wdenk | e537b3b | 2004-02-23 23:54:43 +0000 | [diff] [blame] | 1 | /****************************************************************************** |
| 2 | * |
| 3 | * Author: Xilinx, Inc. |
| 4 | * |
| 5 | * |
| 6 | * This program is free software; you can redistribute it and/or modify it |
| 7 | * under the terms of the GNU General Public License as published by the |
| 8 | * Free Software Foundation; either version 2 of the License, or (at your |
| 9 | * option) any later version. |
| 10 | * |
| 11 | * |
| 12 | * XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS" AS A |
| 13 | * COURTESY TO YOU. BY PROVIDING THIS DESIGN, CODE, OR INFORMATION AS |
| 14 | * ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE, APPLICATION OR STANDARD, |
| 15 | * XILINX IS MAKING NO REPRESENTATION THAT THIS IMPLEMENTATION IS FREE |
| 16 | * FROM ANY CLAIMS OF INFRINGEMENT, AND YOU ARE RESPONSIBLE FOR OBTAINING |
| 17 | * ANY THIRD PARTY RIGHTS YOU MAY REQUIRE FOR YOUR IMPLEMENTATION. |
| 18 | * XILINX EXPRESSLY DISCLAIMS ANY WARRANTY WHATSOEVER WITH RESPECT TO |
| 19 | * THE ADEQUACY OF THE IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY |
| 20 | * WARRANTIES OR REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM |
| 21 | * CLAIMS OF INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY AND |
| 22 | * FITNESS FOR A PARTICULAR PURPOSE. |
| 23 | * |
| 24 | * |
| 25 | * Xilinx hardware products are not intended for use in life support |
| 26 | * appliances, devices, or systems. Use in such applications is |
| 27 | * expressly prohibited. |
| 28 | * |
| 29 | * |
| 30 | * (c) Copyright 2002-2004 Xilinx Inc. |
| 31 | * All rights reserved. |
| 32 | * |
| 33 | * |
| 34 | * You should have received a copy of the GNU General Public License along |
| 35 | * with this program; if not, write to the Free Software Foundation, Inc., |
| 36 | * 675 Mass Ave, Cambridge, MA 02139, USA. |
| 37 | * |
| 38 | ******************************************************************************/ |
| 39 | /*****************************************************************************/ |
| 40 | /** |
| 41 | * |
| 42 | * @file xemac_polled.c |
| 43 | * |
| 44 | * Contains functions used when the driver is in polled mode. Use the |
| 45 | * XEmac_SetOptions() function to put the driver into polled mode. |
| 46 | * |
| 47 | * <pre> |
| 48 | * MODIFICATION HISTORY: |
| 49 | * |
| 50 | * Ver Who Date Changes |
| 51 | * ----- ---- -------- ----------------------------------------------- |
| 52 | * 1.00a rpm 07/31/01 First release |
| 53 | * 1.00b rpm 02/20/02 Repartitioned files and functions |
| 54 | * 1.00c rpm 12/05/02 New version includes support for simple DMA |
| 55 | * </pre> |
| 56 | * |
| 57 | ******************************************************************************/ |
| 58 | |
| 59 | /***************************** Include Files *********************************/ |
| 60 | |
| 61 | #include "xbasic_types.h" |
| 62 | #include "xemac_i.h" |
| 63 | #include "xio.h" |
| 64 | #include "xipif_v1_23_b.h" /* Uses v1.23b of the IPIF */ |
| 65 | |
| 66 | /************************** Constant Definitions *****************************/ |
| 67 | |
| 68 | /**************************** Type Definitions *******************************/ |
| 69 | |
| 70 | /***************** Macros (Inline Functions) Definitions *********************/ |
| 71 | |
