Aaron Williams | 580adb0 | 2020-12-11 17:06:06 +0100 | [diff] [blame^] | 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * Copyright (C) 2020 Marvell International Ltd. |
| 4 | */ |
| 5 | |
| 6 | #include <dm.h> |
| 7 | #include <time.h> |
| 8 | #include <linux/delay.h> |
| 9 | |
| 10 | #include <mach/cvmx-regs.h> |
| 11 | #include <mach/octeon-model.h> |
| 12 | #include <mach/cvmx-fuse.h> |
| 13 | #include <mach/cvmx-qlm.h> |
| 14 | #include <mach/octeon_qlm.h> |
| 15 | #include <mach/cvmx-pcie.h> |
| 16 | |
| 17 | #include <mach/cvmx-bgxx-defs.h> |
| 18 | #include <mach/cvmx-ciu-defs.h> |
| 19 | #include <mach/cvmx-gmxx-defs.h> |
| 20 | #include <mach/cvmx-gserx-defs.h> |
| 21 | #include <mach/cvmx-mio-defs.h> |
| 22 | #include <mach/cvmx-pciercx-defs.h> |
| 23 | #include <mach/cvmx-pemx-defs.h> |
| 24 | #include <mach/cvmx-pexp-defs.h> |
| 25 | #include <mach/cvmx-rst-defs.h> |
| 26 | #include <mach/cvmx-sata-defs.h> |
| 27 | #include <mach/cvmx-sli-defs.h> |
| 28 | #include <mach/cvmx-sriomaintx-defs.h> |
| 29 | #include <mach/cvmx-sriox-defs.h> |
| 30 | |
| 31 | DECLARE_GLOBAL_DATA_PTR; |
| 32 | |
| 33 | /** 2.5GHz with 100MHz reference clock */ |
| 34 | #define R_2_5G_REFCLK100 0x0 |
| 35 | /** 5.0GHz with 100MHz reference clock */ |
| 36 | #define R_5G_REFCLK100 0x1 |
| 37 | /** 8.0GHz with 100MHz reference clock */ |
| 38 | #define R_8G_REFCLK100 0x2 |
| 39 | /** 1.25GHz with 156.25MHz reference clock */ |
| 40 | #define R_125G_REFCLK15625_KX 0x3 |
| 41 | /** 3.125Ghz with 156.25MHz reference clock (XAUI) */ |
| 42 | #define R_3125G_REFCLK15625_XAUI 0x4 |
| 43 | /** 10.3125GHz with 156.25MHz reference clock (XFI/XLAUI) */ |
| 44 | #define R_103125G_REFCLK15625_KR 0x5 |
| 45 | /** 1.25GHz with 156.25MHz reference clock (SGMII) */ |
| 46 | #define R_125G_REFCLK15625_SGMII 0x6 |
| 47 | /** 5GHz with 156.25MHz reference clock (QSGMII) */ |
| 48 | #define R_5G_REFCLK15625_QSGMII 0x7 |
| 49 | /** 6.25GHz with 156.25MHz reference clock (RXAUI/25G) */ |
| 50 | #define R_625G_REFCLK15625_RXAUI 0x8 |
| 51 | /** 2.5GHz with 125MHz reference clock */ |
| 52 | #define R_2_5G_REFCLK125 0x9 |
| 53 | /** 5GHz with 125MHz reference clock */ |
| 54 | #define R_5G_REFCLK125 0xa |
| 55 | /** 8GHz with 125MHz reference clock */ |
| 56 | #define R_8G_REFCLK125 0xb |
| 57 | /** Must be last, number of modes */ |
| 58 | #define R_NUM_LANE_MODES 0xc |
| 59 | |
| 60 | int cvmx_qlm_is_ref_clock(int qlm, int reference_mhz) |
| 61 | { |
| 62 | int ref_clock = cvmx_qlm_measure_clock(qlm); |
| 63 | int mhz = ref_clock / 1000000; |
| 64 | int range = reference_mhz / 10; |
| 65 | |
| 66 | return ((mhz >= reference_mhz - range) && (mhz <= reference_mhz + range)); |
| 67 | } |
| 68 | |
| 69 | static int __get_qlm_spd(int qlm, int speed) |
| 70 | { |
| 71 | int qlm_spd = 0xf; |
| 72 | |
| 73 | if (cvmx_qlm_is_ref_clock(qlm, 100)) { |
| 74 | if (speed == 1250) |
| 75 | qlm_spd = 0x3; |
| 76 | else if (speed == 2500) |
| 77 | qlm_spd = 0x2; |
| 78 | else if (speed == 5000) |
| 79 | qlm_spd = 0x0; |
| 80 | else |
| 81 | qlm_spd = 0xf; |
| 82 | } else if (cvmx_qlm_is_ref_clock(qlm, 125)) { |
| 83 | if (speed == 1250) |
| 84 | qlm_spd = 0xa; |
| 85 | else if (speed == 2500) |
| 86 | qlm_spd = 0x9; |
| 87 | else if (speed == 3125) |
| 88 | qlm_spd = 0x8; |
| 89 | else if (speed == 5000) |
| 90 | qlm_spd = 0x6; |
| 91 | else if (speed == 6250) |
| 92 | qlm_spd = 0x5; |
| 93 | else |
| 94 | qlm_spd = 0xf; |
| 95 | } else if (cvmx_qlm_is_ref_clock(qlm, 156)) { |
| 96 | if (speed == 1250) |
| 97 | qlm_spd = 0x4; |
| 98 | else if (speed == 2500) |
| 99 | qlm_spd = 0x7; |
| 100 | else if (speed == 3125) |
| 101 | qlm_spd = 0xe; |
| 102 | else if (speed == 3750) |
| 103 | qlm_spd = 0xd; |
| 104 | else if (speed == 5000) |
| 105 | qlm_spd = 0xb; |
| 106 | else if (speed == 6250) |
| 107 | qlm_spd = 0xc; |
| 108 | else |
| 109 | qlm_spd = 0xf; |
| 110 | } else if (cvmx_qlm_is_ref_clock(qlm, 161)) { |
| 111 | if (speed == 6316) |
| 112 | qlm_spd = 0xc; |
| 113 | } |
| 114 | return qlm_spd; |
| 115 | } |
| 116 | |
| 117 | static void __set_qlm_pcie_mode_61xx(int pcie_port, int root_complex) |
| 118 | { |
| 119 | int rc = root_complex ? 1 : 0; |
| 120 | int ep = root_complex ? 0 : 1; |
| 121 | cvmx_ciu_soft_prst1_t soft_prst1; |
| 122 | cvmx_ciu_soft_prst_t soft_prst; |
| 123 | cvmx_mio_rst_ctlx_t rst_ctl; |
| 124 | |
| 125 | if (pcie_port) { |
| 126 | soft_prst1.u64 = csr_rd(CVMX_CIU_SOFT_PRST1); |
| 127 | soft_prst1.s.soft_prst = 1; |
| 128 | csr_wr(CVMX_CIU_SOFT_PRST1, soft_prst1.u64); |
| 129 | } else { |
| 130 | soft_prst.u64 = csr_rd(CVMX_CIU_SOFT_PRST); |
| 131 | soft_prst.s.soft_prst = 1; |
| 132 | csr_wr(CVMX_CIU_SOFT_PRST, soft_prst.u64); |
| 133 | } |
| 134 | |
| 135 | rst_ctl.u64 = csr_rd(CVMX_MIO_RST_CTLX(pcie_port)); |
| 136 | |
| 137 | rst_ctl.s.prst_link = rc; |
| 138 | rst_ctl.s.rst_link = ep; |
| 139 | rst_ctl.s.prtmode = rc; |
| 140 | rst_ctl.s.rst_drv = rc; |
| 141 | rst_ctl.s.rst_rcv = 0; |
| 142 | rst_ctl.s.rst_chip = ep; |
| 143 | csr_wr(CVMX_MIO_RST_CTLX(pcie_port), rst_ctl.u64); |
| 144 | |
| 145 | if (root_complex == 0) { |
| 146 | if (pcie_port) { |
| 147 | soft_prst1.u64 = csr_rd(CVMX_CIU_SOFT_PRST1); |
| 148 | soft_prst1.s.soft_prst = 0; |
| 149 | csr_wr(CVMX_CIU_SOFT_PRST1, soft_prst1.u64); |
| 150 | } else { |
| 151 | soft_prst.u64 = csr_rd(CVMX_CIU_SOFT_PRST); |
| 152 | soft_prst.s.soft_prst = 0; |
| 153 | csr_wr(CVMX_CIU_SOFT_PRST, soft_prst.u64); |
| 154 | } |
| 155 | } |
| 156 | } |
| 157 | |
| 158 | /** |
| 159 | * Configure qlm speed and mode. MIO_QLMX_CFG[speed,mode] are not set |
| 160 | * for CN61XX. |
| 161 | * |
| 162 | * @param qlm The QLM to configure |
| 163 | * @param speed The speed the QLM needs to be configured in Mhz. |
| 164 | * @param mode The QLM to be configured as SGMII/XAUI/PCIe. |
| 165 | * QLM 0: 0 = PCIe0 1X4, 1 = Reserved, 2 = SGMII1, 3 = XAUI1 |
| 166 | * QLM 1: 0 = PCIe1 1x2, 1 = PCIe(0/1) 2x1, 2 - 3 = Reserved |
| 167 | * QLM 2: 0 - 1 = Reserved, 2 = SGMII0, 3 = XAUI0 |
| 168 | * @param rc Only used for PCIe, rc = 1 for root complex mode, 0 for EP |
| 169 | * mode. |
| 170 | * @param pcie2x1 Only used when QLM1 is in PCIE2x1 mode. The QLM_SPD has a |
| 171 | * different value on how PEMx needs to be configured: |
| 172 | * 0x0 - both PEM0 & PEM1 are in gen1 mode. |
| 173 | * 0x1 - PEM0 in gen2 and PEM1 in gen1 mode. |
| 174 | * 0x2 - PEM0 in gen1 and PEM1 in gen2 mode. |
| 175 | * 0x3 - both PEM0 & PEM1 are in gen2 mode. |
| 176 | * SPEED value is ignored in this mode. QLM_SPD is set based on |
| 177 | * pcie2x1 value in this mode. |
| 178 | * |
| 179 | * @return Return 0 on success or -1. |
| 180 | */ |
| 181 | static int octeon_configure_qlm_cn61xx(int qlm, int speed, int mode, int rc, int pcie2x1) |
| 182 | { |
| 183 | cvmx_mio_qlmx_cfg_t qlm_cfg; |
| 184 | |
| 185 | /* The QLM speed varies for SGMII/XAUI and PCIe mode. And depends on |
| 186 | * reference clock. |
| 187 | */ |
| 188 | if (!OCTEON_IS_MODEL(OCTEON_CN61XX)) |
| 189 | return -1; |
| 190 | |
| 191 | if (qlm < 3) { |
| 192 | qlm_cfg.u64 = csr_rd(CVMX_MIO_QLMX_CFG(qlm)); |
| 193 | } else { |
| 194 | debug("WARNING: Invalid QLM(%d) passed\n", qlm); |
| 195 | return -1; |
| 196 | } |
| 197 | |
| 198 | switch (qlm) { |
| 199 | /* SGMII/XAUI mode */ |
| 200 | case 2: { |
| 201 | if (mode < 2) { |
| 202 | qlm_cfg.s.qlm_spd = 0xf; |
| 203 | break; |
| 204 | } |
| 205 | qlm_cfg.s.qlm_spd = __get_qlm_spd(qlm, speed); |
| 206 | qlm_cfg.s.qlm_cfg = mode; |
| 207 | break; |
| 208 | } |
| 209 | case 1: { |
| 210 | if (mode == 1) { /* 2x1 mode */ |
| 211 | cvmx_mio_qlmx_cfg_t qlm0; |
| 212 | |
| 213 | /* When QLM0 is configured as PCIe(QLM_CFG=0x0) |
| 214 | * and enabled (QLM_SPD != 0xf), QLM1 cannot be |
| 215 | * configured as PCIe 2x1 mode (QLM_CFG=0x1) |
| 216 | * and enabled (QLM_SPD != 0xf). |
| 217 | */ |
| 218 | qlm0.u64 = csr_rd(CVMX_MIO_QLMX_CFG(0)); |
| 219 | if (qlm0.s.qlm_spd != 0xf && qlm0.s.qlm_cfg == 0) { |
| 220 | debug("Invalid mode(%d) for QLM(%d) as QLM1 is PCIe mode\n", |
| 221 | mode, qlm); |
| 222 | qlm_cfg.s.qlm_spd = 0xf; |
| 223 | break; |
| 224 | } |
| 225 | |
| 226 | /* Set QLM_SPD based on reference clock and mode */ |
| 227 | if (cvmx_qlm_is_ref_clock(qlm, 100)) { |
| 228 | if (pcie2x1 == 0x3) |
| 229 | qlm_cfg.s.qlm_spd = 0x0; |
| 230 | else if (pcie2x1 == 0x1) |
| 231 | qlm_cfg.s.qlm_spd = 0x2; |
| 232 | else if (pcie2x1 == 0x2) |
| 233 | qlm_cfg.s.qlm_spd = 0x1; |
| 234 | else if (pcie2x1 == 0x0) |
| 235 | qlm_cfg.s.qlm_spd = 0x3; |
| 236 | else |
| 237 | qlm_cfg.s.qlm_spd = 0xf; |
| 238 | } else if (cvmx_qlm_is_ref_clock(qlm, 125)) { |
| 239 | if (pcie2x1 == 0x3) |
| 240 | qlm_cfg.s.qlm_spd = 0x4; |
| 241 | else if (pcie2x1 == 0x1) |
| 242 | qlm_cfg.s.qlm_spd = 0x6; |
| 243 | else if (pcie2x1 == 0x2) |
| 244 | qlm_cfg.s.qlm_spd = 0x9; |
| 245 | else if (pcie2x1 == 0x0) |
| 246 | qlm_cfg.s.qlm_spd = 0x7; |
| 247 | else |
| 248 | qlm_cfg.s.qlm_spd = 0xf; |
| 249 | } |
| 250 | qlm_cfg.s.qlm_cfg = mode; |
| 251 | csr_wr(CVMX_MIO_QLMX_CFG(qlm), qlm_cfg.u64); |
| 252 | |
| 253 | /* Set PCIe mode bits */ |
| 254 | __set_qlm_pcie_mode_61xx(0, rc); |
| 255 | __set_qlm_pcie_mode_61xx(1, rc); |
| 256 | return 0; |
| 257 | } else if (mode > 1) { |
| 258 | debug("Invalid mode(%d) for QLM(%d).\n", mode, qlm); |
| 259 | qlm_cfg.s.qlm_spd = 0xf; |
| 260 | break; |
| 261 | } |
| 262 | |
| 263 | /* Set speed and mode for PCIe 1x2 mode. */ |
| 264 | if (cvmx_qlm_is_ref_clock(qlm, 100)) { |
| 265 | if (speed == 5000) |
| 266 | qlm_cfg.s.qlm_spd = 0x1; |
| 267 | else if (speed == 2500) |
| 268 | qlm_cfg.s.qlm_spd = 0x2; |
| 269 | else |
| 270 | qlm_cfg.s.qlm_spd = 0xf; |
| 271 | } else if (cvmx_qlm_is_ref_clock(qlm, 125)) { |
| 272 | if (speed == 5000) |
| 273 | qlm_cfg.s.qlm_spd = 0x4; |
| 274 | else if (speed == 2500) |
| 275 | qlm_cfg.s.qlm_spd = 0x6; |
| 276 | else |
| 277 | qlm_cfg.s.qlm_spd = 0xf; |
| 278 | } else { |
| 279 | qlm_cfg.s.qlm_spd = 0xf; |
| 280 | } |
| 281 | |
| 282 | qlm_cfg.s.qlm_cfg = mode; |
| 283 | csr_wr(CVMX_MIO_QLMX_CFG(qlm), qlm_cfg.u64); |
| 284 | |
| 285 | /* Set PCIe mode bits */ |
| 286 | __set_qlm_pcie_mode_61xx(1, rc); |
| 287 | return 0; |
| 288 | } |
| 289 | case 0: { |
| 290 | /* QLM_CFG = 0x1 - Reserved */ |
| 291 | if (mode == 1) { |
| 292 | qlm_cfg.s.qlm_spd = 0xf; |
| 293 | break; |
| 294 | } |
| 295 | /* QLM_CFG = 0x0 - PCIe 1x4(PEM0) */ |
| 296 | if (mode == 0 && speed != 5000 && speed != 2500) { |
| 297 | qlm_cfg.s.qlm_spd = 0xf; |
| 298 | break; |
| 299 | } |
| 300 | |
| 301 | /* Set speed and mode */ |
| 302 | qlm_cfg.s.qlm_spd = __get_qlm_spd(qlm, speed); |
| 303 | qlm_cfg.s.qlm_cfg = mode; |
| 304 | csr_wr(CVMX_MIO_QLMX_CFG(qlm), qlm_cfg.u64); |
| 305 | |
| 306 | /* Set PCIe mode bits */ |
| 307 | if (mode == 0) |
| 308 | __set_qlm_pcie_mode_61xx(0, rc); |
| 309 | |
| 310 | return 0; |
| 311 | } |
| 312 | default: |
| 313 | debug("WARNING: Invalid QLM(%d) passed\n", qlm); |
| 314 | qlm_cfg.s.qlm_spd = 0xf; |
| 315 | } |
| 316 | csr_wr(CVMX_MIO_QLMX_CFG(qlm), qlm_cfg.u64); |
| 317 | return 0; |
