blob: 23768bca790d855198ccfc187acc038030e41ea4 [file] [log] [blame]
wdenke537b3b2004-02-23 23:54:43 +00001/******************************************************************************
2*
3* Author: Xilinx, Inc.
4*
5*
6* This program is free software; you can redistribute it and/or modify it
7* under the terms of the GNU General Public License as published by the
8* Free Software Foundation; either version 2 of the License, or (at your
9* option) any later version.
10*
11*
12* XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS" AS A
13* COURTESY TO YOU. BY PROVIDING THIS DESIGN, CODE, OR INFORMATION AS
14* ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE, APPLICATION OR STANDARD,
15* XILINX IS MAKING NO REPRESENTATION THAT THIS IMPLEMENTATION IS FREE
16* FROM ANY CLAIMS OF INFRINGEMENT, AND YOU ARE RESPONSIBLE FOR OBTAINING
17* ANY THIRD PARTY RIGHTS YOU MAY REQUIRE FOR YOUR IMPLEMENTATION.
18* XILINX EXPRESSLY DISCLAIMS ANY WARRANTY WHATSOEVER WITH RESPECT TO
19* THE ADEQUACY OF THE IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY
20* WARRANTIES OR REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM
21* CLAIMS OF INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY AND
22* FITNESS FOR A PARTICULAR PURPOSE.
23*
24*
25* Xilinx hardware products are not intended for use in life support
26* appliances, devices, or systems. Use in such applications is
27* expressly prohibited.
28*
29*
30* (c) Copyright 2002-2004 Xilinx Inc.
31* All rights reserved.
32*
33*
34* You should have received a copy of the GNU General Public License along
35* with this program; if not, write to the Free Software Foundation, Inc.,
36* 675 Mass Ave, Cambridge, MA 02139, USA.
37*
38******************************************************************************/
39/*****************************************************************************/
40/**
41*
42* @file xemac_polled.c
43*
44* Contains functions used when the driver is in polled mode. Use the
45* XEmac_SetOptions() function to put the driver into polled mode.
46*
47* <pre>
48* MODIFICATION HISTORY:
49*
50* Ver Who Date Changes
51* ----- ---- -------- -----------------------------------------------
52* 1.00a rpm 07/31/01 First release
53* 1.00b rpm 02/20/02 Repartitioned files and functions
54* 1.00c rpm 12/05/02 New version includes support for simple DMA
55* </pre>
56*
57******************************************************************************/
58
59/***************************** Include Files *********************************/
60
61#include "xbasic_types.h"
62#include "xemac_i.h"
63#include "xio.h"
64#include "xipif_v1_23_b.h" /* Uses v1.23b of the IPIF */
65
66/************************** Constant Definitions *****************************/
67
68/**************************** Type Definitions *******************************/
69
70/***************** Macros (Inline Functions) Definitions *********************/
71
72/************************** Variable Definitions *****************************/
73
74/************************** Function Prototypes ******************************/
75
76/*****************************************************************************/
77/**
78*
79* Send an Ethernet frame in polled mode. The device/driver must be in polled
80* mode before calling this function. The driver writes the frame directly to
81* the MAC's packet FIFO, then enters a loop checking the device status for
82* completion or error. Statistics are updated if an error occurs. The buffer
83* to be sent must be word-aligned.
84*
85* It is assumed that the upper layer software supplies a correctly formatted
86* Ethernet frame, including the destination and source addresses, the
87* type/length field, and the data field. It is also assumed that upper layer
88* software does not append FCS at the end of the frame.
89*
90* @param InstancePtr is a pointer to the XEmac instance to be worked on.
91* @param BufPtr is a pointer to a word-aligned buffer containing the Ethernet
92* frame to be sent.
93* @param ByteCount is the size of the Ethernet frame.
94*
95* @return
96*
97* - XST_SUCCESS if the frame was sent successfully
98* - XST_DEVICE_IS_STOPPED if the device has not yet been started
99* - XST_NOT_POLLED if the device is not in polled mode
100* - XST_FIFO_NO_ROOM if there is no room in the EMAC's length FIFO for this frame
101* - XST_FIFO_ERROR if the FIFO was overrun or underrun. This error is critical
102* and requires the caller to reset the device.
