div_by_ws(offs, mtd)) *
1040 mtd_oobavail(mtd, ops)) - ops->ooboffs;
1041 if (ops->ooblen > maxooblen)
1042 return -EINVAL;
1043 }
1044
1045 return 0;
1046}
1047
Sergey Lapin3a38a552013-01-14 03:46:50 +00001048int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
1049{
Heiko Schocherf5895d12014-06-24 10:10:04 +02001050 int ret_code;
Sergey Lapin3a38a552013-01-14 03:46:50 +00001051 ops->retlen = ops->oobretlen = 0;
Boris Brezillonb74b94f2018-08-16 17:30:01 +02001052
1053 ret_code = mtd_check_oob_ops(mtd, from, ops);
1054 if (ret_code)
1055 return ret_code;
1056
Miquel Raynal19ea9252018-08-16 17:30:02 +02001057 /* Check the validity of a potential fallback on mtd->_read */
1058 if (!mtd->_read_oob && (!mtd->_read || ops->oobbuf))
1059 return -EOPNOTSUPP;
1060
1061 if (mtd->_read_oob)
1062 ret_code = mtd->_read_oob(mtd, from, ops);
1063 else
1064 ret_code = mtd->_read(mtd, from, ops->len, &ops->retlen,
1065 ops->datbuf);
1066
Heiko Schocherf5895d12014-06-24 10:10:04 +02001067 /*
1068 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
1069 * similar to mtd->_read(), returning a non-negative integer
1070 * representing max bitflips. In other cases, mtd->_read_oob() may
1071 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
1072 */
Heiko Schocherf5895d12014-06-24 10:10:04 +02001073 if (unlikely(ret_code < 0))
1074 return ret_code;
1075 if (mtd->ecc_strength == 0)
1076 return 0; /* device lacks ecc */
1077 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
Sergey Lapin3a38a552013-01-14 03:46:50 +00001078}
Heiko Schocherf5895d12014-06-24 10:10:04 +02001079EXPORT_SYMBOL_GPL(mtd_read_oob);
Sergey Lapin3a38a552013-01-14 03:46:50 +00001080
Ezequiel Garcia18e75412018-08-16 17:30:00 +02001081int mtd_write_oob(struct mtd_info *mtd, loff_t to,
1082 struct mtd_oob_ops *ops)
1083{
Boris Brezillonb74b94f2018-08-16 17:30:01 +02001084 int ret;
1085
Ezequiel Garcia18e75412018-08-16 17:30:00 +02001086 ops->retlen = ops->oobretlen = 0;
Miquel Raynal19ea9252018-08-16 17:30:02 +02001087
Ezequiel Garcia18e75412018-08-16 17:30:00 +02001088 if (!(mtd->flags & MTD_WRITEABLE))
1089 return -EROFS;
Boris Brezillonb74b94f2018-08-16 17:30:01 +02001090
1091 ret = mtd_check_oob_ops(mtd, to, ops);
1092 if (ret)
1093 return ret;
1094
Miquel Raynal19ea9252018-08-16 17:30:02 +02001095 /* Check the validity of a potential fallback on mtd->_write */
1096 if (!mtd->_write_oob && (!mtd->_write || ops->oobbuf))
1097 return -EOPNOTSUPP;
1098
1099 if (mtd->_write_oob)
1100 return mtd->_write_oob(mtd, to, ops);
1101 else
1102 return mtd->_write(mtd, to, ops->len, &ops->retlen,
1103 ops->datbuf);
Ezequiel Garcia18e75412018-08-16 17:30:00 +02001104}
1105EXPORT_SYMBOL_GPL(mtd_write_oob);
1106
Boris Brezillone1b1e3a2017-11-22 02:38:23 +09001107/**
1108 * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section
1109 * @mtd: MTD device structure
1110 * @section: ECC section. Depending on the layout you may have all the ECC
1111 * bytes stored in a single contiguous section, or one section
1112 * per ECC chunk (and sometime several sections for a single ECC
1113 * ECC chunk)
1114 * @oobecc: OOB region struct filled with the appropriate ECC position
1115 * information
1116 *
1117 * This function returns ECC section information in the OOB area. If you want
1118 * to get all the ECC bytes information, then you should call
1119 * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE.
1120 *
1121 * Returns zero on success, a negative error code otherwise.