| 318 | } |
| 319 | |
| 320 | /* qlm : DLM to configure |
| 321 | * baud_mhz : speed of the DLM |
| 322 | * ref_clk_sel : reference clock speed selection where: |
| 323 | * 0: 100MHz |
| 324 | * 1: 125MHz |
| 325 | * 2: 156.25MHz |
| 326 | * |
| 327 | * ref_clk_input: reference clock input where: |
| 328 | * 0: DLMC_REF_CLK0_[P,N] |
| 329 | * 1: DLMC_REF_CLK1_[P,N] |
| 330 | * 2: DLM0_REF_CLK_[P,N] (only valid for QLM 0) |
| 331 | * is_sff7000_rxaui : boolean to indicate whether qlm is RXAUI on SFF7000 |
| 332 | */ |
| 333 | static int __dlm_setup_pll_cn70xx(int qlm, int baud_mhz, int ref_clk_sel, int ref_clk_input, |
| 334 | int is_sff7000_rxaui) |
| 335 | { |
| 336 | cvmx_gserx_dlmx_test_powerdown_t dlmx_test_powerdown; |
| 337 | cvmx_gserx_dlmx_ref_ssp_en_t dlmx_ref_ssp_en; |
| 338 | cvmx_gserx_dlmx_mpll_en_t dlmx_mpll_en; |
| 339 | cvmx_gserx_dlmx_phy_reset_t dlmx_phy_reset; |
| 340 | cvmx_gserx_dlmx_tx_amplitude_t tx_amplitude; |
| 341 | cvmx_gserx_dlmx_tx_preemph_t tx_preemph; |
| 342 | cvmx_gserx_dlmx_rx_eq_t rx_eq; |
| 343 | cvmx_gserx_dlmx_ref_clkdiv2_t ref_clkdiv2; |
| 344 | cvmx_gserx_dlmx_mpll_multiplier_t mpll_multiplier; |
| 345 | int gmx_ref_clk = 100; |
| 346 | |
| 347 | debug("%s(%d, %d, %d, %d, %d)\n", __func__, qlm, baud_mhz, ref_clk_sel, ref_clk_input, |
| 348 | is_sff7000_rxaui); |
| 349 | if (ref_clk_sel == 1) |
| 350 | gmx_ref_clk = 125; |
| 351 | else if (ref_clk_sel == 2) |
| 352 | gmx_ref_clk = 156; |
| 353 | |
| 354 | if (qlm != 0 && ref_clk_input == 2) { |
| 355 | printf("%s: Error: can only use reference clock inputs 0 or 1 for DLM %d\n", |
| 356 | __func__, qlm); |
| 357 | return -1; |
| 358 | } |
| 359 | |
| 360 | /* Hardware defaults are invalid */ |
| 361 | tx_amplitude.u64 = csr_rd(CVMX_GSERX_DLMX_TX_AMPLITUDE(qlm, 0)); |
| 362 | if (is_sff7000_rxaui) { |
| 363 | tx_amplitude.s.tx0_amplitude = 100; |
| 364 | tx_amplitude.s.tx1_amplitude = 100; |
| 365 | } else { |
| 366 | tx_amplitude.s.tx0_amplitude = 65; |
| 367 | tx_amplitude.s.tx1_amplitude = 65; |
| 368 | } |
| 369 | |
| 370 | csr_wr(CVMX_GSERX_DLMX_TX_AMPLITUDE(qlm, 0), tx_amplitude.u64); |
| 371 | |
| 372 | tx_preemph.u64 = csr_rd(CVMX_GSERX_DLMX_TX_PREEMPH(qlm, 0)); |
| 373 | |
| 374 | if (is_sff7000_rxaui) { |
| 375 | tx_preemph.s.tx0_preemph = 0; |
| 376 | tx_preemph.s.tx1_preemph = 0; |
| 377 | } else { |
| 378 | tx_preemph.s.tx0_preemph = 22; |
| 379 | tx_preemph.s.tx1_preemph = 22; |
| 380 | } |
| 381 | csr_wr(CVMX_GSERX_DLMX_TX_PREEMPH(qlm, 0), tx_preemph.u64); |
| 382 | |
| 383 | rx_eq.u64 = csr_rd(CVMX_GSERX_DLMX_RX_EQ(qlm, 0)); |
| 384 | rx_eq.s.rx0_eq = 0; |
| 385 | rx_eq.s.rx1_eq = 0; |
| 386 | csr_wr(CVMX_GSERX_DLMX_RX_EQ(qlm, 0), rx_eq.u64); |
| 387 | |
| 388 | /* 1. Write GSER0_DLM0_REF_USE_PAD[REF_USE_PAD] = 1 (to select |
| 389 | * reference-clock input) |
| 390 | * The documentation for this register in the HRM is useless since |
| 391 | * it says it selects between two different clocks that are not |
| 392 | * documented anywhere. What it really does is select between |
| 393 | * DLM0_REF_CLK_[P,N] if 1 and DLMC_REF_CLK[0,1]_[P,N] if 0. |
| 394 | * |
| 395 | * This register must be 0 for DLMs 1 and 2 and can only be 1 for |
| 396 | * DLM 0. |
| 397 | */ |
| 398 | csr_wr(CVMX_GSERX_DLMX_REF_USE_PAD(0, 0), ((ref_clk_input == 2) && (qlm == 0)) ? 1 : 0); |
| 399 | |
| 400 | /* Reference clock was already chosen before we got here */ |
| 401 | |
| 402 | /* 2. Write GSER0_DLM0_REFCLK_SEL[REFCLK_SEL] if required for |
| 403 | * reference-clock selection. |
| 404 | * |
| 405 | * If GSERX_DLMX_REF_USE_PAD is 1 then this register is ignored. |
| 406 | */ |
| 407 | csr_wr(CVMX_GSERX_DLMX_REFCLK_SEL(0, 0), ref_clk_input & 1); |
| 408 | |
| 409 | /* Reference clock was already chosen before we got here */ |
| 410 | |
| 411 | /* 3. If required, write GSER0_DLM0_REF_CLKDIV2[REF_CLKDIV2] (must be |
| 412 | * set if reference clock > 100 MHz) |
| 413 | */ |
| 414 | /* Apply workaround for Errata (G-20669) MPLL may not come up. */ |
| 415 | ref_clkdiv2.u64 = csr_rd(CVMX_GSERX_DLMX_REF_CLKDIV2(qlm, 0)); |
| 416 | if (gmx_ref_clk == 100) |
| 417 | ref_clkdiv2.s.ref_clkdiv2 = 0; |
| 418 | else |
| 419 | ref_clkdiv2.s.ref_clkdiv2 = 1; |
| 420 | csr_wr(CVMX_GSERX_DLMX_REF_CLKDIV2(qlm, 0), ref_clkdiv2.u64); |
| 421 | |
| 422 | /* 1. Ensure GSER(0)_DLM(0..2)_PHY_RESET[PHY_RESET] is set. */ |
| 423 | dlmx_phy_reset.u64 = csr_rd(CVMX_GSERX_DLMX_PHY_RESET(qlm, 0)); |
| 424 | dlmx_phy_reset.s.phy_reset = 1; |
| 425 | csr_wr(CVMX_GSERX_DLMX_PHY_RESET(qlm, 0), dlmx_phy_reset.u64); |
| 426 | |
| 427 | /* 2. If SGMII or QSGMII or RXAUI (i.e. if DLM0) set |
| 428 | * GSER(0)_DLM(0)_MPLL_EN[MPLL_EN] to one. |
| 429 | */ |
| 430 | /* 7. Set GSER0_DLM0_MPLL_EN[MPLL_EN] = 1 */ |
| 431 | dlmx_mpll_en.u64 = csr_rd(CVMX_GSERX_DLMX_MPLL_EN(0, 0)); |
| 432 | dlmx_mpll_en.s.mpll_en = 1; |
| 433 | csr_wr(CVMX_GSERX_DLMX_MPLL_EN(0, 0), dlmx_mpll_en.u64); |
| 434 | |
| 435 | /* 3. Set GSER(0)_DLM(0..2)_MPLL_MULTIPLIER[MPLL_MULTIPLIER] |
| 436 | * to the value in the preceding table, which is different |
| 437 | * than the desired setting prescribed by the HRM. |
| 438 | */ |
| 439 | mpll_multiplier.u64 = csr_rd(CVMX_GSERX_DLMX_MPLL_MULTIPLIER(qlm, 0)); |
| 440 | if (gmx_ref_clk == 100) |
| 441 | mpll_multiplier.s.mpll_multiplier = 35; |
| 442 | else if (gmx_ref_clk == 125) |
| 443 | mpll_multiplier.s.mpll_multiplier = 56; |
| 444 | else |
| 445 | mpll_multiplier.s.mpll_multiplier = 45; |
| 446 | debug("%s: Setting mpll multiplier to %u for DLM%d, baud %d, clock rate %uMHz\n", |
| 447 | __func__, mpll_multiplier.s.mpll_multiplier, qlm, baud_mhz, gmx_ref_clk); |
| 448 | |
| 449 | csr_wr(CVMX_GSERX_DLMX_MPLL_MULTIPLIER(qlm, 0), mpll_multiplier.u64); |
| 450 | |
| 451 | /* 5. Clear GSER0_DLM0_TEST_POWERDOWN[TEST_POWERDOWN] */ |
| 452 | dlmx_test_powerdown.u64 = csr_rd(CVMX_GSERX_DLMX_TEST_POWERDOWN(qlm, 0)); |
| 453 | dlmx_test_powerdown.s.test_powerdown = 0; |
| 454 | csr_wr(CVMX_GSERX_DLMX_TEST_POWERDOWN(qlm, 0), dlmx_test_powerdown.u64); |
| 455 | |
| 456 | /* 6. Set GSER0_DLM0_REF_SSP_EN[REF_SSP_EN] = 1 */ |
| 457 | dlmx_ref_ssp_en.u64 = csr_rd(CVMX_GSERX_DLMX_REF_SSP_EN(qlm, 0)); |
| 458 | dlmx_ref_ssp_en.s.ref_ssp_en = 1; |
| 459 | csr_wr(CVMX_GSERX_DLMX_REF_SSP_EN(0, 0), dlmx_ref_ssp_en.u64); |
| 460 | |
| 461 | /* 8. Clear GSER0_DLM0_PHY_RESET[PHY_RESET] = 0 */ |
| 462 | dlmx_phy_reset.u64 = csr_rd(CVMX_GSERX_DLMX_PHY_RESET(qlm, 0)); |
| 463 | dlmx_phy_reset.s.phy_reset = 0; |
| 464 | csr_wr(CVMX_GSERX_DLMX_PHY_RESET(qlm, 0), dlmx_phy_reset.u64); |
| 465 | |
| 466 | /* 5. If PCIe or SATA (i.e. if DLM1 or DLM2), set both MPLL_EN |
| 467 | * and MPLL_EN_OVRD to one in GSER(0)_PHY(1..2)_OVRD_IN_LO. |
| 468 | */ |
| 469 | |
| 470 | /* 6. Decrease MPLL_MULTIPLIER by one continually until it |
| 471 | * reaches the desired long-term setting, ensuring that each |
| 472 | * MPLL_MULTIPLIER value is constant for at least 1 msec before |
| 473 | * changing to the next value. The desired long-term setting is |
| 474 | * as indicated in HRM tables 21-1, 21-2, and 21-3. This is not |
| 475 | * required with the HRM sequence. |
| 476 | */ |
| 477 | mpll_multiplier.u64 = csr_rd(CVMX_GSERX_DLMX_MPLL_MULTIPLIER(qlm, 0)); |
| 478 | __cvmx_qlm_set_mult(qlm, baud_mhz, mpll_multiplier.s.mpll_multiplier); |
| 479 | |
| 480 | /* 9. Poll until the MPLL locks. Wait for |
| 481 | * GSER0_DLM0_MPLL_STATUS[MPLL_STATUS] = 1 |
| 482 | */ |
| 483 | if (CVMX_WAIT_FOR_FIELD64(CVMX_GSERX_DLMX_MPLL_STATUS(qlm, 0), |
| 484 | cvmx_gserx_dlmx_mpll_status_t, mpll_status, ==, 1, 10000)) { |
| 485 | printf("PLL for DLM%d failed to lock\n", qlm); |
| 486 | return -1; |
| 487 | } |
| 488 | return 0; |
| 489 | } |
| 490 | |
| 491 | static int __dlm0_setup_tx_cn70xx(int speed, int ref_clk_sel) |
| 492 | { |
| 493 | int need0, need1; |
| 494 | cvmx_gmxx_inf_mode_t mode0, mode1; |
| 495 | cvmx_gserx_dlmx_tx_rate_t rate; |
| 496 | cvmx_gserx_dlmx_tx_en_t en; |
| 497 | cvmx_gserx_dlmx_tx_cm_en_t cm_en; |
| 498 | cvmx_gserx_dlmx_tx_data_en_t data_en; |
| 499 | cvmx_gserx_dlmx_tx_reset_t tx_reset; |
| 500 | |
| 501 | debug("%s(%d, %d)\n", __func__, speed, ref_clk_sel); |
| 502 | mode0.u64 = csr_rd(CVMX_GMXX_INF_MODE(0)); |
| 503 | mode1.u64 = csr_rd(CVMX_GMXX_INF_MODE(1)); |
| 504 | |
| 505 | /* Which lanes do we need? */ |
| 506 | need0 = (mode0.s.mode != CVMX_GMX_INF_MODE_DISABLED); |
| 507 | need1 = (mode1.s.mode != CVMX_GMX_INF_MODE_DISABLED) || |
| 508 | (mode0.s.mode == CVMX_GMX_INF_MODE_RXAUI); |
| 509 | |
| 510 | /* 1. Write GSER0_DLM0_TX_RATE[TXn_RATE] (Set according to required |
| 511 | * data rate (see Table 21-1). |
| 512 | */ |
| 513 | rate.u64 = csr_rd(CVMX_GSERX_DLMX_TX_RATE(0, 0)); |
| 514 | debug("%s: speed: %d\n", __func__, speed); |
| 515 | switch (speed) { |
| 516 | case 1250: |
| 517 | case 2500: |
| 518 | switch (ref_clk_sel) { |
| 519 | case OCTEON_QLM_REF_CLK_100MHZ: /* 100MHz */ |
| 520 | case OCTEON_QLM_REF_CLK_125MHZ: /* 125MHz */ |
| 521 | case OCTEON_QLM_REF_CLK_156MHZ: /* 156.25MHz */ |
| 522 | rate.s.tx0_rate = (mode0.s.mode == CVMX_GMX_INF_MODE_SGMII) ? 2 : 0; |
| 523 | rate.s.tx1_rate = (mode1.s.mode == CVMX_GMX_INF_MODE_SGMII) ? 2 : 0; |
| 524 | break; |
| 525 | default: |
| 526 | printf("Invalid reference clock select %d\n", ref_clk_sel); |
| 527 | return -1; |
| 528 | } |
| 529 | break; |
| 530 | case 3125: |
| 531 | switch (ref_clk_sel) { |
| 532 | case OCTEON_QLM_REF_CLK_125MHZ: /* 125MHz */ |
| 533 | case OCTEON_QLM_REF_CLK_156MHZ: /* 156.25MHz */ |
| 534 | rate.s.tx0_rate = (mode0.s.mode == CVMX_GMX_INF_MODE_SGMII) ? 1 : 0; |
| 535 | rate.s.tx1_rate = (mode1.s.mode == CVMX_GMX_INF_MODE_SGMII) ? 1 : 0; |
| 536 | break; |
| 537 | default: |
| 538 | printf("Invalid reference clock select %d\n", ref_clk_sel); |
| 539 | return -1; |
| 540 | } |
| 541 | break; |
| 542 | case 5000: /* QSGMII only */ |
| 543 | switch (ref_clk_sel) { |
| 544 | case OCTEON_QLM_REF_CLK_100MHZ: /* 100MHz */ |
| 545 | rate.s.tx0_rate = 0; |
| 546 | rate.s.tx1_rate = 0; |
| 547 | break; |
| 548 | case OCTEON_QLM_REF_CLK_125MHZ: /* 125MHz */ |
| 549 | case OCTEON_QLM_REF_CLK_156MHZ: /* 156.25MHz */ |
| 550 | rate.s.tx0_rate = 0; |
| 551 | rate.s.tx1_rate = 0; |
| 552 | break; |
| 553 | default: |
| 554 | printf("Invalid reference clock select %d\n", ref_clk_sel); |
| 555 | return -1; |
| 556 | } |
| 557 | break; |
| 558 | case 6250: |
| 559 | switch (ref_clk_sel) { |
| 560 | case OCTEON_QLM_REF_CLK_125MHZ: /* 125MHz */ |
| 561 | case OCTEON_QLM_REF_CLK_156MHZ: /* 156.25MHz */ |
| 562 | rate.s.tx0_rate = 0; |
| 563 | rate.s.tx1_rate = 0; |
| 564 | break; |
| 565 | default: |
| 566 | printf("Invalid reference clock select %d\n", ref_clk_sel); |
| 567 | return -1; |
| 568 | } |
| 569 | break; |
| 570 | default: |
| 571 | printf("%s: Invalid rate %d\n", __func__, speed); |
| 572 | return -1; |
| 573 | } |
| 574 | debug("%s: tx 0 rate: %d, tx 1 rate: %d\n", __func__, rate.s.tx0_rate, rate.s.tx1_rate); |
| 575 | csr_wr(CVMX_GSERX_DLMX_TX_RATE(0, 0), rate.u64); |
| 576 | |