103* - XST_EMAC_COLLISION if the send failed due to excess deferral or late
104* collision
105*
106* @note
107*
108* There is the possibility that this function will not return if the hardware
109* is broken (i.e., it never sets the status bit indicating that transmission is
110* done). If this is of concern to the user, the user should provide protection
111* from this problem - perhaps by using a different timer thread to monitor the
112* PollSend thread. On a 10Mbps MAC, it takes about 1.21 msecs to transmit a
113* maximum size Ethernet frame (1518 bytes). On a 100Mbps MAC, it takes about
114* 121 usecs to transmit a maximum size Ethernet frame.
115*
116* @internal
117*
118* The EMAC uses FIFOs behind its length and status registers. For this reason,
119* it is important to keep the length, status, and data FIFOs in sync when
120* reading or writing to them.
121*
122******************************************************************************/
123XStatus
124XEmac_PollSend(XEmac * InstancePtr, u8 * BufPtr, u32 ByteCount)
125{
126 u32 IntrStatus;
127 u32 XmitStatus;
128 XStatus Result;
129
130 XASSERT_NONVOID(InstancePtr != NULL);
131 XASSERT_NONVOID(BufPtr != NULL);
132 XASSERT_NONVOID(ByteCount > XEM_HDR_SIZE); /* send at least 1 byte */
133 XASSERT_NONVOID(InstancePtr->IsReady == XCOMPONENT_IS_READY);
134
135 /*
136 * Be sure the device is configured for polled mode and it is started
137 */
138 if (!InstancePtr->IsPolled) {
139 return XST_NOT_POLLED;
140 }
141
142 if (InstancePtr->IsStarted != XCOMPONENT_IS_STARTED) {
143 return XST_DEVICE_IS_STOPPED;
144 }
145
146 /*
147 * Check for overruns and underruns for the transmit status and length
148 * FIFOs and make sure the send packet FIFO is not deadlocked. Any of these
149 * conditions is bad enough that we do not want to continue. The upper layer
150 * software should reset the device to resolve the error.
151 */
152 IntrStatus = XIIF_V123B_READ_IISR(InstancePtr->BaseAddress);
153
154 /*
155 * Overrun errors
156 */
157 if (IntrStatus & (XEM_EIR_XMIT_SFIFO_OVER_MASK |
158 XEM_EIR_XMIT_LFIFO_OVER_MASK)) {
159 InstancePtr->Stats.XmitOverrunErrors++;
160 InstancePtr->Stats.FifoErrors++;
161 return XST_FIFO_ERROR;
162 }
163
164 /*
165 * Underrun errors
166 */
167 if (IntrStatus & (XEM_EIR_XMIT_SFIFO_UNDER_MASK |
168 XEM_EIR_XMIT_LFIFO_UNDER_MASK)) {
169 InstancePtr->Stats.XmitUnderrunErrors++;
170 InstancePtr->Stats.FifoErrors++;
171 return XST_FIFO_ERROR;
172 }
173
174 if (XPF_V100B_IS_DEADLOCKED(&InstancePtr->SendFifo)) {
175 InstancePtr->Stats.FifoErrors++;
176 return XST_FIFO_ERROR;
177 }
178
179 /*
180 * Before writing to the data FIFO, make sure the length FIFO is not
181 * full. The data FIFO might not be full yet even though the length FIFO
182 * is. This avoids an overrun condition on the length FIFO and keeps the
183 * FIFOs in sync.
184 */
185 if (IntrStatus & XEM_EIR_XMIT_LFIFO_FULL_MASK) {
186 /*
187 * Clear the latched LFIFO_FULL bit so next time around the most
188 * current status is represented
189 */
190 XIIF_V123B_WRITE_IISR(InstancePtr->BaseAddress,
191 XEM_EIR_XMIT_LFIFO_FULL_MASK);
192 return XST_FIFO_NO_ROOM;
193 }
194
195 /*
196 * This is a non-blocking write. The packet FIFO returns an error if there
197 * is not enough room in the FIFO for this frame.
