Suneel Garapati | 9de7d2b | 2020-08-26 14:37:22 +0200 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * Copyright (C) 2018 Marvell International Ltd. |
| 4 | */ |
| 5 | |
| 6 | #include <dm.h> |
| 7 | #include <dm/device-internal.h> |
| 8 | #include <dm/devres.h> |
| 9 | #include <dm/of_access.h> |
| 10 | #include <malloc.h> |
| 11 | #include <memalign.h> |
| 12 | #include <nand.h> |
| 13 | #include <pci.h> |
| 14 | #include <time.h> |
| 15 | #include <linux/bitfield.h> |
| 16 | #include <linux/ctype.h> |
| 17 | #include <linux/dma-mapping.h> |
| 18 | #include <linux/delay.h> |
| 19 | #include <linux/errno.h> |
| 20 | #include <linux/err.h> |
| 21 | #include <linux/ioport.h> |
| 22 | #include <linux/libfdt.h> |
| 23 | #include <linux/mtd/mtd.h> |
| 24 | #include <linux/mtd/nand_bch.h> |
| 25 | #include <linux/mtd/nand_ecc.h> |
| 26 | #include <asm/io.h> |
| 27 | #include <asm/types.h> |
| 28 | #include <asm/dma-mapping.h> |
| 29 | #include <asm/arch/clock.h> |
| 30 | #include "octeontx_bch.h" |
| 31 | |
| 32 | #ifdef DEBUG |
| 33 | # undef CONFIG_LOGLEVEL |
| 34 | # define CONFIG_LOGLEVEL 8 |
| 35 | #endif |
| 36 | |
| 37 | /* |
| 38 | * The NDF_CMD queue takes commands between 16 - 128 bit. |
| 39 | * All commands must be 16 bit aligned and are little endian. |
| 40 | * WAIT_STATUS commands must be 64 bit aligned. |
| 41 | * Commands are selected by the 4 bit opcode. |
| 42 | * |
| 43 | * Available Commands: |
| 44 | * |
| 45 | * 16 Bit: |
| 46 | * NOP |
| 47 | * WAIT |
| 48 | * BUS_ACQ, BUS_REL |
| 49 | * CHIP_EN, CHIP_DIS |
| 50 | * |
| 51 | * 32 Bit: |
| 52 | * CLE_CMD |
| 53 | * RD_CMD, RD_EDO_CMD |
| 54 | * WR_CMD |
| 55 | * |
| 56 | * 64 Bit: |
| 57 | * SET_TM_PAR |
| 58 | * |
| 59 | * 96 Bit: |
| 60 | * ALE_CMD |
| 61 | * |
| 62 | * 128 Bit: |
| 63 | * WAIT_STATUS, WAIT_STATUS_ALE |
| 64 | */ |
| 65 | |
| 66 | /* NDF Register offsets */ |
| 67 | #define NDF_CMD 0x0 |
| 68 | #define NDF_MISC 0x8 |
| 69 | #define NDF_ECC_CNT 0x10 |
| 70 | #define NDF_DRBELL 0x30 |
| 71 | #define NDF_ST_REG 0x38 /* status */ |
| 72 | #define NDF_INT 0x40 |
| 73 | #define NDF_INT_W1S 0x48 |
| 74 | #define NDF_DMA_CFG 0x50 |
| 75 | #define NDF_DMA_ADR 0x58 |
| 76 | #define NDF_INT_ENA_W1C 0x60 |
| 77 | #define NDF_INT_ENA_W1S 0x68 |
| 78 | |
| 79 | /* NDF command opcodes */ |
| 80 | #define NDF_OP_NOP 0x0 |
| 81 | #define NDF_OP_SET_TM_PAR 0x1 |
| 82 | #define NDF_OP_WAIT 0x2 |
| 83 | #define NDF_OP_CHIP_EN_DIS 0x3 |
| 84 | #define NDF_OP_CLE_CMD 0x4 |
| 85 | #define NDF_OP_ALE_CMD 0x5 |
| 86 | #define NDF_OP_WR_CMD 0x8 |
| 87 | #define NDF_OP_RD_CMD 0x9 |
| 88 | #define NDF_OP_RD_EDO_CMD 0xa |
| 89 | #define NDF_OP_WAIT_STATUS 0xb /* same opcode for WAIT_STATUS_ALE */ |
| 90 | #define NDF_OP_BUS_ACQ_REL 0xf |
| 91 | |
| 92 | #define NDF_BUS_ACQUIRE 1 |
| 93 | #define NDF_BUS_RELEASE 0 |
| 94 | |
| 95 | #define DBGX_EDSCR(X) (0x87A008000088 + (X) * 0x80000) |
| 96 | |
| 97 | struct ndf_nop_cmd { |
| 98 | u16 opcode: 4; |
| 99 | u16 nop: 12; |
| 100 | }; |
| 101 | |
| 102 | struct ndf_wait_cmd { |
| 103 | u16 opcode:4; |
| 104 | u16 r_b:1; /* wait for one cycle or PBUS_WAIT deassert */ |
| 105 | u16:3; |
| 106 | u16 wlen:3; /* timing parameter select */ |
| 107 | u16:5; |
| 108 | }; |
| 109 | |
| 110 | struct ndf_bus_cmd { |
| 111 | u16 opcode:4; |
| 112 | u16 direction:4; /* 1 = acquire, 0 = release */ |
| 113 | u16:8; |
| 114 | }; |
| 115 | |
| 116 | struct ndf_chip_cmd { |
| 117 | u16 opcode:4; |
| 118 | u16 chip:3; /* select chip, 0 = disable */ |
| 119 | u16 enable:1; /* 1 = enable, 0 = disable */ |
| 120 | u16 bus_width:2; /* 10 = 16 bit, 01 = 8 bit */ |
| 121 | u16:6; |
| 122 | }; |
| 123 | |
| 124 | struct ndf_cle_cmd { |
| 125 | u32 opcode:4; |
| 126 | u32:4; |
| 127 | u32 cmd_data:8; /* command sent to the PBUS AD pins */ |
| 128 | u32 clen1:3; /* time between PBUS CLE and WE asserts */ |
| 129 | u32 clen2:3; /* time WE remains asserted */ |
| 130 | u32 clen3:3; /* time between WE deassert and CLE */ |
| 131 | u32:7; |
| 132 | }; |
| 133 | |
| 134 | /* RD_EDO_CMD uses the same layout as RD_CMD */ |
| 135 | struct ndf_rd_cmd { |
| 136 | u32 opcode:4; |
| 137 | u32 data:16; /* data bytes */ |
| 138 | u32 rlen1:3; |
| 139 | u32 rlen2:3; |
| 140 | u32 rlen3:3; |
| 141 | u32 rlen4:3; |
| 142 | }; |
| 143 | |
| 144 | struct ndf_wr_cmd { |
| 145 | u32 opcode:4; |
| 146 | u32 data:16; /* data bytes */ |
| 147 | u32:4; |
| 148 | u32 wlen1:3; |
| 149 | u32 wlen2:3; |
| 150 | u32:3; |
| 151 | }; |
| 152 | |
| 153 | struct ndf_set_tm_par_cmd { |
| 154 | u64 opcode:4; |
| 155 | u64 tim_mult:4; /* multiplier for the seven parameters */ |
| 156 | u64 tm_par1:8; /* --> Following are the 7 timing parameters that */ |
| 157 | u64 tm_par2:8; /* specify the number of coprocessor cycles. */ |
| 158 | u64 tm_par3:8; /* A value of zero means one cycle. */ |
| 159 | u64 tm_par4:8; /* All values are scaled by tim_mult */ |
| 160 | u64 tm_par5:8; /* using tim_par * (2 ^ tim_mult). */ |
| 161 | u64 tm_par6:8; |
| 162 | u64 tm_par7:8; |
| 163 | }; |
| 164 | |
| 165 | struct ndf_ale_cmd { |
| 166 | u32 opcode:4; |
| 167 | u32:4; |
| 168 | u32 adr_byte_num:4; /* number of address bytes to be sent */ |
| 169 | u32:4; |
| 170 | u32 alen1:3; |
| 171 | u32 alen2:3; |
| 172 | u32 alen3:3; |
| 173 | u32 alen4:3; |
| 174 | u32:4; |
| 175 | u8 adr_byt1; |
| 176 | u8 adr_byt2; |
| 177 | u8 adr_byt3; |
| 178 | u8 adr_byt4; |
| 179 | u8 adr_byt5; |
| 180 | u8 adr_byt6; |
| 181 | u8 adr_byt7; |
| 182 | u8 adr_byt8; |
| 183 | }; |
| 184 | |
| 185 | struct ndf_wait_status_cmd { |
| 186 | u32 opcode:4; |
| 187 | u32:4; |
| 188 | u32 data:8; /** data */ |
| 189 | u32 clen1:3; |
| 190 | u32 clen2:3; |
| 191 | u32 clen3:3; |
| 192 | u32:8; |
| 193 | /** set to 5 to select WAIT_STATUS_ALE command */ |
| 194 | u32 ale_ind:8; |
| 195 | /** ALE only: number of address bytes to be sent */ |
| 196 | u32 adr_byte_num:4; |
| 197 | u32:4; |
| 198 | u32 alen1:3; /* ALE only */ |
| 199 | u32 alen2:3; /* ALE only */ |
| 200 | u32 alen3:3; /* ALE only */ |
| 201 | u32 alen4:3; /* ALE only */ |
| 202 | u32:4; |
| 203 | u8 adr_byt[4]; /* ALE only */ |
| 204 | u32 nine:4; /* set to 9 */ |
| 205 | u32 and_mask:8; |
| 206 | u32 comp_byte:8; |
| 207 | u32 rlen1:3; |
| 208 | u32 rlen2:3; |
| 209 | u32 rlen3:3; |
| 210 | u32 rlen4:3; |
| 211 | }; |
| 212 | |
| 213 | union ndf_cmd { |
| 214 | u64 val[2]; |
| 215 | union { |
| 216 | struct ndf_nop_cmd nop; |
| 217 | struct ndf_wait_cmd wait; |
| 218 | struct ndf_bus_cmd bus_acq_rel; |
| 219 | struct ndf_chip_cmd chip_en_dis; |
| 220 | struct ndf_cle_cmd cle_cmd; |
| 221 | struct ndf_rd_cmd rd_cmd; |
| 222 | struct ndf_wr_cmd wr_cmd; |
| 223 | struct ndf_set_tm_par_cmd set_tm_par; |
| 224 | struct ndf_ale_cmd ale_cmd; |
| 225 | struct ndf_wait_status_cmd wait_status; |
| 226 | } u; |
| 227 | }; |
| 228 | |
| 229 | /** Disable multi-bit error hangs */ |
| 230 | #define NDF_MISC_MB_DIS BIT_ULL(27) |
| 231 | /** High watermark for NBR FIFO or load/store operations */ |
| 232 | #define NDF_MISC_NBR_HWM GENMASK_ULL(26, 24) |
| 233 | /** Wait input filter count */ |
| 234 | #define NDF_MISC_WAIT_CNT GENMASK_ULL(23, 18) |
| 235 | /** Unfilled NFD_CMD queue bytes */ |
| 236 | #define NDF_MISC_FR_BYTE GENMASK_ULL(17, 7) |
| 237 | /** Set by HW when it reads the last 8 bytes of NDF_CMD */ |
| 238 | #define NDF_MISC_RD_DONE BIT_ULL(6) |
| 239 | /** Set by HW when it reads. SW read of NDF_CMD clears it */ |
| 240 | #define NDF_MISC_RD_VAL BIT_ULL(5) |
| 241 | /** Let HW read NDF_CMD queue. Cleared on SW NDF_CMD write */ |
| 242 | #define NDF_MISC_RD_CMD BIT_ULL(4) |
| 243 | /** Boot disable */ |
| 244 | #define NDF_MISC_BT_DIS BIT_ULL(2) |
| 245 | /** Stop command execution after completing command queue */ |
| 246 | #define NDF_MISC_EX_DIS BIT_ULL(1) |
| 247 | /** Reset fifo */ |
| 248 | #define NDF_MISC_RST_FF BIT_ULL(0) |
| 249 | |
| 250 | /** DMA engine enable */ |
| 251 | #define NDF_DMA_CFG_EN BIT_ULL(63) |
| 252 | /** Read or write */ |
| 253 | #define NDF_DMA_CFG_RW BIT_ULL(62) |
| 254 | /** Terminates DMA and clears enable bit */ |
| 255 | #define NDF_DMA_CFG_CLR BIT_ULL(61) |
| 256 | /** 32-bit swap enable */ |
| 257 | #define NDF_DMA_CFG_SWAP32 BIT_ULL(59) |
| 258 | /** 16-bit swap enable */ |
| 259 | #define NDF_DMA_CFG_SWAP16 BIT_ULL(58) |
| 260 | /** 8-bit swap enable */ |
| 261 | #define NDF_DMA_CFG_SWAP8 BIT_ULL(57) |
| 262 | /** Endian mode */ |
| 263 | #define NDF_DMA_CFG_CMD_BE BIT_ULL(56) |
| 264 | /** Number of 64 bit transfers */ |
| 265 | #define NDF_DMA_CFG_SIZE GENMASK_ULL(55, 36) |
| 266 | |
| 267 | /** Command execution status idle */ |
| 268 | #define NDF_ST_REG_EXE_IDLE BIT_ULL(15) |
| 269 | /** Command execution SM states */ |
| 270 | #define NDF_ST_REG_EXE_SM GENMASK_ULL(14, 11) |
| 271 | /** DMA and load SM states */ |
| 272 | #define NDF_ST_REG_BT_SM GENMASK_ULL(10, 7) |
| 273 | /** Queue read-back SM bad state */ |
| 274 | #define NDF_ST_REG_RD_FF_BAD BIT_ULL(6) |
| 275 | /** Queue read-back SM states */ |
| 276 | #define NDF_ST_REG_RD_FF GENMASK_ULL(5, 4) |
| 277 | /** Main SM is in a bad state */ |
| 278 | #define NDF_ST_REG_MAIN_BAD BIT_ULL(3) |
| 279 | /** Main SM states */ |
| 280 | #define NDF_ST_REG_MAIN_SM GENMASK_ULL(2, 0) |
| 281 | |
| 282 | #define MAX_NAND_NAME_LEN 64 |
| 283 | #if (defined(NAND_MAX_PAGESIZE) && (NAND_MAX_PAGESIZE > 4096)) || \ |
| 284 | !defined(NAND_MAX_PAGESIZE) |
| 285 | # undef NAND_MAX_PAGESIZE |
| 286 | # define NAND_MAX_PAGESIZE 4096 |
| 287 | #endif |
| 288 | #if (defined(NAND_MAX_OOBSIZE) && (NAND_MAX_OOBSIZE > 256)) || \ |
| 289 | !defined(NAND_MAX_OOBSIZE) |
| 290 | # undef NAND_MAX_OOBSIZE |
| 291 | # define NAND_MAX_OOBSIZE 256 |
| 292 | #endif |
| 293 | |
| 294 | #define OCTEONTX_NAND_DRIVER_NAME "octeontx_nand" |
| 295 | |
| 296 | #define NDF_TIMEOUT 1000 /** Timeout in ms */ |
| 297 | #define USEC_PER_SEC 1000000 /** Linux compatibility */ |
| 298 | #ifndef NAND_MAX_CHIPS |