| 577 | /* 2. Set GSER0_DLM0_TX_EN[TXn_EN] = 1 */ |
| 578 | en.u64 = csr_rd(CVMX_GSERX_DLMX_TX_EN(0, 0)); |
| 579 | en.s.tx0_en = need0; |
| 580 | en.s.tx1_en = need1; |
| 581 | csr_wr(CVMX_GSERX_DLMX_TX_EN(0, 0), en.u64); |
| 582 | |
| 583 | /* 3 set GSER0_DLM0_TX_CM_EN[TXn_CM_EN] = 1 */ |
| 584 | cm_en.u64 = csr_rd(CVMX_GSERX_DLMX_TX_CM_EN(0, 0)); |
| 585 | cm_en.s.tx0_cm_en = need0; |
| 586 | cm_en.s.tx1_cm_en = need1; |
| 587 | csr_wr(CVMX_GSERX_DLMX_TX_CM_EN(0, 0), cm_en.u64); |
| 588 | |
| 589 | /* 4. Set GSER0_DLM0_TX_DATA_EN[TXn_DATA_EN] = 1 */ |
| 590 | data_en.u64 = csr_rd(CVMX_GSERX_DLMX_TX_DATA_EN(0, 0)); |
| 591 | data_en.s.tx0_data_en = need0; |
| 592 | data_en.s.tx1_data_en = need1; |
| 593 | csr_wr(CVMX_GSERX_DLMX_TX_DATA_EN(0, 0), data_en.u64); |
| 594 | |
| 595 | /* 5. Clear GSER0_DLM0_TX_RESET[TXn_DATA_EN] = 0 */ |
| 596 | tx_reset.u64 = csr_rd(CVMX_GSERX_DLMX_TX_RESET(0, 0)); |
| 597 | tx_reset.s.tx0_reset = !need0; |
| 598 | tx_reset.s.tx1_reset = !need1; |
| 599 | csr_wr(CVMX_GSERX_DLMX_TX_RESET(0, 0), tx_reset.u64); |
| 600 | |
| 601 | /* 6. Poll GSER0_DLM0_TX_STATUS[TXn_STATUS, TXn_CM_STATUS] until both |
| 602 | * are set to 1. This prevents GMX from transmitting until the DLM |
| 603 | * is ready. |
| 604 | */ |
| 605 | if (need0) { |
| 606 | if (CVMX_WAIT_FOR_FIELD64(CVMX_GSERX_DLMX_TX_STATUS(0, 0), |
| 607 | cvmx_gserx_dlmx_tx_status_t, tx0_status, ==, 1, 10000)) { |
| 608 | printf("DLM0 TX0 status fail\n"); |
| 609 | return -1; |
| 610 | } |
| 611 | if (CVMX_WAIT_FOR_FIELD64(CVMX_GSERX_DLMX_TX_STATUS(0, 0), |
| 612 | cvmx_gserx_dlmx_tx_status_t, tx0_cm_status, ==, 1, |
| 613 | 10000)) { |
| 614 | printf("DLM0 TX0 CM status fail\n"); |
| 615 | return -1; |
| 616 | } |
| 617 | } |
| 618 | if (need1) { |
| 619 | if (CVMX_WAIT_FOR_FIELD64(CVMX_GSERX_DLMX_TX_STATUS(0, 0), |
| 620 | cvmx_gserx_dlmx_tx_status_t, tx1_status, ==, 1, 10000)) { |
| 621 | printf("DLM0 TX1 status fail\n"); |
| 622 | return -1; |
| 623 | } |
| 624 | if (CVMX_WAIT_FOR_FIELD64(CVMX_GSERX_DLMX_TX_STATUS(0, 0), |
| 625 | cvmx_gserx_dlmx_tx_status_t, tx1_cm_status, ==, 1, |
| 626 | 10000)) { |
| 627 | printf("DLM0 TX1 CM status fail\n"); |
| 628 | return -1; |
| 629 | } |
| 630 | } |
| 631 | return 0; |
| 632 | } |
| 633 | |
| 634 | static int __dlm0_setup_rx_cn70xx(int speed, int ref_clk_sel) |
| 635 | { |
| 636 | int need0, need1; |
| 637 | cvmx_gmxx_inf_mode_t mode0, mode1; |
| 638 | cvmx_gserx_dlmx_rx_rate_t rate; |
| 639 | cvmx_gserx_dlmx_rx_pll_en_t pll_en; |
| 640 | cvmx_gserx_dlmx_rx_data_en_t data_en; |
| 641 | cvmx_gserx_dlmx_rx_reset_t rx_reset; |
| 642 | |
| 643 | debug("%s(%d, %d)\n", __func__, speed, ref_clk_sel); |
| 644 | mode0.u64 = csr_rd(CVMX_GMXX_INF_MODE(0)); |
| 645 | mode1.u64 = csr_rd(CVMX_GMXX_INF_MODE(1)); |
| 646 | |
| 647 | /* Which lanes do we need? */ |
| 648 | need0 = (mode0.s.mode != CVMX_GMX_INF_MODE_DISABLED); |
| 649 | need1 = (mode1.s.mode != CVMX_GMX_INF_MODE_DISABLED) || |
| 650 | (mode0.s.mode == CVMX_GMX_INF_MODE_RXAUI); |
| 651 | |
| 652 | /* 1. Write GSER0_DLM0_RX_RATE[RXn_RATE] (must match the |
| 653 | * GER0_DLM0_TX_RATE[TXn_RATE] setting). |
| 654 | */ |
| 655 | rate.u64 = csr_rd(CVMX_GSERX_DLMX_RX_RATE(0, 0)); |
| 656 | switch (speed) { |
| 657 | case 1250: |
| 658 | case 2500: |
| 659 | switch (ref_clk_sel) { |
| 660 | case OCTEON_QLM_REF_CLK_100MHZ: /* 100MHz */ |
| 661 | case OCTEON_QLM_REF_CLK_125MHZ: /* 125MHz */ |
| 662 | case OCTEON_QLM_REF_CLK_156MHZ: /* 156.25MHz */ |
| 663 | rate.s.rx0_rate = (mode0.s.mode == CVMX_GMX_INF_MODE_SGMII) ? 2 : 0; |
| 664 | rate.s.rx1_rate = (mode1.s.mode == CVMX_GMX_INF_MODE_SGMII) ? 2 : 0; |
| 665 | break; |
| 666 | default: |
| 667 | printf("Invalid reference clock select %d\n", ref_clk_sel); |
| 668 | return -1; |
| 669 | } |
| 670 | break; |
| 671 | case 3125: |
| 672 | switch (ref_clk_sel) { |
| 673 | case OCTEON_QLM_REF_CLK_125MHZ: /* 125MHz */ |
| 674 | case OCTEON_QLM_REF_CLK_156MHZ: /* 156.25MHz */ |
| 675 | rate.s.rx0_rate = (mode0.s.mode == CVMX_GMX_INF_MODE_SGMII) ? 1 : 0; |
| 676 | rate.s.rx1_rate = (mode1.s.mode == CVMX_GMX_INF_MODE_SGMII) ? 1 : 0; |
| 677 | break; |
| 678 | default: |
| 679 | printf("Invalid reference clock select %d\n", ref_clk_sel); |
| 680 | return -1; |
| 681 | } |
| 682 | break; |
| 683 | case 5000: /* QSGMII only */ |
| 684 | switch (ref_clk_sel) { |
| 685 | case OCTEON_QLM_REF_CLK_100MHZ: /* 100MHz */ |
| 686 | case OCTEON_QLM_REF_CLK_125MHZ: /* 125MHz */ |
| 687 | case OCTEON_QLM_REF_CLK_156MHZ: /* 156.25MHz */ |
| 688 | rate.s.rx0_rate = 0; |
| 689 | rate.s.rx1_rate = 0; |
| 690 | break; |
| 691 | default: |
| 692 | printf("Invalid reference clock select %d\n", ref_clk_sel); |
| 693 | return -1; |
| 694 | } |
| 695 | break; |
| 696 | case 6250: |
| 697 | switch (ref_clk_sel) { |
| 698 | case OCTEON_QLM_REF_CLK_125MHZ: /* 125MHz */ |
| 699 | case OCTEON_QLM_REF_CLK_156MHZ: /* 156.25MHz */ |
| 700 | rate.s.rx0_rate = 0; |
| 701 | rate.s.rx1_rate = 0; |
| 702 | break; |
| 703 | default: |
| 704 | printf("Invalid reference clock select %d\n", ref_clk_sel); |
| 705 | return -1; |
| 706 | } |
| 707 | break; |
| 708 | default: |
| 709 | printf("%s: Invalid rate %d\n", __func__, speed); |
| 710 | return -1; |
| 711 | } |
| 712 | debug("%s: rx 0 rate: %d, rx 1 rate: %d\n", __func__, rate.s.rx0_rate, rate.s.rx1_rate); |
| 713 | csr_wr(CVMX_GSERX_DLMX_RX_RATE(0, 0), rate.u64); |
| 714 | |
| 715 | /* 2. Set GSER0_DLM0_RX_PLL_EN[RXn_PLL_EN] = 1 */ |
| 716 | pll_en.u64 = csr_rd(CVMX_GSERX_DLMX_RX_PLL_EN(0, 0)); |
| 717 | pll_en.s.rx0_pll_en = need0; |
| 718 | pll_en.s.rx1_pll_en = need1; |
| 719 | csr_wr(CVMX_GSERX_DLMX_RX_PLL_EN(0, 0), pll_en.u64); |
| 720 | |
| 721 | /* 3. Set GSER0_DLM0_RX_DATA_EN[RXn_DATA_EN] = 1 */ |
| 722 | data_en.u64 = csr_rd(CVMX_GSERX_DLMX_RX_DATA_EN(0, 0)); |
| 723 | data_en.s.rx0_data_en = need0; |
| 724 | data_en.s.rx1_data_en = need1; |
| 725 | csr_wr(CVMX_GSERX_DLMX_RX_DATA_EN(0, 0), data_en.u64); |
| 726 | |
| 727 | /* 4. Clear GSER0_DLM0_RX_RESET[RXn_DATA_EN] = 0. Now the GMX can be |
| 728 | * enabled: set GMX(0..1)_INF_MODE[EN] = 1 |
| 729 | */ |
| 730 | rx_reset.u64 = csr_rd(CVMX_GSERX_DLMX_RX_RESET(0, 0)); |
| 731 | rx_reset.s.rx0_reset = !need0; |
| 732 | rx_reset.s.rx1_reset = !need1; |
| 733 | csr_wr(CVMX_GSERX_DLMX_RX_RESET(0, 0), rx_reset.u64); |
| 734 | |
| 735 | return 0; |
| 736 | } |
| 737 | |
| 738 | static int a_clk; |
| 739 | |
| 740 | static int __dlm2_sata_uctl_init_cn70xx(void) |
| 741 | { |
| 742 | cvmx_sata_uctl_ctl_t uctl_ctl; |
| 743 | const int MAX_A_CLK = 333000000; /* Max of 333Mhz */ |
| 744 | int divisor, a_clkdiv; |
| 745 | |
| 746 | /* Wait for all voltages to reach a stable stable. Ensure the |
| 747 | * reference clock is up and stable. |
| 748 | */ |
| 749 | |
| 750 | /* 2. Wait for IOI reset to deassert. */ |
| 751 | |
| 752 | /* 3. Optionally program the GPIO CSRs for SATA features. |
| 753 | * a. For cold-presence detect: |
| 754 | * i. Select a GPIO for the input and program GPIO_SATA_CTL[sel] |
| 755 | * for port0 and port1. |
| 756 | * ii. Select a GPIO for the output and program |
| 757 | * GPIO_BIT_CFG*[OUTPUT_SEL] for port0 and port1. |
| 758 | * b. For mechanical-presence detect, select a GPIO for the input |
| 759 | * and program GPIO_SATA_CTL[SEL] for port0/port1. |
| 760 | * c. For LED activity, select a GPIO for the output and program |
| 761 | * GPIO_BIT_CFG*[OUTPUT_SEL] for port0/port1. |
| 762 | */ |
| 763 | |
| 764 | /* 4. Assert all resets: |
| 765 | * a. UAHC reset: SATA_UCTL_CTL[UAHC_RST] = 1 |
| 766 | * a. UCTL reset: SATA_UCTL_CTL[UCTL_RST] = 1 |
| 767 | */ |
| 768 | |
| 769 | uctl_ctl.u64 = csr_rd(CVMX_SATA_UCTL_CTL); |
| 770 | uctl_ctl.s.sata_uahc_rst = 1; |
| 771 | uctl_ctl.s.sata_uctl_rst = 1; |
| 772 | csr_wr(CVMX_SATA_UCTL_CTL, uctl_ctl.u64); |
| 773 | |
| 774 | /* 5. Configure the ACLK: |
| 775 | * a. Reset the clock dividers: SATA_UCTL_CTL[A_CLKDIV_RST] = 1. |
| 776 | * b. Select the ACLK frequency (400 MHz maximum) |
| 777 | * i. SATA_UCTL_CTL[A_CLKDIV] = desired value, |
| 778 | * ii. SATA_UCTL_CTL[A_CLKDIV_EN] = 1 to enable the ACLK, |
| 779 | * c. Deassert the ACLK clock divider reset: |
| 780 | * SATA_UCTL_CTL[A_CLKDIV_RST] = 0 |
| 781 | */ |
| 782 | uctl_ctl.u64 = csr_rd(CVMX_SATA_UCTL_CTL); |
| 783 | uctl_ctl.s.a_clkdiv_rst = 1; |
| 784 | csr_wr(CVMX_SATA_UCTL_CTL, uctl_ctl.u64); |
| 785 | |
| 786 | uctl_ctl.u64 = csr_rd(CVMX_SATA_UCTL_CTL); |
| 787 | |
| 788 | divisor = (gd->bus_clk + MAX_A_CLK - 1) / MAX_A_CLK; |
| 789 | if (divisor <= 4) { |
| 790 | a_clkdiv = divisor - 1; |
| 791 | } else if (divisor <= 6) { |
| 792 | a_clkdiv = 4; |
| 793 | divisor = 6; |
| 794 | } else if (divisor <= 8) { |
| 795 | a_clkdiv = 5; |
| 796 | divisor = 8; |
| 797 | } else if (divisor <= 16) { |
| 798 | a_clkdiv = 6; |
| 799 | divisor = 16; |
| 800 | } else if (divisor <= 24) { |
| 801 | a_clkdiv = 7; |
| 802 | divisor = 24; |
| 803 | } else { |
| 804 | printf("Unable to determine SATA clock divisor\n"); |
| 805 | return -1; |
| 806 | } |
| 807 | |
| 808 | /* Calculate the final clock rate */ |
| 809 | a_clk = gd->bus_clk / divisor; |
| 810 | |
| 811 | uctl_ctl.s.a_clkdiv_sel = a_clkdiv; |
| 812 | uctl_ctl.s.a_clk_en = 1; |
| 813 | uctl_ctl.s.a_clk_byp_sel = 0; |
| 814 | csr_wr(CVMX_SATA_UCTL_CTL, uctl_ctl.u64); |
| 815 | |
| 816 | uctl_ctl.u64 = csr_rd(CVMX_SATA_UCTL_CTL); |
| 817 | uctl_ctl.s.a_clkdiv_rst = 0; |
| 818 | csr_wr(CVMX_SATA_UCTL_CTL, uctl_ctl.u64); |
| 819 | |
| 820 | udelay(1); |
| 821 | |
| 822 | return 0; |
| 823 | } |
| 824 | |
| 825 | static int __sata_dlm_init_cn70xx(int qlm, int baud_mhz, int ref_clk_sel, int ref_clk_input) |
| 826 | { |
| 827 | cvmx_gserx_sata_cfg_t sata_cfg; |
| 828 | cvmx_gserx_sata_lane_rst_t sata_lane_rst; |
| 829 | cvmx_gserx_dlmx_phy_reset_t dlmx_phy_reset; |
| 830 | cvmx_gserx_dlmx_test_powerdown_t dlmx_test_powerdown; |
| 831 | cvmx_gserx_sata_ref_ssp_en_t ref_ssp_en; |
| 832 | cvmx_gserx_dlmx_mpll_multiplier_t mpll_multiplier; |
| 833 | cvmx_gserx_dlmx_ref_clkdiv2_t ref_clkdiv2; |
| 834 | cvmx_sata_uctl_shim_cfg_t shim_cfg; |
| 835 | cvmx_gserx_phyx_ovrd_in_lo_t ovrd_in; |
| 836 | cvmx_sata_uctl_ctl_t uctl_ctl; |
| 837 | int sata_ref_clk; |
| 838 | |
| 839 | debug("%s(%d, %d, %d, %d)\n", __func__, qlm, baud_mhz, ref_clk_sel, ref_clk_input); |
| 840 | |
| 841 | switch (ref_clk_sel) { |
| 842 | case 0: |
| 843 | sata_ref_clk = 100; |
| 844 | break; |
| 845 | case 1: |
| 846 | sata_ref_clk = 125; |
| 847 | break; |
| 848 | case 2: |
| 849 | sata_ref_clk = 156; |
| 850 | break; |
| 851 | default: |
| 852 | printf("%s: Invalid reference clock select %d for qlm %d\n", __func__, |
| 853 | ref_clk_sel, qlm); |
| 854 | return -1; |
| 855 | } |
| 856 | |
| 857 | /* 5. Set GSERX0_SATA_CFG[SATA_EN] = 1 to configure DLM2 multiplexing. |
| 858 | */ |
| 859 | sata_cfg.u64 = csr_rd(CVMX_GSERX_SATA_CFG(0)); |
| 860 | sata_cfg.s.sata_en = 1; |
| 861 | csr_wr(CVMX_GSERX_SATA_CFG(0), sata_cfg.u64); |
| 862 | |
| 863 | /* 1. Write GSER(0)_DLM2_REFCLK_SEL[REFCLK_SEL] if required for |
| 864 | * reference-clock selection. |