198 */
199 Result =
200 XPacketFifoV100b_Write(&InstancePtr->SendFifo, BufPtr, ByteCount);
201 if (Result != XST_SUCCESS) {
202 return Result;
203 }
204
205 /*
206 * Loop on the MAC's status to wait for any pause to complete.
207 */
208 IntrStatus = XIIF_V123B_READ_IISR(InstancePtr->BaseAddress);
209
210 while ((IntrStatus & XEM_EIR_XMIT_PAUSE_MASK) != 0) {
211 IntrStatus = XIIF_V123B_READ_IISR(InstancePtr->BaseAddress);
212 /*
213 * Clear the pause status from the transmit status register
214 */
215 XIIF_V123B_WRITE_IISR(InstancePtr->BaseAddress,
216 IntrStatus & XEM_EIR_XMIT_PAUSE_MASK);
217 }
218
219 /*
220 * Set the MAC's transmit packet length register to tell it to transmit
221 */
222 XIo_Out32(InstancePtr->BaseAddress + XEM_TPLR_OFFSET, ByteCount);
223
224 /*
225 * Loop on the MAC's status to wait for the transmit to complete. The
226 * transmit status is in the FIFO when the XMIT_DONE bit is set.
227 */
228 do {
229 IntrStatus = XIIF_V123B_READ_IISR(InstancePtr->BaseAddress);
230 }
231 while ((IntrStatus & XEM_EIR_XMIT_DONE_MASK) == 0);
232
233 XmitStatus = XIo_In32(InstancePtr->BaseAddress + XEM_TSR_OFFSET);
234
235 InstancePtr->Stats.XmitFrames++;
236 InstancePtr->Stats.XmitBytes += ByteCount;
237
238 /*
239 * Check for various errors, bump statistics, and return an error status.
240 */
241
242 /*
243 * Overrun errors
244 */
245 if (IntrStatus & (XEM_EIR_XMIT_SFIFO_OVER_MASK |
246 XEM_EIR_XMIT_LFIFO_OVER_MASK)) {
247 InstancePtr->Stats.XmitOverrunErrors++;
248 InstancePtr->Stats.FifoErrors++;
249 return XST_FIFO_ERROR;
250 }
251
252 /*
253 * Underrun errors
254 */
255 if (IntrStatus & (XEM_EIR_XMIT_SFIFO_UNDER_MASK |
256 XEM_EIR_XMIT_LFIFO_UNDER_MASK)) {
257 InstancePtr->Stats.XmitUnderrunErrors++;
258 InstancePtr->Stats.FifoErrors++;
259 return XST_FIFO_ERROR;
260 }
261
262 /*
263 * Clear the interrupt status register of transmit statuses
264 */
265 XIIF_V123B_WRITE_IISR(InstancePtr->BaseAddress,
266 IntrStatus & XEM_EIR_XMIT_ALL_MASK);
267
268 /*
269 * Collision errors are stored in the transmit status register
270 * instead of the interrupt status register
271 */
272 if (XmitStatus & XEM_TSR_EXCESS_DEFERRAL_MASK) {
273 InstancePtr->Stats.XmitExcessDeferral++;
274 return XST_EMAC_COLLISION_ERROR;
275 }
276
277 if (XmitStatus & XEM_TSR_LATE_COLLISION_MASK) {
278 InstancePtr->Stats.XmitLateCollisionErrors++;
279 return XST_EMAC_COLLISION_ERROR;
280 }
281
282 return XST_SUCCESS;
283}
284
285/*****************************************************************************/
286/**
287*
288* Receive an Ethernet frame in polled mode. The device/driver must be in polled
289* mode before calling this function. The driver receives the frame directly
290* from the MAC's packet FIFO. This is a non-blocking receive, in that if there
291* is no frame ready to be received at the device, the function returns with an
292* error. The MAC's error status is not checked, so statistics are not updated
293* for polled receive. The buffer into which the frame will be received must be
294* word-aligned.