1122 */
1123int mtd_ooblayout_ecc(struct mtd_info *mtd, int section,
1124 struct mtd_oob_region *oobecc)
1125{
1126 memset(oobecc, 0, sizeof(*oobecc));
1127
1128 if (!mtd || section < 0)
1129 return -EINVAL;
1130
1131 if (!mtd->ooblayout || !mtd->ooblayout->ecc)
1132 return -ENOTSUPP;
1133
1134 return mtd->ooblayout->ecc(mtd, section, oobecc);
1135}
1136EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc);
1137
1138/**
1139 * mtd_ooblayout_free - Get the OOB region definition of a specific free
1140 * section
1141 * @mtd: MTD device structure
1142 * @section: Free section you are interested in. Depending on the layout
1143 * you may have all the free bytes stored in a single contiguous
1144 * section, or one section per ECC chunk plus an extra section
1145 * for the remaining bytes (or other funky layout).
1146 * @oobfree: OOB region struct filled with the appropriate free position
1147 * information
1148 *
1149 * This function returns free bytes position in the OOB area. If you want
1150 * to get all the free bytes information, then you should call
1151 * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE.
1152 *
1153 * Returns zero on success, a negative error code otherwise.
1154 */
1155int mtd_ooblayout_free(struct mtd_info *mtd, int section,
1156 struct mtd_oob_region *oobfree)
1157{
1158 memset(oobfree, 0, sizeof(*oobfree));
1159
1160 if (!mtd || section < 0)
1161 return -EINVAL;
1162
1163 if (!mtd->ooblayout || !mtd->ooblayout->free)
1164 return -ENOTSUPP;
1165
1166 return mtd->ooblayout->free(mtd, section, oobfree);
1167}
1168EXPORT_SYMBOL_GPL(mtd_ooblayout_free);
1169
1170/**
1171 * mtd_ooblayout_find_region - Find the region attached to a specific byte
1172 * @mtd: mtd info structure
1173 * @byte: the byte we are searching for
1174 * @sectionp: pointer where the section id will be stored
1175 * @oobregion: used to retrieve the ECC position
1176 * @iter: iterator function. Should be either mtd_ooblayout_free or
1177 * mtd_ooblayout_ecc depending on the region type you're searching for
1178 *
1179 * This function returns the section id and oobregion information of a
1180 * specific byte. For example, say you want to know where the 4th ECC byte is
1181 * stored, you'll use:
1182 *
1183 * mtd_ooblayout_find_region(mtd, 3, &section, &oobregion, mtd_ooblayout_ecc);
1184 *
1185 * Returns zero on success, a negative error code otherwise.
1186 */
1187static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte,
1188 int *sectionp, struct mtd_oob_region *oobregion,
1189 int (*iter)(struct mtd_info *,
1190 int section,
1191 struct mtd_oob_region *oobregion))
1192{
1193 int pos = 0, ret, section = 0;
1194
1195 memset(oobregion, 0, sizeof(*oobregion));
1196
1197 while (1) {
1198 ret = iter(mtd, section, oobregion);
1199 if (ret)
1200 return ret;
1201
1202 if (pos + oobregion->length > byte)
1203 break;
1204
1205 pos += oobregion->length;
1206 section++;
1207 }
1208
1209 /*
1210 * Adjust region info to make it start at the beginning at the
1211 * 'start' ECC byte.
1212 */
1213 oobregion->offset += byte - pos;
1214 oobregion->length -= byte - pos;
1215 *sectionp = section;
1216
1217 return 0;
1218}
1219
1220/**
1221 * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific
1222 * ECC byte
1223 * @mtd: mtd info structure
1224 * @eccbyte: the byte we are searching for
1225 * @sectionp: pointer where the section id will be stored
1226 * @oobregion: OOB region information
1227 *
1228 * Works like mtd_ooblayout_find_region() except it searches for a specific ECC
1229 * byte.
1230 *
1231 * Returns zero on success, a negative error code otherwise.