| 865 | */ |
| 866 | if (ref_clk_input < 2) { |
| 867 | csr_wr(CVMX_GSERX_DLMX_REFCLK_SEL(qlm, 0), ref_clk_input); |
| 868 | csr_wr(CVMX_GSERX_DLMX_REF_USE_PAD(qlm, 0), 0); |
| 869 | } else { |
| 870 | csr_wr(CVMX_GSERX_DLMX_REF_USE_PAD(qlm, 0), 1); |
| 871 | } |
| 872 | |
| 873 | ref_ssp_en.u64 = csr_rd(CVMX_GSERX_SATA_REF_SSP_EN(0)); |
| 874 | ref_ssp_en.s.ref_ssp_en = 1; |
| 875 | csr_wr(CVMX_GSERX_SATA_REF_SSP_EN(0), ref_ssp_en.u64); |
| 876 | |
| 877 | /* Apply workaround for Errata (G-20669) MPLL may not come up. */ |
| 878 | |
| 879 | /* Set REF_CLKDIV2 based on the Ref Clock */ |
| 880 | ref_clkdiv2.u64 = csr_rd(CVMX_GSERX_DLMX_REF_CLKDIV2(qlm, 0)); |
| 881 | if (sata_ref_clk == 100) |
| 882 | ref_clkdiv2.s.ref_clkdiv2 = 0; |
| 883 | else |
| 884 | ref_clkdiv2.s.ref_clkdiv2 = 1; |
| 885 | csr_wr(CVMX_GSERX_DLMX_REF_CLKDIV2(qlm, 0), ref_clkdiv2.u64); |
| 886 | |
| 887 | /* 1. Ensure GSER(0)_DLM(0..2)_PHY_RESET[PHY_RESET] is set. */ |
| 888 | dlmx_phy_reset.u64 = csr_rd(CVMX_GSERX_DLMX_PHY_RESET(qlm, 0)); |
| 889 | dlmx_phy_reset.s.phy_reset = 1; |
| 890 | csr_wr(CVMX_GSERX_DLMX_PHY_RESET(qlm, 0), dlmx_phy_reset.u64); |
| 891 | |
| 892 | /* 2. If SGMII or QSGMII or RXAUI (i.e. if DLM0) set |
| 893 | * GSER(0)_DLM(0)_MPLL_EN[MPLL_EN] to one. |
| 894 | */ |
| 895 | |
| 896 | /* 3. Set GSER(0)_DLM(0..2)_MPLL_MULTIPLIER[MPLL_MULTIPLIER] |
| 897 | * to the value in the preceding table, which is different |
| 898 | * than the desired setting prescribed by the HRM. |
| 899 | */ |
| 900 | |
| 901 | mpll_multiplier.u64 = csr_rd(CVMX_GSERX_DLMX_MPLL_MULTIPLIER(qlm, 0)); |
| 902 | if (sata_ref_clk == 100) |
| 903 | mpll_multiplier.s.mpll_multiplier = 35; |
| 904 | else |
| 905 | mpll_multiplier.s.mpll_multiplier = 56; |
| 906 | csr_wr(CVMX_GSERX_DLMX_MPLL_MULTIPLIER(qlm, 0), mpll_multiplier.u64); |
| 907 | |
| 908 | /* 3. Clear GSER0_DLM2_TEST_POWERDOWN[TEST_POWERDOWN] = 0 */ |
| 909 | dlmx_test_powerdown.u64 = csr_rd(CVMX_GSERX_DLMX_TEST_POWERDOWN(qlm, 0)); |
| 910 | dlmx_test_powerdown.s.test_powerdown = 0; |
| 911 | csr_wr(CVMX_GSERX_DLMX_TEST_POWERDOWN(qlm, 0), dlmx_test_powerdown.u64); |
| 912 | |
| 913 | /* 4. Clear either/both lane0 and lane1 resets: |
| 914 | * GSER0_SATA_LANE_RST[L0_RST, L1_RST] = 0. |
| 915 | */ |
| 916 | sata_lane_rst.u64 = csr_rd(CVMX_GSERX_SATA_LANE_RST(0)); |
| 917 | sata_lane_rst.s.l0_rst = 0; |
| 918 | sata_lane_rst.s.l1_rst = 0; |
| 919 | csr_wr(CVMX_GSERX_SATA_LANE_RST(0), sata_lane_rst.u64); |
| 920 | |
| 921 | udelay(1); |
| 922 | |
| 923 | /* 5. Clear GSER0_DLM2_PHY_RESET */ |
| 924 | dlmx_phy_reset.u64 = csr_rd(CVMX_GSERX_DLMX_PHY_RESET(qlm, 0)); |
| 925 | dlmx_phy_reset.s.phy_reset = 0; |
| 926 | csr_wr(CVMX_GSERX_DLMX_PHY_RESET(qlm, 0), dlmx_phy_reset.u64); |
| 927 | |
| 928 | /* 6. If PCIe or SATA (i.e. if DLM1 or DLM2), set both MPLL_EN |
| 929 | * and MPLL_EN_OVRD to one in GSER(0)_PHY(1..2)_OVRD_IN_LO. |
| 930 | */ |
| 931 | ovrd_in.u64 = csr_rd(CVMX_GSERX_PHYX_OVRD_IN_LO(qlm, 0)); |
| 932 | ovrd_in.s.mpll_en = 1; |
| 933 | ovrd_in.s.mpll_en_ovrd = 1; |
| 934 | csr_wr(CVMX_GSERX_PHYX_OVRD_IN_LO(qlm, 0), ovrd_in.u64); |
| 935 | |
| 936 | /* 7. Decrease MPLL_MULTIPLIER by one continually until it reaches |
| 937 | * the desired long-term setting, ensuring that each MPLL_MULTIPLIER |
| 938 | * value is constant for at least 1 msec before changing to the next |
| 939 | * value. The desired long-term setting is as indicated in HRM tables |
| 940 | * 21-1, 21-2, and 21-3. This is not required with the HRM |
| 941 | * sequence. |
| 942 | */ |
| 943 | mpll_multiplier.u64 = csr_rd(CVMX_GSERX_DLMX_MPLL_MULTIPLIER(qlm, 0)); |
| 944 | if (sata_ref_clk == 100) |
| 945 | mpll_multiplier.s.mpll_multiplier = 0x1e; |
| 946 | else |
| 947 | mpll_multiplier.s.mpll_multiplier = 0x30; |
| 948 | csr_wr(CVMX_GSERX_DLMX_MPLL_MULTIPLIER(qlm, 0), mpll_multiplier.u64); |
| 949 | |
| 950 | if (CVMX_WAIT_FOR_FIELD64(CVMX_GSERX_DLMX_MPLL_STATUS(qlm, 0), |
| 951 | cvmx_gserx_dlmx_mpll_status_t, mpll_status, ==, 1, 10000)) { |
| 952 | printf("ERROR: SATA MPLL failed to set\n"); |
| 953 | return -1; |
| 954 | } |
| 955 | |
| 956 | if (CVMX_WAIT_FOR_FIELD64(CVMX_GSERX_DLMX_RX_STATUS(qlm, 0), cvmx_gserx_dlmx_rx_status_t, |
| 957 | rx0_status, ==, 1, 10000)) { |
| 958 | printf("ERROR: SATA RX0_STATUS failed to set\n"); |
| 959 | return -1; |
| 960 | } |
| 961 | if (CVMX_WAIT_FOR_FIELD64(CVMX_GSERX_DLMX_RX_STATUS(qlm, 0), cvmx_gserx_dlmx_rx_status_t, |
| 962 | rx1_status, ==, 1, 10000)) { |
| 963 | printf("ERROR: SATA RX1_STATUS failed to set\n"); |
| 964 | return -1; |
| 965 | } |
| 966 | |
| 967 | /* 8. Deassert UCTL and UAHC resets: |
| 968 | * a. SATA_UCTL_CTL[UCTL_RST] = 0 |
| 969 | * b. SATA_UCTL_CTL[UAHC_RST] = 0 |
| 970 | * c. Wait 10 ACLK cycles before accessing any ACLK-only registers. |
| 971 | */ |
| 972 | uctl_ctl.u64 = csr_rd(CVMX_SATA_UCTL_CTL); |
| 973 | uctl_ctl.s.sata_uctl_rst = 0; |
| 974 | uctl_ctl.s.sata_uahc_rst = 0; |
| 975 | csr_wr(CVMX_SATA_UCTL_CTL, uctl_ctl.u64); |
| 976 | |
| 977 | udelay(1); |
| 978 | |
| 979 | /* 9. Enable conditional SCLK of UCTL by writing |
| 980 | * SATA_UCTL_CTL[CSCLK_EN] = 1 |
| 981 | */ |
| 982 | uctl_ctl.u64 = csr_rd(CVMX_SATA_UCTL_CTL); |
| 983 | uctl_ctl.s.csclk_en = 1; |
| 984 | csr_wr(CVMX_SATA_UCTL_CTL, uctl_ctl.u64); |
| 985 | |
| 986 | /* 10. Initialize UAHC as described in the AHCI Specification (UAHC_* |
| 987 | * registers |
| 988 | */ |
| 989 | |
| 990 | /* set-up endian mode */ |
| 991 | shim_cfg.u64 = csr_rd(CVMX_SATA_UCTL_SHIM_CFG); |
| 992 | shim_cfg.s.dma_endian_mode = 1; |
| 993 | shim_cfg.s.csr_endian_mode = 3; |
| 994 | csr_wr(CVMX_SATA_UCTL_SHIM_CFG, shim_cfg.u64); |
| 995 | |
| 996 | return 0; |
| 997 | } |
| 998 | |
| 999 | /** |
| 1000 | * Initializes DLM 4 for SATA |
| 1001 | * |
| 1002 | * @param qlm Must be 4. |
| 1003 | * @param baud_mhz Baud rate for SATA |
| 1004 | * @param ref_clk_sel Selects the speed of the reference clock where: |
| 1005 | * 0 = 100MHz, 1 = 125MHz and 2 = 156.25MHz |
| 1006 | * @param ref_clk_input Reference clock input where 0 = external QLM clock, |
| 1007 | * 1 = qlmc_ref_clk0 and 2 = qlmc_ref_clk1 |
| 1008 | */ |
| 1009 | static int __sata_dlm_init_cn73xx(int qlm, int baud_mhz, int ref_clk_sel, int ref_clk_input) |
| 1010 | { |
| 1011 | cvmx_sata_uctl_shim_cfg_t shim_cfg; |
| 1012 | cvmx_gserx_refclk_sel_t refclk_sel; |
| 1013 | cvmx_gserx_phy_ctl_t phy_ctl; |
| 1014 | cvmx_gserx_rx_pwr_ctrl_p2_t pwr_ctrl_p2; |
| 1015 | cvmx_gserx_lanex_misc_cfg_0_t misc_cfg_0; |
| 1016 | cvmx_gserx_sata_lane_rst_t lane_rst; |
| 1017 | cvmx_gserx_pll_px_mode_0_t pmode_0; |
| 1018 | cvmx_gserx_pll_px_mode_1_t pmode_1; |
| 1019 | cvmx_gserx_lane_px_mode_0_t lane_pmode_0; |
| 1020 | cvmx_gserx_lane_px_mode_1_t lane_pmode_1; |
| 1021 | cvmx_gserx_cfg_t gserx_cfg; |
| 1022 | cvmx_sata_uctl_ctl_t uctl_ctl; |
| 1023 | int l; |
| 1024 | int i; |
| 1025 | |
| 1026 | /* |
| 1027 | * 1. Configure the SATA |
| 1028 | */ |
| 1029 | |
| 1030 | /* |
| 1031 | * 2. Configure the QLM Reference clock |
| 1032 | * Set GSERX_REFCLK_SEL.COM_CLK_SEL to source reference clock |
| 1033 | * from the external clock mux. |
| 1034 | * GSERX_REFCLK_SEL.USE_COM1 to select qlmc_refclkn/p_1 or |
| 1035 | * leave clear to select qlmc_refclkn/p_0 |
| 1036 | */ |
| 1037 | refclk_sel.u64 = 0; |
| 1038 | if (ref_clk_input == 0) { /* External ref clock */ |
| 1039 | refclk_sel.s.com_clk_sel = 0; |
| 1040 | refclk_sel.s.use_com1 = 0; |
| 1041 | } else if (ref_clk_input == 1) { /* Common reference clock 0 */ |
| 1042 | refclk_sel.s.com_clk_sel = 1; |
| 1043 | refclk_sel.s.use_com1 = 0; |
| 1044 | } else { /* Common reference clock 1 */ |
| 1045 | refclk_sel.s.com_clk_sel = 1; |
| 1046 | refclk_sel.s.use_com1 = 1; |
| 1047 | } |
| 1048 | |
| 1049 | if (ref_clk_sel != 0) { |
| 1050 | printf("Wrong reference clock selected for QLM4\n"); |
| 1051 | return -1; |
| 1052 | } |
| 1053 | |
| 1054 | csr_wr(CVMX_GSERX_REFCLK_SEL(qlm), refclk_sel.u64); |
| 1055 | |
| 1056 | /* Reset the QLM after changing the reference clock */ |
| 1057 | phy_ctl.u64 = csr_rd(CVMX_GSERX_PHY_CTL(qlm)); |
| 1058 | phy_ctl.s.phy_reset = 1; |
| 1059 | csr_wr(CVMX_GSERX_PHY_CTL(qlm), phy_ctl.u64); |
| 1060 | |
| 1061 | udelay(1); |
| 1062 | |
| 1063 | /* |
| 1064 | * 3. Configure the QLM for SATA mode set GSERX_CFG.SATA |
| 1065 | */ |
| 1066 | gserx_cfg.u64 = 0; |
| 1067 | gserx_cfg.s.sata = 1; |
| 1068 | csr_wr(CVMX_GSERX_CFG(qlm), gserx_cfg.u64); |
| 1069 | |
| 1070 | /* |
| 1071 | * 12. Clear the appropriate lane resets |
| 1072 | * clear GSERX_SATA_LANE_RST.LX_RST where X is the lane number 0-1. |
| 1073 | */ |
| 1074 | lane_rst.u64 = csr_rd(CVMX_GSERX_SATA_LANE_RST(qlm)); |
| 1075 | lane_rst.s.l0_rst = 0; |
| 1076 | lane_rst.s.l1_rst = 0; |
| 1077 | csr_wr(CVMX_GSERX_SATA_LANE_RST(qlm), lane_rst.u64); |
| 1078 | csr_rd(CVMX_GSERX_SATA_LANE_RST(qlm)); |
| 1079 | |
| 1080 | udelay(1); |
| 1081 | |
| 1082 | /* |
| 1083 | * 4. Take the PHY out of reset |
| 1084 | * Write GSERX_PHY_CTL.PHY_RESET to a zero |
| 1085 | */ |
| 1086 | phy_ctl.u64 = csr_rd(CVMX_GSERX_PHY_CTL(qlm)); |
| 1087 | phy_ctl.s.phy_reset = 0; |
| 1088 | csr_wr(CVMX_GSERX_PHY_CTL(qlm), phy_ctl.u64); |
| 1089 | |
| 1090 | /* Wait for reset to complete and the PLL to lock */ |
| 1091 | /* PCIe mode doesn't become ready until the PEM block attempts to bring |
| 1092 | * the interface up. Skip this check for PCIe |
| 1093 | */ |
| 1094 | if (CVMX_WAIT_FOR_FIELD64(CVMX_GSERX_QLM_STAT(qlm), cvmx_gserx_qlm_stat_t, |
| 1095 | rst_rdy, ==, 1, 10000)) { |
| 1096 | printf("QLM%d: Timeout waiting for GSERX_QLM_STAT[rst_rdy]\n", qlm); |
| 1097 | return -1; |
| 1098 | } |
| 1099 | |
| 1100 | /* Workaround for errata GSER-30310: SATA HDD Not Ready due to |
| 1101 | * PHY SDLL/LDLL lockup at 3GHz |
| 1102 | */ |
| 1103 | for (i = 0; i < 2; i++) { |
| 1104 | cvmx_gserx_slicex_pcie1_mode_t pcie1; |
| 1105 | cvmx_gserx_slicex_pcie2_mode_t pcie2; |
| 1106 | cvmx_gserx_slicex_pcie3_mode_t pcie3; |
| 1107 | |
| 1108 | pcie1.u64 = csr_rd(CVMX_GSERX_SLICEX_PCIE1_MODE(i, qlm)); |
| 1109 | pcie1.s.rx_pi_bwsel = 1; |
| 1110 | pcie1.s.rx_ldll_bwsel = 1; |
| 1111 | pcie1.s.rx_sdll_bwsel = 1; |
| 1112 | csr_wr(CVMX_GSERX_SLICEX_PCIE1_MODE(i, qlm), pcie1.u64); |
| 1113 | |
| 1114 | pcie2.u64 = csr_rd(CVMX_GSERX_SLICEX_PCIE2_MODE(i, qlm)); |
| 1115 | pcie2.s.rx_pi_bwsel = 1; |
| 1116 | pcie2.s.rx_ldll_bwsel = 1; |
| 1117 | pcie2.s.rx_sdll_bwsel = 1; |
| 1118 | csr_wr(CVMX_GSERX_SLICEX_PCIE2_MODE(i, qlm), pcie2.u64); |
| 1119 | |
| 1120 | pcie3.u64 = csr_rd(CVMX_GSERX_SLICEX_PCIE3_MODE(i, qlm)); |
| 1121 | pcie3.s.rx_pi_bwsel = 1; |
| 1122 | pcie3.s.rx_ldll_bwsel = 1; |
| 1123 | pcie3.s.rx_sdll_bwsel = 1; |
| 1124 | csr_wr(CVMX_GSERX_SLICEX_PCIE3_MODE(i, qlm), pcie3.u64); |
| 1125 | } |
| 1126 | |
| 1127 | /* |
| 1128 | * 7. Change P2 termination |
| 1129 | * Clear GSERX_RX_PWR_CTRL_P2.P2_RX_SUBBLK_PD[0] (Termination) |
| 1130 | */ |
| 1131 | pwr_ctrl_p2.u64 = csr_rd(CVMX_GSERX_RX_PWR_CTRL_P2(qlm)); |
| 1132 | pwr_ctrl_p2.s.p2_rx_subblk_pd &= 0x1e; |