| 299 | # define NAND_MAX_CHIPS 8 /** Linux compatibility */ |
| 300 | #endif |
| 301 | |
| 302 | struct octeontx_nand_chip { |
| 303 | struct list_head node; |
| 304 | struct nand_chip nand; |
| 305 | struct ndf_set_tm_par_cmd timings; |
| 306 | int cs; |
| 307 | int selected_page; |
| 308 | int iface_mode; |
| 309 | int row_bytes; |
| 310 | int col_bytes; |
| 311 | bool oob_only; |
| 312 | bool iface_set; |
| 313 | }; |
| 314 | |
| 315 | struct octeontx_nand_buf { |
| 316 | u8 *dmabuf; |
| 317 | dma_addr_t dmaaddr; |
| 318 | int dmabuflen; |
| 319 | int data_len; |
| 320 | int data_index; |
| 321 | }; |
| 322 | |
| 323 | /** NAND flash controller (NDF) related information */ |
| 324 | struct octeontx_nfc { |
| 325 | struct nand_hw_control controller; |
| 326 | struct udevice *dev; |
| 327 | void __iomem *base; |
| 328 | struct list_head chips; |
| 329 | int selected_chip; /* Currently selected NAND chip number */ |
| 330 | |
| 331 | /* |
| 332 | * Status is separate from octeontx_nand_buf because |
| 333 | * it can be used in parallel and during init. |
| 334 | */ |
| 335 | u8 *stat; |
| 336 | dma_addr_t stat_addr; |
| 337 | bool use_status; |
| 338 | |
| 339 | struct octeontx_nand_buf buf; |
| 340 | union bch_resp *bch_resp; |
| 341 | dma_addr_t bch_rhandle; |
| 342 | |
| 343 | /* BCH of all-0xff, so erased pages read as error-free */ |
| 344 | unsigned char *eccmask; |
| 345 | }; |
| 346 | |
| 347 | /* settable timings - 0..7 select timing of alen1..4/clen1..3/etc */ |
| 348 | enum tm_idx { |
| 349 | t0, /* fixed at 4<<mult cycles */ |
| 350 | t1, t2, t3, t4, t5, t6, t7, /* settable per ONFI-timing mode */ |
| 351 | }; |
| 352 | |
| 353 | struct octeontx_probe_device { |
| 354 | struct list_head list; |
| 355 | struct udevice *dev; |
| 356 | }; |
| 357 | |
| 358 | static struct bch_vf *bch_vf; |
| 359 | /** Deferred devices due to BCH not being ready */ |
| 360 | LIST_HEAD(octeontx_pci_nand_deferred_devices); |
| 361 | |
| 362 | /** default parameters used for probing chips */ |
| 363 | #define MAX_ONFI_MODE 5 |
| 364 | |
| 365 | static int default_onfi_timing; |
| 366 | static int slew_ns = 2; /* default timing padding */ |
| 367 | static int def_ecc_size = 512; /* 1024 best for sw_bch, <= 4095 for hw_bch */ |
| 368 | static int default_width = 1; /* 8 bit */ |
| 369 | static int default_page_size = 2048; |
| 370 | static struct ndf_set_tm_par_cmd default_timing_parms; |
| 371 | |
| 372 | /** Port from Linux */ |
| 373 | #define readq_poll_timeout(addr, val, cond, delay_us, timeout_us) \ |
| 374 | ({ \ |
| 375 | ulong __start = get_timer(0); \ |
| 376 | void *__addr = (addr); \ |
| 377 | const ulong __timeout_ms = timeout_us / 1000; \ |
| 378 | do { \ |
| 379 | (val) = readq(__addr); \ |
| 380 | if (cond) \ |
| 381 | break; \ |
| 382 | if (timeout_us && get_timer(__start) > __timeout_ms) { \ |
| 383 | (val) = readq(__addr); \ |
| 384 | break; \ |
| 385 | } \ |
| 386 | if (delay_us) \ |
| 387 | udelay(delay_us); \ |
| 388 | } while (1); \ |
| 389 | (cond) ? 0 : -ETIMEDOUT; \ |
| 390 | }) |
| 391 | |
| 392 | /** Ported from Linux 4.9.0 include/linux/of.h for compatibility */ |
| 393 | static inline int of_get_child_count(const ofnode node) |
| 394 | { |
| 395 | return fdtdec_get_child_count(gd->fdt_blob, ofnode_to_offset(node)); |
| 396 | } |
| 397 | |
| 398 | /** |
| 399 | * Linux compatibility from Linux 4.9.0 drivers/mtd/nand/nand_base.c |
| 400 | */ |
| 401 | static int nand_ooblayout_ecc_lp(struct mtd_info *mtd, int section, |
| 402 | struct mtd_oob_region *oobregion) |
| 403 | { |
| 404 | struct nand_chip *chip = mtd_to_nand(mtd); |
| 405 | struct nand_ecc_ctrl *ecc = &chip->ecc; |
| 406 | |
| 407 | if (section || !ecc->total) |
| 408 | return -ERANGE; |
| 409 | |
| 410 | oobregion->length = ecc->total; |
| 411 | oobregion->offset = mtd->oobsize - oobregion->length; |
| 412 | |
| 413 | return 0; |
| 414 | } |
| 415 | |
| 416 | /** |
| 417 | * Linux compatibility from Linux 4.9.0 drivers/mtd/nand/nand_base.c |
| 418 | */ |
| 419 | static int nand_ooblayout_free_lp(struct mtd_info *mtd, int section, |
| 420 | struct mtd_oob_region *oobregion) |
| 421 | { |
| 422 | struct nand_chip *chip = mtd_to_nand(mtd); |
| 423 | struct nand_ecc_ctrl *ecc = &chip->ecc; |
| 424 | |
| 425 | if (section) |
| 426 | return -ERANGE; |
| 427 | |
| 428 | oobregion->length = mtd->oobsize - ecc->total - 2; |
| 429 | oobregion->offset = 2; |
| 430 | |
| 431 | return 0; |
| 432 | } |
| 433 | |
| 434 | static const struct mtd_ooblayout_ops nand_ooblayout_lp_ops = { |
| 435 | .ecc = nand_ooblayout_ecc_lp, |
| 436 | .rfree = nand_ooblayout_free_lp, |
| 437 | }; |
| 438 | |
| 439 | static inline struct octeontx_nand_chip *to_otx_nand(struct nand_chip *nand) |
| 440 | { |
| 441 | return container_of(nand, struct octeontx_nand_chip, nand); |
| 442 | } |
| 443 | |
| 444 | static inline struct octeontx_nfc *to_otx_nfc(struct nand_hw_control *ctrl) |
| 445 | { |
| 446 | return container_of(ctrl, struct octeontx_nfc, controller); |
| 447 | } |
| 448 | |
| 449 | static int octeontx_nand_calc_ecc_layout(struct nand_chip *nand) |
| 450 | { |
| 451 | struct nand_ecclayout *layout = nand->ecc.layout; |
| 452 | struct octeontx_nfc *tn = to_otx_nfc(nand->controller); |
| 453 | struct mtd_info *mtd = &nand->mtd; |
| 454 | int oobsize = mtd->oobsize; |
| 455 | int i; |
| 456 | bool layout_alloc = false; |
| 457 | |
| 458 | if (!layout) { |
| 459 | layout = devm_kzalloc(tn->dev, sizeof(*layout), GFP_KERNEL); |
| 460 | if (!layout) |
| 461 | return -ENOMEM; |
| 462 | nand->ecc.layout = layout; |
| 463 | layout_alloc = true; |
| 464 | } |
| 465 | layout->eccbytes = nand->ecc.steps * nand->ecc.bytes; |
| 466 | /* Reserve 2 bytes for bad block marker */ |
| 467 | if (layout->eccbytes + 2 > oobsize) { |
| 468 | pr_err("No suitable oob scheme available for oobsize %d eccbytes %u\n", |
| 469 | oobsize, layout->eccbytes); |
| 470 | goto fail; |
| 471 | } |
| 472 | /* put ecc bytes at oob tail */ |
| 473 | for (i = 0; i < layout->eccbytes; i++) |
| 474 | layout->eccpos[i] = oobsize - layout->eccbytes + i; |
| 475 | layout->oobfree[0].offset = 2; |
| 476 | layout->oobfree[0].length = oobsize - 2 - layout->eccbytes; |
| 477 | nand->ecc.layout = layout; |
| 478 | return 0; |
| 479 | |
| 480 | fail: |
| 481 | if (layout_alloc) |
| 482 | kfree(layout); |
| 483 | return -1; |
| 484 | } |
| 485 | |
| 486 | /* |
| 487 | * Read a single byte from the temporary buffer. Used after READID |
| 488 | * to get the NAND information and for STATUS. |
| 489 | */ |
| 490 | static u8 octeontx_nand_read_byte(struct mtd_info *mtd) |
| 491 | { |
| 492 | struct nand_chip *nand = mtd_to_nand(mtd); |
| 493 | struct octeontx_nfc *tn = to_otx_nfc(nand->controller); |
| 494 | |
| 495 | if (tn->use_status) { |
| 496 | tn->use_status = false; |
| 497 | return *tn->stat; |
| 498 | } |
| 499 | |
| 500 | if (tn->buf.data_index < tn->buf.data_len) |
| 501 | return tn->buf.dmabuf[tn->buf.data_index++]; |
| 502 | |
| 503 | dev_err(tn->dev, "No data to read, idx: 0x%x, len: 0x%x\n", |
| 504 | tn->buf.data_index, tn->buf.data_len); |
| 505 | |
| 506 | return 0xff; |
| 507 | } |
| 508 | |
| 509 | /* |
| 510 | * Read a number of pending bytes from the temporary buffer. Used |
| 511 | * to get page and OOB data. |
| 512 | */ |
| 513 | static void octeontx_nand_read_buf(struct mtd_info *mtd, u8 *buf, int len) |
| 514 | { |
| 515 | struct nand_chip *nand = mtd_to_nand(mtd); |
| 516 | struct octeontx_nfc *tn = to_otx_nfc(nand->controller); |
| 517 | |
| 518 | if (len > tn->buf.data_len - tn->buf.data_index) { |
| 519 | dev_err(tn->dev, "Not enough data for read of %d bytes\n", len); |
| 520 | return; |
| 521 | } |
| 522 | |
| 523 | memcpy(buf, tn->buf.dmabuf + tn->buf.data_index, len); |
| 524 | tn->buf.data_index += len; |
| 525 | } |
| 526 | |
| 527 | static void octeontx_nand_write_buf(struct mtd_info *mtd, |
| 528 | const u8 *buf, int len) |
| 529 | { |
| 530 | struct nand_chip *nand = mtd_to_nand(mtd); |
| 531 | struct octeontx_nfc *tn = to_otx_nfc(nand->controller); |
| 532 | |
| 533 | memcpy(tn->buf.dmabuf + tn->buf.data_len, buf, len); |
| 534 | tn->buf.data_len += len; |
| 535 | } |
| 536 | |
| 537 | /* Overwrite default function to avoid sync abort on chip = -1. */ |
| 538 | static void octeontx_nand_select_chip(struct mtd_info *mtd, int chip) |
| 539 | { |
| 540 | } |
| 541 | |
| 542 | static inline int timing_to_cycle(u32 psec, unsigned long clock) |
| 543 | { |
| 544 | unsigned int ns; |
| 545 | int ticks; |
| 546 | |
| 547 | ns = DIV_ROUND_UP(psec, 1000); |
| 548 | ns += slew_ns; |
| 549 | |
| 550 | /* no rounding needed since clock is multiple of 1MHz */ |
| 551 | clock /= 1000000; |
| 552 | ns *= clock; |
| 553 | |
| 554 | ticks = DIV_ROUND_UP(ns, 1000); |
| 555 | |
| 556 | /* actual delay is (tm_parX+1)<<tim_mult */ |
| 557 | if (ticks) |
| 558 | ticks--; |
| 559 | |
| 560 | return ticks; |
| 561 | } |
| 562 | |
| 563 | static void set_timings(struct octeontx_nand_chip *chip, |
| 564 | struct ndf_set_tm_par_cmd *tp, |
| 565 | const struct nand_sdr_timings *timings, |
| 566 | unsigned long sclk) |
| 567 | { |
| 568 | /* scaled coprocessor-cycle values */ |
| 569 | u32 s_wh, s_cls, s_clh, s_rp, s_wb, s_wc; |
| 570 | |
| 571 | tp->tim_mult = 0; |
| 572 | s_wh = timing_to_cycle(timings->tWH_min, sclk); |
| 573 | s_cls = timing_to_cycle(timings->tCLS_min, sclk); |
| 574 | s_clh = timing_to_cycle(timings->tCLH_min, sclk); |
| 575 | s_rp = timing_to_cycle(timings->tRP_min, sclk); |
| 576 | s_wb = timing_to_cycle(timings->tWB_max, sclk); |
| 577 | s_wc = timing_to_cycle(timings->tWC_min, sclk); |
| 578 | |
| 579 | tp->tm_par1 = s_wh; |
| 580 | tp->tm_par2 = s_clh; |
| 581 | tp->tm_par3 = s_rp + 1; |
| 582 | tp->tm_par4 = s_cls - s_wh; |
| 583 | tp->tm_par5 = s_wc - s_wh + 1; |
| 584 | tp->tm_par6 = s_wb; |
| 585 | tp->tm_par7 = 0; |
| 586 | tp->tim_mult++; /* overcompensate for bad math */ |
| 587 | |