| 72 | /************************** Variable Definitions *****************************/ |
| 73 | |
| 74 | /************************** Function Prototypes ******************************/ |
| 75 | |
| 76 | /*****************************************************************************/ |
| 77 | /** |
| 78 | * |
| 79 | * Send an Ethernet frame in polled mode. The device/driver must be in polled |
| 80 | * mode before calling this function. The driver writes the frame directly to |
| 81 | * the MAC's packet FIFO, then enters a loop checking the device status for |
| 82 | * completion or error. Statistics are updated if an error occurs. The buffer |
| 83 | * to be sent must be word-aligned. |
| 84 | * |
| 85 | * It is assumed that the upper layer software supplies a correctly formatted |
| 86 | * Ethernet frame, including the destination and source addresses, the |
| 87 | * type/length field, and the data field. It is also assumed that upper layer |
| 88 | * software does not append FCS at the end of the frame. |
| 89 | * |
| 90 | * @param InstancePtr is a pointer to the XEmac instance to be worked on. |
| 91 | * @param BufPtr is a pointer to a word-aligned buffer containing the Ethernet |
| 92 | * frame to be sent. |
| 93 | * @param ByteCount is the size of the Ethernet frame. |
| 94 | * |
| 95 | * @return |
| 96 | * |
| 97 | * - XST_SUCCESS if the frame was sent successfully |
| 98 | * - XST_DEVICE_IS_STOPPED if the device has not yet been started |
| 99 | * - XST_NOT_POLLED if the device is not in polled mode |
| 100 | * - XST_FIFO_NO_ROOM if there is no room in the EMAC's length FIFO for this frame |
| 101 | * - XST_FIFO_ERROR if the FIFO was overrun or underrun. This error is critical |
| 102 | * and requires the caller to reset the device. |
| 103 | * - XST_EMAC_COLLISION if the send failed due to excess deferral or late |
| 104 | * collision |
| 105 | * |
| 106 | * @note |
| 107 | * |
| 108 | * There is the possibility that this function will not return if the hardware |
| 109 | * is broken (i.e., it never sets the status bit indicating that transmission is |
| 110 | * done). If this is of concern to the user, the user should provide protection |
| 111 | * from this problem - perhaps by using a different timer thread to monitor the |
| 112 | * PollSend thread. On a 10Mbps MAC, it takes about 1.21 msecs to transmit a |
| 113 | * maximum size Ethernet frame (1518 bytes). On a 100Mbps MAC, it takes about |
| 114 | * 121 usecs to transmit a maximum size Ethernet frame. |
| 115 | * |
| 116 | * @internal |
| 117 | * |
| 118 | * The EMAC uses FIFOs behind its length and status registers. For this reason, |
| 119 | * it is important to keep the length, status, and data FIFOs in sync when |
| 120 | * reading or writing to them. |
| 121 | * |
| 122 | ******************************************************************************/ |
| 123 | XStatus |
| 124 | XEmac_PollSend(XEmac * InstancePtr, u8 * BufPtr, u32 ByteCount) |
| 125 | { |
| 126 | u32 IntrStatus; |
| 127 | u32 XmitStatus; |
| 128 | XStatus Result; |
| 129 | |
| 130 | XASSERT_NONVOID(InstancePtr != NULL); |
| 131 | XASSERT_NONVOID(BufPtr != NULL); |
| 132 | XASSERT_NONVOID(ByteCount > XEM_HDR_SIZE); /* send at least 1 byte */ |
| 133 | XASSERT_NONVOID(InstancePtr->IsReady == XCOMPONENT_IS_READY); |
| 134 | |
| 135 | /* |