| 1133 | csr_wr(CVMX_GSERX_RX_PWR_CTRL_P2(qlm), pwr_ctrl_p2.u64); |
| 1134 | |
| 1135 | /* |
| 1136 | * 8. Modify the Electrical IDLE Detect on delay |
| 1137 | * Change GSERX_LANE(0..3)_MISC_CFG_0.EIE_DET_STL_ON_TIME to a 0x4 |
| 1138 | */ |
| 1139 | for (i = 0; i < 2; i++) { |
| 1140 | misc_cfg_0.u64 = csr_rd(CVMX_GSERX_LANEX_MISC_CFG_0(i, qlm)); |
| 1141 | misc_cfg_0.s.eie_det_stl_on_time = 4; |
| 1142 | csr_wr(CVMX_GSERX_LANEX_MISC_CFG_0(i, qlm), misc_cfg_0.u64); |
| 1143 | } |
| 1144 | |
| 1145 | /* |
| 1146 | * 9. Modify the PLL and Lane Protocol Mode registers to configure |
| 1147 | * the PHY for SATA. |
| 1148 | * (Configure all 3 PLLs, doesn't matter what speed it is configured) |
| 1149 | */ |
| 1150 | |
| 1151 | /* Errata (GSER-26724) SATA never indicates GSER QLM_STAT[RST_RDY] |
| 1152 | * We program PLL_PX_MODE_0 last due to this errata |
| 1153 | */ |
| 1154 | for (l = 0; l < 3; l++) { |
| 1155 | pmode_1.u64 = csr_rd(CVMX_GSERX_PLL_PX_MODE_1(l, qlm)); |
| 1156 | lane_pmode_0.u64 = csr_rd(CVMX_GSERX_LANE_PX_MODE_0(l, qlm)); |
| 1157 | lane_pmode_1.u64 = csr_rd(CVMX_GSERX_LANE_PX_MODE_1(l, qlm)); |
| 1158 | |
| 1159 | pmode_1.s.pll_cpadj = 0x2; |
| 1160 | pmode_1.s.pll_opr = 0x0; |
| 1161 | pmode_1.s.pll_div = 0x1e; |
| 1162 | pmode_1.s.pll_pcie3en = 0x0; |
| 1163 | pmode_1.s.pll_16p5en = 0x0; |
| 1164 | |
| 1165 | lane_pmode_0.s.ctle = 0x0; |
| 1166 | lane_pmode_0.s.pcie = 0x0; |
| 1167 | lane_pmode_0.s.tx_ldiv = 0x0; |
| 1168 | lane_pmode_0.s.srate = 0; |
| 1169 | lane_pmode_0.s.tx_mode = 0x3; |
| 1170 | lane_pmode_0.s.rx_mode = 0x3; |
| 1171 | |
| 1172 | lane_pmode_1.s.vma_mm = 1; |
| 1173 | lane_pmode_1.s.vma_fine_cfg_sel = 0; |
| 1174 | lane_pmode_1.s.cdr_fgain = 0xa; |
| 1175 | lane_pmode_1.s.ph_acc_adj = 0x15; |
| 1176 | |
| 1177 | if (l == R_2_5G_REFCLK100) |
| 1178 | lane_pmode_0.s.rx_ldiv = 0x2; |
| 1179 | else if (l == R_5G_REFCLK100) |
| 1180 | lane_pmode_0.s.rx_ldiv = 0x1; |
| 1181 | else |
| 1182 | lane_pmode_0.s.rx_ldiv = 0x0; |
| 1183 | |
| 1184 | csr_wr(CVMX_GSERX_PLL_PX_MODE_1(l, qlm), pmode_1.u64); |
| 1185 | csr_wr(CVMX_GSERX_LANE_PX_MODE_0(l, qlm), lane_pmode_0.u64); |
| 1186 | csr_wr(CVMX_GSERX_LANE_PX_MODE_1(l, qlm), lane_pmode_1.u64); |
| 1187 | } |
| 1188 | |
| 1189 | for (l = 0; l < 3; l++) { |
| 1190 | pmode_0.u64 = csr_rd(CVMX_GSERX_PLL_PX_MODE_0(l, qlm)); |
| 1191 | pmode_0.s.pll_icp = 0x1; |
| 1192 | pmode_0.s.pll_rloop = 0x3; |
| 1193 | pmode_0.s.pll_pcs_div = 0x5; |
| 1194 | csr_wr(CVMX_GSERX_PLL_PX_MODE_0(l, qlm), pmode_0.u64); |
| 1195 | } |
| 1196 | |
| 1197 | for (i = 0; i < 2; i++) { |
| 1198 | cvmx_gserx_slicex_rx_sdll_ctrl_t rx_sdll; |
| 1199 | |
| 1200 | rx_sdll.u64 = csr_rd(CVMX_GSERX_SLICEX_RX_SDLL_CTRL(i, qlm)); |
| 1201 | rx_sdll.s.pcs_sds_oob_clk_ctrl = 2; |
| 1202 | rx_sdll.s.pcs_sds_rx_sdll_tune = 0; |
| 1203 | rx_sdll.s.pcs_sds_rx_sdll_swsel = 0; |
| 1204 | csr_wr(CVMX_GSERX_SLICEX_RX_SDLL_CTRL(i, qlm), rx_sdll.u64); |
| 1205 | } |
| 1206 | |
| 1207 | for (i = 0; i < 2; i++) { |
| 1208 | cvmx_gserx_lanex_misc_cfg_0_t misc_cfg; |
| 1209 | |
| 1210 | misc_cfg.u64 = csr_rd(CVMX_GSERX_LANEX_MISC_CFG_0(i, qlm)); |
| 1211 | misc_cfg.s.use_pma_polarity = 0; |
| 1212 | misc_cfg.s.cfg_pcs_loopback = 0; |
| 1213 | misc_cfg.s.pcs_tx_mode_ovrrd_en = 0; |
| 1214 | misc_cfg.s.pcs_rx_mode_ovrrd_en = 0; |
| 1215 | misc_cfg.s.cfg_eie_det_cnt = 0; |
| 1216 | misc_cfg.s.eie_det_stl_on_time = 4; |
| 1217 | misc_cfg.s.eie_det_stl_off_time = 0; |
| 1218 | misc_cfg.s.tx_bit_order = 1; |
| 1219 | misc_cfg.s.rx_bit_order = 1; |
| 1220 | csr_wr(CVMX_GSERX_LANEX_MISC_CFG_0(i, qlm), misc_cfg.u64); |
| 1221 | } |
| 1222 | |
| 1223 | /* Wait for reset to complete and the PLL to lock */ |
| 1224 | /* PCIe mode doesn't become ready until the PEM block attempts to bring |
| 1225 | * the interface up. Skip this check for PCIe |
| 1226 | */ |
| 1227 | if (CVMX_WAIT_FOR_FIELD64(CVMX_GSERX_QLM_STAT(qlm), cvmx_gserx_qlm_stat_t, |
| 1228 | rst_rdy, ==, 1, 10000)) { |
| 1229 | printf("QLM%d: Timeout waiting for GSERX_QLM_STAT[rst_rdy]\n", qlm); |
| 1230 | return -1; |
| 1231 | } |
| 1232 | |
| 1233 | /* Poll GSERX_SATA_STATUS for P0_RDY = 1 */ |
| 1234 | if (CVMX_WAIT_FOR_FIELD64(CVMX_GSERX_SATA_STATUS(qlm), cvmx_gserx_sata_status_t, |
| 1235 | p0_rdy, ==, 1, 10000)) { |
| 1236 | printf("QLM4: Timeout waiting for GSERX_SATA_STATUS[p0_rdy]\n"); |
| 1237 | return -1; |
| 1238 | } |
| 1239 | |
| 1240 | /* Poll GSERX_SATA_STATUS for P1_RDY = 1 */ |
| 1241 | if (CVMX_WAIT_FOR_FIELD64(CVMX_GSERX_SATA_STATUS(qlm), cvmx_gserx_sata_status_t, |
| 1242 | p1_rdy, ==, 1, 10000)) { |
| 1243 | printf("QLM4: Timeout waiting for GSERX_SATA_STATUS[p1_rdy]\n"); |
| 1244 | return -1; |
| 1245 | } |
| 1246 | |
| 1247 | udelay(2000); |
| 1248 | |
| 1249 | /* 6. Deassert UCTL and UAHC resets: |
| 1250 | * a. SATA_UCTL_CTL[UCTL_RST] = 0 |
| 1251 | * b. SATA_UCTL_CTL[UAHC_RST] = 0 |
| 1252 | * c. Wait 10 ACLK cycles before accessing any ACLK-only registers. |
| 1253 | */ |
| 1254 | uctl_ctl.u64 = csr_rd(CVMX_SATA_UCTL_CTL); |
| 1255 | uctl_ctl.s.sata_uctl_rst = 0; |
| 1256 | uctl_ctl.s.sata_uahc_rst = 0; |
| 1257 | csr_wr(CVMX_SATA_UCTL_CTL, uctl_ctl.u64); |
| 1258 | |
| 1259 | udelay(1); |
| 1260 | |
| 1261 | /* 7. Enable conditional SCLK of UCTL by writing |
| 1262 | * SATA_UCTL_CTL[CSCLK_EN] = 1 |
| 1263 | */ |
| 1264 | uctl_ctl.u64 = csr_rd(CVMX_SATA_UCTL_CTL); |
| 1265 | uctl_ctl.s.csclk_en = 1; |
| 1266 | csr_wr(CVMX_SATA_UCTL_CTL, uctl_ctl.u64); |
| 1267 | |
| 1268 | /* set-up endian mode */ |
| 1269 | shim_cfg.u64 = csr_rd(CVMX_SATA_UCTL_SHIM_CFG); |
| 1270 | shim_cfg.s.dma_endian_mode = 1; |
| 1271 | shim_cfg.s.csr_endian_mode = 3; |
| 1272 | csr_wr(CVMX_SATA_UCTL_SHIM_CFG, shim_cfg.u64); |
| 1273 | |
| 1274 | return 0; |
| 1275 | } |
| 1276 | |
| 1277 | static int __dlm2_sata_uahc_init_cn70xx(int baud_mhz) |
| 1278 | { |
| 1279 | cvmx_sata_uahc_gbl_cap_t gbl_cap; |
| 1280 | cvmx_sata_uahc_px_sctl_t sctl; |
| 1281 | cvmx_sata_uahc_gbl_pi_t pi; |
| 1282 | cvmx_sata_uahc_px_cmd_t cmd; |
| 1283 | cvmx_sata_uahc_px_sctl_t sctl0, sctl1; |
| 1284 | cvmx_sata_uahc_px_ssts_t ssts; |
| 1285 | cvmx_sata_uahc_px_tfd_t tfd; |
| 1286 | cvmx_sata_uahc_gbl_timer1ms_t gbl_timer1ms; |
| 1287 | u64 done; |
| 1288 | int result = -1; |
| 1289 | int retry_count = 0; |
| 1290 | int spd; |
| 1291 | |
| 1292 | /* From the synopsis data book, SATA_UAHC_GBL_TIMER1MS is the |
| 1293 | * AMBA clock in MHz * 1000, which is a_clk(Hz) / 1000 |
| 1294 | */ |
| 1295 | gbl_timer1ms.u32 = csr_rd32(CVMX_SATA_UAHC_GBL_TIMER1MS); |
| 1296 | gbl_timer1ms.s.timv = a_clk / 1000; |
| 1297 | csr_wr32(CVMX_SATA_UAHC_GBL_TIMER1MS, gbl_timer1ms.u32); |
| 1298 | gbl_timer1ms.u32 = csr_rd32(CVMX_SATA_UAHC_GBL_TIMER1MS); |
| 1299 | |
| 1300 | /* Set-u global capabilities reg (GBL_CAP) */ |
| 1301 | gbl_cap.u32 = csr_rd32(CVMX_SATA_UAHC_GBL_CAP); |
| 1302 | debug("%s: SATA_UAHC_GBL_CAP before: 0x%x\n", __func__, gbl_cap.u32); |
| 1303 | gbl_cap.s.sss = 1; |
| 1304 | gbl_cap.s.smps = 1; |
| 1305 | csr_wr32(CVMX_SATA_UAHC_GBL_CAP, gbl_cap.u32); |
| 1306 | gbl_cap.u32 = csr_rd32(CVMX_SATA_UAHC_GBL_CAP); |
| 1307 | debug("%s: SATA_UAHC_GBL_CAP after: 0x%x\n", __func__, gbl_cap.u32); |
| 1308 | |
| 1309 | /* Set-up global hba control reg (interrupt enables) */ |
| 1310 | /* Set-up port SATA control registers (speed limitation) */ |
| 1311 | if (baud_mhz == 1500) |
| 1312 | spd = 1; |
| 1313 | else if (baud_mhz == 3000) |
| 1314 | spd = 2; |
| 1315 | else |
| 1316 | spd = 3; |
| 1317 | |
| 1318 | sctl.u32 = csr_rd32(CVMX_SATA_UAHC_PX_SCTL(0)); |
| 1319 | debug("%s: SATA_UAHC_P0_SCTL before: 0x%x\n", __func__, sctl.u32); |
| 1320 | sctl.s.spd = spd; |
| 1321 | csr_wr32(CVMX_SATA_UAHC_PX_SCTL(0), sctl.u32); |
| 1322 | sctl.u32 = csr_rd32(CVMX_SATA_UAHC_PX_SCTL(0)); |
| 1323 | debug("%s: SATA_UAHC_P0_SCTL after: 0x%x\n", __func__, sctl.u32); |
| 1324 | sctl.u32 = csr_rd32(CVMX_SATA_UAHC_PX_SCTL(1)); |
| 1325 | debug("%s: SATA_UAHC_P1_SCTL before: 0x%x\n", __func__, sctl.u32); |
| 1326 | sctl.s.spd = spd; |
| 1327 | csr_wr32(CVMX_SATA_UAHC_PX_SCTL(1), sctl.u32); |
| 1328 | sctl.u32 = csr_rd32(CVMX_SATA_UAHC_PX_SCTL(1)); |
| 1329 | debug("%s: SATA_UAHC_P1_SCTL after: 0x%x\n", __func__, sctl.u32); |
| 1330 | |
| 1331 | /* Set-up ports implemented reg. */ |
| 1332 | pi.u32 = csr_rd32(CVMX_SATA_UAHC_GBL_PI); |
| 1333 | debug("%s: SATA_UAHC_GBL_PI before: 0x%x\n", __func__, pi.u32); |
| 1334 | pi.s.pi = 3; |
| 1335 | csr_wr32(CVMX_SATA_UAHC_GBL_PI, pi.u32); |
| 1336 | pi.u32 = csr_rd32(CVMX_SATA_UAHC_GBL_PI); |
| 1337 | debug("%s: SATA_UAHC_GBL_PI after: 0x%x\n", __func__, pi.u32); |
| 1338 | |
| 1339 | retry0: |
| 1340 | /* Clear port SERR and IS registers */ |
| 1341 | csr_wr32(CVMX_SATA_UAHC_PX_SERR(0), csr_rd32(CVMX_SATA_UAHC_PX_SERR(0))); |
| 1342 | csr_wr32(CVMX_SATA_UAHC_PX_IS(0), csr_rd32(CVMX_SATA_UAHC_PX_IS(0))); |
| 1343 | |
| 1344 | /* Set spin-up, power on, FIS RX enable, start, active */ |
| 1345 | cmd.u32 = csr_rd32(CVMX_SATA_UAHC_PX_CMD(0)); |
| 1346 | debug("%s: SATA_UAHC_P0_CMD before: 0x%x\n", __func__, cmd.u32); |
| 1347 | cmd.s.fre = 1; |
| 1348 | cmd.s.sud = 1; |
| 1349 | cmd.s.pod = 1; |
| 1350 | cmd.s.st = 1; |
| 1351 | cmd.s.icc = 1; |
| 1352 | cmd.s.fbscp = 1; /* Enable FIS-based switching */ |
| 1353 | csr_wr32(CVMX_SATA_UAHC_PX_CMD(0), cmd.u32); |
| 1354 | cmd.u32 = csr_rd32(CVMX_SATA_UAHC_PX_CMD(0)); |
| 1355 | debug("%s: SATA_UAHC_P0_CMD after: 0x%x\n", __func__, cmd.u32); |
| 1356 | |
| 1357 | sctl0.u32 = csr_rd32(CVMX_SATA_UAHC_PX_SCTL(0)); |
| 1358 | sctl0.s.det = 1; |
| 1359 | csr_wr32(CVMX_SATA_UAHC_PX_SCTL(0), sctl0.u32); |
| 1360 | |
| 1361 | /* check status */ |
| 1362 | done = get_timer(0); |
| 1363 | while (1) { |
| 1364 | ssts.u32 = csr_rd32(CVMX_SATA_UAHC_PX_SSTS(0)); |
| 1365 | |
| 1366 | if (ssts.s.ipm == 1 && ssts.s.det == 3) { |
| 1367 | result = 0; |
| 1368 | break; |
| 1369 | } else if (get_timer(done) > 100) { |
| 1370 | result = -1; |
| 1371 | break; |
| 1372 | } |
| 1373 | |
| 1374 | udelay(100); |
| 1375 | } |
| 1376 | |
| 1377 | if (result != -1) { |
| 1378 | /* Clear the PxSERR Register, by writing '1s' to each |
| 1379 | * implemented bit location |
| 1380 | */ |
| 1381 | csr_wr32(CVMX_SATA_UAHC_PX_SERR(0), -1); |
| 1382 | |
| 1383 | /* |
| 1384 | * Wait for indication that SATA drive is ready. This is |
| 1385 | * determined via an examination of PxTFD.STS. If PxTFD.STS.BSY |
| 1386 | * PxTFD.STS.DRQ, and PxTFD.STS.ERR are all '0', prior to the |
| 1387 | * maximum allowed time as specified in the ATA/ATAPI-7 |
| 1388 | * specification, the device is ready. |
| 1389 | */ |
| 1390 | /* |
| 1391 | * Wait for the device to be ready. BSY(7), DRQ(3), and ERR(0) |
| 1392 | * must be clear |
| 1393 | */ |
| 1394 | done = get_timer(0); |
| 1395 | while (1) { |
| 1396 | tfd.u32 = csr_rd32(CVMX_SATA_UAHC_PX_TFD(0)); |
| 1397 | if ((tfd.s.sts & 0x89) == 0) { |
| 1398 | result = 0; |
| 1399 | break; |
| 1400 | } else if (get_timer(done) > 500) { |
| 1401 | if (retry_count < 3) { |
| 1402 | sctl0.u32 = csr_rd32(CVMX_SATA_UAHC_PX_SCTL(0)); |