| 588 | /* TODO: comment parameter re-use */ |
| 589 | |
| 590 | pr_debug("%s: tim_par: mult: %d p1: %d p2: %d p3: %d\n", |
| 591 | __func__, tp->tim_mult, tp->tm_par1, tp->tm_par2, tp->tm_par3); |
| 592 | pr_debug(" p4: %d p5: %d p6: %d p7: %d\n", |
| 593 | tp->tm_par4, tp->tm_par5, tp->tm_par6, tp->tm_par7); |
| 594 | } |
| 595 | |
| 596 | static int set_default_timings(struct octeontx_nfc *tn, |
| 597 | const struct nand_sdr_timings *timings) |
| 598 | { |
| 599 | unsigned long sclk = octeontx_get_io_clock(); |
| 600 | |
| 601 | set_timings(NULL, &default_timing_parms, timings, sclk); |
| 602 | return 0; |
| 603 | } |
| 604 | |
| 605 | static int octeontx_nfc_chip_set_timings(struct octeontx_nand_chip *chip, |
| 606 | const struct nand_sdr_timings *timings) |
| 607 | { |
| 608 | /*struct octeontx_nfc *tn = to_otx_nfc(chip->nand.controller);*/ |
| 609 | unsigned long sclk = octeontx_get_io_clock(); |
| 610 | |
| 611 | set_timings(chip, &chip->timings, timings, sclk); |
| 612 | return 0; |
| 613 | } |
| 614 | |
| 615 | /* How many bytes are free in the NFD_CMD queue? */ |
| 616 | static int ndf_cmd_queue_free(struct octeontx_nfc *tn) |
| 617 | { |
| 618 | u64 ndf_misc; |
| 619 | |
| 620 | ndf_misc = readq(tn->base + NDF_MISC); |
| 621 | return FIELD_GET(NDF_MISC_FR_BYTE, ndf_misc); |
| 622 | } |
| 623 | |
| 624 | /* Submit a command to the NAND command queue. */ |
| 625 | static int ndf_submit(struct octeontx_nfc *tn, union ndf_cmd *cmd) |
| 626 | { |
| 627 | int opcode = cmd->val[0] & 0xf; |
| 628 | |
| 629 | switch (opcode) { |
| 630 | /* All these commands fit in one 64bit word */ |
| 631 | case NDF_OP_NOP: |
| 632 | case NDF_OP_SET_TM_PAR: |
| 633 | case NDF_OP_WAIT: |
| 634 | case NDF_OP_CHIP_EN_DIS: |
| 635 | case NDF_OP_CLE_CMD: |
| 636 | case NDF_OP_WR_CMD: |
| 637 | case NDF_OP_RD_CMD: |
| 638 | case NDF_OP_RD_EDO_CMD: |
| 639 | case NDF_OP_BUS_ACQ_REL: |
| 640 | if (ndf_cmd_queue_free(tn) < 8) |
| 641 | goto full; |
| 642 | writeq(cmd->val[0], tn->base + NDF_CMD); |
| 643 | break; |
| 644 | case NDF_OP_ALE_CMD: |
| 645 | /* ALE commands take either one or two 64bit words */ |
| 646 | if (cmd->u.ale_cmd.adr_byte_num < 5) { |
| 647 | if (ndf_cmd_queue_free(tn) < 8) |
| 648 | goto full; |
| 649 | writeq(cmd->val[0], tn->base + NDF_CMD); |
| 650 | } else { |
| 651 | if (ndf_cmd_queue_free(tn) < 16) |
| 652 | goto full; |
| 653 | writeq(cmd->val[0], tn->base + NDF_CMD); |
| 654 | writeq(cmd->val[1], tn->base + NDF_CMD); |
| 655 | } |
| 656 | break; |
| 657 | case NDF_OP_WAIT_STATUS: /* Wait status commands take two 64bit words */ |
| 658 | if (ndf_cmd_queue_free(tn) < 16) |
| 659 | goto full; |
| 660 | writeq(cmd->val[0], tn->base + NDF_CMD); |
| 661 | writeq(cmd->val[1], tn->base + NDF_CMD); |
| 662 | break; |
| 663 | default: |
| 664 | dev_err(tn->dev, "%s: unknown command: %u\n", __func__, opcode); |
| 665 | return -EINVAL; |
| 666 | } |
| 667 | return 0; |
| 668 | |
| 669 | full: |
| 670 | dev_err(tn->dev, "%s: no space left in command queue\n", __func__); |
| 671 | return -ENOMEM; |
| 672 | } |
| 673 | |
| 674 | /** |
| 675 | * Wait for the ready/busy signal. First wait for busy to be valid, |
| 676 | * then wait for busy to de-assert. |
| 677 | */ |
| 678 | static int ndf_build_wait_busy(struct octeontx_nfc *tn) |
| 679 | { |
| 680 | union ndf_cmd cmd; |
| 681 | |
| 682 | memset(&cmd, 0, sizeof(cmd)); |
| 683 | cmd.u.wait.opcode = NDF_OP_WAIT; |
| 684 | cmd.u.wait.r_b = 1; |
| 685 | cmd.u.wait.wlen = t6; |
| 686 | |
| 687 | if (ndf_submit(tn, &cmd)) |
| 688 | return -ENOMEM; |
| 689 | return 0; |
| 690 | } |
| 691 | |
| 692 | static bool ndf_dma_done(struct octeontx_nfc *tn) |
| 693 | { |
| 694 | u64 dma_cfg; |
| 695 | |
| 696 | /* Enable bit should be clear after a transfer */ |
| 697 | dma_cfg = readq(tn->base + NDF_DMA_CFG); |
| 698 | if (!(dma_cfg & NDF_DMA_CFG_EN)) |
| 699 | return true; |
| 700 | |
| 701 | return false; |
| 702 | } |
| 703 | |
| 704 | static int ndf_wait(struct octeontx_nfc *tn) |
| 705 | { |
| 706 | ulong start = get_timer(0); |
| 707 | bool done; |
| 708 | |
| 709 | while (!(done = ndf_dma_done(tn)) && get_timer(start) < NDF_TIMEOUT) |
| 710 | ; |
| 711 | |
| 712 | if (!done) { |
| 713 | dev_err(tn->dev, "%s: timeout error\n", __func__); |
| 714 | return -ETIMEDOUT; |
| 715 | } |
| 716 | return 0; |
| 717 | } |
| 718 | |
| 719 | static int ndf_wait_idle(struct octeontx_nfc *tn) |
| 720 | { |
| 721 | u64 val; |
| 722 | u64 dval = 0; |
| 723 | int rc; |
| 724 | int pause = 100; |
| 725 | u64 tot_us = USEC_PER_SEC / 10; |
| 726 | |
| 727 | rc = readq_poll_timeout(tn->base + NDF_ST_REG, |
| 728 | val, val & NDF_ST_REG_EXE_IDLE, pause, tot_us); |
| 729 | if (!rc) |
| 730 | rc = readq_poll_timeout(tn->base + NDF_DMA_CFG, |
| 731 | dval, !(dval & NDF_DMA_CFG_EN), |
| 732 | pause, tot_us); |
| 733 | |
| 734 | return rc; |
| 735 | } |
| 736 | |
| 737 | /** Issue set timing parameters */ |
| 738 | static int ndf_queue_cmd_timing(struct octeontx_nfc *tn, |
| 739 | struct ndf_set_tm_par_cmd *timings) |
| 740 | { |
| 741 | union ndf_cmd cmd; |
| 742 | |
| 743 | memset(&cmd, 0, sizeof(cmd)); |
| 744 | cmd.u.set_tm_par.opcode = NDF_OP_SET_TM_PAR; |
| 745 | cmd.u.set_tm_par.tim_mult = timings->tim_mult; |
| 746 | cmd.u.set_tm_par.tm_par1 = timings->tm_par1; |
| 747 | cmd.u.set_tm_par.tm_par2 = timings->tm_par2; |
| 748 | cmd.u.set_tm_par.tm_par3 = timings->tm_par3; |
| 749 | cmd.u.set_tm_par.tm_par4 = timings->tm_par4; |
| 750 | cmd.u.set_tm_par.tm_par5 = timings->tm_par5; |
| 751 | cmd.u.set_tm_par.tm_par6 = timings->tm_par6; |
| 752 | cmd.u.set_tm_par.tm_par7 = timings->tm_par7; |
| 753 | return ndf_submit(tn, &cmd); |
| 754 | } |
| 755 | |
| 756 | /** Issue bus acquire or release */ |
| 757 | static int ndf_queue_cmd_bus(struct octeontx_nfc *tn, int direction) |
| 758 | { |
| 759 | union ndf_cmd cmd; |
| 760 | |
| 761 | memset(&cmd, 0, sizeof(cmd)); |
| 762 | cmd.u.bus_acq_rel.opcode = NDF_OP_BUS_ACQ_REL; |
| 763 | cmd.u.bus_acq_rel.direction = direction; |
| 764 | return ndf_submit(tn, &cmd); |
| 765 | } |
| 766 | |
| 767 | /* Issue chip select or deselect */ |
| 768 | static int ndf_queue_cmd_chip(struct octeontx_nfc *tn, int enable, int chip, |
| 769 | int width) |
| 770 | { |
| 771 | union ndf_cmd cmd; |
| 772 | |
| 773 | memset(&cmd, 0, sizeof(cmd)); |
| 774 | cmd.u.chip_en_dis.opcode = NDF_OP_CHIP_EN_DIS; |
| 775 | cmd.u.chip_en_dis.chip = chip; |
| 776 | cmd.u.chip_en_dis.enable = enable; |
| 777 | cmd.u.chip_en_dis.bus_width = width; |
| 778 | return ndf_submit(tn, &cmd); |
| 779 | } |
| 780 | |
| 781 | static int ndf_queue_cmd_wait(struct octeontx_nfc *tn, int t_delay) |
| 782 | { |
| 783 | union ndf_cmd cmd; |
| 784 | |
| 785 | memset(&cmd, 0, sizeof(cmd)); |
| 786 | cmd.u.wait.opcode = NDF_OP_WAIT; |
| 787 | cmd.u.wait.wlen = t_delay; |
| 788 | return ndf_submit(tn, &cmd); |
| 789 | } |
| 790 | |
| 791 | static int ndf_queue_cmd_cle(struct octeontx_nfc *tn, int command) |
| 792 | { |
| 793 | union ndf_cmd cmd; |
| 794 | |
| 795 | memset(&cmd, 0, sizeof(cmd)); |
| 796 | cmd.u.cle_cmd.opcode = NDF_OP_CLE_CMD; |
| 797 | cmd.u.cle_cmd.cmd_data = command; |
| 798 | cmd.u.cle_cmd.clen1 = t4; |
| 799 | cmd.u.cle_cmd.clen2 = t1; |
| 800 | cmd.u.cle_cmd.clen3 = t2; |
| 801 | return ndf_submit(tn, &cmd); |
| 802 | } |
| 803 | |
| 804 | static int ndf_queue_cmd_ale(struct octeontx_nfc *tn, int addr_bytes, |
| 805 | struct nand_chip *nand, u64 page, |
| 806 | u32 col, int page_size) |
| 807 | { |
| 808 | struct octeontx_nand_chip *octeontx_nand = (nand) ? |
| 809 | to_otx_nand(nand) : NULL; |
| 810 | union ndf_cmd cmd; |
| 811 | |
| 812 | memset(&cmd, 0, sizeof(cmd)); |
| 813 | cmd.u.ale_cmd.opcode = NDF_OP_ALE_CMD; |
| 814 | cmd.u.ale_cmd.adr_byte_num = addr_bytes; |
| 815 | |
| 816 | /* set column bit for OOB area, assume OOB follows page */ |
| 817 | if (octeontx_nand && octeontx_nand->oob_only) |
| 818 | col += page_size; |
| 819 | |
| 820 | /* page is u64 for this generality, even if cmdfunc() passes int */ |
| 821 | switch (addr_bytes) { |
| 822 | /* 4-8 bytes: page, then 2-byte col */ |
| 823 | case 8: |
| 824 | cmd.u.ale_cmd.adr_byt8 = (page >> 40) & 0xff; |
| 825 | fallthrough; |
| 826 | case 7: |
| 827 | cmd.u.ale_cmd.adr_byt7 = (page >> 32) & 0xff; |
| 828 | fallthrough; |
| 829 | case 6: |
| 830 | cmd.u.ale_cmd.adr_byt6 = (page >> 24) & 0xff; |
| 831 | fallthrough; |
| 832 | case 5: |
| 833 | cmd.u.ale_cmd.adr_byt5 = (page >> 16) & 0xff; |
| 834 | fallthrough; |
| 835 | case 4: |
| 836 | cmd.u.ale_cmd.adr_byt4 = (page >> 8) & 0xff; |
| 837 | cmd.u.ale_cmd.adr_byt3 = page & 0xff; |
| 838 | cmd.u.ale_cmd.adr_byt2 = (col >> 8) & 0xff; |
| 839 | cmd.u.ale_cmd.adr_byt1 = col & 0xff; |
| 840 | break; |
| 841 | /* 1-3 bytes: just the page address */ |
| 842 | case 3: |
| 843 | cmd.u.ale_cmd.adr_byt3 = (page >> 16) & 0xff; |
| 844 | fallthrough; |
| 845 | case 2: |
| 846 | cmd.u.ale_cmd.adr_byt2 = (page >> 8) & 0xff; |
| 847 | fallthrough; |
| 848 | case 1: |
| 849 | cmd.u.ale_cmd.adr_byt1 = page & 0xff; |
| 850 | break; |
| 851 | default: |
| 852 | break; |
| 853 | } |
| 854 | |
| 855 | cmd.u.ale_cmd.alen1 = t3; |
| 856 | cmd.u.ale_cmd.alen2 = t1; |
| 857 | cmd.u.ale_cmd.alen3 = t5; |
| 858 | cmd.u.ale_cmd.alen4 = t2; |
| 859 | return ndf_submit(tn, &cmd); |
| 860 | } |
| 861 | |
| 862 | static int ndf_queue_cmd_write(struct octeontx_nfc *tn, int len) |
| 863 | { |
| 864 | union ndf_cmd cmd; |
| 865 | |
| 866 | memset(&cmd, 0, sizeof(cmd)); |
| 867 | cmd.u.wr_cmd.opcode = NDF_OP_WR_CMD; |
| 868 | cmd.u.wr_cmd.data = len; |
| 869 | cmd.u.wr_cmd.wlen1 = t3; |
| 870 | cmd.u.wr_cmd.wlen2 = t1; |
| 871 | return ndf_submit(tn, &cmd); |
| 872 | } |
| 873 | |
| 874 | static int ndf_build_pre_cmd(struct octeontx_nfc *tn, int cmd1, |
| 875 | int addr_bytes, u64 page, u32 col, int cmd2) |
| 876 | { |
| 877 | struct nand_chip *nand = tn->controller.active; |
| 878 | struct octeontx_nand_chip *octeontx_nand; |