| 136 | * Be sure the device is configured for polled mode and it is started |
| 137 | */ |
| 138 | if (!InstancePtr->IsPolled) { |
| 139 | return XST_NOT_POLLED; |
| 140 | } |
| 141 | |
| 142 | if (InstancePtr->IsStarted != XCOMPONENT_IS_STARTED) { |
| 143 | return XST_DEVICE_IS_STOPPED; |
| 144 | } |
| 145 | |
| 146 | /* |
| 147 | * Check for overruns and underruns for the transmit status and length |
| 148 | * FIFOs and make sure the send packet FIFO is not deadlocked. Any of these |
| 149 | * conditions is bad enough that we do not want to continue. The upper layer |
| 150 | * software should reset the device to resolve the error. |
| 151 | */ |
| 152 | IntrStatus = XIIF_V123B_READ_IISR(InstancePtr->BaseAddress); |
| 153 | |
| 154 | /* |
| 155 | * Overrun errors |
| 156 | */ |
| 157 | if (IntrStatus & (XEM_EIR_XMIT_SFIFO_OVER_MASK | |
| 158 | XEM_EIR_XMIT_LFIFO_OVER_MASK)) { |
| 159 | InstancePtr->Stats.XmitOverrunErrors++; |
| 160 | InstancePtr->Stats.FifoErrors++; |
| 161 | return XST_FIFO_ERROR; |
| 162 | } |
| 163 | |
| 164 | /* |
| 165 | * Underrun errors |
| 166 | */ |
| 167 | if (IntrStatus & (XEM_EIR_XMIT_SFIFO_UNDER_MASK | |
| 168 | XEM_EIR_XMIT_LFIFO_UNDER_MASK)) { |
| 169 | InstancePtr->Stats.XmitUnderrunErrors++; |
| 170 | InstancePtr->Stats.FifoErrors++; |
| 171 | return XST_FIFO_ERROR; |
| 172 | } |
| 173 | |
| 174 | if (XPF_V100B_IS_DEADLOCKED(&InstancePtr->SendFifo)) { |
| 175 | InstancePtr->Stats.FifoErrors++; |
| 176 | return XST_FIFO_ERROR; |
| 177 | } |
| 178 | |
| 179 | /* |
| 180 | * Before writing to the data FIFO, make sure the length FIFO is not |
| 181 | * full. The data FIFO might not be full yet even though the length FIFO |
| 182 | * is. This avoids an overrun condition on the length FIFO and keeps the |
| 183 | * FIFOs in sync. |
| 184 | */ |
| 185 | if (IntrStatus & XEM_EIR_XMIT_LFIFO_FULL_MASK) { |
| 186 | /* |
| 187 | * Clear the latched LFIFO_FULL bit so next time around the most |
| 188 | * current status is represented |
| 189 | */ |
| 190 | XIIF_V123B_WRITE_IISR(InstancePtr->BaseAddress, |
| 191 | XEM_EIR_XMIT_LFIFO_FULL_MASK); |
| 192 | return XST_FIFO_NO_ROOM; |
| 193 | } |
| 194 | |
| 195 | /* |
| 196 | * This is a non-blocking write. The packet FIFO returns an error if there |
| 197 | * is not enough room in the FIFO for this frame. |
| 198 | */ |
| 199 | Result = |
| 200 | XPacketFifoV100b_Write(&InstancePtr->SendFifo, BufPtr, ByteCount); |
| 201 | if (Result != XST_SUCCESS) { |
| 202 | return Result; |
| 203 | } |
| 204 | |
| 205 | /* |
| 206 | * Loop on the MAC's status to wait for any pause to complete. |
| 207 | */ |
| 208 | IntrStatus = XIIF_V123B_READ_IISR(InstancePtr->BaseAddress); |
| 209 | |
| 210 | while ((IntrStatus & XEM_EIR_XMIT_PAUSE_MASK) != 0) { |
| 211 | IntrStatus = XIIF_V123B_READ_IISR(InstancePtr->BaseAddress); |
| 212 | /* |
| 213 | * Clear the pause status from the transmit status register |
| 214 | */ |
| 215 | XIIF_V123B_WRITE_IISR(InstancePtr->BaseAddress, |
| 216 | IntrStatus & XEM_EIR_XMIT_PAUSE_MASK); |
| 217 | } |
| 218 | |
| 219 | /* |
| 220 | * Set the MAC's transmit packet length register to tell it to transmit |
| 221 | */ |
| 222 | XIo_Out32(InstancePtr->BaseAddress + XEM_TPLR_OFFSET, ByteCount); |
| 223 | |
| 224 | /* |
| 225 | * Loop on the MAC's status to wait for the transmit to complete. The |
| 226 | * transmit status is in the FIFO when the XMIT_DONE bit is set. |
