Marek Vasut | c140e98 | 2011-11-08 23:18:08 +0000 | [diff] [blame] | 1 | /* |
| 2 | * Freescale i.MX28 clock setup code |
| 3 | * |
| 4 | * Copyright (C) 2011 Marek Vasut <marek.vasut@gmail.com> |
| 5 | * on behalf of DENX Software Engineering GmbH |
| 6 | * |
| 7 | * Based on code from LTIB: |
| 8 | * Copyright (C) 2010 Freescale Semiconductor, Inc. |
| 9 | * |
| 10 | * See file CREDITS for list of people who contributed to this |
| 11 | * project. |
| 12 | * |
| 13 | * This program is free software; you can redistribute it and/or |
| 14 | * modify it under the terms of the GNU General Public License as |
| 15 | * published by the Free Software Foundation; either version 2 of |
| 16 | * the License, or (at your option) any later version. |
| 17 | * |
| 18 | * This program is distributed in the hope that it will be useful, |
| 19 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 20 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 21 | * GNU General Public License for more details. |
| 22 | * |
| 23 | * You should have received a copy of the GNU General Public License |
| 24 | * along with this program; if not, write to the Free Software |
| 25 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, |
| 26 | * MA 02111-1307 USA |
| 27 | */ |
| 28 | |
| 29 | #include <common.h> |
| 30 | #include <asm/errno.h> |
| 31 | #include <asm/io.h> |
| 32 | #include <asm/arch/clock.h> |
| 33 | #include <asm/arch/imx-regs.h> |
| 34 | |
| 35 | /* The PLL frequency is always 480MHz, see section 10.2 in iMX28 datasheet. */ |
| 36 | #define PLL_FREQ_KHZ 480000 |
| 37 | #define PLL_FREQ_COEF 18 |
| 38 | /* The XTAL frequency is always 24MHz, see section 10.2 in iMX28 datasheet. */ |
| 39 | #define XTAL_FREQ_KHZ 24000 |
| 40 | |
| 41 | #define PLL_FREQ_MHZ (PLL_FREQ_KHZ / 1000) |
| 42 | #define XTAL_FREQ_MHZ (XTAL_FREQ_KHZ / 1000) |
| 43 | |
| 44 | static uint32_t mx28_get_pclk(void) |
| 45 | { |
| 46 | struct mx28_clkctrl_regs *clkctrl_regs = |
| 47 | (struct mx28_clkctrl_regs *)MXS_CLKCTRL_BASE; |
| 48 | |
| 49 | uint32_t clkctrl, clkseq, clkfrac; |
| 50 | uint32_t frac, div; |
| 51 | |
| 52 | clkctrl = readl(&clkctrl_regs->hw_clkctrl_cpu); |
| 53 | |
| 54 | /* No support of fractional divider calculation */ |
| 55 | if (clkctrl & |
| 56 | (CLKCTRL_CPU_DIV_XTAL_FRAC_EN | CLKCTRL_CPU_DIV_CPU_FRAC_EN)) { |
| 57 | return 0; |
| 58 | } |
| 59 | |
| 60 | clkseq = readl(&clkctrl_regs->hw_clkctrl_clkseq); |
| 61 | |
| 62 | /* XTAL Path */ |
| 63 | if (clkseq & CLKCTRL_CLKSEQ_BYPASS_CPU) { |
| 64 | div = (clkctrl & CLKCTRL_CPU_DIV_XTAL_MASK) >> |
| 65 | CLKCTRL_CPU_DIV_XTAL_OFFSET; |
| 66 | return XTAL_FREQ_MHZ / div; |
| 67 | } |
| 68 | |
| 69 | /* REF Path */ |
| 70 | clkfrac = readl(&clkctrl_regs->hw_clkctrl_frac0); |
| 71 | frac = clkfrac & CLKCTRL_FRAC0_CPUFRAC_MASK; |
| 72 | div = clkctrl & CLKCTRL_CPU_DIV_CPU_MASK; |
| 73 | return (PLL_FREQ_MHZ * PLL_FREQ_COEF / frac) / div; |
| 74 | } |
| 75 | |
| 76 | static uint32_t mx28_get_hclk(void) |