1232 */
1233int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte,
1234 int *section,
1235 struct mtd_oob_region *oobregion)
1236{
1237 return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion,
1238 mtd_ooblayout_ecc);
1239}
1240EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion);
1241
1242/**
1243 * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer
1244 * @mtd: mtd info structure
1245 * @buf: destination buffer to store OOB bytes
1246 * @oobbuf: OOB buffer
1247 * @start: first byte to retrieve
1248 * @nbytes: number of bytes to retrieve
1249 * @iter: section iterator
1250 *
1251 * Extract bytes attached to a specific category (ECC or free)
1252 * from the OOB buffer and copy them into buf.
1253 *
1254 * Returns zero on success, a negative error code otherwise.
1255 */
1256static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf,
1257 const u8 *oobbuf, int start, int nbytes,
1258 int (*iter)(struct mtd_info *,
1259 int section,
1260 struct mtd_oob_region *oobregion))
1261{
1262 struct mtd_oob_region oobregion;
1263 int section, ret;
1264
1265 ret = mtd_ooblayout_find_region(mtd, start, &section,
1266 &oobregion, iter);
1267
1268 while (!ret) {
1269 int cnt;
1270
1271 cnt = min_t(int, nbytes, oobregion.length);
1272 memcpy(buf, oobbuf + oobregion.offset, cnt);
1273 buf += cnt;
1274 nbytes -= cnt;
1275
1276 if (!nbytes)
1277 break;
1278
1279 ret = iter(mtd, ++section, &oobregion);
1280 }
1281
1282 return ret;
1283}
1284
1285/**
1286 * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer
1287 * @mtd: mtd info structure
1288 * @buf: source buffer to get OOB bytes from
1289 * @oobbuf: OOB buffer
1290 * @start: first OOB byte to set
1291 * @nbytes: number of OOB bytes to set
1292 * @iter: section iterator
1293 *
1294 * Fill the OOB buffer with data provided in buf. The category (ECC or free)
1295 * is selected by passing the appropriate iterator.
1296 *
1297 * Returns zero on success, a negative error code otherwise.
1298 */
1299static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf,
1300 u8 *oobbuf, int start, int nbytes,
1301 int (*iter)(struct mtd_info *,
1302 int section,
1303 struct mtd_oob_region *oobregion))
1304{
1305 struct mtd_oob_region oobregion;
1306 int section, ret;
1307
1308 ret = mtd_ooblayout_find_region(mtd, start, &section,
1309 &oobregion, iter);
1310
1311 while (!ret) {
1312 int cnt;
1313
1314 cnt = min_t(int, nbytes, oobregion.length);
1315 memcpy(oobbuf + oobregion.offset, buf, cnt);
1316 buf += cnt;
1317 nbytes -= cnt;
1318
1319 if (!nbytes)
1320 break;
1321
1322 ret = iter(mtd, ++section, &oobregion);
1323 }
1324
1325 return ret;
1326}
1327
1328/**
1329 * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category
1330 * @mtd: mtd info structure
1331 * @iter: category iterator
1332 *
1333 * Count the number of bytes in a given category.
1334 *
1335 * Returns a positive value on success, a negative error code otherwise.
1336 */
1337static int mtd_ooblayout_count_bytes(struct mtd_info *mtd,
1338 int (*iter)(struct mtd_info *,
1339 int section,
1340 struct mtd_oob_region *oobregion))
1341{
1342 struct mtd_oob_region oobregion;
1343 int section = 0, ret, nbytes = 0;
1344
1345 while (1) {
1346 ret = iter(mtd, section++, &oobregion);
1347 if (ret) {
1348 if (ret == -ERANGE)
1349 ret = nbytes;
1350 break;
1351 }
1352
1353 nbytes += oobregion.length;
1354 }
1355
1356 return ret;
1357}
1358
1359/**
1360 * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer
1361 * @mtd: mtd info structure
1362 * @eccbuf: destination buffer to store ECC bytes
1363 * @oobbuf: OOB buffer
1364 * @start: first ECC byte to retrieve
1365 * @nbytes: number of ECC bytes to retrieve
1366 *
1367 * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes.
1368 *
1369 * Returns zero on success, a negative error code otherwise.
1370 */
1371int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf,
1372 const u8 *oobbuf, int start, int nbytes)
1373{
1374 return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1375 mtd_ooblayout_ecc);
1376}
1377EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes);
1378
1379/**
1380 * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer
1381 * @mtd: mtd info structure
1382 * @eccbuf: source buffer to get ECC bytes from
1383 * @oobbuf: OOB buffer
1384 * @start: first ECC byte to set
1385 * @nbytes: number of ECC bytes to set
1386 *
1387 * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes.