| 1403 | sctl0.s.det = 1; /* Perform interface reset */ |
| 1404 | csr_wr32(CVMX_SATA_UAHC_PX_SCTL(0), sctl0.u32); |
| 1405 | udelay(1000); /* 1ms dicated by AHCI 1.3 spec */ |
| 1406 | sctl0.u32 = csr_rd32(CVMX_SATA_UAHC_PX_SCTL(0)); |
| 1407 | sctl0.s.det = 0; /* Perform interface reset */ |
| 1408 | csr_wr32(CVMX_SATA_UAHC_PX_SCTL(0), sctl0.u32); |
| 1409 | retry_count++; |
| 1410 | goto retry0; |
| 1411 | } |
| 1412 | result = -1; |
| 1413 | break; |
| 1414 | } |
| 1415 | |
| 1416 | udelay(100); |
| 1417 | } |
| 1418 | } |
| 1419 | |
| 1420 | if (result == -1) |
| 1421 | printf("SATA0: not available\n"); |
| 1422 | else |
| 1423 | printf("SATA0: available\n"); |
| 1424 | |
| 1425 | sctl1.u32 = csr_rd32(CVMX_SATA_UAHC_PX_SCTL(1)); |
| 1426 | sctl1.s.det = 1; |
| 1427 | csr_wr32(CVMX_SATA_UAHC_PX_SCTL(1), sctl1.u32); |
| 1428 | |
| 1429 | result = -1; |
| 1430 | retry_count = 0; |
| 1431 | |
| 1432 | retry1: |
| 1433 | /* Clear port SERR and IS registers */ |
| 1434 | csr_wr32(CVMX_SATA_UAHC_PX_SERR(1), csr_rd32(CVMX_SATA_UAHC_PX_SERR(1))); |
| 1435 | csr_wr32(CVMX_SATA_UAHC_PX_IS(1), csr_rd32(CVMX_SATA_UAHC_PX_IS(1))); |
| 1436 | |
| 1437 | /* Set spin-up, power on, FIS RX enable, start, active */ |
| 1438 | cmd.u32 = csr_rd32(CVMX_SATA_UAHC_PX_CMD(1)); |
| 1439 | debug("%s: SATA_UAHC_P1_CMD before: 0x%x\n", __func__, cmd.u32); |
| 1440 | cmd.s.fre = 1; |
| 1441 | cmd.s.sud = 1; |
| 1442 | cmd.s.pod = 1; |
| 1443 | cmd.s.st = 1; |
| 1444 | cmd.s.icc = 1; |
| 1445 | cmd.s.fbscp = 1; /* Enable FIS-based switching */ |
| 1446 | csr_wr32(CVMX_SATA_UAHC_PX_CMD(1), cmd.u32); |
| 1447 | cmd.u32 = csr_rd32(CVMX_SATA_UAHC_PX_CMD(1)); |
| 1448 | debug("%s: SATA_UAHC_P1_CMD after: 0x%x\n", __func__, cmd.u32); |
| 1449 | |
| 1450 | /* check status */ |
| 1451 | done = get_timer(0); |
| 1452 | while (1) { |
| 1453 | ssts.u32 = csr_rd32(CVMX_SATA_UAHC_PX_SSTS(1)); |
| 1454 | |
| 1455 | if (ssts.s.ipm == 1 && ssts.s.det == 3) { |
| 1456 | result = 0; |
| 1457 | break; |
| 1458 | } else if (get_timer(done) > 1000) { |
| 1459 | result = -1; |
| 1460 | break; |
| 1461 | } |
| 1462 | |
| 1463 | udelay(100); |
| 1464 | } |
| 1465 | |
| 1466 | if (result != -1) { |
| 1467 | /* Clear the PxSERR Register, by writing '1s' to each |
| 1468 | * implemented bit location |
| 1469 | */ |
| 1470 | csr_wr32(CVMX_SATA_UAHC_PX_SERR(1), csr_rd32(CVMX_SATA_UAHC_PX_SERR(1))); |
| 1471 | |
| 1472 | /* |
| 1473 | * Wait for indication that SATA drive is ready. This is |
| 1474 | * determined via an examination of PxTFD.STS. If PxTFD.STS.BSY |
| 1475 | * PxTFD.STS.DRQ, and PxTFD.STS.ERR are all '0', prior to the |
| 1476 | * maximum allowed time as specified in the ATA/ATAPI-7 |
| 1477 | * specification, the device is ready. |
| 1478 | */ |
| 1479 | /* |
| 1480 | * Wait for the device to be ready. BSY(7), DRQ(3), and ERR(0) |
| 1481 | * must be clear |
| 1482 | */ |
| 1483 | done = get_timer(0); |
| 1484 | while (1) { |
| 1485 | tfd.u32 = csr_rd32(CVMX_SATA_UAHC_PX_TFD(1)); |
| 1486 | if ((tfd.s.sts & 0x89) == 0) { |
| 1487 | result = 0; |
| 1488 | break; |
| 1489 | } else if (get_timer(done) > 500) { |
| 1490 | if (retry_count < 3) { |
| 1491 | sctl0.u32 = csr_rd32(CVMX_SATA_UAHC_PX_SCTL(1)); |
| 1492 | sctl0.s.det = 1; /* Perform interface reset */ |
| 1493 | csr_wr32(CVMX_SATA_UAHC_PX_SCTL(1), sctl0.u32); |
| 1494 | udelay(1000); /* 1ms dicated by AHCI 1.3 spec */ |
| 1495 | sctl0.u32 = csr_rd32(CVMX_SATA_UAHC_PX_SCTL(1)); |
| 1496 | sctl0.s.det = 0; /* Perform interface reset */ |
| 1497 | csr_wr32(CVMX_SATA_UAHC_PX_SCTL(1), sctl0.u32); |
| 1498 | retry_count++; |
| 1499 | goto retry1; |
| 1500 | } |
| 1501 | result = -1; |
| 1502 | break; |
| 1503 | } |
| 1504 | |
| 1505 | udelay(100); |
| 1506 | } |
| 1507 | } |
| 1508 | |
| 1509 | if (result == -1) |
| 1510 | printf("SATA1: not available\n"); |
| 1511 | else |
| 1512 | printf("SATA1: available\n"); |
| 1513 | |
| 1514 | return 0; |
| 1515 | } |
| 1516 | |
| 1517 | static int __sata_bist_cn70xx(int qlm, int baud_mhz, int ref_clk_sel, int ref_clk_input) |
| 1518 | { |
| 1519 | cvmx_sata_uctl_bist_status_t bist_status; |
| 1520 | cvmx_sata_uctl_ctl_t uctl_ctl; |
| 1521 | cvmx_sata_uctl_shim_cfg_t shim_cfg; |
| 1522 | u64 done; |
| 1523 | int result = -1; |
| 1524 | |
| 1525 | debug("%s(%d, %d, %d, %d)\n", __func__, qlm, baud_mhz, ref_clk_sel, ref_clk_input); |
| 1526 | bist_status.u64 = csr_rd(CVMX_SATA_UCTL_BIST_STATUS); |
| 1527 | |
| 1528 | { |
| 1529 | if (__dlm2_sata_uctl_init_cn70xx()) { |
| 1530 | printf("ERROR: Failed to initialize SATA UCTL CSRs\n"); |
| 1531 | return -1; |
| 1532 | } |
| 1533 | if (OCTEON_IS_MODEL(OCTEON_CN73XX)) |
| 1534 | result = __sata_dlm_init_cn73xx(qlm, baud_mhz, ref_clk_sel, ref_clk_input); |
| 1535 | else |
| 1536 | result = __sata_dlm_init_cn70xx(qlm, baud_mhz, ref_clk_sel, ref_clk_input); |
| 1537 | if (result) { |
| 1538 | printf("ERROR: Failed to initialize SATA GSER CSRs\n"); |
| 1539 | return -1; |
| 1540 | } |
| 1541 | |
| 1542 | uctl_ctl.u64 = csr_rd(CVMX_SATA_UCTL_CTL); |
| 1543 | uctl_ctl.s.start_bist = 1; |
| 1544 | csr_wr(CVMX_SATA_UCTL_CTL, uctl_ctl.u64); |
| 1545 | |
| 1546 | /* Set-up for a 1 sec timer. */ |
| 1547 | done = get_timer(0); |
| 1548 | while (1) { |
| 1549 | bist_status.u64 = csr_rd(CVMX_SATA_UCTL_BIST_STATUS); |
| 1550 | if ((bist_status.s.uctl_xm_r_bist_ndone | |
| 1551 | bist_status.s.uctl_xm_w_bist_ndone | |
| 1552 | bist_status.s.uahc_p0_rxram_bist_ndone | |
| 1553 | bist_status.s.uahc_p1_rxram_bist_ndone | |
| 1554 | bist_status.s.uahc_p0_txram_bist_ndone | |
| 1555 | bist_status.s.uahc_p1_txram_bist_ndone) == 0) { |
| 1556 | result = 0; |
| 1557 | break; |
| 1558 | } else if (get_timer(done) > 1000) { |
| 1559 | result = -1; |
| 1560 | break; |
| 1561 | } |
| 1562 | |
| 1563 | udelay(100); |
| 1564 | } |
| 1565 | if (result == -1) { |
| 1566 | printf("ERROR: SATA_UCTL_BIST_STATUS = 0x%llx\n", |
| 1567 | (unsigned long long)bist_status.u64); |
| 1568 | return -1; |
| 1569 | } |
| 1570 | |
| 1571 | debug("%s: Initializing UAHC\n", __func__); |
| 1572 | if (__dlm2_sata_uahc_init_cn70xx(baud_mhz)) { |
| 1573 | printf("ERROR: Failed to initialize SATA UAHC CSRs\n"); |
| 1574 | return -1; |
| 1575 | } |
| 1576 | } |
| 1577 | |
| 1578 | /* Change CSR_ENDIAN_MODE to big endian to use Open Source AHCI SATA |
| 1579 | * driver |
| 1580 | */ |
| 1581 | shim_cfg.u64 = csr_rd(CVMX_SATA_UCTL_SHIM_CFG); |
| 1582 | shim_cfg.s.csr_endian_mode = 1; |
| 1583 | csr_wr(CVMX_SATA_UCTL_SHIM_CFG, shim_cfg.u64); |
| 1584 | |
| 1585 | return 0; |
| 1586 | } |
| 1587 | |
| 1588 | static int __setup_sata(int qlm, int baud_mhz, int ref_clk_sel, int ref_clk_input) |
| 1589 | { |
| 1590 | debug("%s(%d, %d, %d, %d)\n", __func__, qlm, baud_mhz, ref_clk_sel, ref_clk_input); |
| 1591 | return __sata_bist_cn70xx(qlm, baud_mhz, ref_clk_sel, ref_clk_input); |
| 1592 | } |
| 1593 | |
| 1594 | static int __dlmx_setup_pcie_cn70xx(int qlm, enum cvmx_qlm_mode mode, int gen2, int rc, |
| 1595 | int ref_clk_sel, int ref_clk_input) |
| 1596 | { |
| 1597 | cvmx_gserx_dlmx_phy_reset_t dlmx_phy_reset; |
| 1598 | cvmx_gserx_dlmx_test_powerdown_t dlmx_test_powerdown; |
| 1599 | cvmx_gserx_dlmx_mpll_multiplier_t mpll_multiplier; |
| 1600 | cvmx_gserx_dlmx_ref_clkdiv2_t ref_clkdiv2; |
| 1601 | static const u8 ref_clk_mult[2] = { 35, 56 }; /* 100 & 125 MHz ref clock supported. */ |
| 1602 | |
| 1603 | debug("%s(%d, %d, %d, %d, %d, %d)\n", __func__, qlm, mode, gen2, rc, ref_clk_sel, |
| 1604 | ref_clk_input); |
| 1605 | if (rc == 0) { |
| 1606 | debug("Skipping initializing PCIe dlm %d in endpoint mode\n", qlm); |
| 1607 | return 0; |
| 1608 | } |
| 1609 | |
| 1610 | if (qlm > 0 && ref_clk_input > 1) { |
| 1611 | printf("%s: Error: ref_clk_input can only be 0 or 1 for QLM %d\n", |
| 1612 | __func__, qlm); |
| 1613 | return -1; |
| 1614 | } |
| 1615 | |
| 1616 | if (ref_clk_sel > OCTEON_QLM_REF_CLK_125MHZ) { |
| 1617 | printf("%s: Error: ref_clk_sel can only be 100 or 125 MHZ.\n", __func__); |
| 1618 | return -1; |
| 1619 | } |
| 1620 | |
| 1621 | /* 1. Write GSER0_DLM(1..2)_REFCLK_SEL[REFCLK_SEL] if required for |
| 1622 | * reference-clock selection |
| 1623 | */ |
| 1624 | |
| 1625 | csr_wr(CVMX_GSERX_DLMX_REFCLK_SEL(qlm, 0), ref_clk_input); |
| 1626 | |
| 1627 | /* 2. If required, write GSER0_DLM(1..2)_REF_CLKDIV2[REF_CLKDIV2] = 1 |
| 1628 | * (must be set if reference clock >= 100 MHz) |
| 1629 | */ |
| 1630 | |
| 1631 | /* 4. Configure the PCIE PIPE: |
| 1632 | * a. Write GSER0_PCIE_PIPE_PORT_SEL[PIPE_PORT_SEL] to configure the |
| 1633 | * PCIE PIPE. |
| 1634 | * 0x0 = disables all pipes |
| 1635 | * 0x1 = enables pipe0 only (PEM0 4-lane) |
| 1636 | * 0x2 = enables pipes 0 and 1 (PEM0 and PEM1 2-lanes each) |
| 1637 | * 0x3 = enables pipes 0, 1, 2, and 3 (PEM0, PEM1, and PEM3 are |
| 1638 | * one-lane each) |
| 1639 | * b. Configure GSER0_PCIE_PIPE_PORT_SEL[CFG_PEM1_DLM2]. If PEM1 is |
| 1640 | * to be configured, this bit must reflect which DLM it is logically |
| 1641 | * tied to. This bit sets multiplexing logic in GSER, and it is used |
| 1642 | * by the RST logic to determine when the MAC can come out of reset. |
| 1643 | * 0 = PEM1 is tied to DLM1 (for 3 x 1 PCIe mode). |
| 1644 | * 1 = PEM1 is tied to DLM2 (for all other PCIe modes). |
| 1645 | */ |
| 1646 | if (qlm == 1) { |
| 1647 | cvmx_gserx_pcie_pipe_port_sel_t pipe_port; |
| 1648 | |
| 1649 | pipe_port.u64 = csr_rd(CVMX_GSERX_PCIE_PIPE_PORT_SEL(0)); |
| 1650 | pipe_port.s.cfg_pem1_dlm2 = (mode == CVMX_QLM_MODE_PCIE_1X1) ? 1 : 0; |
| 1651 | pipe_port.s.pipe_port_sel = |
| 1652 | (mode == CVMX_QLM_MODE_PCIE) ? 1 : /* PEM0 only */ |
| 1653 | (mode == CVMX_QLM_MODE_PCIE_1X2) ? 2 : /* PEM0-1 */ |
| 1654 | (mode == CVMX_QLM_MODE_PCIE_1X1) ? 3 : /* PEM0-2 */ |
| 1655 | (mode == CVMX_QLM_MODE_PCIE_2X1) ? 3 : /* PEM0-1 */ |
| 1656 | 0; /* PCIe disabled */ |
| 1657 | csr_wr(CVMX_GSERX_PCIE_PIPE_PORT_SEL(0), pipe_port.u64); |
| 1658 | } |
| 1659 | |
| 1660 | /* Apply workaround for Errata (G-20669) MPLL may not come up. */ |
| 1661 | |
| 1662 | /* Set REF_CLKDIV2 based on the Ref Clock */ |
| 1663 | ref_clkdiv2.u64 = csr_rd(CVMX_GSERX_DLMX_REF_CLKDIV2(qlm, 0)); |
| 1664 | ref_clkdiv2.s.ref_clkdiv2 = ref_clk_sel > 0; |
| 1665 | csr_wr(CVMX_GSERX_DLMX_REF_CLKDIV2(qlm, 0), ref_clkdiv2.u64); |
| 1666 | |
| 1667 | /* 1. Ensure GSER(0)_DLM(0..2)_PHY_RESET[PHY_RESET] is set. */ |
| 1668 | dlmx_phy_reset.u64 = csr_rd(CVMX_GSERX_DLMX_PHY_RESET(qlm, 0)); |
| 1669 | dlmx_phy_reset.s.phy_reset = 1; |
| 1670 | csr_wr(CVMX_GSERX_DLMX_PHY_RESET(qlm, 0), dlmx_phy_reset.u64); |
| 1671 | |
| 1672 | /* 2. If SGMII or QSGMII or RXAUI (i.e. if DLM0) set |
| 1673 | * GSER(0)_DLM(0)_MPLL_EN[MPLL_EN] to one. |
| 1674 | */ |
| 1675 | |
| 1676 | /* 3. Set GSER(0)_DLM(0..2)_MPLL_MULTIPLIER[MPLL_MULTIPLIER] |
| 1677 | * to the value in the preceding table, which is different |
| 1678 | * than the desired setting prescribed by the HRM. |
| 1679 | */ |
| 1680 | mpll_multiplier.u64 = csr_rd(CVMX_GSERX_DLMX_MPLL_MULTIPLIER(qlm, 0)); |
| 1681 | mpll_multiplier.s.mpll_multiplier = ref_clk_mult[ref_clk_sel]; |