| 879 | struct ndf_set_tm_par_cmd *timings; |
| 880 | int width, page_size, rc; |
| 881 | |
| 882 | /* Also called before chip probing is finished */ |
| 883 | if (!nand) { |
| 884 | timings = &default_timing_parms; |
| 885 | page_size = default_page_size; |
| 886 | width = default_width; |
| 887 | } else { |
| 888 | octeontx_nand = to_otx_nand(nand); |
| 889 | timings = &octeontx_nand->timings; |
| 890 | page_size = nand->mtd.writesize; |
| 891 | if (nand->options & NAND_BUSWIDTH_16) |
| 892 | width = 2; |
| 893 | else |
| 894 | width = 1; |
| 895 | } |
| 896 | rc = ndf_queue_cmd_timing(tn, timings); |
| 897 | if (rc) |
| 898 | return rc; |
| 899 | |
| 900 | rc = ndf_queue_cmd_bus(tn, NDF_BUS_ACQUIRE); |
| 901 | if (rc) |
| 902 | return rc; |
| 903 | |
| 904 | rc = ndf_queue_cmd_chip(tn, 1, tn->selected_chip, width); |
| 905 | if (rc) |
| 906 | return rc; |
| 907 | |
| 908 | rc = ndf_queue_cmd_wait(tn, t1); |
| 909 | if (rc) |
| 910 | return rc; |
| 911 | |
| 912 | rc = ndf_queue_cmd_cle(tn, cmd1); |
| 913 | if (rc) |
| 914 | return rc; |
| 915 | |
| 916 | if (addr_bytes) { |
| 917 | rc = ndf_build_wait_busy(tn); |
| 918 | if (rc) |
| 919 | return rc; |
| 920 | |
| 921 | rc = ndf_queue_cmd_ale(tn, addr_bytes, nand, |
| 922 | page, col, page_size); |
| 923 | if (rc) |
| 924 | return rc; |
| 925 | } |
| 926 | |
| 927 | /* CLE 2 */ |
| 928 | if (cmd2) { |
| 929 | rc = ndf_build_wait_busy(tn); |
| 930 | if (rc) |
| 931 | return rc; |
| 932 | |
| 933 | rc = ndf_queue_cmd_cle(tn, cmd2); |
| 934 | if (rc) |
| 935 | return rc; |
| 936 | } |
| 937 | return 0; |
| 938 | } |
| 939 | |
| 940 | static int ndf_build_post_cmd(struct octeontx_nfc *tn, int hold_time) |
| 941 | { |
| 942 | int rc; |
| 943 | |
| 944 | /* Deselect chip */ |
| 945 | rc = ndf_queue_cmd_chip(tn, 0, 0, 0); |
| 946 | if (rc) |
| 947 | return rc; |
| 948 | |
| 949 | rc = ndf_queue_cmd_wait(tn, t2); |
| 950 | if (rc) |
| 951 | return rc; |
| 952 | |
| 953 | /* Release bus */ |
| 954 | rc = ndf_queue_cmd_bus(tn, 0); |
| 955 | if (rc) |
| 956 | return rc; |
| 957 | |
| 958 | rc = ndf_queue_cmd_wait(tn, hold_time); |
| 959 | if (rc) |
| 960 | return rc; |
| 961 | |
| 962 | /* |
| 963 | * Last action is ringing the doorbell with number of bus |
| 964 | * acquire-releases cycles (currently 1). |
| 965 | */ |
| 966 | writeq(1, tn->base + NDF_DRBELL); |
| 967 | return 0; |
| 968 | } |
| 969 | |
| 970 | /* Setup the NAND DMA engine for a transfer. */ |
| 971 | static void ndf_setup_dma(struct octeontx_nfc *tn, int is_write, |
| 972 | dma_addr_t bus_addr, int len) |
| 973 | { |
| 974 | u64 dma_cfg; |
| 975 | |
| 976 | dma_cfg = FIELD_PREP(NDF_DMA_CFG_RW, is_write) | |
| 977 | FIELD_PREP(NDF_DMA_CFG_SIZE, (len >> 3) - 1); |
| 978 | dma_cfg |= NDF_DMA_CFG_EN; |
| 979 | writeq(bus_addr, tn->base + NDF_DMA_ADR); |
| 980 | writeq(dma_cfg, tn->base + NDF_DMA_CFG); |
| 981 | } |
| 982 | |
| 983 | static int octeontx_nand_reset(struct octeontx_nfc *tn) |
| 984 | { |
| 985 | int rc; |
| 986 | |
| 987 | rc = ndf_build_pre_cmd(tn, NAND_CMD_RESET, 0, 0, 0, 0); |
| 988 | if (rc) |
| 989 | return rc; |
| 990 | |
| 991 | rc = ndf_build_wait_busy(tn); |
| 992 | if (rc) |
| 993 | return rc; |
| 994 | |
| 995 | rc = ndf_build_post_cmd(tn, t2); |
| 996 | if (rc) |
| 997 | return rc; |
| 998 | |
| 999 | return 0; |
| 1000 | } |
| 1001 | |
| 1002 | static int ndf_read(struct octeontx_nfc *tn, int cmd1, int addr_bytes, |
| 1003 | u64 page, u32 col, int cmd2, int len) |
| 1004 | { |
| 1005 | dma_addr_t bus_addr = tn->use_status ? tn->stat_addr : tn->buf.dmaaddr; |
| 1006 | struct nand_chip *nand = tn->controller.active; |
| 1007 | int timing_mode, bytes, rc; |
| 1008 | union ndf_cmd cmd; |
| 1009 | u64 start, end; |
| 1010 | |
| 1011 | pr_debug("%s(%p, 0x%x, 0x%x, 0x%llx, 0x%x, 0x%x, 0x%x)\n", __func__, |
| 1012 | tn, cmd1, addr_bytes, page, col, cmd2, len); |
| 1013 | if (!nand) |
| 1014 | timing_mode = default_onfi_timing; |
| 1015 | else |
| 1016 | timing_mode = nand->onfi_timing_mode_default; |
| 1017 | |
| 1018 | /* Build the command and address cycles */ |
| 1019 | rc = ndf_build_pre_cmd(tn, cmd1, addr_bytes, page, col, cmd2); |
| 1020 | if (rc) { |
| 1021 | dev_err(tn->dev, "Build pre command failed\n"); |
| 1022 | return rc; |
| 1023 | } |
| 1024 | |
| 1025 | /* This waits for some time, then waits for busy to be de-asserted. */ |
| 1026 | rc = ndf_build_wait_busy(tn); |
| 1027 | if (rc) { |
| 1028 | dev_err(tn->dev, "Wait timeout\n"); |
| 1029 | return rc; |
| 1030 | } |
| 1031 | |
| 1032 | memset(&cmd, 0, sizeof(cmd)); |
| 1033 | |
| 1034 | if (timing_mode < 4) |
| 1035 | cmd.u.rd_cmd.opcode = NDF_OP_RD_CMD; |
| 1036 | else |
| 1037 | cmd.u.rd_cmd.opcode = NDF_OP_RD_EDO_CMD; |
| 1038 | |
| 1039 | cmd.u.rd_cmd.data = len; |
| 1040 | cmd.u.rd_cmd.rlen1 = t7; |
| 1041 | cmd.u.rd_cmd.rlen2 = t3; |
| 1042 | cmd.u.rd_cmd.rlen3 = t1; |
| 1043 | cmd.u.rd_cmd.rlen4 = t7; |
| 1044 | rc = ndf_submit(tn, &cmd); |
| 1045 | if (rc) { |
| 1046 | dev_err(tn->dev, "Error submitting command\n"); |
| 1047 | return rc; |
| 1048 | } |
| 1049 | |
| 1050 | start = (u64)bus_addr; |
| 1051 | ndf_setup_dma(tn, 0, bus_addr, len); |
| 1052 | |
| 1053 | rc = ndf_build_post_cmd(tn, t2); |
| 1054 | if (rc) { |
| 1055 | dev_err(tn->dev, "Build post command failed\n"); |
| 1056 | return rc; |
| 1057 | } |
| 1058 | |
| 1059 | /* Wait for the DMA to complete */ |
| 1060 | rc = ndf_wait(tn); |
| 1061 | if (rc) { |
| 1062 | dev_err(tn->dev, "DMA timed out\n"); |
| 1063 | return rc; |
| 1064 | } |
| 1065 | |
| 1066 | end = readq(tn->base + NDF_DMA_ADR); |
| 1067 | bytes = end - start; |
| 1068 | |
| 1069 | /* Make sure NDF is really done */ |
| 1070 | rc = ndf_wait_idle(tn); |
| 1071 | if (rc) { |
| 1072 | dev_err(tn->dev, "poll idle failed\n"); |
| 1073 | return rc; |
| 1074 | } |
| 1075 | |
| 1076 | pr_debug("%s: Read %d bytes\n", __func__, bytes); |
| 1077 | return bytes; |
| 1078 | } |
| 1079 | |
| 1080 | static int octeontx_nand_get_features(struct mtd_info *mtd, |
| 1081 | struct nand_chip *chip, int feature_addr, |
| 1082 | u8 *subfeature_para) |
| 1083 | { |
| 1084 | struct nand_chip *nand = chip; |
| 1085 | struct octeontx_nfc *tn = to_otx_nfc(nand->controller); |
| 1086 | int len = 8; |
| 1087 | int rc; |
| 1088 | |
| 1089 | pr_debug("%s: feature addr: 0x%x\n", __func__, feature_addr); |
| 1090 | memset(tn->buf.dmabuf, 0xff, len); |
| 1091 | tn->buf.data_index = 0; |
| 1092 | tn->buf.data_len = 0; |
| 1093 | rc = ndf_read(tn, NAND_CMD_GET_FEATURES, 1, feature_addr, 0, 0, len); |
| 1094 | if (rc) |
| 1095 | return rc; |
| 1096 | |
| 1097 | memcpy(subfeature_para, tn->buf.dmabuf, ONFI_SUBFEATURE_PARAM_LEN); |
| 1098 | |
| 1099 | return 0; |
| 1100 | } |
| 1101 | |
| 1102 | static int octeontx_nand_set_features(struct mtd_info *mtd, |
| 1103 | struct nand_chip *chip, int feature_addr, |
| 1104 | u8 *subfeature_para) |
| 1105 | { |
| 1106 | struct nand_chip *nand = chip; |
| 1107 | struct octeontx_nfc *tn = to_otx_nfc(nand->controller); |
| 1108 | const int len = ONFI_SUBFEATURE_PARAM_LEN; |
| 1109 | int rc; |
| 1110 | |
| 1111 | rc = ndf_build_pre_cmd(tn, NAND_CMD_SET_FEATURES, |
| 1112 | 1, feature_addr, 0, 0); |
| 1113 | if (rc) |
| 1114 | return rc; |
| 1115 | |
| 1116 | memcpy(tn->buf.dmabuf, subfeature_para, len); |
| 1117 | memset(tn->buf.dmabuf + len, 0, 8 - len); |
| 1118 | |
| 1119 | ndf_setup_dma(tn, 1, tn->buf.dmaaddr, 8); |
| 1120 | |
| 1121 | rc = ndf_queue_cmd_write(tn, 8); |
| 1122 | if (rc) |
| 1123 | return rc; |
| 1124 | |
| 1125 | rc = ndf_build_wait_busy(tn); |
| 1126 | if (rc) |
| 1127 | return rc; |
| 1128 | |
| 1129 | rc = ndf_build_post_cmd(tn, t2); |
| 1130 | if (rc) |
| 1131 | return rc; |
| 1132 | |
| 1133 | return 0; |
| 1134 | } |
| 1135 | |
| 1136 | /* |
| 1137 | * Read a page from NAND. If the buffer has room, the out of band |
| 1138 | * data will be included. |
| 1139 | */ |
| 1140 | static int ndf_page_read(struct octeontx_nfc *tn, u64 page, int col, int len) |
| 1141 | { |
| 1142 | debug("%s(%p, 0x%llx, 0x%x, 0x%x) active: %p\n", __func__, |
| 1143 | tn, page, col, len, tn->controller.active); |
| 1144 | struct nand_chip *nand = tn->controller.active; |
| 1145 | struct octeontx_nand_chip *chip = to_otx_nand(nand); |
| 1146 | int addr_bytes = chip->row_bytes + chip->col_bytes; |
| 1147 | |
| 1148 | memset(tn->buf.dmabuf, 0xff, len); |
| 1149 | return ndf_read(tn, NAND_CMD_READ0, addr_bytes, |
| 1150 | page, col, NAND_CMD_READSTART, len); |
| 1151 | } |
| 1152 | |
| 1153 | /* Erase a NAND block */ |
| 1154 | static int ndf_block_erase(struct octeontx_nfc *tn, u64 page_addr) |
| 1155 | { |
| 1156 | struct nand_chip *nand = tn->controller.active; |
| 1157 | struct octeontx_nand_chip *chip = to_otx_nand(nand); |
| 1158 | int addr_bytes = chip->row_bytes; |
| 1159 | int rc; |
| 1160 | |
| 1161 | rc = ndf_build_pre_cmd(tn, NAND_CMD_ERASE1, addr_bytes, |
| 1162 | page_addr, 0, NAND_CMD_ERASE2); |
| 1163 | if (rc) |
| 1164 | return rc; |
| 1165 | |
| 1166 | /* Wait for R_B to signal erase is complete */ |
| 1167 | rc = ndf_build_wait_busy(tn); |
| 1168 | if (rc) |
| 1169 | return rc; |
| 1170 | |
| 1171 | rc = ndf_build_post_cmd(tn, t2); |
| 1172 | if (rc) |
| 1173 | return rc; |
| 1174 | |
| 1175 | /* Wait until the command queue is idle */ |
| 1176 | return ndf_wait_idle(tn); |
| 1177 | } |
| 1178 | |
| 1179 | /* |
| 1180 | * Write a page (or less) to NAND. |
| 1181 | */ |
| 1182 | static int ndf_page_write(struct octeontx_nfc *tn, int page) |
| 1183 | { |
| 1184 | int len, rc; |
| 1185 | struct nand_chip *nand = tn->controller.active; |
| 1186 | struct octeontx_nand_chip *chip = to_otx_nand(nand); |
| 1187 | int addr_bytes = chip->row_bytes + chip->col_bytes; |
| 1188 | |
| 1189 | len = tn->buf.data_len - tn->buf.data_index; |
| 1190 | chip->oob_only = (tn->buf.data_index >= nand->mtd.writesize); |
| 1191 | WARN_ON_ONCE(len & 0x7); |
| 1192 | |
| 1193 | ndf_setup_dma(tn, 1, tn->buf.dmaaddr + tn->buf.data_index, len); |