| 227 | */ |
| 228 | do { |
| 229 | IntrStatus = XIIF_V123B_READ_IISR(InstancePtr->BaseAddress); |
| 230 | } |
| 231 | while ((IntrStatus & XEM_EIR_XMIT_DONE_MASK) == 0); |
| 232 | |
| 233 | XmitStatus = XIo_In32(InstancePtr->BaseAddress + XEM_TSR_OFFSET); |
| 234 | |
| 235 | InstancePtr->Stats.XmitFrames++; |
| 236 | InstancePtr->Stats.XmitBytes += ByteCount; |
| 237 | |
| 238 | /* |
| 239 | * Check for various errors, bump statistics, and return an error status. |
| 240 | */ |
| 241 | |
| 242 | /* |
| 243 | * Overrun errors |
| 244 | */ |
| 245 | if (IntrStatus & (XEM_EIR_XMIT_SFIFO_OVER_MASK | |
| 246 | XEM_EIR_XMIT_LFIFO_OVER_MASK)) { |
| 247 | InstancePtr->Stats.XmitOverrunErrors++; |
| 248 | InstancePtr->Stats.FifoErrors++; |
| 249 | return XST_FIFO_ERROR; |
| 250 | } |
| 251 | |
| 252 | /* |
| 253 | * Underrun errors |
| 254 | */ |
| 255 | if (IntrStatus & (XEM_EIR_XMIT_SFIFO_UNDER_MASK | |
| 256 | XEM_EIR_XMIT_LFIFO_UNDER_MASK)) { |
| 257 | InstancePtr->Stats.XmitUnderrunErrors++; |
| 258 | InstancePtr->Stats.FifoErrors++; |
| 259 | return XST_FIFO_ERROR; |
| 260 | } |
| 261 | |
| 262 | /* |
| 263 | * Clear the interrupt status register of transmit statuses |
| 264 | */ |
| 265 | XIIF_V123B_WRITE_IISR(InstancePtr->BaseAddress, |
| 266 | IntrStatus & XEM_EIR_XMIT_ALL_MASK); |
| 267 | |
| 268 | /* |
| 269 | * Collision errors are stored in the transmit status register |
| 270 | * instead of the interrupt status register |
| 271 | */ |
| 272 | if (XmitStatus & XEM_TSR_EXCESS_DEFERRAL_MASK) { |
| 273 | InstancePtr->Stats.XmitExcessDeferral++; |
| 274 | return XST_EMAC_COLLISION_ERROR; |
| 275 | } |
| 276 | |
| 277 | if (XmitStatus & XEM_TSR_LATE_COLLISION_MASK) { |
| 278 | InstancePtr->Stats.XmitLateCollisionErrors++; |
| 279 | return XST_EMAC_COLLISION_ERROR; |
| 280 | } |
| 281 | |
| 282 | return XST_SUCCESS; |
| 283 | } |
| 284 | |
| 285 | /*****************************************************************************/ |
| 286 | /** |
| 287 | * |
| 288 | * Receive an Ethernet frame in polled mode. The device/driver must be in polled |
| 289 | * mode before calling this function. The driver receives the frame directly |
| 290 | * from the MAC's packet FIFO. This is a non-blocking receive, in that if there |
| 291 | * is no frame ready to be received at the device, the function returns with an |
| 292 | * error. The MAC's error status is not checked, so statistics are not updated |
| 293 | * for polled receive. The buffer into which the frame will be received must be |
| 294 | * word-aligned. |
| 295 | * |
| 296 | * @param InstancePtr is a pointer to the XEmac instance to be worked on. |
| 297 | * @param BufPtr is a pointer to a word-aligned buffer into which the received |
| 298 | * Ethernet frame will be copied. |
| 299 | * @param ByteCountPtr is both an input and an output parameter. It is a pointer |
| 300 | * to a 32-bit word that contains the size of the buffer on entry into the |
| 301 | * function and the size the received frame on return from the function. |
| 302 | * |
| 303 | * @return |
| 304 | * |
| 305 | * - XST_SUCCESS if the frame was sent successfully |
| 306 | * - XST_DEVICE_IS_STOPPED if the device has not yet been started |
| 307 | * - XST_NOT_POLLED if the device is not in polled mode |
| 308 | * - XST_NO_DATA if there is no frame to be received from the FIFO |