| 1682 | debug("%s: Setting MPLL multiplier to %d\n", __func__, |
| 1683 | (int)mpll_multiplier.s.mpll_multiplier); |
| 1684 | csr_wr(CVMX_GSERX_DLMX_MPLL_MULTIPLIER(qlm, 0), mpll_multiplier.u64); |
| 1685 | /* 5. Clear GSER0_DLM(1..2)_TEST_POWERDOWN. Configurations that only |
| 1686 | * use DLM1 need not clear GSER0_DLM2_TEST_POWERDOWN |
| 1687 | */ |
| 1688 | dlmx_test_powerdown.u64 = csr_rd(CVMX_GSERX_DLMX_TEST_POWERDOWN(qlm, 0)); |
| 1689 | dlmx_test_powerdown.s.test_powerdown = 0; |
| 1690 | csr_wr(CVMX_GSERX_DLMX_TEST_POWERDOWN(qlm, 0), dlmx_test_powerdown.u64); |
| 1691 | |
| 1692 | /* 6. Clear GSER0_DLM(1..2)_PHY_RESET. Configurations that use only |
| 1693 | * need DLM1 need not clear GSER0_DLM2_PHY_RESET |
| 1694 | */ |
| 1695 | dlmx_phy_reset.u64 = csr_rd(CVMX_GSERX_DLMX_PHY_RESET(qlm, 0)); |
| 1696 | dlmx_phy_reset.s.phy_reset = 0; |
| 1697 | csr_wr(CVMX_GSERX_DLMX_PHY_RESET(qlm, 0), dlmx_phy_reset.u64); |
| 1698 | |
| 1699 | /* 6. Decrease MPLL_MULTIPLIER by one continually until it reaches |
| 1700 | * the desired long-term setting, ensuring that each MPLL_MULTIPLIER |
| 1701 | * value is constant for at least 1 msec before changing to the next |
| 1702 | * value. The desired long-term setting is as indicated in HRM tables |
| 1703 | * 21-1, 21-2, and 21-3. This is not required with the HRM |
| 1704 | * sequence. |
| 1705 | */ |
| 1706 | /* This is set when initializing PCIe after soft reset is asserted. */ |
| 1707 | |
| 1708 | /* 7. Write the GSER0_PCIE_PIPE_RST register to take the appropriate |
| 1709 | * PIPE out of reset. There is a PIPEn_RST bit for each PIPE. Clear |
| 1710 | * the appropriate bits based on the configuration (reset is |
| 1711 | * active high). |
| 1712 | */ |
| 1713 | if (qlm == 1) { |
| 1714 | cvmx_pemx_cfg_t pemx_cfg; |
| 1715 | cvmx_pemx_on_t pemx_on; |
| 1716 | cvmx_gserx_pcie_pipe_rst_t pipe_rst; |
| 1717 | cvmx_rst_ctlx_t rst_ctl; |
| 1718 | |
| 1719 | switch (mode) { |
| 1720 | case CVMX_QLM_MODE_PCIE: /* PEM0 on DLM1 & DLM2 */ |
| 1721 | case CVMX_QLM_MODE_PCIE_1X2: /* PEM0 on DLM1 */ |
| 1722 | case CVMX_QLM_MODE_PCIE_1X1: /* PEM0 on DLM1 using lane 0 */ |
| 1723 | pemx_cfg.u64 = csr_rd(CVMX_PEMX_CFG(0)); |
| 1724 | pemx_cfg.cn70xx.hostmd = rc; |
| 1725 | if (mode == CVMX_QLM_MODE_PCIE_1X1) { |
| 1726 | pemx_cfg.cn70xx.md = |
| 1727 | gen2 ? CVMX_PEM_MD_GEN2_1LANE : CVMX_PEM_MD_GEN1_1LANE; |
| 1728 | } else if (mode == CVMX_QLM_MODE_PCIE) { |
| 1729 | pemx_cfg.cn70xx.md = |
| 1730 | gen2 ? CVMX_PEM_MD_GEN2_4LANE : CVMX_PEM_MD_GEN1_4LANE; |
| 1731 | } else { |
| 1732 | pemx_cfg.cn70xx.md = |
| 1733 | gen2 ? CVMX_PEM_MD_GEN2_2LANE : CVMX_PEM_MD_GEN1_2LANE; |
| 1734 | } |
| 1735 | csr_wr(CVMX_PEMX_CFG(0), pemx_cfg.u64); |
| 1736 | |
| 1737 | rst_ctl.u64 = csr_rd(CVMX_RST_CTLX(0)); |
| 1738 | rst_ctl.s.rst_drv = 1; |
| 1739 | csr_wr(CVMX_RST_CTLX(0), rst_ctl.u64); |
| 1740 | |
| 1741 | /* PEM0 is on DLM1&2 which is pipe0 */ |
| 1742 | pipe_rst.u64 = csr_rd(CVMX_GSERX_PCIE_PIPE_RST(0)); |
| 1743 | pipe_rst.s.pipe0_rst = 0; |
| 1744 | csr_wr(CVMX_GSERX_PCIE_PIPE_RST(0), pipe_rst.u64); |
| 1745 | |
| 1746 | pemx_on.u64 = csr_rd(CVMX_PEMX_ON(0)); |
| 1747 | pemx_on.s.pemon = 1; |
| 1748 | csr_wr(CVMX_PEMX_ON(0), pemx_on.u64); |
| 1749 | break; |
| 1750 | case CVMX_QLM_MODE_PCIE_2X1: /* PEM0 and PEM1 on DLM1 */ |
| 1751 | pemx_cfg.u64 = csr_rd(CVMX_PEMX_CFG(0)); |
| 1752 | pemx_cfg.cn70xx.hostmd = rc; |
| 1753 | pemx_cfg.cn70xx.md = gen2 ? CVMX_PEM_MD_GEN2_1LANE : CVMX_PEM_MD_GEN1_1LANE; |
| 1754 | csr_wr(CVMX_PEMX_CFG(0), pemx_cfg.u64); |
| 1755 | |
| 1756 | rst_ctl.u64 = csr_rd(CVMX_RST_CTLX(0)); |
| 1757 | rst_ctl.s.rst_drv = 1; |
| 1758 | csr_wr(CVMX_RST_CTLX(0), rst_ctl.u64); |
| 1759 | |
| 1760 | /* PEM0 is on DLM1 which is pipe0 */ |
| 1761 | pipe_rst.u64 = csr_rd(CVMX_GSERX_PCIE_PIPE_RST(0)); |
| 1762 | pipe_rst.s.pipe0_rst = 0; |
| 1763 | csr_wr(CVMX_GSERX_PCIE_PIPE_RST(0), pipe_rst.u64); |
| 1764 | |
| 1765 | pemx_on.u64 = csr_rd(CVMX_PEMX_ON(0)); |
| 1766 | pemx_on.s.pemon = 1; |
| 1767 | csr_wr(CVMX_PEMX_ON(0), pemx_on.u64); |
| 1768 | |
| 1769 | pemx_cfg.u64 = csr_rd(CVMX_PEMX_CFG(1)); |
| 1770 | pemx_cfg.cn70xx.hostmd = 1; |
| 1771 | pemx_cfg.cn70xx.md = gen2 ? CVMX_PEM_MD_GEN2_1LANE : CVMX_PEM_MD_GEN1_1LANE; |
| 1772 | csr_wr(CVMX_PEMX_CFG(1), pemx_cfg.u64); |
| 1773 | rst_ctl.u64 = csr_rd(CVMX_RST_CTLX(1)); |
| 1774 | rst_ctl.s.rst_drv = 1; |
| 1775 | csr_wr(CVMX_RST_CTLX(1), rst_ctl.u64); |
| 1776 | /* PEM1 is on DLM2 which is pipe1 */ |
| 1777 | pipe_rst.u64 = csr_rd(CVMX_GSERX_PCIE_PIPE_RST(0)); |
| 1778 | pipe_rst.s.pipe1_rst = 0; |
| 1779 | csr_wr(CVMX_GSERX_PCIE_PIPE_RST(0), pipe_rst.u64); |
| 1780 | pemx_on.u64 = csr_rd(CVMX_PEMX_ON(1)); |
| 1781 | pemx_on.s.pemon = 1; |
| 1782 | csr_wr(CVMX_PEMX_ON(1), pemx_on.u64); |
| 1783 | break; |
| 1784 | default: |
| 1785 | break; |
| 1786 | } |
| 1787 | } else { |
| 1788 | cvmx_pemx_cfg_t pemx_cfg; |
| 1789 | cvmx_pemx_on_t pemx_on; |
| 1790 | cvmx_gserx_pcie_pipe_rst_t pipe_rst; |
| 1791 | cvmx_rst_ctlx_t rst_ctl; |
| 1792 | |
| 1793 | switch (mode) { |
| 1794 | case CVMX_QLM_MODE_PCIE_1X2: /* PEM1 on DLM2 */ |
| 1795 | pemx_cfg.u64 = csr_rd(CVMX_PEMX_CFG(1)); |
| 1796 | pemx_cfg.cn70xx.hostmd = 1; |
| 1797 | pemx_cfg.cn70xx.md = gen2 ? CVMX_PEM_MD_GEN2_2LANE : CVMX_PEM_MD_GEN1_2LANE; |
| 1798 | csr_wr(CVMX_PEMX_CFG(1), pemx_cfg.u64); |
| 1799 | |
| 1800 | rst_ctl.u64 = csr_rd(CVMX_RST_CTLX(1)); |
| 1801 | rst_ctl.s.rst_drv = 1; |
| 1802 | csr_wr(CVMX_RST_CTLX(1), rst_ctl.u64); |
| 1803 | |
| 1804 | /* PEM1 is on DLM1 lane 0, which is pipe1 */ |
| 1805 | pipe_rst.u64 = csr_rd(CVMX_GSERX_PCIE_PIPE_RST(0)); |
| 1806 | pipe_rst.s.pipe1_rst = 0; |
| 1807 | csr_wr(CVMX_GSERX_PCIE_PIPE_RST(0), pipe_rst.u64); |
| 1808 | |
| 1809 | pemx_on.u64 = csr_rd(CVMX_PEMX_ON(1)); |
| 1810 | pemx_on.s.pemon = 1; |
| 1811 | csr_wr(CVMX_PEMX_ON(1), pemx_on.u64); |
| 1812 | break; |
| 1813 | case CVMX_QLM_MODE_PCIE_2X1: /* PEM1 and PEM2 on DLM2 */ |
| 1814 | pemx_cfg.u64 = csr_rd(CVMX_PEMX_CFG(1)); |
| 1815 | pemx_cfg.cn70xx.hostmd = 1; |
| 1816 | pemx_cfg.cn70xx.md = gen2 ? CVMX_PEM_MD_GEN2_1LANE : CVMX_PEM_MD_GEN1_1LANE; |
| 1817 | csr_wr(CVMX_PEMX_CFG(1), pemx_cfg.u64); |
| 1818 | |
| 1819 | rst_ctl.u64 = csr_rd(CVMX_RST_CTLX(1)); |
| 1820 | rst_ctl.s.rst_drv = 1; |
| 1821 | csr_wr(CVMX_RST_CTLX(1), rst_ctl.u64); |
| 1822 | |
| 1823 | /* PEM1 is on DLM2 lane 0, which is pipe2 */ |
| 1824 | pipe_rst.u64 = csr_rd(CVMX_GSERX_PCIE_PIPE_RST(0)); |
| 1825 | pipe_rst.s.pipe2_rst = 0; |
| 1826 | csr_wr(CVMX_GSERX_PCIE_PIPE_RST(0), pipe_rst.u64); |
| 1827 | |
| 1828 | pemx_on.u64 = csr_rd(CVMX_PEMX_ON(1)); |
| 1829 | pemx_on.s.pemon = 1; |
| 1830 | csr_wr(CVMX_PEMX_ON(1), pemx_on.u64); |
| 1831 | |
| 1832 | pemx_cfg.u64 = csr_rd(CVMX_PEMX_CFG(2)); |
| 1833 | pemx_cfg.cn70xx.hostmd = 1; |
| 1834 | pemx_cfg.cn70xx.md = gen2 ? CVMX_PEM_MD_GEN2_1LANE : CVMX_PEM_MD_GEN1_1LANE; |
| 1835 | csr_wr(CVMX_PEMX_CFG(2), pemx_cfg.u64); |
| 1836 | |
| 1837 | rst_ctl.u64 = csr_rd(CVMX_RST_CTLX(2)); |
| 1838 | rst_ctl.s.rst_drv = 1; |
| 1839 | csr_wr(CVMX_RST_CTLX(2), rst_ctl.u64); |
| 1840 | |
| 1841 | /* PEM2 is on DLM2 lane 1, which is pipe3 */ |
| 1842 | pipe_rst.u64 = csr_rd(CVMX_GSERX_PCIE_PIPE_RST(0)); |
| 1843 | pipe_rst.s.pipe3_rst = 0; |
| 1844 | csr_wr(CVMX_GSERX_PCIE_PIPE_RST(0), pipe_rst.u64); |
| 1845 | |
| 1846 | pemx_on.u64 = csr_rd(CVMX_PEMX_ON(2)); |
| 1847 | pemx_on.s.pemon = 1; |
| 1848 | csr_wr(CVMX_PEMX_ON(2), pemx_on.u64); |
| 1849 | break; |
| 1850 | default: |
| 1851 | break; |
| 1852 | } |
| 1853 | } |
| 1854 | return 0; |
| 1855 | } |
| 1856 | |
| 1857 | /** |
| 1858 | * Configure dlm speed and mode for cn70xx. |
| 1859 | * |
| 1860 | * @param qlm The DLM to configure |
| 1861 | * @param speed The speed the DLM needs to be configured in Mhz. |
| 1862 | * @param mode The DLM to be configured as SGMII/XAUI/PCIe. |
| 1863 | * DLM 0: has 2 interfaces which can be configured as |
| 1864 | * SGMII/QSGMII/RXAUI. Need to configure both at the |
| 1865 | * same time. These are valid option |
| 1866 | * CVMX_QLM_MODE_QSGMII, |
| 1867 | * CVMX_QLM_MODE_SGMII_SGMII, |
| 1868 | * CVMX_QLM_MODE_SGMII_DISABLED, |
| 1869 | * CVMX_QLM_MODE_DISABLED_SGMII, |
| 1870 | * CVMX_QLM_MODE_SGMII_QSGMII, |
| 1871 | * CVMX_QLM_MODE_QSGMII_QSGMII, |
| 1872 | * CVMX_QLM_MODE_QSGMII_DISABLED, |
| 1873 | * CVMX_QLM_MODE_DISABLED_QSGMII, |
| 1874 | * CVMX_QLM_MODE_QSGMII_SGMII, |
| 1875 | * CVMX_QLM_MODE_RXAUI_1X2 |
| 1876 | * |
| 1877 | * DLM 1: PEM0/1 in PCIE_1x4/PCIE_2x1/PCIE_1X1 |
| 1878 | * DLM 2: PEM0/1/2 in PCIE_1x4/PCIE_1x2/PCIE_2x1/PCIE_1x1 |
| 1879 | * @param rc Only used for PCIe, rc = 1 for root complex mode, 0 for EP mode. |
| 1880 | * @param gen2 Only used for PCIe, gen2 = 1, in GEN2 mode else in GEN1 mode. |
| 1881 | * |
| 1882 | * @param ref_clk_input The reference-clock input to use to configure QLM |
| 1883 | * @param ref_clk_sel The reference-clock selection to use to configure QLM |
| 1884 | * |
| 1885 | * @return Return 0 on success or -1. |
| 1886 | */ |
| 1887 | static int octeon_configure_qlm_cn70xx(int qlm, int speed, int mode, int rc, int gen2, |
| 1888 | int ref_clk_sel, int ref_clk_input) |
| 1889 | { |
| 1890 | debug("%s(%d, %d, %d, %d, %d, %d, %d)\n", __func__, qlm, speed, mode, rc, gen2, ref_clk_sel, |
| 1891 | ref_clk_input); |
| 1892 | switch (qlm) { |
| 1893 | case 0: { |
| 1894 | int is_sff7000_rxaui = 0; |
| 1895 | cvmx_gmxx_inf_mode_t inf_mode0, inf_mode1; |
| 1896 | |
| 1897 | inf_mode0.u64 = csr_rd(CVMX_GMXX_INF_MODE(0)); |
| 1898 | inf_mode1.u64 = csr_rd(CVMX_GMXX_INF_MODE(1)); |
| 1899 | if (inf_mode0.s.en || inf_mode1.s.en) { |
| 1900 | debug("DLM0 already configured\n"); |
| 1901 | return -1; |
| 1902 | } |
| 1903 | |
| 1904 | switch (mode) { |
| 1905 | case CVMX_QLM_MODE_SGMII_SGMII: |
| 1906 | debug(" Mode SGMII SGMII\n"); |
| 1907 | inf_mode0.s.mode = CVMX_GMX_INF_MODE_SGMII; |
| 1908 | inf_mode1.s.mode = CVMX_GMX_INF_MODE_SGMII; |
| 1909 | break; |
| 1910 | case CVMX_QLM_MODE_SGMII_QSGMII: |
| 1911 | debug(" Mode SGMII QSGMII\n"); |
| 1912 | inf_mode0.s.mode = CVMX_GMX_INF_MODE_SGMII; |
| 1913 | inf_mode1.s.mode = CVMX_GMX_INF_MODE_QSGMII; |
| 1914 | break; |
| 1915 | case CVMX_QLM_MODE_SGMII_DISABLED: |
| 1916 | debug(" Mode SGMII Disabled\n"); |
| 1917 | inf_mode0.s.mode = CVMX_GMX_INF_MODE_SGMII; |
| 1918 | inf_mode1.s.mode = CVMX_GMX_INF_MODE_DISABLED; |
| 1919 | break; |
| 1920 | case CVMX_QLM_MODE_DISABLED_SGMII: |
| 1921 | debug("Mode Disabled SGMII\n"); |
| 1922 | inf_mode0.s.mode = CVMX_GMX_INF_MODE_DISABLED; |
| 1923 | inf_mode1.s.mode = CVMX_GMX_INF_MODE_SGMII; |
| 1924 | break; |
| 1925 | case CVMX_QLM_MODE_QSGMII_SGMII: |
| 1926 | debug(" Mode QSGMII SGMII\n"); |
| 1927 | inf_mode0.s.mode = CVMX_GMX_INF_MODE_QSGMII; |
| 1928 | inf_mode1.s.mode = CVMX_GMX_INF_MODE_SGMII; |
| 1929 | break; |
| 1930 | case CVMX_QLM_MODE_QSGMII_QSGMII: |
| 1931 | debug(" Mode QSGMII QSGMII\n"); |
| 1932 | inf_mode0.s.mode = CVMX_GMX_INF_MODE_QSGMII; |
| 1933 | inf_mode1.s.mode = CVMX_GMX_INF_MODE_QSGMII; |