| 1194 | rc = ndf_build_pre_cmd(tn, NAND_CMD_SEQIN, addr_bytes, page, 0, 0); |
| 1195 | if (rc) |
| 1196 | return rc; |
| 1197 | |
| 1198 | rc = ndf_queue_cmd_write(tn, len); |
| 1199 | if (rc) |
| 1200 | return rc; |
| 1201 | |
| 1202 | rc = ndf_queue_cmd_cle(tn, NAND_CMD_PAGEPROG); |
| 1203 | if (rc) |
| 1204 | return rc; |
| 1205 | |
| 1206 | /* Wait for R_B to signal program is complete */ |
| 1207 | rc = ndf_build_wait_busy(tn); |
| 1208 | if (rc) |
| 1209 | return rc; |
| 1210 | |
| 1211 | rc = ndf_build_post_cmd(tn, t2); |
| 1212 | if (rc) |
| 1213 | return rc; |
| 1214 | |
| 1215 | /* Wait for the DMA to complete */ |
| 1216 | rc = ndf_wait(tn); |
| 1217 | if (rc) |
| 1218 | return rc; |
| 1219 | |
| 1220 | /* Data transfer is done but NDF is not, it is waiting for R/B# */ |
| 1221 | return ndf_wait_idle(tn); |
| 1222 | } |
| 1223 | |
| 1224 | static void octeontx_nand_cmdfunc(struct mtd_info *mtd, unsigned int command, |
| 1225 | int column, int page_addr) |
| 1226 | { |
| 1227 | struct nand_chip *nand = mtd_to_nand(mtd); |
| 1228 | struct octeontx_nand_chip *octeontx_nand = to_otx_nand(nand); |
| 1229 | struct octeontx_nfc *tn = to_otx_nfc(nand->controller); |
| 1230 | int rc; |
| 1231 | |
| 1232 | tn->selected_chip = octeontx_nand->cs; |
| 1233 | if (tn->selected_chip < 0 || tn->selected_chip >= NAND_MAX_CHIPS) { |
| 1234 | dev_err(tn->dev, "invalid chip select\n"); |
| 1235 | return; |
| 1236 | } |
| 1237 | |
| 1238 | tn->use_status = false; |
| 1239 | |
| 1240 | pr_debug("%s(%p, 0x%x, 0x%x, 0x%x) cs: %d\n", __func__, mtd, command, |
| 1241 | column, page_addr, tn->selected_chip); |
| 1242 | switch (command) { |
| 1243 | case NAND_CMD_READID: |
| 1244 | tn->buf.data_index = 0; |
| 1245 | octeontx_nand->oob_only = false; |
| 1246 | rc = ndf_read(tn, command, 1, column, 0, 0, 8); |
| 1247 | if (rc < 0) |
| 1248 | dev_err(tn->dev, "READID failed with %d\n", rc); |
| 1249 | else |
| 1250 | tn->buf.data_len = rc; |
| 1251 | break; |
| 1252 | |
| 1253 | case NAND_CMD_READOOB: |
| 1254 | octeontx_nand->oob_only = true; |
| 1255 | tn->buf.data_index = 0; |
| 1256 | tn->buf.data_len = 0; |
| 1257 | rc = ndf_page_read(tn, page_addr, column, mtd->oobsize); |
| 1258 | if (rc < mtd->oobsize) |
| 1259 | dev_err(tn->dev, "READOOB failed with %d\n", |
| 1260 | tn->buf.data_len); |
| 1261 | else |
| 1262 | tn->buf.data_len = rc; |
| 1263 | break; |
| 1264 | |
| 1265 | case NAND_CMD_READ0: |
| 1266 | octeontx_nand->oob_only = false; |
| 1267 | tn->buf.data_index = 0; |
| 1268 | tn->buf.data_len = 0; |
| 1269 | rc = ndf_page_read(tn, page_addr, column, |
| 1270 | mtd->writesize + mtd->oobsize); |
| 1271 | |
| 1272 | if (rc < mtd->writesize + mtd->oobsize) |
| 1273 | dev_err(tn->dev, "READ0 failed with %d\n", rc); |
| 1274 | else |
| 1275 | tn->buf.data_len = rc; |
| 1276 | break; |
| 1277 | |
| 1278 | case NAND_CMD_STATUS: |
| 1279 | /* used in oob/not states */ |
| 1280 | tn->use_status = true; |
| 1281 | rc = ndf_read(tn, command, 0, 0, 0, 0, 8); |
| 1282 | if (rc < 0) |
| 1283 | dev_err(tn->dev, "STATUS failed with %d\n", rc); |
| 1284 | break; |
| 1285 | |
| 1286 | case NAND_CMD_RESET: |
| 1287 | /* used in oob/not states */ |
| 1288 | rc = octeontx_nand_reset(tn); |
| 1289 | if (rc < 0) |
| 1290 | dev_err(tn->dev, "RESET failed with %d\n", rc); |
| 1291 | break; |
| 1292 | |
| 1293 | case NAND_CMD_PARAM: |
| 1294 | octeontx_nand->oob_only = false; |
| 1295 | tn->buf.data_index = 0; |
| 1296 | rc = ndf_read(tn, command, 1, 0, 0, 0, |
| 1297 | min(tn->buf.dmabuflen, 3 * 512)); |
| 1298 | if (rc < 0) |
| 1299 | dev_err(tn->dev, "PARAM failed with %d\n", rc); |
| 1300 | else |
| 1301 | tn->buf.data_len = rc; |
| 1302 | break; |
| 1303 | |
| 1304 | case NAND_CMD_RNDOUT: |
| 1305 | tn->buf.data_index = column; |
| 1306 | break; |
| 1307 | |
| 1308 | case NAND_CMD_ERASE1: |
| 1309 | if (ndf_block_erase(tn, page_addr)) |
| 1310 | dev_err(tn->dev, "ERASE1 failed\n"); |
| 1311 | break; |
| 1312 | |
| 1313 | case NAND_CMD_ERASE2: |
| 1314 | /* We do all erase processing in the first command, so ignore |
| 1315 | * this one. |
| 1316 | */ |
| 1317 | break; |
| 1318 | |
| 1319 | case NAND_CMD_SEQIN: |
| 1320 | octeontx_nand->oob_only = (column >= mtd->writesize); |
| 1321 | tn->buf.data_index = column; |
| 1322 | tn->buf.data_len = column; |
| 1323 | |
| 1324 | octeontx_nand->selected_page = page_addr; |
| 1325 | break; |
| 1326 | |
| 1327 | case NAND_CMD_PAGEPROG: |
| 1328 | rc = ndf_page_write(tn, octeontx_nand->selected_page); |
| 1329 | if (rc) |
| 1330 | dev_err(tn->dev, "PAGEPROG failed with %d\n", rc); |
| 1331 | break; |
| 1332 | |
| 1333 | case NAND_CMD_SET_FEATURES: |
| 1334 | octeontx_nand->oob_only = false; |
| 1335 | /* assume tn->buf.data_len == 4 of data has been set there */ |
| 1336 | rc = octeontx_nand_set_features(mtd, nand, |
| 1337 | page_addr, tn->buf.dmabuf); |
| 1338 | if (rc) |
| 1339 | dev_err(tn->dev, "SET_FEATURES failed with %d\n", rc); |
| 1340 | break; |
| 1341 | |
| 1342 | case NAND_CMD_GET_FEATURES: |
| 1343 | octeontx_nand->oob_only = false; |
| 1344 | rc = octeontx_nand_get_features(mtd, nand, |
| 1345 | page_addr, tn->buf.dmabuf); |
| 1346 | if (!rc) { |
| 1347 | tn->buf.data_index = 0; |
| 1348 | tn->buf.data_len = 4; |
| 1349 | } else { |
| 1350 | dev_err(tn->dev, "GET_FEATURES failed with %d\n", rc); |
| 1351 | } |
| 1352 | break; |
| 1353 | |
| 1354 | default: |
| 1355 | WARN_ON_ONCE(1); |
| 1356 | dev_err(tn->dev, "unhandled nand cmd: %x\n", command); |
| 1357 | } |
| 1358 | } |
| 1359 | |
| 1360 | static int octeontx_nand_waitfunc(struct mtd_info *mtd, struct nand_chip *chip) |
| 1361 | { |
| 1362 | struct octeontx_nfc *tn = to_otx_nfc(chip->controller); |
| 1363 | int ret; |
| 1364 | |
| 1365 | ret = ndf_wait_idle(tn); |
| 1366 | return (ret < 0) ? -EIO : 0; |
| 1367 | } |
| 1368 | |
| 1369 | /* check compatibility with ONFI timing mode#N, and optionally apply */ |
| 1370 | /* TODO: Implement chipnr support? */ |
| 1371 | static int octeontx_nand_setup_dat_intf(struct mtd_info *mtd, int chipnr, |
| 1372 | const struct nand_data_interface *conf) |
| 1373 | { |
| 1374 | static const bool check_only; |
| 1375 | struct nand_chip *nand = mtd_to_nand(mtd); |
| 1376 | struct octeontx_nand_chip *chip = to_otx_nand(nand); |
| 1377 | static u64 t_wc_n[MAX_ONFI_MODE + 2]; /* cache a mode signature */ |
| 1378 | int mode; /* deduced mode number, for reporting and restricting */ |
| 1379 | int rc; |
| 1380 | |
| 1381 | /* |
| 1382 | * Cache timing modes for reporting, and reducing needless change. |
| 1383 | * |
| 1384 | * Challenge: caller does not pass ONFI mode#, but reporting the mode |
| 1385 | * and restricting to a maximum, or a list, are useful for diagnosing |
| 1386 | * new hardware. So use tWC_min, distinct and monotonic across modes, |
| 1387 | * to discover the requested/accepted mode number |
| 1388 | */ |
| 1389 | for (mode = MAX_ONFI_MODE; mode >= 0 && !t_wc_n[0]; mode--) { |
| 1390 | const struct nand_sdr_timings *t; |
| 1391 | |
| 1392 | t = onfi_async_timing_mode_to_sdr_timings(mode); |
| 1393 | if (!t) |
| 1394 | continue; |
| 1395 | t_wc_n[mode] = t->tWC_min; |
| 1396 | } |
| 1397 | |
| 1398 | if (!conf) { |
| 1399 | rc = -EINVAL; |
| 1400 | } else if (check_only) { |
| 1401 | rc = 0; |
| 1402 | } else if (nand->data_interface && |
| 1403 | chip->iface_set && chip->iface_mode == mode) { |
| 1404 | /* |
| 1405 | * Cases: |
| 1406 | * - called from nand_reset, which clears DDR timing |
| 1407 | * mode back to SDR. BUT if we're already in SDR, |
| 1408 | * timing mode persists over resets. |
| 1409 | * While mtd/nand layer only supports SDR, |
| 1410 | * this is always safe. And this driver only supports SDR. |
| 1411 | * |
| 1412 | * - called from post-power-event nand_reset (maybe |
| 1413 | * NFC+flash power down, or system hibernate. |
| 1414 | * Address this when CONFIG_PM support added |
| 1415 | */ |
| 1416 | rc = 0; |
| 1417 | } else { |
| 1418 | rc = octeontx_nfc_chip_set_timings(chip, &conf->timings.sdr); |
| 1419 | if (!rc) { |
| 1420 | chip->iface_mode = mode; |
| 1421 | chip->iface_set = true; |
| 1422 | } |
| 1423 | } |
| 1424 | return rc; |
| 1425 | } |
| 1426 | |
| 1427 | static void octeontx_bch_reset(void) |
| 1428 | { |
| 1429 | } |
| 1430 | |
| 1431 | /* |
| 1432 | * Given a page, calculate the ECC code |
| 1433 | * |
| 1434 | * chip: Pointer to NAND chip data structure |
| 1435 | * buf: Buffer to calculate ECC on |
| 1436 | * code: Buffer to hold ECC data |
| 1437 | * |
| 1438 | * Return 0 on success or -1 on failure |
| 1439 | */ |
| 1440 | static int octeontx_nand_bch_calculate_ecc_internal(struct mtd_info *mtd, |
| 1441 | dma_addr_t ihandle, |
| 1442 | u8 *code) |
| 1443 | { |
| 1444 | struct nand_chip *nand = mtd_to_nand(mtd); |
| 1445 | struct octeontx_nfc *tn = to_otx_nfc(nand->controller); |
| 1446 | int rc; |
| 1447 | int i; |
| 1448 | static u8 *ecc_buffer; |
| 1449 | static int ecc_size; |
| 1450 | static unsigned long ecc_handle; |
| 1451 | union bch_resp *r = tn->bch_resp; |
| 1452 | |
| 1453 | if (!ecc_buffer || ecc_size < nand->ecc.size) { |
| 1454 | ecc_size = nand->ecc.size; |
| 1455 | ecc_buffer = dma_alloc_coherent(ecc_size, |
| 1456 | (unsigned long *)&ecc_handle); |
| 1457 | } |
| 1458 | |
| 1459 | memset(ecc_buffer, 0, nand->ecc.bytes); |
| 1460 | |
| 1461 | r->u16 = 0; |
| 1462 | __iowmb(); /* flush done=0 before making request */ |
| 1463 | |
| 1464 | rc = octeontx_bch_encode(bch_vf, ihandle, nand->ecc.size, |
| 1465 | nand->ecc.strength, |
| 1466 | (dma_addr_t)ecc_handle, tn->bch_rhandle); |
| 1467 | |
| 1468 | if (!rc) { |
| 1469 | octeontx_bch_wait(bch_vf, r, tn->bch_rhandle); |
| 1470 | } else { |
| 1471 | dev_err(tn->dev, "octeontx_bch_encode failed\n"); |
| 1472 | return -1; |
| 1473 | } |
| 1474 | |
| 1475 | if (!r->s.done || r->s.uncorrectable) { |
| 1476 | dev_err(tn->dev, |