1388 *
1389 * Returns zero on success, a negative error code otherwise.
1390 */
1391int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf,
1392 u8 *oobbuf, int start, int nbytes)
1393{
1394 return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1395 mtd_ooblayout_ecc);
1396}
1397EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes);
1398
1399/**
1400 * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer
1401 * @mtd: mtd info structure
1402 * @databuf: destination buffer to store ECC bytes
1403 * @oobbuf: OOB buffer
1404 * @start: first ECC byte to retrieve
1405 * @nbytes: number of ECC bytes to retrieve
1406 *
1407 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
1408 *
1409 * Returns zero on success, a negative error code otherwise.
1410 */
1411int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf,
1412 const u8 *oobbuf, int start, int nbytes)
1413{
1414 return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes,
1415 mtd_ooblayout_free);
1416}
1417EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes);
1418
1419/**
1420 * mtd_ooblayout_get_eccbytes - set data bytes into the oob buffer
1421 * @mtd: mtd info structure
1422 * @eccbuf: source buffer to get data bytes from
1423 * @oobbuf: OOB buffer
1424 * @start: first ECC byte to set
1425 * @nbytes: number of ECC bytes to set
1426 *
1427 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
1428 *
1429 * Returns zero on success, a negative error code otherwise.
1430 */
1431int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf,
1432 u8 *oobbuf, int start, int nbytes)
1433{
1434 return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes,
1435 mtd_ooblayout_free);
1436}
1437EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes);
1438
1439/**
1440 * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB
1441 * @mtd: mtd info structure
1442 *
1443 * Works like mtd_ooblayout_count_bytes(), except it count free bytes.
1444 *
1445 * Returns zero on success, a negative error code otherwise.
1446 */
1447int mtd_ooblayout_count_freebytes(struct mtd_info *mtd)
1448{
1449 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free);
1450}
1451EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes);
1452
1453/**
1454 * mtd_ooblayout_count_freebytes - count the number of ECC bytes in OOB
1455 * @mtd: mtd info structure
1456 *
1457 * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes.
1458 *
1459 * Returns zero on success, a negative error code otherwise.
1460 */
1461int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd)
1462{
1463 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc);
1464}
1465EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes);
1466
Sergey Lapin3a38a552013-01-14 03:46:50 +00001467/*
1468 * Method to access the protection register area, present in some flash
1469 * devices. The user data is one time programmable but the factory data is read
1470 * only.
1471 */
Heiko Schocher081fe9e2014-07-15 16:08:43 +02001472int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1473 struct otp_info *buf)
Sergey Lapin3a38a552013-01-14 03:46:50 +00001474{
1475 if (!mtd->_get_fact_prot_info)
1476 return -EOPNOTSUPP;
1477 if (!len)
1478 return 0;
Heiko Schocher081fe9e2014-07-15 16:08:43 +02001479 return mtd->_get_fact_prot_info(mtd, len, retlen, buf);
Sergey Lapin3a38a552013-01-14 03:46:50 +00001480}
Heiko Schocherf5895d12014-06-24 10:10:04 +02001481EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
Sergey Lapin3a38a552013-01-14 03:46:50 +00001482
1483int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1484 size_t *retlen, u_char *buf)
1485{
1486 *retlen = 0;
1487 if (!mtd->_read_fact_prot_reg)
1488 return -EOPNOTSUPP;
1489 if (!len)
1490 return 0;
1491 return mtd->_read_fact_prot_reg(mtd, from, len, retlen, buf);
1492}
Heiko Schocherf5895d12014-06-24 10:10:04 +02001493EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