| 77 | { |
| 78 | struct mx28_clkctrl_regs *clkctrl_regs = |
| 79 | (struct mx28_clkctrl_regs *)MXS_CLKCTRL_BASE; |
| 80 | |
| 81 | uint32_t div; |
| 82 | uint32_t clkctrl; |
| 83 | |
| 84 | clkctrl = readl(&clkctrl_regs->hw_clkctrl_hbus); |
| 85 | |
| 86 | /* No support of fractional divider calculation */ |
| 87 | if (clkctrl & CLKCTRL_HBUS_DIV_FRAC_EN) |
| 88 | return 0; |
| 89 | |
| 90 | div = clkctrl & CLKCTRL_HBUS_DIV_MASK; |
| 91 | return mx28_get_pclk() / div; |
| 92 | } |
| 93 | |
| 94 | static uint32_t mx28_get_emiclk(void) |
| 95 | { |
| 96 | struct mx28_clkctrl_regs *clkctrl_regs = |
| 97 | (struct mx28_clkctrl_regs *)MXS_CLKCTRL_BASE; |
| 98 | |
| 99 | uint32_t frac, div; |
| 100 | uint32_t clkctrl, clkseq, clkfrac; |
| 101 | |
| 102 | clkseq = readl(&clkctrl_regs->hw_clkctrl_clkseq); |
| 103 | clkctrl = readl(&clkctrl_regs->hw_clkctrl_emi); |
| 104 | |
| 105 | /* XTAL Path */ |
| 106 | if (clkseq & CLKCTRL_CLKSEQ_BYPASS_EMI) { |
| 107 | div = (clkctrl & CLKCTRL_EMI_DIV_XTAL_MASK) >> |
| 108 | CLKCTRL_EMI_DIV_XTAL_OFFSET; |
| 109 | return XTAL_FREQ_MHZ / div; |
| 110 | } |
| 111 | |
| 112 | clkfrac = readl(&clkctrl_regs->hw_clkctrl_frac0); |
| 113 | |
| 114 | /* REF Path */ |
| 115 | frac = (clkfrac & CLKCTRL_FRAC0_EMIFRAC_MASK) >> |
| 116 | CLKCTRL_FRAC0_EMIFRAC_OFFSET; |
| 117 | div = clkctrl & CLKCTRL_EMI_DIV_EMI_MASK; |
| 118 | return (PLL_FREQ_MHZ * PLL_FREQ_COEF / frac) / div; |
| 119 | } |
| 120 | |
| 121 | static uint32_t mx28_get_gpmiclk(void) |
| 122 | { |
| 123 | struct mx28_clkctrl_regs *clkctrl_regs = |
| 124 | (struct mx28_clkctrl_regs *)MXS_CLKCTRL_BASE; |
| 125 | |
| 126 | uint32_t frac, div; |
| 127 | uint32_t clkctrl, clkseq, clkfrac; |
| 128 | |
| 129 | clkseq = readl(&clkctrl_regs->hw_clkctrl_clkseq); |
| 130 | clkctrl = readl(&clkctrl_regs->hw_clkctrl_gpmi); |
| 131 | |
| 132 | /* XTAL Path */ |
| 133 | if (clkseq & CLKCTRL_CLKSEQ_BYPASS_GPMI) { |
| 134 | div = clkctrl & CLKCTRL_GPMI_DIV_MASK; |
| 135 | return XTAL_FREQ_MHZ / div; |
| 136 | } |
| 137 | |
| 138 | clkfrac = readl(&clkctrl_regs->hw_clkctrl_frac1); |
| 139 | |
| 140 | /* REF Path */ |
| 141 | frac = (clkfrac & CLKCTRL_FRAC1_GPMIFRAC_MASK) >> |
| 142 | CLKCTRL_FRAC1_GPMIFRAC_OFFSET; |
| 143 | div = clkctrl & CLKCTRL_GPMI_DIV_MASK; |
| 144 | return (PLL_FREQ_MHZ * PLL_FREQ_COEF / frac) / div; |
| 145 | } |
| 146 | |
| 147 | /* |
| 148 | * Set IO clock frequency, in kHz |
| 149 | */ |
| 150 | void mx28_set_ioclk(enum mxs_ioclock io, uint32_t freq) |
| 151 | { |
| 152 | struct mx28_clkctrl_regs *clkctrl_regs = |
| 153 | (struct mx28_clkctrl_regs *)MXS_CLKCTRL_BASE; |
| 154 | uint32_t div; |
| 155 | |
| 156 | if (freq == 0) |
| 157 | return; |
| 158 | |
| 159 | if (io > MXC_IOCLK1) |
| 160 | return; |
| 161 | |
| 162 | div = (PLL_FREQ_KHZ * PLL_FREQ_COEF) / freq; |
| 163 | |
| 164 | if (div < 18) |
| 165 | div = 18; |
| 166 | |
| 167 | if (div > 35) |
| 168 | div = 35; |
| 169 | |
| 170 | if (io == MXC_IOCLK0) { |
| 171 | writel(CLKCTRL_FRAC0_CLKGATEIO0, |