| 1477 | "%s timeout, done:%d uncorr:%d corr:%d erased:%d\n", |
| 1478 | __func__, r->s.done, r->s.uncorrectable, |
| 1479 | r->s.num_errors, r->s.erased); |
| 1480 | octeontx_bch_reset(); |
| 1481 | return -1; |
| 1482 | } |
| 1483 | |
| 1484 | memcpy(code, ecc_buffer, nand->ecc.bytes); |
| 1485 | |
| 1486 | for (i = 0; i < nand->ecc.bytes; i++) |
| 1487 | code[i] ^= tn->eccmask[i]; |
| 1488 | |
| 1489 | return tn->bch_resp->s.num_errors; |
| 1490 | } |
| 1491 | |
| 1492 | /* |
| 1493 | * Given a page, calculate the ECC code |
| 1494 | * |
| 1495 | * mtd: MTD block structure |
| 1496 | * dat: raw data (unused) |
| 1497 | * ecc_code: buffer for ECC |
| 1498 | */ |
| 1499 | static int octeontx_nand_bch_calculate(struct mtd_info *mtd, |
| 1500 | const u8 *dat, u8 *ecc_code) |
| 1501 | { |
| 1502 | struct nand_chip *nand = mtd_to_nand(mtd); |
| 1503 | dma_addr_t handle = dma_map_single((u8 *)dat, |
| 1504 | nand->ecc.size, DMA_TO_DEVICE); |
| 1505 | int ret; |
| 1506 | |
| 1507 | ret = octeontx_nand_bch_calculate_ecc_internal(mtd, handle, |
| 1508 | (void *)ecc_code); |
| 1509 | |
| 1510 | return ret; |
| 1511 | } |
| 1512 | |
| 1513 | /* |
| 1514 | * Detect and correct multi-bit ECC for a page |
| 1515 | * |
| 1516 | * mtd: MTD block structure |
| 1517 | * dat: raw data read from the chip |
| 1518 | * read_ecc: ECC from the chip (unused) |
| 1519 | * isnull: unused |
| 1520 | * |
| 1521 | * Returns number of bits corrected or -1 if unrecoverable |
| 1522 | */ |
| 1523 | static int octeontx_nand_bch_correct(struct mtd_info *mtd, u_char *dat, |
| 1524 | u_char *read_ecc, u_char *isnull) |
| 1525 | { |
| 1526 | struct nand_chip *nand = mtd_to_nand(mtd); |
| 1527 | struct octeontx_nfc *tn = to_otx_nfc(nand->controller); |
| 1528 | int i = nand->ecc.size + nand->ecc.bytes; |
| 1529 | static u8 *data_buffer; |
| 1530 | static dma_addr_t ihandle; |
| 1531 | static int buffer_size; |
| 1532 | dma_addr_t ohandle; |
| 1533 | union bch_resp *r = tn->bch_resp; |
| 1534 | int rc; |
| 1535 | |
| 1536 | if (i > buffer_size) { |
| 1537 | if (buffer_size) |
| 1538 | free(data_buffer); |
| 1539 | data_buffer = dma_alloc_coherent(i, |
| 1540 | (unsigned long *)&ihandle); |
| 1541 | if (!data_buffer) { |
| 1542 | dev_err(tn->dev, |
| 1543 | "%s: Could not allocate %d bytes for buffer\n", |
| 1544 | __func__, i); |
| 1545 | goto error; |
| 1546 | } |
| 1547 | buffer_size = i; |
| 1548 | } |
| 1549 | |
| 1550 | memcpy(data_buffer, dat, nand->ecc.size); |
| 1551 | memcpy(data_buffer + nand->ecc.size, read_ecc, nand->ecc.bytes); |
| 1552 | |
| 1553 | for (i = 0; i < nand->ecc.bytes; i++) |
| 1554 | data_buffer[nand->ecc.size + i] ^= tn->eccmask[i]; |
| 1555 | |
| 1556 | r->u16 = 0; |
| 1557 | __iowmb(); /* flush done=0 before making request */ |
| 1558 | |
| 1559 | ohandle = dma_map_single(dat, nand->ecc.size, DMA_FROM_DEVICE); |
| 1560 | rc = octeontx_bch_decode(bch_vf, ihandle, nand->ecc.size, |
| 1561 | nand->ecc.strength, ohandle, tn->bch_rhandle); |
| 1562 | |
| 1563 | if (!rc) |
| 1564 | octeontx_bch_wait(bch_vf, r, tn->bch_rhandle); |
| 1565 | |
| 1566 | if (rc) { |
| 1567 | dev_err(tn->dev, "octeontx_bch_decode failed\n"); |
| 1568 | goto error; |
| 1569 | } |
| 1570 | |
| 1571 | if (!r->s.done) { |
| 1572 | dev_err(tn->dev, "Error: BCH engine timeout\n"); |
| 1573 | octeontx_bch_reset(); |
| 1574 | goto error; |
| 1575 | } |
| 1576 | |
| 1577 | if (r->s.erased) { |
| 1578 | debug("Info: BCH block is erased\n"); |
| 1579 | return 0; |
| 1580 | } |
| 1581 | |
| 1582 | if (r->s.uncorrectable) { |
| 1583 | debug("Cannot correct NAND block, response: 0x%x\n", |
| 1584 | r->u16); |
| 1585 | goto error; |
| 1586 | } |
| 1587 | |
| 1588 | return r->s.num_errors; |
| 1589 | |
| 1590 | error: |
| 1591 | debug("Error performing bch correction\n"); |
| 1592 | return -1; |
| 1593 | } |
| 1594 | |
| 1595 | void octeontx_nand_bch_hwctl(struct mtd_info *mtd, int mode) |
| 1596 | { |
| 1597 | /* Do nothing. */ |
| 1598 | } |
| 1599 | |
| 1600 | static int octeontx_nand_hw_bch_read_page(struct mtd_info *mtd, |
| 1601 | struct nand_chip *chip, u8 *buf, |
| 1602 | int oob_required, int page) |
| 1603 | { |
| 1604 | struct nand_chip *nand = mtd_to_nand(mtd); |
| 1605 | struct octeontx_nfc *tn = to_otx_nfc(nand->controller); |
| 1606 | int i, eccsize = chip->ecc.size, ret; |
| 1607 | int eccbytes = chip->ecc.bytes; |
| 1608 | int eccsteps = chip->ecc.steps; |
| 1609 | u8 *p; |
| 1610 | u8 *ecc_code = chip->buffers->ecccode; |
| 1611 | unsigned int max_bitflips = 0; |
| 1612 | |
| 1613 | /* chip->read_buf() insists on sequential order, we do OOB first */ |
| 1614 | memcpy(chip->oob_poi, tn->buf.dmabuf + mtd->writesize, mtd->oobsize); |
| 1615 | |
| 1616 | /* Use private buffer as input for ECC correction */ |
| 1617 | p = tn->buf.dmabuf; |
| 1618 | |
| 1619 | ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0, |
| 1620 | chip->ecc.total); |
| 1621 | if (ret) |
| 1622 | return ret; |
| 1623 | |
| 1624 | for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { |
| 1625 | int stat; |
| 1626 | |
| 1627 | debug("Correcting block offset %lx, ecc offset %x\n", |
| 1628 | p - buf, i); |
| 1629 | stat = chip->ecc.correct(mtd, p, &ecc_code[i], NULL); |
| 1630 | |
| 1631 | if (stat < 0) { |
| 1632 | mtd->ecc_stats.failed++; |
| 1633 | debug("Cannot correct NAND page %d\n", page); |
| 1634 | } else { |
| 1635 | mtd->ecc_stats.corrected += stat; |
| 1636 | max_bitflips = max_t(unsigned int, max_bitflips, stat); |
| 1637 | } |
| 1638 | } |
| 1639 | |
| 1640 | /* Copy corrected data to caller's buffer now */ |
| 1641 | memcpy(buf, tn->buf.dmabuf, mtd->writesize); |
| 1642 | |
| 1643 | return max_bitflips; |
| 1644 | } |
| 1645 | |
| 1646 | static int octeontx_nand_hw_bch_write_page(struct mtd_info *mtd, |
| 1647 | struct nand_chip *chip, |
| 1648 | const u8 *buf, int oob_required, |
| 1649 | int page) |
| 1650 | { |
| 1651 | struct octeontx_nfc *tn = to_otx_nfc(chip->controller); |
| 1652 | int i, eccsize = chip->ecc.size, ret; |
| 1653 | int eccbytes = chip->ecc.bytes; |
| 1654 | int eccsteps = chip->ecc.steps; |
| 1655 | const u8 *p; |
| 1656 | u8 *ecc_calc = chip->buffers->ecccalc; |
| 1657 | |
| 1658 | debug("%s(buf?%p, oob%d p%x)\n", |
| 1659 | __func__, buf, oob_required, page); |
| 1660 | for (i = 0; i < chip->ecc.total; i++) |
| 1661 | ecc_calc[i] = 0xFF; |
| 1662 | |
| 1663 | /* Copy the page data from caller's buffers to private buffer */ |
| 1664 | chip->write_buf(mtd, buf, mtd->writesize); |
| 1665 | /* Use private date as source for ECC calculation */ |
| 1666 | p = tn->buf.dmabuf; |
| 1667 | |
| 1668 | /* Hardware ECC calculation */ |
| 1669 | for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { |
| 1670 | int ret; |
| 1671 | |
| 1672 | ret = chip->ecc.calculate(mtd, p, &ecc_calc[i]); |
| 1673 | |
| 1674 | if (ret < 0) |
| 1675 | debug("calculate(mtd, p?%p, &ecc_calc[%d]?%p) returned %d\n", |
| 1676 | p, i, &ecc_calc[i], ret); |
| 1677 | |
| 1678 | debug("block offset %lx, ecc offset %x\n", p - buf, i); |
| 1679 | } |
| 1680 | |
| 1681 | ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0, |
| 1682 | chip->ecc.total); |
| 1683 | if (ret) |
| 1684 | return ret; |
| 1685 | |
| 1686 | /* Store resulting OOB into private buffer, will be sent to HW */ |
| 1687 | chip->write_buf(mtd, chip->oob_poi, mtd->oobsize); |
| 1688 | |
| 1689 | return 0; |
| 1690 | } |
| 1691 | |
| 1692 | /** |
| 1693 | * nand_write_page_raw - [INTERN] raw page write function |
| 1694 | * @mtd: mtd info structure |
| 1695 | * @chip: nand chip info structure |
| 1696 | * @buf: data buffer |
| 1697 | * @oob_required: must write chip->oob_poi to OOB |
| 1698 | * @page: page number to write |
| 1699 | * |
| 1700 | * Not for syndrome calculating ECC controllers, which use a special oob layout. |
| 1701 | */ |
| 1702 | static int octeontx_nand_write_page_raw(struct mtd_info *mtd, |
| 1703 | struct nand_chip *chip, |
| 1704 | const u8 *buf, int oob_required, |
| 1705 | int page) |
| 1706 | { |
| 1707 | chip->write_buf(mtd, buf, mtd->writesize); |
| 1708 | if (oob_required) |
| 1709 | chip->write_buf(mtd, chip->oob_poi, mtd->oobsize); |
| 1710 | |
| 1711 | return 0; |
| 1712 | } |
| 1713 | |
| 1714 | /** |
| 1715 | * octeontx_nand_write_oob_std - [REPLACEABLE] the most common OOB data write |
| 1716 | * function |
| 1717 | * @mtd: mtd info structure |
| 1718 | * @chip: nand chip info structure |
| 1719 | * @page: page number to write |
| 1720 | */ |
| 1721 | static int octeontx_nand_write_oob_std(struct mtd_info *mtd, |
| 1722 | struct nand_chip *chip, |
| 1723 | int page) |
| 1724 | { |
| 1725 | int status = 0; |
| 1726 | const u8 *buf = chip->oob_poi; |
| 1727 | int length = mtd->oobsize; |
| 1728 | |
| 1729 | chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page); |
| 1730 | chip->write_buf(mtd, buf, length); |
| 1731 | /* Send command to program the OOB data */ |
| 1732 | chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1); |
| 1733 | |
| 1734 | status = chip->waitfunc(mtd, chip); |
| 1735 | |
| 1736 | return status & NAND_STATUS_FAIL ? -EIO : 0; |
| 1737 | } |
| 1738 | |
| 1739 | /** |
| 1740 | * octeontx_nand_read_page_raw - [INTERN] read raw page data without ecc |
| 1741 | * @mtd: mtd info structure |
| 1742 | * @chip: nand chip info structure |
| 1743 | * @buf: buffer to store read data |
| 1744 | * @oob_required: caller requires OOB data read to chip->oob_poi |
| 1745 | * @page: page number to read |
| 1746 | * |
| 1747 | * Not for syndrome calculating ECC controllers, which use a special oob layout. |
| 1748 | */ |
| 1749 | static int octeontx_nand_read_page_raw(struct mtd_info *mtd, |
| 1750 | struct nand_chip *chip, |
| 1751 | u8 *buf, int oob_required, int page) |
| 1752 | { |
| 1753 | chip->read_buf(mtd, buf, mtd->writesize); |
| 1754 | if (oob_required) |
| 1755 | chip->read_buf(mtd, chip->oob_poi, mtd->oobsize); |
| 1756 | return 0; |
| 1757 | } |
| 1758 | |