Sergey Lapin3a38a552013-01-14 03:46:50 +00001494
Heiko Schocher081fe9e2014-07-15 16:08:43 +02001495int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1496 struct otp_info *buf)
Sergey Lapin3a38a552013-01-14 03:46:50 +00001497{
1498 if (!mtd->_get_user_prot_info)
1499 return -EOPNOTSUPP;
1500 if (!len)
1501 return 0;
Heiko Schocher081fe9e2014-07-15 16:08:43 +02001502 return mtd->_get_user_prot_info(mtd, len, retlen, buf);
Sergey Lapin3a38a552013-01-14 03:46:50 +00001503}
Heiko Schocherf5895d12014-06-24 10:10:04 +02001504EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
Sergey Lapin3a38a552013-01-14 03:46:50 +00001505
1506int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1507 size_t *retlen, u_char *buf)
1508{
1509 *retlen = 0;
1510 if (!mtd->_read_user_prot_reg)
1511 return -EOPNOTSUPP;
1512 if (!len)
1513 return 0;
1514 return mtd->_read_user_prot_reg(mtd, from, len, retlen, buf);
1515}
Heiko Schocherf5895d12014-06-24 10:10:04 +02001516EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
Sergey Lapin3a38a552013-01-14 03:46:50 +00001517
1518int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
1519 size_t *retlen, u_char *buf)
1520{
Heiko Schocher081fe9e2014-07-15 16:08:43 +02001521 int ret;
1522
Sergey Lapin3a38a552013-01-14 03:46:50 +00001523 *retlen = 0;
1524 if (!mtd->_write_user_prot_reg)
1525 return -EOPNOTSUPP;
1526 if (!len)
1527 return 0;
Heiko Schocher081fe9e2014-07-15 16:08:43 +02001528 ret = mtd->_write_user_prot_reg(mtd, to, len, retlen, buf);
1529 if (ret)
1530 return ret;
1531
1532 /*
1533 * If no data could be written at all, we are out of memory and
1534 * must return -ENOSPC.
1535 */
1536 return (*retlen) ? 0 : -ENOSPC;
Sergey Lapin3a38a552013-01-14 03:46:50 +00001537}
Heiko Schocherf5895d12014-06-24 10:10:04 +02001538EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
Sergey Lapin3a38a552013-01-14 03:46:50 +00001539
1540int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
1541{
1542 if (!mtd->_lock_user_prot_reg)
1543 return -EOPNOTSUPP;
1544 if (!len)
1545 return 0;
1546 return mtd->_lock_user_prot_reg(mtd, from, len);
1547}
Heiko Schocherf5895d12014-06-24 10:10:04 +02001548EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
Sergey Lapin3a38a552013-01-14 03:46:50 +00001549
1550/* Chip-supported device locking */
1551int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1552{
1553 if (!mtd->_lock)
1554 return -EOPNOTSUPP;
1555 if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs)
1556 return -EINVAL;
1557 if (!len)
1558 return 0;
1559 return mtd->_lock(mtd, ofs, len);
1560}
Heiko Schocherf5895d12014-06-24 10:10:04 +02001561EXPORT_SYMBOL_GPL(mtd_lock);
Sergey Lapin3a38a552013-01-14 03:46:50 +00001562
1563int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1564{
1565 if (!mtd->_unlock)
1566 return -EOPNOTSUPP;
1567 if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs)
1568 return -EINVAL;
1569 if (!len)
1570 return 0;
1571 return mtd->_unlock(mtd, ofs, len);
1572}
Heiko Schocherf5895d12014-06-24 10:10:04 +02001573EXPORT_SYMBOL_GPL(mtd_unlock);
1574
1575int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1576{
1577 if (!mtd->_is_locked)
1578 return -EOPNOTSUPP;
1579 if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs)
1580 return -EINVAL;
1581 if (!len)
1582 return 0;
1583 return mtd->_is_locked(mtd, ofs, len);
1584}
1585EXPORT_SYMBOL_GPL(mtd_is_locked);
Sergey Lapin3a38a552013-01-14 03:46:50 +00001586
Ezequiel Garciafc9d57c2014-05-21 19:06:12 -03001587int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs)
Sergey Lapin3a38a552013-01-14 03:46:50 +00001588{
Ezequiel Garciafc9d57c2014-05-21 19:06:12 -03001589 if (ofs < 0 || ofs > mtd->size)
1590 return -EINVAL;
1591 if (!mtd->_block_isreserved)
Sergey Lapin3a38a552013-01-14 03:46:50 +00001592 return 0;
Ezequiel Garciafc9d57c2014-05-21 19:06:12 -03001593 return mtd->_block_isreserved(mtd, ofs);
1594}
1595EXPORT_SYMBOL_GPL(mtd_block_isreserved);