| 309 | * - XST_BUFFER_TOO_SMALL if the buffer to receive the frame is too small for |
| 310 | * the frame waiting in the FIFO. |
| 311 | * |
| 312 | * @note |
| 313 | * |
| 314 | * Input buffer must be big enough to hold the largest Ethernet frame. Buffer |
| 315 | * must also be 32-bit aligned. |
| 316 | * |
| 317 | * @internal |
| 318 | * |
| 319 | * The EMAC uses FIFOs behind its length and status registers. For this reason, |
| 320 | * it is important to keep the length, status, and data FIFOs in sync when |
| 321 | * reading or writing to them. |
| 322 | * |
| 323 | ******************************************************************************/ |
| 324 | XStatus |
| 325 | XEmac_PollRecv(XEmac * InstancePtr, u8 * BufPtr, u32 * ByteCountPtr) |
| 326 | { |
| 327 | XStatus Result; |
| 328 | u32 PktLength; |
| 329 | u32 IntrStatus; |
| 330 | |
| 331 | XASSERT_NONVOID(InstancePtr != NULL); |
| 332 | XASSERT_NONVOID(BufPtr != NULL); |
| 333 | XASSERT_NONVOID(ByteCountPtr != NULL); |
| 334 | XASSERT_NONVOID(InstancePtr->IsReady == XCOMPONENT_IS_READY); |
| 335 | |
| 336 | /* |
| 337 | * Be sure the device is configured for polled mode and it is started |
| 338 | */ |
| 339 | if (!InstancePtr->IsPolled) { |
| 340 | return XST_NOT_POLLED; |
| 341 | } |
| 342 | |
| 343 | if (InstancePtr->IsStarted != XCOMPONENT_IS_STARTED) { |
| 344 | return XST_DEVICE_IS_STOPPED; |
| 345 | } |
| 346 | |
| 347 | /* |
| 348 | * Make sure the buffer is big enough to hold the maximum frame size. |
| 349 | * We need to do this because as soon as we read the MAC's packet length |
| 350 | * register, which is actually a FIFO, we remove that length from the |
| 351 | * FIFO. We do not want to read the length FIFO without also reading the |
| 352 | * data FIFO since this would get the FIFOs out of sync. So we have to |
| 353 | * make this restriction. |
| 354 | */ |
| 355 | if (*ByteCountPtr < XEM_MAX_FRAME_SIZE) { |
| 356 | return XST_BUFFER_TOO_SMALL; |
| 357 | } |
| 358 | |
| 359 | /* |
| 360 | * First check for packet FIFO deadlock and return an error if it has |
| 361 | * occurred. A reset by the caller is necessary to correct this problem. |
| 362 | */ |
| 363 | if (XPF_V100B_IS_DEADLOCKED(&InstancePtr->RecvFifo)) { |
| 364 | InstancePtr->Stats.FifoErrors++; |
| 365 | return XST_FIFO_ERROR; |
| 366 | } |
| 367 | |
| 368 | /* |
| 369 | * Get the interrupt status to know what happened (whether an error occurred |
| 370 | * and/or whether frames have been received successfully). When clearing the |
| 371 | * intr status register, clear only statuses that pertain to receive. |
| 372 | */ |
| 373 | IntrStatus = XIIF_V123B_READ_IISR(InstancePtr->BaseAddress); |
| 374 | XIIF_V123B_WRITE_IISR(InstancePtr->BaseAddress, |
| 375 | IntrStatus & XEM_EIR_RECV_ALL_MASK); |
| 376 | |
| 377 | /* |
| 378 | * Check receive errors and bump statistics so the caller will have a clue |
| 379 | * as to why data may not have been received. We continue on if an error |
| 380 | * occurred since there still may be frames that were received successfully. |
| 381 | */ |
| 382 | if (IntrStatus & (XEM_EIR_RECV_LFIFO_OVER_MASK | |
| 383 | XEM_EIR_RECV_DFIFO_OVER_MASK)) { |
| 384 | InstancePtr->Stats.RecvOverrunErrors++; |
| 385 | InstancePtr->Stats.FifoErrors++; |
| 386 | } |
| 387 | |
| 388 | if (IntrStatus & XEM_EIR_RECV_LFIFO_UNDER_MASK) { |
| 389 | InstancePtr->Stats.RecvUnderrunErrors++; |