295*
296* @param InstancePtr is a pointer to the XEmac instance to be worked on.
297* @param BufPtr is a pointer to a word-aligned buffer into which the received
298* Ethernet frame will be copied.
299* @param ByteCountPtr is both an input and an output parameter. It is a pointer
300* to a 32-bit word that contains the size of the buffer on entry into the
301* function and the size the received frame on return from the function.
302*
303* @return
304*
305* - XST_SUCCESS if the frame was sent successfully
306* - XST_DEVICE_IS_STOPPED if the device has not yet been started
307* - XST_NOT_POLLED if the device is not in polled mode
308* - XST_NO_DATA if there is no frame to be received from the FIFO
309* - XST_BUFFER_TOO_SMALL if the buffer to receive the frame is too small for
310* the frame waiting in the FIFO.
311*
312* @note
313*
314* Input buffer must be big enough to hold the largest Ethernet frame. Buffer
315* must also be 32-bit aligned.
316*
317* @internal
318*
319* The EMAC uses FIFOs behind its length and status registers. For this reason,
320* it is important to keep the length, status, and data FIFOs in sync when
321* reading or writing to them.
322*
323******************************************************************************/
324XStatus
325XEmac_PollRecv(XEmac * InstancePtr, u8 * BufPtr, u32 * ByteCountPtr)
326{
327 XStatus Result;
328 u32 PktLength;
329 u32 IntrStatus;
330
331 XASSERT_NONVOID(InstancePtr != NULL);
332 XASSERT_NONVOID(BufPtr != NULL);
333 XASSERT_NONVOID(ByteCountPtr != NULL);
334 XASSERT_NONVOID(InstancePtr->IsReady == XCOMPONENT_IS_READY);
335
336 /*
337 * Be sure the device is configured for polled mode and it is started
338 */
339 if (!InstancePtr->IsPolled) {
340 return XST_NOT_POLLED;
341 }
342
343 if (InstancePtr->IsStarted != XCOMPONENT_IS_STARTED) {
344 return XST_DEVICE_IS_STOPPED;
345 }
346
347 /*
348 * Make sure the buffer is big enough to hold the maximum frame size.
349 * We need to do this because as soon as we read the MAC's packet length
350 * register, which is actually a FIFO, we remove that length from the
351 * FIFO. We do not want to read the length FIFO without also reading the
352 * data FIFO since this would get the FIFOs out of sync. So we have to
353 * make this restriction.
354 */
355 if (*ByteCountPtr < XEM_MAX_FRAME_SIZE) {
356 return XST_BUFFER_TOO_SMALL;
357 }
358
359 /*
360 * First check for packet FIFO deadlock and return an error if it has
361 * occurred. A reset by the caller is necessary to correct this problem.
362 */
363 if (XPF_V100B_IS_DEADLOCKED(&InstancePtr->RecvFifo)) {
364 InstancePtr->Stats.FifoErrors++;
365 return XST_FIFO_ERROR;
366 }
367
368 /*
369 * Get the interrupt status to know what happened (whether an error occurred
370 * and/or whether frames have been received successfully). When clearing the
371 * intr status register, clear only statuses that pertain to receive.
372 */
373 IntrStatus = XIIF_V123B_READ_IISR(InstancePtr->BaseAddress);
374 XIIF_V123B_WRITE_IISR(InstancePtr->BaseAddress,
375 IntrStatus & XEM_EIR_RECV_ALL_MASK);
376
377 /*
378 * Check receive errors and bump statistics so the caller will have a clue
379 * as to why data may not have been received. We continue on if an error
380 * occurred since there still may be frames that were received successfully.