| 172 | &clkctrl_regs->hw_clkctrl_frac0_set); |
| 173 | clrsetbits_le32(&clkctrl_regs->hw_clkctrl_frac0, |
| 174 | CLKCTRL_FRAC0_IO0FRAC_MASK, |
| 175 | div << CLKCTRL_FRAC0_IO0FRAC_OFFSET); |
| 176 | writel(CLKCTRL_FRAC0_CLKGATEIO0, |
| 177 | &clkctrl_regs->hw_clkctrl_frac0_clr); |
| 178 | } else { |
| 179 | writel(CLKCTRL_FRAC0_CLKGATEIO1, |
| 180 | &clkctrl_regs->hw_clkctrl_frac0_set); |
| 181 | clrsetbits_le32(&clkctrl_regs->hw_clkctrl_frac0, |
| 182 | CLKCTRL_FRAC0_IO1FRAC_MASK, |
| 183 | div << CLKCTRL_FRAC0_IO1FRAC_OFFSET); |
| 184 | writel(CLKCTRL_FRAC0_CLKGATEIO1, |
| 185 | &clkctrl_regs->hw_clkctrl_frac0_clr); |
| 186 | } |
| 187 | } |
| 188 | |
| 189 | /* |
| 190 | * Get IO clock, returns IO clock in kHz |
| 191 | */ |
| 192 | static uint32_t mx28_get_ioclk(enum mxs_ioclock io) |
| 193 | { |
| 194 | struct mx28_clkctrl_regs *clkctrl_regs = |
| 195 | (struct mx28_clkctrl_regs *)MXS_CLKCTRL_BASE; |
| 196 | uint32_t tmp, ret; |
| 197 | |
| 198 | if (io > MXC_IOCLK1) |
| 199 | return 0; |
| 200 | |
| 201 | tmp = readl(&clkctrl_regs->hw_clkctrl_frac0); |
| 202 | |
| 203 | if (io == MXC_IOCLK0) |
| 204 | ret = (tmp & CLKCTRL_FRAC0_IO0FRAC_MASK) >> |
| 205 | CLKCTRL_FRAC0_IO0FRAC_OFFSET; |
| 206 | else |
| 207 | ret = (tmp & CLKCTRL_FRAC0_IO1FRAC_MASK) >> |
| 208 | CLKCTRL_FRAC0_IO1FRAC_OFFSET; |
| 209 | |
| 210 | return (PLL_FREQ_KHZ * PLL_FREQ_COEF) / ret; |
| 211 | } |
| 212 | |
| 213 | /* |
| 214 | * Configure SSP clock frequency, in kHz |
| 215 | */ |
| 216 | void mx28_set_sspclk(enum mxs_sspclock ssp, uint32_t freq, int xtal) |
| 217 | { |
| 218 | struct mx28_clkctrl_regs *clkctrl_regs = |
| 219 | (struct mx28_clkctrl_regs *)MXS_CLKCTRL_BASE; |
| 220 | uint32_t clk, clkreg; |
| 221 | |
| 222 | if (ssp > MXC_SSPCLK3) |
| 223 | return; |
| 224 | |
| 225 | clkreg = (uint32_t)(&clkctrl_regs->hw_clkctrl_ssp0) + |
| 226 | (ssp * sizeof(struct mx28_register)); |
| 227 | |
| 228 | clrbits_le32(clkreg, CLKCTRL_SSP_CLKGATE); |
| 229 | while (readl(clkreg) & CLKCTRL_SSP_CLKGATE) |
| 230 | ; |
| 231 | |
| 232 | if (xtal) |
| 233 | clk = XTAL_FREQ_KHZ; |
| 234 | else |
| 235 | clk = mx28_get_ioclk(ssp >> 1); |
| 236 | |
| 237 | if (freq > clk) |
| 238 | return; |
| 239 | |
| 240 | /* Calculate the divider and cap it if necessary */ |
| 241 | clk /= freq; |
| 242 | if (clk > CLKCTRL_SSP_DIV_MASK) |
| 243 | clk = CLKCTRL_SSP_DIV_MASK; |
| 244 | |
| 245 | clrsetbits_le32(clkreg, CLKCTRL_SSP_DIV_MASK, clk); |
| 246 | while (readl(clkreg) & CLKCTRL_SSP_BUSY) |
| 247 | ; |
| 248 | |
| 249 | if (xtal) |
| 250 | writel(CLKCTRL_CLKSEQ_BYPASS_SSP0 << ssp, |
| 251 | &clkctrl_regs->hw_clkctrl_clkseq_set); |
| 252 | else |
| 253 | writel(CLKCTRL_CLKSEQ_BYPASS_SSP0 << ssp, |
| 254 | &clkctrl_regs->hw_clkctrl_clkseq_clr); |
| 255 | } |
| 256 | |
| 257 | /* |
| 258 | * Return SSP frequency, in kHz |
| 259 | */ |
| 260 | static uint32_t mx28_get_sspclk(enum mxs_sspclock ssp) |
| 261 | { |
| 262 | struct mx28_clkctrl_regs *clkctrl_regs = |