| 1759 | static int octeontx_nand_read_oob_std(struct mtd_info *mtd, |
| 1760 | struct nand_chip *chip, |
| 1761 | int page) |
| 1762 | |
| 1763 | { |
| 1764 | chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page); |
| 1765 | chip->read_buf(mtd, chip->oob_poi, mtd->oobsize); |
| 1766 | return 0; |
| 1767 | } |
| 1768 | |
| 1769 | static int octeontx_nand_calc_bch_ecc_strength(struct nand_chip *nand) |
| 1770 | { |
| 1771 | struct mtd_info *mtd = nand_to_mtd(nand); |
| 1772 | struct nand_ecc_ctrl *ecc = &nand->ecc; |
| 1773 | struct octeontx_nfc *tn = to_otx_nfc(nand->controller); |
| 1774 | int nsteps = mtd->writesize / ecc->size; |
| 1775 | int oobchunk = mtd->oobsize / nsteps; |
| 1776 | |
| 1777 | /* ecc->strength determines ecc_level and OOB's ecc_bytes. */ |
| 1778 | const u8 strengths[] = {4, 8, 16, 24, 32, 40, 48, 56, 60, 64}; |
| 1779 | /* first set the desired ecc_level to match strengths[] */ |
| 1780 | int index = ARRAY_SIZE(strengths) - 1; |
| 1781 | int need; |
| 1782 | |
| 1783 | while (index > 0 && !(ecc->options & NAND_ECC_MAXIMIZE) && |
| 1784 | strengths[index - 1] >= ecc->strength) |
| 1785 | index--; |
| 1786 | |
| 1787 | do { |
| 1788 | need = DIV_ROUND_UP(15 * strengths[index], 8); |
| 1789 | if (need <= oobchunk - 2) |
| 1790 | break; |
| 1791 | } while (index > 0); |
| 1792 | |
| 1793 | debug("%s: steps ds: %d, strength ds: %d\n", __func__, |
| 1794 | nand->ecc_step_ds, nand->ecc_strength_ds); |
| 1795 | ecc->strength = strengths[index]; |
| 1796 | ecc->bytes = need; |
| 1797 | debug("%s: strength: %d, bytes: %d\n", __func__, ecc->strength, |
| 1798 | ecc->bytes); |
| 1799 | |
| 1800 | if (!tn->eccmask) |
| 1801 | tn->eccmask = devm_kzalloc(tn->dev, ecc->bytes, GFP_KERNEL); |
| 1802 | if (!tn->eccmask) |
| 1803 | return -ENOMEM; |
| 1804 | |
| 1805 | return 0; |
| 1806 | } |
| 1807 | |
| 1808 | /* sample the BCH signature of an erased (all 0xff) page, |
| 1809 | * to XOR into all page traffic, so erased pages have no ECC errors |
| 1810 | */ |
| 1811 | static int octeontx_bch_save_empty_eccmask(struct nand_chip *nand) |
| 1812 | { |
| 1813 | struct mtd_info *mtd = nand_to_mtd(nand); |
| 1814 | struct octeontx_nfc *tn = to_otx_nfc(nand->controller); |
| 1815 | unsigned int eccsize = nand->ecc.size; |
| 1816 | unsigned int eccbytes = nand->ecc.bytes; |
| 1817 | u8 erased_ecc[eccbytes]; |
| 1818 | unsigned long erased_handle; |
| 1819 | unsigned char *erased_page = dma_alloc_coherent(eccsize, |
| 1820 | &erased_handle); |
| 1821 | int i; |
| 1822 | int rc = 0; |
| 1823 | |
| 1824 | if (!erased_page) |
| 1825 | return -ENOMEM; |
| 1826 | |
| 1827 | memset(erased_page, 0xff, eccsize); |
| 1828 | memset(erased_ecc, 0, eccbytes); |
| 1829 | |
| 1830 | rc = octeontx_nand_bch_calculate_ecc_internal(mtd, |
| 1831 | (dma_addr_t)erased_handle, |
| 1832 | erased_ecc); |
| 1833 | |
| 1834 | free(erased_page); |
| 1835 | |
| 1836 | for (i = 0; i < eccbytes; i++) |
| 1837 | tn->eccmask[i] = erased_ecc[i] ^ 0xff; |
| 1838 | |
| 1839 | return rc; |
| 1840 | } |
| 1841 | |
| 1842 | static void octeontx_nfc_chip_sizing(struct nand_chip *nand) |
| 1843 | { |
| 1844 | struct octeontx_nand_chip *chip = to_otx_nand(nand); |
| 1845 | struct mtd_info *mtd = nand_to_mtd(nand); |
| 1846 | struct nand_ecc_ctrl *ecc = &nand->ecc; |
| 1847 | |
| 1848 | chip->row_bytes = nand->onfi_params.addr_cycles & 0xf; |
| 1849 | chip->col_bytes = nand->onfi_params.addr_cycles >> 4; |
| 1850 | debug("%s(%p) row bytes: %d, col bytes: %d, ecc mode: %d\n", |
| 1851 | __func__, nand, chip->row_bytes, chip->col_bytes, ecc->mode); |
| 1852 | |
| 1853 | /* |
| 1854 | * HW_BCH using OcteonTX BCH engine, or SOFT_BCH laid out in |
| 1855 | * HW_BCH-compatible fashion, depending on devtree advice |
| 1856 | * and kernel config. |
| 1857 | * BCH/NFC hardware capable of subpage ops, not implemented. |
| 1858 | */ |
| 1859 | mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops); |
| 1860 | nand->options |= NAND_NO_SUBPAGE_WRITE; |
| 1861 | debug("%s: start steps: %d, size: %d, bytes: %d\n", |
| 1862 | __func__, ecc->steps, ecc->size, ecc->bytes); |
| 1863 | debug("%s: step ds: %d, strength ds: %d\n", __func__, |
| 1864 | nand->ecc_step_ds, nand->ecc_strength_ds); |
| 1865 | |
| 1866 | if (ecc->mode != NAND_ECC_NONE) { |
| 1867 | int nsteps = ecc->steps ? ecc->steps : 1; |
| 1868 | |
| 1869 | if (ecc->size && ecc->size != mtd->writesize) |
| 1870 | nsteps = mtd->writesize / ecc->size; |
| 1871 | else if (mtd->writesize > def_ecc_size && |
| 1872 | !(mtd->writesize & (def_ecc_size - 1))) |
| 1873 | nsteps = mtd->writesize / def_ecc_size; |
| 1874 | ecc->steps = nsteps; |
| 1875 | ecc->size = mtd->writesize / nsteps; |
| 1876 | ecc->bytes = mtd->oobsize / nsteps; |
| 1877 | |
| 1878 | if (nand->ecc_strength_ds) |
| 1879 | ecc->strength = nand->ecc_strength_ds; |
| 1880 | if (nand->ecc_step_ds) |
| 1881 | ecc->size = nand->ecc_step_ds; |
| 1882 | /* |
| 1883 | * no subpage ops, but set subpage-shift to match ecc->steps |
| 1884 | * so mtd_nandbiterrs tests appropriate boundaries |
| 1885 | */ |
| 1886 | if (!mtd->subpage_sft && !(ecc->steps & (ecc->steps - 1))) |
| 1887 | mtd->subpage_sft = fls(ecc->steps) - 1; |
| 1888 | |
| 1889 | if (IS_ENABLED(CONFIG_NAND_OCTEONTX_HW_ECC)) { |
| 1890 | debug("%s: ecc mode: %d\n", __func__, ecc->mode); |
| 1891 | if (ecc->mode != NAND_ECC_SOFT && |
| 1892 | !octeontx_nand_calc_bch_ecc_strength(nand)) { |
| 1893 | struct octeontx_nfc *tn = |
| 1894 | to_otx_nfc(nand->controller); |
| 1895 | |
| 1896 | debug("Using hardware BCH engine support\n"); |
| 1897 | ecc->mode = NAND_ECC_HW_SYNDROME; |
| 1898 | ecc->read_page = octeontx_nand_hw_bch_read_page; |
| 1899 | ecc->write_page = |
| 1900 | octeontx_nand_hw_bch_write_page; |
| 1901 | ecc->read_page_raw = |
| 1902 | octeontx_nand_read_page_raw; |
| 1903 | ecc->write_page_raw = |
| 1904 | octeontx_nand_write_page_raw; |
| 1905 | ecc->read_oob = octeontx_nand_read_oob_std; |
| 1906 | ecc->write_oob = octeontx_nand_write_oob_std; |
| 1907 | |
| 1908 | ecc->calculate = octeontx_nand_bch_calculate; |
| 1909 | ecc->correct = octeontx_nand_bch_correct; |
| 1910 | ecc->hwctl = octeontx_nand_bch_hwctl; |
| 1911 | |
| 1912 | debug("NAND chip %d using hw_bch\n", |
| 1913 | tn->selected_chip); |
| 1914 | debug(" %d bytes ECC per %d byte block\n", |
| 1915 | ecc->bytes, ecc->size); |
| 1916 | debug(" for %d bits of correction per block.", |
| 1917 | ecc->strength); |
| 1918 | octeontx_nand_calc_ecc_layout(nand); |
| 1919 | octeontx_bch_save_empty_eccmask(nand); |
| 1920 | } |
| 1921 | } |
| 1922 | } |
| 1923 | } |
| 1924 | |
| 1925 | static int octeontx_nfc_chip_init(struct octeontx_nfc *tn, struct udevice *dev, |
| 1926 | ofnode node) |
| 1927 | { |
| 1928 | struct octeontx_nand_chip *chip; |
| 1929 | struct nand_chip *nand; |
| 1930 | struct mtd_info *mtd; |
| 1931 | int ret; |
| 1932 | |
| 1933 | chip = devm_kzalloc(dev, sizeof(*chip), GFP_KERNEL); |
| 1934 | if (!chip) |
| 1935 | return -ENOMEM; |
| 1936 | |
| 1937 | debug("%s: Getting chip select\n", __func__); |
| 1938 | ret = ofnode_read_s32(node, "reg", &chip->cs); |
| 1939 | if (ret) { |
| 1940 | dev_err(dev, "could not retrieve reg property: %d\n", ret); |
| 1941 | return ret; |
| 1942 | } |
| 1943 | |
| 1944 | if (chip->cs >= NAND_MAX_CHIPS) { |
| 1945 | dev_err(dev, "invalid reg value: %u (max CS = 7)\n", chip->cs); |
| 1946 | return -EINVAL; |
| 1947 | } |
| 1948 | debug("%s: chip select: %d\n", __func__, chip->cs); |
| 1949 | nand = &chip->nand; |
| 1950 | nand->controller = &tn->controller; |
| 1951 | if (!tn->controller.active) |
| 1952 | tn->controller.active = nand; |
| 1953 | |
| 1954 | debug("%s: Setting flash node\n", __func__); |
| 1955 | nand_set_flash_node(nand, node); |
| 1956 | |
| 1957 | nand->options = 0; |
| 1958 | nand->select_chip = octeontx_nand_select_chip; |
| 1959 | nand->cmdfunc = octeontx_nand_cmdfunc; |
| 1960 | nand->waitfunc = octeontx_nand_waitfunc; |
| 1961 | nand->read_byte = octeontx_nand_read_byte; |
| 1962 | nand->read_buf = octeontx_nand_read_buf; |
| 1963 | nand->write_buf = octeontx_nand_write_buf; |
| 1964 | nand->onfi_set_features = octeontx_nand_set_features; |
| 1965 | nand->onfi_get_features = octeontx_nand_get_features; |
| 1966 | nand->setup_data_interface = octeontx_nand_setup_dat_intf; |
| 1967 | |
| 1968 | mtd = nand_to_mtd(nand); |
| 1969 | debug("%s: mtd: %p\n", __func__, mtd); |
| 1970 | mtd->dev->parent = dev; |
| 1971 | |
| 1972 | debug("%s: NDF_MISC: 0x%llx\n", __func__, |
| 1973 | readq(tn->base + NDF_MISC)); |
| 1974 | |
| 1975 | /* TODO: support more then 1 chip */ |
| 1976 | debug("%s: Scanning identification\n", __func__); |
| 1977 | ret = nand_scan_ident(mtd, 1, NULL); |
| 1978 | if (ret) |
| 1979 | return ret; |
| 1980 | |
| 1981 | debug("%s: Sizing chip\n", __func__); |
| 1982 | octeontx_nfc_chip_sizing(nand); |
| 1983 | |
| 1984 | debug("%s: Scanning tail\n", __func__); |
| 1985 | ret = nand_scan_tail(mtd); |
| 1986 | if (ret) { |
| 1987 | dev_err(dev, "nand_scan_tail failed: %d\n", ret); |
| 1988 | return ret; |
| 1989 | } |
| 1990 | |
| 1991 | debug("%s: Registering mtd\n", __func__); |
| 1992 | ret = nand_register(0, mtd); |
| 1993 | |
| 1994 | debug("%s: Adding tail\n", __func__); |
| 1995 | list_add_tail(&chip->node, &tn->chips); |
| 1996 | return 0; |
| 1997 | } |
| 1998 | |
| 1999 | static int octeontx_nfc_chips_init(struct octeontx_nfc *tn) |
| 2000 | { |
| 2001 | struct udevice *dev = tn->dev; |
Simon Glass | a7ece58 | 2020-12-19 10:40:14 -0700 | [diff] [blame] | 2002 | ofnode node = dev_ofnode(dev); |
Suneel Garapati | 9de7d2b | 2020-08-26 14:37:22 +0200 | [diff] [blame] | 2003 | ofnode nand_node; |
| 2004 | int nr_chips = of_get_child_count(node); |
| 2005 | int ret; |
| 2006 | |
| 2007 | debug("%s: node: %s\n", __func__, ofnode_get_name(node)); |
| 2008 | debug("%s: %d chips\n", __func__, nr_chips); |
| 2009 | if (nr_chips > NAND_MAX_CHIPS) { |