381 */
382 if (IntrStatus & (XEM_EIR_RECV_LFIFO_OVER_MASK |
383 XEM_EIR_RECV_DFIFO_OVER_MASK)) {
384 InstancePtr->Stats.RecvOverrunErrors++;
385 InstancePtr->Stats.FifoErrors++;
386 }
387
388 if (IntrStatus & XEM_EIR_RECV_LFIFO_UNDER_MASK) {
389 InstancePtr->Stats.RecvUnderrunErrors++;
390 InstancePtr->Stats.FifoErrors++;
391 }
392
393 /*
394 * General receive errors
395 */
396 if (IntrStatus & XEM_EIR_RECV_ERROR_MASK) {
397 if (IntrStatus & XEM_EIR_RECV_MISSED_FRAME_MASK) {
398 InstancePtr->Stats.RecvMissedFrameErrors =
399 XIo_In32(InstancePtr->BaseAddress +
400 XEM_RMFC_OFFSET);
401 }
402
403 if (IntrStatus & XEM_EIR_RECV_COLLISION_MASK) {
404 InstancePtr->Stats.RecvCollisionErrors =
405 XIo_In32(InstancePtr->BaseAddress + XEM_RCC_OFFSET);
406 }
407
408 if (IntrStatus & XEM_EIR_RECV_FCS_ERROR_MASK) {
409 InstancePtr->Stats.RecvFcsErrors =
410 XIo_In32(InstancePtr->BaseAddress +
411 XEM_RFCSEC_OFFSET);
412 }
413
414 if (IntrStatus & XEM_EIR_RECV_LEN_ERROR_MASK) {
415 InstancePtr->Stats.RecvLengthFieldErrors++;
416 }
417
418 if (IntrStatus & XEM_EIR_RECV_SHORT_ERROR_MASK) {
419 InstancePtr->Stats.RecvShortErrors++;
420 }
421
422 if (IntrStatus & XEM_EIR_RECV_LONG_ERROR_MASK) {
423 InstancePtr->Stats.RecvLongErrors++;
424 }
425
426 if (IntrStatus & XEM_EIR_RECV_ALIGN_ERROR_MASK) {
427 InstancePtr->Stats.RecvAlignmentErrors =
428 XIo_In32(InstancePtr->BaseAddress +
429 XEM_RAEC_OFFSET);
430 }
431 }
432
433 /*
434 * Before reading from the length FIFO, make sure the length FIFO is not
435 * empty. We could cause an underrun error if we try to read from an
436 * empty FIFO.
437 */
438 if ((IntrStatus & XEM_EIR_RECV_DONE_MASK) == 0) {
439 return XST_NO_DATA;
440 }
441
442 /*
443 * Determine, from the MAC, the length of the next packet available
444 * in the data FIFO (there should be a non-zero length here)
445 */
446 PktLength = XIo_In32(InstancePtr->BaseAddress + XEM_RPLR_OFFSET);
447 if (PktLength == 0) {
448 return XST_NO_DATA;
449 }
450
451 /*
452 * Write the RECV_DONE bit in the status register to clear it. This bit
453 * indicates the RPLR is non-empty, and we know it's set at this point.
454 * We clear it so that subsequent entry into this routine will reflect the
455 * current status. This is done because the non-empty bit is latched in the
456 * IPIF, which means it may indicate a non-empty condition even though
457 * there is something in the FIFO.
458 */
459 XIIF_V123B_WRITE_IISR(InstancePtr->BaseAddress, XEM_EIR_RECV_DONE_MASK);
460
461 /*
462 * We assume that the MAC never has a length bigger than the largest
463 * Ethernet frame, so no need to make another check here.
464 */
465
466 /*
467 * This is a non-blocking read. The FIFO returns an error if there is
468 * not at least the requested amount of data in the FIFO.
469 */
470 Result =
471 XPacketFifoV100b_Read(&InstancePtr->RecvFifo, BufPtr, PktLength);
472 if (Result != XST_SUCCESS) {
473 return Result;
474 }
475
476 InstancePtr->Stats.RecvFrames++;
477 InstancePtr->Stats.RecvBytes += PktLength;
478
479 *ByteCountPtr = PktLength;
480
481 return XST_SUCCESS;
482}