1596
1597int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
1598{
Sergey Lapin3a38a552013-01-14 03:46:50 +00001599 if (ofs < 0 || ofs > mtd->size)
1600 return -EINVAL;
Ezequiel Garciafc9d57c2014-05-21 19:06:12 -03001601 if (!mtd->_block_isbad)
1602 return 0;
Sergey Lapin3a38a552013-01-14 03:46:50 +00001603 return mtd->_block_isbad(mtd, ofs);
1604}
Heiko Schocherf5895d12014-06-24 10:10:04 +02001605EXPORT_SYMBOL_GPL(mtd_block_isbad);
Sergey Lapin3a38a552013-01-14 03:46:50 +00001606
1607int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
1608{
1609 if (!mtd->_block_markbad)
1610 return -EOPNOTSUPP;
1611 if (ofs < 0 || ofs > mtd->size)
1612 return -EINVAL;
1613 if (!(mtd->flags & MTD_WRITEABLE))
1614 return -EROFS;
1615 return mtd->_block_markbad(mtd, ofs);
1616}
Heiko Schocherf5895d12014-06-24 10:10:04 +02001617EXPORT_SYMBOL_GPL(mtd_block_markbad);
1618
1619#ifndef __UBOOT__
1620/*
1621 * default_mtd_writev - the default writev method
1622 * @mtd: mtd device description object pointer
1623 * @vecs: the vectors to write
1624 * @count: count of vectors in @vecs
1625 * @to: the MTD device offset to write to
1626 * @retlen: on exit contains the count of bytes written to the MTD device.
1627 *
1628 * This function returns zero in case of success and a negative error code in
1629 * case of failure.
1630 */
1631static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1632 unsigned long count, loff_t to, size_t *retlen)
1633{
1634 unsigned long i;
1635 size_t totlen = 0, thislen;
1636 int ret = 0;
1637
1638 for (i = 0; i < count; i++) {
1639 if (!vecs[i].iov_len)
1640 continue;
1641 ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
1642 vecs[i].iov_base);
1643 totlen += thislen;
1644 if (ret || thislen != vecs[i].iov_len)
1645 break;
1646 to += vecs[i].iov_len;
1647 }
1648 *retlen = totlen;
1649 return ret;
1650}
1651
1652/*
1653 * mtd_writev - the vector-based MTD write method
1654 * @mtd: mtd device description object pointer
1655 * @vecs: the vectors to write
1656 * @count: count of vectors in @vecs
1657 * @to: the MTD device offset to write to
1658 * @retlen: on exit contains the count of bytes written to the MTD device.
1659 *
1660 * This function returns zero in case of success and a negative error code in
1661 * case of failure.
1662 */
1663int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1664 unsigned long count, loff_t to, size_t *retlen)
1665{
1666 *retlen = 0;
1667 if (!(mtd->flags & MTD_WRITEABLE))
1668 return -EROFS;
1669 if (!mtd->_writev)
1670 return default_mtd_writev(mtd, vecs, count, to, retlen);
1671 return mtd->_writev(mtd, vecs, count, to, retlen);
1672}
1673EXPORT_SYMBOL_GPL(mtd_writev);
1674
1675/**
1676 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
1677 * @mtd: mtd device description object pointer
1678 * @size: a pointer to the ideal or maximum size of the allocation, points
1679 * to the actual allocation size on success.
1680 *
1681 * This routine attempts to allocate a contiguous kernel buffer up to
1682 * the specified size, backing off the size of the request exponentially
1683 * until the request succeeds or until the allocation size falls below
1684 * the system page size. This attempts to make sure it does not adversely
1685 * impact system performance, so when allocating more than one page, we
1686 * ask the memory allocator to avoid re-trying, swapping, writing back
1687 * or performing I/O.
1688 *
1689 * Note, this function also makes sure that the allocated buffer is aligned to
1690 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
1691 *
1692 * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
1693 * to handle smaller (i.e. degraded) buffer allocations under low- or
1694 * fragmented-memory situations where such reduced allocations, from a
1695 * requested ideal, are allowed.
1696 *
1697 * Returns a pointer to the allocated buffer on success; otherwise, NULL.