| 263 | (struct mx28_clkctrl_regs *)MXS_CLKCTRL_BASE; |
| 264 | uint32_t clkreg; |
| 265 | uint32_t clk, tmp; |
| 266 | |
| 267 | if (ssp > MXC_SSPCLK3) |
| 268 | return 0; |
| 269 | |
| 270 | tmp = readl(&clkctrl_regs->hw_clkctrl_clkseq); |
| 271 | if (tmp & (CLKCTRL_CLKSEQ_BYPASS_SSP0 << ssp)) |
| 272 | return XTAL_FREQ_KHZ; |
| 273 | |
| 274 | clkreg = (uint32_t)(&clkctrl_regs->hw_clkctrl_ssp0) + |
| 275 | (ssp * sizeof(struct mx28_register)); |
| 276 | |
| 277 | tmp = readl(clkreg) & CLKCTRL_SSP_DIV_MASK; |
| 278 | |
| 279 | if (tmp == 0) |
| 280 | return 0; |
| 281 | |
| 282 | clk = mx28_get_ioclk(ssp >> 1); |
| 283 | |
| 284 | return clk / tmp; |
| 285 | } |
| 286 | |
| 287 | /* |
| 288 | * Set SSP/MMC bus frequency, in kHz) |
| 289 | */ |
| 290 | void mx28_set_ssp_busclock(unsigned int bus, uint32_t freq) |
| 291 | { |
| 292 | struct mx28_ssp_regs *ssp_regs; |
| 293 | const uint32_t sspclk = mx28_get_sspclk(bus); |
| 294 | uint32_t reg; |
| 295 | uint32_t divide, rate, tgtclk; |
| 296 | |
| 297 | ssp_regs = (struct mx28_ssp_regs *)(MXS_SSP0_BASE + (bus * 0x2000)); |
| 298 | |
| 299 | /* |
| 300 | * SSP bit rate = SSPCLK / (CLOCK_DIVIDE * (1 + CLOCK_RATE)), |
| 301 | * CLOCK_DIVIDE has to be an even value from 2 to 254, and |
| 302 | * CLOCK_RATE could be any integer from 0 to 255. |
| 303 | */ |
| 304 | for (divide = 2; divide < 254; divide += 2) { |
| 305 | rate = sspclk / freq / divide; |
| 306 | if (rate <= 256) |
| 307 | break; |
| 308 | } |
| 309 | |
| 310 | tgtclk = sspclk / divide / rate; |
| 311 | while (tgtclk > freq) { |
| 312 | rate++; |
| 313 | tgtclk = sspclk / divide / rate; |
| 314 | } |
| 315 | if (rate > 256) |
| 316 | rate = 256; |
| 317 | |
| 318 | /* Always set timeout the maximum */ |
| 319 | reg = SSP_TIMING_TIMEOUT_MASK | |
| 320 | (divide << SSP_TIMING_CLOCK_DIVIDE_OFFSET) | |
| 321 | ((rate - 1) << SSP_TIMING_CLOCK_RATE_OFFSET); |
| 322 | writel(reg, &ssp_regs->hw_ssp_timing); |
| 323 | |
| 324 | debug("SPI%d: Set freq rate to %d KHz (requested %d KHz)\n", |
| 325 | bus, tgtclk, freq); |
| 326 | } |
| 327 | |
| 328 | uint32_t mxc_get_clock(enum mxc_clock clk) |
| 329 | { |
| 330 | switch (clk) { |
| 331 | case MXC_ARM_CLK: |
| 332 | return mx28_get_pclk() * 1000000; |
| 333 | case MXC_GPMI_CLK: |
| 334 | return mx28_get_gpmiclk() * 1000000; |
| 335 | case MXC_AHB_CLK: |
| 336 | case MXC_IPG_CLK: |
| 337 | return mx28_get_hclk() * 1000000; |
| 338 | case MXC_EMI_CLK: |
| 339 | return mx28_get_emiclk(); |
| 340 | case MXC_IO0_CLK: |
| 341 | return mx28_get_ioclk(MXC_IOCLK0); |
| 342 | case MXC_IO1_CLK: |
| 343 | return mx28_get_ioclk(MXC_IOCLK1); |
| 344 | case MXC_SSP0_CLK: |
| 345 | return mx28_get_sspclk(MXC_SSPCLK0); |
| 346 | case MXC_SSP1_CLK: |
| 347 | return mx28_get_sspclk(MXC_SSPCLK1); |
| 348 | case MXC_SSP2_CLK: |
| 349 | return mx28_get_sspclk(MXC_SSPCLK2); |
| 350 | case MXC_SSP3_CLK: |
| 351 | return mx28_get_sspclk(MXC_SSPCLK3); |
| 352 | } |
| 353 | |
| 354 | return 0; |
| 355 | } |