| 390 | InstancePtr->Stats.FifoErrors++; |
| 391 | } |
| 392 | |
| 393 | /* |
| 394 | * General receive errors |
| 395 | */ |
| 396 | if (IntrStatus & XEM_EIR_RECV_ERROR_MASK) { |
| 397 | if (IntrStatus & XEM_EIR_RECV_MISSED_FRAME_MASK) { |
| 398 | InstancePtr->Stats.RecvMissedFrameErrors = |
| 399 | XIo_In32(InstancePtr->BaseAddress + |
| 400 | XEM_RMFC_OFFSET); |
| 401 | } |
| 402 | |
| 403 | if (IntrStatus & XEM_EIR_RECV_COLLISION_MASK) { |
| 404 | InstancePtr->Stats.RecvCollisionErrors = |
| 405 | XIo_In32(InstancePtr->BaseAddress + XEM_RCC_OFFSET); |
| 406 | } |
| 407 | |
| 408 | if (IntrStatus & XEM_EIR_RECV_FCS_ERROR_MASK) { |
| 409 | InstancePtr->Stats.RecvFcsErrors = |
| 410 | XIo_In32(InstancePtr->BaseAddress + |
| 411 | XEM_RFCSEC_OFFSET); |
| 412 | } |
| 413 | |
| 414 | if (IntrStatus & XEM_EIR_RECV_LEN_ERROR_MASK) { |
| 415 | InstancePtr->Stats.RecvLengthFieldErrors++; |
| 416 | } |
| 417 | |
| 418 | if (IntrStatus & XEM_EIR_RECV_SHORT_ERROR_MASK) { |
| 419 | InstancePtr->Stats.RecvShortErrors++; |
| 420 | } |
| 421 | |
| 422 | if (IntrStatus & XEM_EIR_RECV_LONG_ERROR_MASK) { |
| 423 | InstancePtr->Stats.RecvLongErrors++; |
| 424 | } |
| 425 | |
| 426 | if (IntrStatus & XEM_EIR_RECV_ALIGN_ERROR_MASK) { |
| 427 | InstancePtr->Stats.RecvAlignmentErrors = |
| 428 | XIo_In32(InstancePtr->BaseAddress + |
| 429 | XEM_RAEC_OFFSET); |
| 430 | } |
| 431 | } |
| 432 | |
| 433 | /* |
| 434 | * Before reading from the length FIFO, make sure the length FIFO is not |
| 435 | * empty. We could cause an underrun error if we try to read from an |
| 436 | * empty FIFO. |
| 437 | */ |
| 438 | if ((IntrStatus & XEM_EIR_RECV_DONE_MASK) == 0) { |
| 439 | return XST_NO_DATA; |
| 440 | } |
| 441 | |
| 442 | /* |
| 443 | * Determine, from the MAC, the length of the next packet available |
| 444 | * in the data FIFO (there should be a non-zero length here) |
| 445 | */ |
| 446 | PktLength = XIo_In32(InstancePtr->BaseAddress + XEM_RPLR_OFFSET); |
| 447 | if (PktLength == 0) { |
| 448 | return XST_NO_DATA; |
| 449 | } |
| 450 | |
| 451 | /* |
| 452 | * Write the RECV_DONE bit in the status register to clear it. This bit |
| 453 | * indicates the RPLR is non-empty, and we know it's set at this point. |
| 454 | * We clear it so that subsequent entry into this routine will reflect the |
| 455 | * current status. This is done because the non-empty bit is latched in the |
| 456 | * IPIF, which means it may indicate a non-empty condition even though |
| 457 | * there is something in the FIFO. |
| 458 | */ |
| 459 | XIIF_V123B_WRITE_IISR(InstancePtr->BaseAddress, XEM_EIR_RECV_DONE_MASK); |
| 460 | |
| 461 | /* |
| 462 | * We assume that the MAC never has a length bigger than the largest |
| 463 | * Ethernet frame, so no need to make another check here. |
| 464 | */ |
| 465 | |
| 466 | /* |
| 467 | * This is a non-blocking read. The FIFO returns an error if there is |
| 468 | * not at least the requested amount of data in the FIFO. |
| 469 | */ |
| 470 | Result = |
| 471 | XPacketFifoV100b_Read(&InstancePtr->RecvFifo, BufPtr, PktLength); |
| 472 | if (Result != XST_SUCCESS) { |
| 473 | return Result; |
| 474 | } |
| 475 | |
| 476 | InstancePtr->Stats.RecvFrames++; |
| 477 | InstancePtr->Stats.RecvBytes += PktLength; |
| 478 | |
| 479 | *ByteCountPtr = PktLength; |
| 480 | |
| 481 | return XST_SUCCESS; |
| 482 | } |