1698 */
1699void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
1700{
1701 gfp_t flags = __GFP_NOWARN | __GFP_WAIT |
1702 __GFP_NORETRY | __GFP_NO_KSWAPD;
1703 size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
1704 void *kbuf;
1705
1706 *size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
1707
1708 while (*size > min_alloc) {
1709 kbuf = kmalloc(*size, flags);
1710 if (kbuf)
1711 return kbuf;
1712
1713 *size >>= 1;
1714 *size = ALIGN(*size, mtd->writesize);
1715 }
1716
1717 /*
1718 * For the last resort allocation allow 'kmalloc()' to do all sorts of
1719 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
1720 */
1721 return kmalloc(*size, GFP_KERNEL);
1722}
1723EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
1724#endif
1725
1726#ifdef CONFIG_PROC_FS
1727
1728/*====================================================================*/
1729/* Support for /proc/mtd */
1730
1731static int mtd_proc_show(struct seq_file *m, void *v)
1732{
1733 struct mtd_info *mtd;
1734
1735 seq_puts(m, "dev: size erasesize name\n");
1736 mutex_lock(&mtd_table_mutex);
1737 mtd_for_each_device(mtd) {
1738 seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
1739 mtd->index, (unsigned long long)mtd->size,
1740 mtd->erasesize, mtd->name);
1741 }
1742 mutex_unlock(&mtd_table_mutex);
1743 return 0;
1744}
1745
1746static int mtd_proc_open(struct inode *inode, struct file *file)
1747{
1748 return single_open(file, mtd_proc_show, NULL);
1749}
1750
1751static const struct file_operations mtd_proc_ops = {
1752 .open = mtd_proc_open,
1753 .read = seq_read,
1754 .llseek = seq_lseek,
1755 .release = single_release,
1756};
1757#endif /* CONFIG_PROC_FS */
1758
1759/*====================================================================*/
1760/* Init code */
1761
1762#ifndef __UBOOT__
1763static int __init mtd_bdi_init(struct backing_dev_info *bdi, const char *name)
1764{
1765 int ret;
1766
1767 ret = bdi_init(bdi);
1768 if (!ret)
1769 ret = bdi_register(bdi, NULL, "%s", name);
1770
1771 if (ret)
1772 bdi_destroy(bdi);
1773
1774 return ret;
1775}
1776
1777static struct proc_dir_entry *proc_mtd;
1778
1779static int __init init_mtd(void)
1780{
1781 int ret;
1782
1783 ret = class_register(&mtd_class);
1784 if (ret)
1785 goto err_reg;
1786
1787 ret = mtd_bdi_init(&mtd_bdi_unmappable, "mtd-unmap");
1788 if (ret)
1789 goto err_bdi1;
1790
1791 ret = mtd_bdi_init(&mtd_bdi_ro_mappable, "mtd-romap");
1792 if (ret)
1793 goto err_bdi2;
1794
1795 ret = mtd_bdi_init(&mtd_bdi_rw_mappable, "mtd-rwmap");
1796 if (ret)
1797 goto err_bdi3;
1798
1799 proc_mtd = proc_create("mtd", 0, NULL, &mtd_proc_ops);
1800
1801 ret = init_mtdchar();
1802 if (ret)
1803 goto out_procfs;
1804
1805 return 0;
1806
1807out_procfs:
1808 if (proc_mtd)
1809 remove_proc_entry("mtd", NULL);
1810err_bdi3:
1811 bdi_destroy(&mtd_bdi_ro_mappable);
1812err_bdi2:
1813 bdi_destroy(&mtd_bdi_unmappable);
1814err_bdi1:
1815 class_unregister(&mtd_class);
1816err_reg:
1817 pr_err("Error registering mtd class or bdi: %d\n", ret);
1818 return ret;
1819}
1820
1821static void __exit cleanup_mtd(void)
1822{
1823 cleanup_mtdchar();
1824 if (proc_mtd)
1825 remove_proc_entry("mtd", NULL);
1826 class_unregister(&mtd_class);
1827 bdi_destroy(&mtd_bdi_unmappable);
1828 bdi_destroy(&mtd_bdi_ro_mappable);
1829 bdi_destroy(&mtd_bdi_rw_mappable);
1830}
1831
1832module_init(init_mtd);
1833module_exit(cleanup_mtd);
1834#endif
1835
1836MODULE_LICENSE("GPL");
1837MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
1838MODULE_DESCRIPTION("Core MTD registration and access routines");