| 2010 | dev_err(dev, "too many NAND chips: %d\n", nr_chips); |
| 2011 | return -EINVAL; |
| 2012 | } |
| 2013 | |
| 2014 | if (!nr_chips) { |
| 2015 | debug("no DT NAND chips found\n"); |
| 2016 | return -ENODEV; |
| 2017 | } |
| 2018 | |
| 2019 | pr_info("%s: scanning %d chips DTs\n", __func__, nr_chips); |
| 2020 | |
| 2021 | ofnode_for_each_subnode(nand_node, node) { |
| 2022 | debug("%s: Calling octeontx_nfc_chip_init(%p, %s, %ld)\n", |
| 2023 | __func__, tn, dev->name, nand_node.of_offset); |
| 2024 | ret = octeontx_nfc_chip_init(tn, dev, nand_node); |
| 2025 | if (ret) |
| 2026 | return ret; |
| 2027 | } |
| 2028 | return 0; |
| 2029 | } |
| 2030 | |
| 2031 | /* Reset NFC and initialize registers. */ |
| 2032 | static int octeontx_nfc_init(struct octeontx_nfc *tn) |
| 2033 | { |
| 2034 | const struct nand_sdr_timings *timings; |
| 2035 | u64 ndf_misc; |
| 2036 | int rc; |
| 2037 | |
| 2038 | /* Initialize values and reset the fifo */ |
| 2039 | ndf_misc = readq(tn->base + NDF_MISC); |
| 2040 | |
| 2041 | ndf_misc &= ~NDF_MISC_EX_DIS; |
| 2042 | ndf_misc |= (NDF_MISC_BT_DIS | NDF_MISC_RST_FF); |
| 2043 | writeq(ndf_misc, tn->base + NDF_MISC); |
| 2044 | debug("%s: NDF_MISC: 0x%llx\n", __func__, readq(tn->base + NDF_MISC)); |
| 2045 | |
| 2046 | /* Bring the fifo out of reset */ |
| 2047 | ndf_misc &= ~(NDF_MISC_RST_FF); |
| 2048 | |
| 2049 | /* Maximum of co-processor cycles for glitch filtering */ |
| 2050 | ndf_misc |= FIELD_PREP(NDF_MISC_WAIT_CNT, 0x3f); |
| 2051 | |
| 2052 | writeq(ndf_misc, tn->base + NDF_MISC); |
| 2053 | |
| 2054 | /* Set timing parameters to onfi mode 0 for probing */ |
| 2055 | timings = onfi_async_timing_mode_to_sdr_timings(0); |
| 2056 | if (IS_ERR(timings)) |
| 2057 | return PTR_ERR(timings); |
| 2058 | rc = set_default_timings(tn, timings); |
| 2059 | if (rc) |
| 2060 | return rc; |
| 2061 | |
| 2062 | return 0; |
| 2063 | } |
| 2064 | |
| 2065 | static int octeontx_pci_nand_probe(struct udevice *dev) |
| 2066 | { |
| 2067 | struct octeontx_nfc *tn = dev_get_priv(dev); |
| 2068 | int ret; |
| 2069 | static bool probe_done; |
| 2070 | |
| 2071 | debug("%s(%s) tn: %p\n", __func__, dev->name, tn); |
| 2072 | if (probe_done) |
| 2073 | return 0; |
| 2074 | |
| 2075 | if (IS_ENABLED(CONFIG_NAND_OCTEONTX_HW_ECC)) { |
| 2076 | bch_vf = octeontx_bch_getv(); |
| 2077 | if (!bch_vf) { |
| 2078 | struct octeontx_probe_device *probe_dev; |
| 2079 | |
| 2080 | debug("%s: bch not yet initialized\n", __func__); |
| 2081 | probe_dev = calloc(sizeof(*probe_dev), 1); |
| 2082 | if (!probe_dev) { |
| 2083 | printf("%s: Out of memory\n", __func__); |
| 2084 | return -ENOMEM; |
| 2085 | } |
| 2086 | probe_dev->dev = dev; |
| 2087 | INIT_LIST_HEAD(&probe_dev->list); |
| 2088 | list_add_tail(&probe_dev->list, |
| 2089 | &octeontx_pci_nand_deferred_devices); |
| 2090 | debug("%s: Defering probe until after BCH initialization\n", |
| 2091 | __func__); |
| 2092 | return 0; |
| 2093 | } |
| 2094 | } |
| 2095 | |
| 2096 | tn->dev = dev; |
| 2097 | INIT_LIST_HEAD(&tn->chips); |
| 2098 | |
| 2099 | tn->base = dm_pci_map_bar(dev, PCI_BASE_ADDRESS_0, PCI_REGION_MEM); |
| 2100 | if (!tn->base) { |
| 2101 | ret = -EINVAL; |
| 2102 | goto release; |
| 2103 | } |
| 2104 | debug("%s: bar at %p\n", __func__, tn->base); |
| 2105 | tn->buf.dmabuflen = NAND_MAX_PAGESIZE + NAND_MAX_OOBSIZE; |
| 2106 | tn->buf.dmabuf = dma_alloc_coherent(tn->buf.dmabuflen, |
| 2107 | (unsigned long *)&tn->buf.dmaaddr); |
| 2108 | if (!tn->buf.dmabuf) { |
| 2109 | ret = -ENOMEM; |
| 2110 | debug("%s: Could not allocate DMA buffer\n", __func__); |
| 2111 | goto unclk; |
| 2112 | } |
| 2113 | |
| 2114 | /* one hw-bch response, for one outstanding transaction */ |
| 2115 | tn->bch_resp = dma_alloc_coherent(sizeof(*tn->bch_resp), |
| 2116 | (unsigned long *)&tn->bch_rhandle); |
| 2117 | |
| 2118 | tn->stat = dma_alloc_coherent(8, (unsigned long *)&tn->stat_addr); |
| 2119 | if (!tn->stat || !tn->bch_resp) { |
| 2120 | debug("%s: Could not allocate bch status or response\n", |
| 2121 | __func__); |
| 2122 | ret = -ENOMEM; |
| 2123 | goto unclk; |
| 2124 | } |
| 2125 | |
| 2126 | debug("%s: Calling octeontx_nfc_init()\n", __func__); |
| 2127 | octeontx_nfc_init(tn); |
| 2128 | debug("%s: Initializing chips\n", __func__); |
| 2129 | ret = octeontx_nfc_chips_init(tn); |
| 2130 | debug("%s: init chips ret: %d\n", __func__, ret); |
| 2131 | if (ret) { |
| 2132 | if (ret != -ENODEV) |
| 2133 | dev_err(dev, "failed to init nand chips\n"); |
| 2134 | goto unclk; |
| 2135 | } |
| 2136 | dev_info(dev, "probed\n"); |
| 2137 | return 0; |
| 2138 | |
| 2139 | unclk: |
| 2140 | release: |
| 2141 | return ret; |
| 2142 | } |
| 2143 | |
| 2144 | int octeontx_pci_nand_disable(struct udevice *dev) |
| 2145 | { |
| 2146 | struct octeontx_nfc *tn = dev_get_priv(dev); |
| 2147 | u64 dma_cfg; |
| 2148 | u64 ndf_misc; |
| 2149 | |
| 2150 | debug("%s: Disabling NAND device %s\n", __func__, dev->name); |
| 2151 | dma_cfg = readq(tn->base + NDF_DMA_CFG); |
| 2152 | dma_cfg &= ~NDF_DMA_CFG_EN; |
| 2153 | dma_cfg |= NDF_DMA_CFG_CLR; |
| 2154 | writeq(dma_cfg, tn->base + NDF_DMA_CFG); |
| 2155 | |
| 2156 | /* Disable execution and put FIFO in reset mode */ |
| 2157 | ndf_misc = readq(tn->base + NDF_MISC); |
| 2158 | ndf_misc |= NDF_MISC_EX_DIS | NDF_MISC_RST_FF; |
| 2159 | writeq(ndf_misc, tn->base + NDF_MISC); |
| 2160 | ndf_misc &= ~NDF_MISC_RST_FF; |
| 2161 | writeq(ndf_misc, tn->base + NDF_MISC); |
| 2162 | #ifdef DEBUG |
| 2163 | printf("%s: NDF_MISC: 0x%llx\n", __func__, readq(tn->base + NDF_MISC)); |
| 2164 | #endif |
| 2165 | /* Clear any interrupts and enable bits */ |
| 2166 | writeq(~0ull, tn->base + NDF_INT_ENA_W1C); |
| 2167 | writeq(~0ull, tn->base + NDF_INT); |
| 2168 | debug("%s: NDF_ST_REG: 0x%llx\n", __func__, |
| 2169 | readq(tn->base + NDF_ST_REG)); |
| 2170 | return 0; |
| 2171 | } |
| 2172 | |
| 2173 | /** |
| 2174 | * Since it's possible (and even likely) that the NAND device will be probed |
| 2175 | * before the BCH device has been probed, we may need to defer the probing. |
| 2176 | * |
| 2177 | * In this case, the initial probe returns success but the actual probing |
| 2178 | * is deferred until the BCH VF has been probed. |
| 2179 | * |
| 2180 | * @return 0 for success, otherwise error |
| 2181 | */ |
| 2182 | int octeontx_pci_nand_deferred_probe(void) |
| 2183 | { |
| 2184 | int rc = 0; |
| 2185 | struct octeontx_probe_device *pdev; |
| 2186 | |
| 2187 | debug("%s: Performing deferred probing\n", __func__); |
| 2188 | list_for_each_entry(pdev, &octeontx_pci_nand_deferred_devices, list) { |
| 2189 | debug("%s: Probing %s\n", __func__, pdev->dev->name); |
Simon Glass | 6211d76 | 2020-12-19 10:40:10 -0700 | [diff] [blame] | 2190 | dev_get_flags(pdev->dev) &= ~DM_FLAG_ACTIVATED; |
Suneel Garapati | 9de7d2b | 2020-08-26 14:37:22 +0200 | [diff] [blame] | 2191 | rc = device_probe(pdev->dev); |
| 2192 | if (rc && rc != -ENODEV) { |
| 2193 | printf("%s: Error %d with deferred probe of %s\n", |
| 2194 | __func__, rc, pdev->dev->name); |
| 2195 | break; |
| 2196 | } |
| 2197 | } |
| 2198 | return rc; |
| 2199 | } |
| 2200 | |
| 2201 | static const struct pci_device_id octeontx_nfc_pci_id_table[] = { |
| 2202 | { PCI_VDEVICE(CAVIUM, 0xA04F) }, |
| 2203 | {} |
| 2204 | }; |
| 2205 | |
Simon Glass | aad29ae | 2020-12-03 16:55:21 -0700 | [diff] [blame] | 2206 | static int octeontx_nand_of_to_plat(struct udevice *dev) |
Suneel Garapati | 9de7d2b | 2020-08-26 14:37:22 +0200 | [diff] [blame] | 2207 | { |
| 2208 | return 0; |
| 2209 | } |
| 2210 | |
| 2211 | static const struct udevice_id octeontx_nand_ids[] = { |
| 2212 | { .compatible = "cavium,cn8130-nand" }, |
| 2213 | { }, |
| 2214 | }; |
| 2215 | |
| 2216 | U_BOOT_DRIVER(octeontx_pci_nand) = { |
| 2217 | .name = OCTEONTX_NAND_DRIVER_NAME, |
| 2218 | .id = UCLASS_MTD, |
| 2219 | .of_match = of_match_ptr(octeontx_nand_ids), |
Simon Glass | aad29ae | 2020-12-03 16:55:21 -0700 | [diff] [blame] | 2220 | .of_to_plat = octeontx_nand_of_to_plat, |
Suneel Garapati | 9de7d2b | 2020-08-26 14:37:22 +0200 | [diff] [blame] | 2221 | .probe = octeontx_pci_nand_probe, |
Simon Glass | 8a2b47f | 2020-12-03 16:55:17 -0700 | [diff] [blame] | 2222 | .priv_auto = sizeof(struct octeontx_nfc), |
Suneel Garapati | 9de7d2b | 2020-08-26 14:37:22 +0200 | [diff] [blame] | 2223 | .remove = octeontx_pci_nand_disable, |
| 2224 | .flags = DM_FLAG_OS_PREPARE, |
| 2225 | }; |
| 2226 | |
| 2227 | U_BOOT_PCI_DEVICE(octeontx_pci_nand, octeontx_nfc_pci_id_table); |
| 2228 | |
| 2229 | void board_nand_init(void) |
| 2230 | { |
| 2231 | struct udevice *dev; |
| 2232 | int ret; |
| 2233 | |
| 2234 | if (IS_ENABLED(CONFIG_NAND_OCTEONTX_HW_ECC)) { |
| 2235 | ret = uclass_get_device_by_driver(UCLASS_MISC, |
Simon Glass | 65130cd | 2020-12-28 20:34:56 -0700 | [diff] [blame^] | 2236 | DM_DRIVER_GET(octeontx_pci_bchpf), |
Suneel Garapati | 9de7d2b | 2020-08-26 14:37:22 +0200 | [diff] [blame] | 2237 | &dev); |
| 2238 | if (ret && ret != -ENODEV) { |
| 2239 | pr_err("Failed to initialize OcteonTX BCH PF controller. (error %d)\n", |
| 2240 | ret); |
| 2241 | } |
| 2242 | ret = uclass_get_device_by_driver(UCLASS_MISC, |
Simon Glass | 65130cd | 2020-12-28 20:34:56 -0700 | [diff] [blame^] | 2243 | DM_DRIVER_GET(octeontx_pci_bchvf), |
Suneel Garapati | 9de7d2b | 2020-08-26 14:37:22 +0200 | [diff] [blame] | 2244 | &dev); |
| 2245 | if (ret && ret != -ENODEV) { |
| 2246 | pr_err("Failed to initialize OcteonTX BCH VF controller. (error %d)\n", |
| 2247 | ret); |
| 2248 | } |
| 2249 | } |
| 2250 | |
| 2251 | ret = uclass_get_device_by_driver(UCLASS_MTD, |
Simon Glass | 65130cd | 2020-12-28 20:34:56 -0700 | [diff] [blame^] | 2252 | DM_DRIVER_GET(octeontx_pci_nand), |
Suneel Garapati | 9de7d2b | 2020-08-26 14:37:22 +0200 | [diff] [blame] | 2253 | &dev); |
| 2254 | if (ret && ret != -ENODEV) |
| 2255 | pr_err("Failed to initialize OcteonTX NAND controller. (error %d)\n", |
| 2256 | ret); |
| 2257 | } |