| 1934 | break; |
| 1935 | case CVMX_QLM_MODE_QSGMII_DISABLED: |
| 1936 | debug(" Mode QSGMII Disabled\n"); |
| 1937 | inf_mode0.s.mode = CVMX_GMX_INF_MODE_QSGMII; |
| 1938 | inf_mode1.s.mode = CVMX_GMX_INF_MODE_DISABLED; |
| 1939 | break; |
| 1940 | case CVMX_QLM_MODE_DISABLED_QSGMII: |
| 1941 | debug("Mode Disabled QSGMII\n"); |
| 1942 | inf_mode0.s.mode = CVMX_GMX_INF_MODE_DISABLED; |
| 1943 | inf_mode1.s.mode = CVMX_GMX_INF_MODE_QSGMII; |
| 1944 | break; |
| 1945 | case CVMX_QLM_MODE_RXAUI: |
| 1946 | debug(" Mode RXAUI\n"); |
| 1947 | inf_mode0.s.mode = CVMX_GMX_INF_MODE_RXAUI; |
| 1948 | inf_mode1.s.mode = CVMX_GMX_INF_MODE_DISABLED; |
| 1949 | |
| 1950 | break; |
| 1951 | default: |
| 1952 | debug(" Mode Disabled Disabled\n"); |
| 1953 | inf_mode0.s.mode = CVMX_GMX_INF_MODE_DISABLED; |
| 1954 | inf_mode1.s.mode = CVMX_GMX_INF_MODE_DISABLED; |
| 1955 | break; |
| 1956 | } |
| 1957 | csr_wr(CVMX_GMXX_INF_MODE(0), inf_mode0.u64); |
| 1958 | csr_wr(CVMX_GMXX_INF_MODE(1), inf_mode1.u64); |
| 1959 | |
| 1960 | /* Bringup the PLL */ |
| 1961 | if (__dlm_setup_pll_cn70xx(qlm, speed, ref_clk_sel, ref_clk_input, |
| 1962 | is_sff7000_rxaui)) |
| 1963 | return -1; |
| 1964 | |
| 1965 | /* TX Lanes */ |
| 1966 | if (__dlm0_setup_tx_cn70xx(speed, ref_clk_sel)) |
| 1967 | return -1; |
| 1968 | |
| 1969 | /* RX Lanes */ |
| 1970 | if (__dlm0_setup_rx_cn70xx(speed, ref_clk_sel)) |
| 1971 | return -1; |
| 1972 | |
| 1973 | /* Enable the interface */ |
| 1974 | inf_mode0.u64 = csr_rd(CVMX_GMXX_INF_MODE(0)); |
| 1975 | if (inf_mode0.s.mode != CVMX_GMX_INF_MODE_DISABLED) |
| 1976 | inf_mode0.s.en = 1; |
| 1977 | csr_wr(CVMX_GMXX_INF_MODE(0), inf_mode0.u64); |
| 1978 | inf_mode1.u64 = csr_rd(CVMX_GMXX_INF_MODE(1)); |
| 1979 | if (inf_mode1.s.mode != CVMX_GMX_INF_MODE_DISABLED) |
| 1980 | inf_mode1.s.en = 1; |
| 1981 | csr_wr(CVMX_GMXX_INF_MODE(1), inf_mode1.u64); |
| 1982 | break; |
| 1983 | } |
| 1984 | case 1: |
| 1985 | switch (mode) { |
| 1986 | case CVMX_QLM_MODE_PCIE: /* PEM0 on DLM1 & DLM2 */ |
| 1987 | debug(" Mode PCIe\n"); |
| 1988 | if (__dlmx_setup_pcie_cn70xx(1, mode, gen2, rc, ref_clk_sel, ref_clk_input)) |
| 1989 | return -1; |
| 1990 | if (__dlmx_setup_pcie_cn70xx(2, mode, gen2, rc, ref_clk_sel, ref_clk_input)) |
| 1991 | return -1; |
| 1992 | break; |
| 1993 | case CVMX_QLM_MODE_PCIE_1X2: /* PEM0 on DLM1 */ |
| 1994 | case CVMX_QLM_MODE_PCIE_2X1: /* PEM0 & PEM1 on DLM1 */ |
| 1995 | case CVMX_QLM_MODE_PCIE_1X1: /* PEM0 on DLM1, only 1 lane */ |
| 1996 | debug(" Mode PCIe 1x2, 2x1 or 1x1\n"); |
| 1997 | if (__dlmx_setup_pcie_cn70xx(qlm, mode, gen2, rc, ref_clk_sel, |
| 1998 | ref_clk_input)) |
| 1999 | return -1; |
| 2000 | break; |
| 2001 | case CVMX_QLM_MODE_DISABLED: |
| 2002 | debug(" Mode disabled\n"); |
| 2003 | break; |
| 2004 | default: |
| 2005 | debug("DLM1 illegal mode specified\n"); |
| 2006 | return -1; |
| 2007 | } |
| 2008 | break; |
| 2009 | case 2: |
| 2010 | switch (mode) { |
| 2011 | case CVMX_QLM_MODE_SATA_2X1: |
| 2012 | debug("%s: qlm 2, mode is SATA 2x1\n", __func__); |
| 2013 | /* DLM2 is SATA, PCIE2 is disabled */ |
| 2014 | if (__setup_sata(qlm, speed, ref_clk_sel, ref_clk_input)) |
| 2015 | return -1; |
| 2016 | break; |
| 2017 | case CVMX_QLM_MODE_PCIE: |
| 2018 | debug(" Mode PCIe\n"); |
| 2019 | /* DLM2 is PCIE0, PCIE1-2 are disabled. */ |
| 2020 | /* Do nothing, its initialized in DLM1 */ |
| 2021 | break; |
| 2022 | case CVMX_QLM_MODE_PCIE_1X2: /* PEM1 on DLM2 */ |
| 2023 | case CVMX_QLM_MODE_PCIE_2X1: /* PEM1 & PEM2 on DLM2 */ |
| 2024 | debug(" Mode PCIe 1x2 or 2x1\n"); |
| 2025 | if (__dlmx_setup_pcie_cn70xx(qlm, mode, gen2, rc, ref_clk_sel, |
| 2026 | ref_clk_input)) |
| 2027 | return -1; |
| 2028 | break; |
| 2029 | case CVMX_QLM_MODE_DISABLED: |
| 2030 | debug(" Mode Disabled\n"); |
| 2031 | break; |
| 2032 | default: |
| 2033 | debug("DLM2 illegal mode specified\n"); |
| 2034 | return -1; |
| 2035 | } |
| 2036 | default: |
| 2037 | return -1; |
| 2038 | } |
| 2039 | |
| 2040 | return 0; |
| 2041 | } |
| 2042 | |
| 2043 | /** |
| 2044 | * Disables DFE for the specified QLM lane(s). |
| 2045 | * This function should only be called for low-loss channels. |
| 2046 | * |
| 2047 | * @param node Node to configure |
| 2048 | * @param qlm QLM to configure |
| 2049 | * @param lane Lane to configure, or -1 all lanes |
| 2050 | * @param baud_mhz The speed the QLM needs to be configured in Mhz. |
| 2051 | * @param mode The QLM to be configured as SGMII/XAUI/PCIe. |
| 2052 | */ |
| 2053 | void octeon_qlm_dfe_disable(int node, int qlm, int lane, int baud_mhz, int mode) |
| 2054 | { |
| 2055 | int num_lanes = cvmx_qlm_get_lanes(qlm); |
| 2056 | int l; |
| 2057 | cvmx_gserx_lanex_rx_loop_ctrl_t loop_ctrl; |
| 2058 | cvmx_gserx_lanex_rx_valbbd_ctrl_0_t ctrl_0; |
| 2059 | cvmx_gserx_lanex_rx_valbbd_ctrl_1_t ctrl_1; |
| 2060 | cvmx_gserx_lanex_rx_valbbd_ctrl_2_t ctrl_2; |
| 2061 | cvmx_gserx_lane_vma_fine_ctrl_2_t lane_vma_fine_ctrl_2; |
| 2062 | |
| 2063 | /* Interfaces below 5Gbaud are already manually tuned. */ |
| 2064 | if (baud_mhz < 5000) |
| 2065 | return; |
| 2066 | |
| 2067 | /* Don't run on PCIe links, SATA or KR. These interfaces use training */ |
| 2068 | switch (mode) { |
| 2069 | case CVMX_QLM_MODE_10G_KR_1X2: |
| 2070 | case CVMX_QLM_MODE_10G_KR: |
| 2071 | case CVMX_QLM_MODE_40G_KR4: |
| 2072 | return; |
| 2073 | case CVMX_QLM_MODE_PCIE_1X1: |
| 2074 | case CVMX_QLM_MODE_PCIE_2X1: |
| 2075 | case CVMX_QLM_MODE_PCIE_1X2: |
| 2076 | case CVMX_QLM_MODE_PCIE: |
| 2077 | case CVMX_QLM_MODE_PCIE_1X8: |
| 2078 | return; |
| 2079 | case CVMX_QLM_MODE_SATA_2X1: |
| 2080 | return; |
| 2081 | default: |
| 2082 | break; |
| 2083 | } |
| 2084 | |
| 2085 | /* Updating pre_ctle minimum to 0. This works best for short channels */ |
| 2086 | lane_vma_fine_ctrl_2.u64 = csr_rd_node(node, CVMX_GSERX_LANE_VMA_FINE_CTRL_2(qlm)); |
| 2087 | lane_vma_fine_ctrl_2.s.rx_prectle_gain_min_fine = 0; |
| 2088 | csr_wr_node(node, CVMX_GSERX_LANE_VMA_FINE_CTRL_2(qlm), lane_vma_fine_ctrl_2.u64); |
| 2089 | |
| 2090 | for (l = 0; l < num_lanes; l++) { |
| 2091 | if (lane != -1 && lane != l) |
| 2092 | continue; |
| 2093 | |
| 2094 | /* 1. Write GSERX_LANEx_RX_LOOP_CTRL = 0x0270 |
| 2095 | * (var "loop_ctrl" with bits 8 & 1 cleared). |
| 2096 | * bit<1> dfe_en_byp = 1'b0 |
| 2097 | */ |
| 2098 | loop_ctrl.u64 = csr_rd_node(node, CVMX_GSERX_LANEX_RX_LOOP_CTRL(l, qlm)); |
| 2099 | loop_ctrl.s.cfg_rx_lctrl = loop_ctrl.s.cfg_rx_lctrl & 0x3fd; |
| 2100 | csr_wr_node(node, CVMX_GSERX_LANEX_RX_LOOP_CTRL(l, qlm), loop_ctrl.u64); |
| 2101 | |
| 2102 | /* 2. Write GSERX_LANEx_RX_VALBBD_CTRL_1 = 0x0000 |
| 2103 | * (var "ctrl1" with all bits cleared) |
| 2104 | * bits<14:11> CFG_RX_DFE_C3_MVAL = 4'b0000 |
| 2105 | * bit<10> CFG_RX_DFE_C3_MSGN = 1'b0 |
| 2106 | * bits<9:6> CFG_RX_DFE_C2_MVAL = 4'b0000 |
| 2107 | * bit<5> CFG_RX_DFE_C2_MSGN = 1'b0 |
| 2108 | * bits<4:0> CFG_RX_DFE_C1_MVAL = 5'b00000 |
| 2109 | */ |
| 2110 | ctrl_1.u64 = csr_rd_node(node, CVMX_GSERX_LANEX_RX_VALBBD_CTRL_1(l, qlm)); |
| 2111 | ctrl_1.s.dfe_c3_mval = 0; |
| 2112 | ctrl_1.s.dfe_c3_msgn = 0; |
| 2113 | ctrl_1.s.dfe_c2_mval = 0; |
| 2114 | ctrl_1.s.dfe_c2_msgn = 0; |
| 2115 | ctrl_1.s.dfe_c2_mval = 0; |
| 2116 | ctrl_1.s.dfe_c1_mval = 0; |
| 2117 | ctrl_1.s.dfe_c1_msgn = 0; |
| 2118 | csr_wr_node(node, CVMX_GSERX_LANEX_RX_VALBBD_CTRL_1(l, qlm), ctrl_1.u64); |
| 2119 | |
| 2120 | /* 3. Write GSERX_LANEx_RX_VALBBD_CTRL_0 = 0x2400 |
| 2121 | * (var "ctrl0" with following bits set/cleared) |
| 2122 | * bits<11:10> CFG_RX_DFE_GAIN = 0x1 |
| 2123 | * bits<9:6> CFG_RX_DFE_C5_MVAL = 4'b0000 |
| 2124 | * bit<5> CFG_RX_DFE_C5_MSGN = 1'b0 |
| 2125 | * bits<4:1> CFG_RX_DFE_C4_MVAL = 4'b0000 |
| 2126 | * bit<0> CFG_RX_DFE_C4_MSGN = 1'b0 |
| 2127 | */ |
| 2128 | ctrl_0.u64 = csr_rd_node(node, CVMX_GSERX_LANEX_RX_VALBBD_CTRL_0(l, qlm)); |
| 2129 | ctrl_0.s.dfe_gain = 0x1; |
| 2130 | ctrl_0.s.dfe_c5_mval = 0; |
| 2131 | ctrl_0.s.dfe_c5_msgn = 0; |
| 2132 | ctrl_0.s.dfe_c4_mval = 0; |
| 2133 | ctrl_0.s.dfe_c4_msgn = 0; |
| 2134 | csr_wr_node(node, CVMX_GSERX_LANEX_RX_VALBBD_CTRL_0(l, qlm), ctrl_0.u64); |
| 2135 | |
| 2136 | /* 4. Write GSER(0..13)_LANE(0..3)_RX_VALBBD_CTRL_2 = 0x003F |
| 2137 | * //enable DFE tap overrides |
| 2138 | * bit<5> dfe_ovrd_en = 1 |
| 2139 | * bit<4> dfe_c5_ovrd_val = 1 |
| 2140 | * bit<3> dfe_c4_ovrd_val = 1 |
| 2141 | * bit<2> dfe_c3_ovrd_val = 1 |
| 2142 | * bit<1> dfe_c2_ovrd_val = 1 |
| 2143 | * bit<0> dfe_c1_ovrd_val = 1 |
| 2144 | */ |
| 2145 | ctrl_2.u64 = csr_rd_node(node, CVMX_GSERX_LANEX_RX_VALBBD_CTRL_2(l, qlm)); |
| 2146 | ctrl_2.s.dfe_ovrd_en = 0x1; |
| 2147 | ctrl_2.s.dfe_c5_ovrd_val = 0x1; |
| 2148 | ctrl_2.s.dfe_c4_ovrd_val = 0x1; |
| 2149 | ctrl_2.s.dfe_c3_ovrd_val = 0x1; |
| 2150 | ctrl_2.s.dfe_c2_ovrd_val = 0x1; |
| 2151 | ctrl_2.s.dfe_c1_ovrd_val = 0x1; |
| 2152 | csr_wr_node(node, CVMX_GSERX_LANEX_RX_VALBBD_CTRL_2(l, qlm), ctrl_2.u64); |
| 2153 | } |
| 2154 | } |
| 2155 | |
| 2156 | /** |
| 2157 | * Disables DFE, uses fixed CTLE Peak value and AGC settings |
| 2158 | * for the specified QLM lane(s). |
| 2159 | * This function should only be called for low-loss channels. |
| 2160 | * This function prevents Rx equalization from happening on all lanes in a QLM |
| 2161 | * This function should be called for all lanes being used in the QLM. |
| 2162 | * |
| 2163 | * @param node Node to configure |
| 2164 | * @param qlm QLM to configure |
| 2165 | * @param lane Lane to configure, or -1 all lanes |
| 2166 | * @param baud_mhz The speed the QLM needs to be configured in Mhz. |
| 2167 | * @param mode The QLM to be configured as SGMII/XAUI/PCIe. |
| 2168 | * @param ctle_zero Equalizer Peaking control |
| 2169 | * @param agc_pre_ctle Pre-CTLE gain |
| 2170 | * @param agc_post_ctle Post-CTLE gain |
| 2171 | * @return Zero on success, negative on failure |
| 2172 | */ |
| 2173 | |
| 2174 | int octeon_qlm_dfe_disable_ctle_agc(int node, int qlm, int lane, int baud_mhz, int mode, |
| 2175 | int ctle_zero, int agc_pre_ctle, int agc_post_ctle) |
| 2176 | { |
| 2177 | int num_lanes = cvmx_qlm_get_lanes(qlm); |
| 2178 | int l; |
| 2179 | cvmx_gserx_lanex_rx_loop_ctrl_t loop_ctrl; |
| 2180 | cvmx_gserx_lanex_rx_valbbd_ctrl_0_t ctrl_0; |
| 2181 | cvmx_gserx_lanex_pwr_ctrl_t lanex_pwr_ctrl; |
| 2182 | cvmx_gserx_lane_mode_t lmode; |
| 2183 | cvmx_gserx_lane_px_mode_1_t px_mode_1; |
| 2184 | cvmx_gserx_lanex_rx_cfg_5_t rx_cfg_5; |
| 2185 | cvmx_gserx_lanex_rx_cfg_2_t rx_cfg_2; |
| 2186 | cvmx_gserx_lanex_rx_ctle_ctrl_t ctle_ctrl; |
| 2187 | |
| 2188 | /* Check tuning constraints */ |
| 2189 | if (ctle_zero < 0 || ctle_zero > 15) { |
| 2190 | printf("Error: N%d.QLM%d: Invalid CTLE_ZERO(%d). Must be between -1 and 15.\n", |
| 2191 | node, qlm, ctle_zero); |
| 2192 | return -1; |
| 2193 | } |
| 2194 | if (agc_pre_ctle < 0 || agc_pre_ctle > 15) { |
| 2195 | printf("Error: N%d.QLM%d: Invalid AGC_Pre_CTLE(%d)\n", |
| 2196 | node, qlm, agc_pre_ctle); |
| 2197 | return -1; |
| 2198 | } |
| 2199 | |
| 2200 | if (agc_post_ctle < 0 || agc_post_ctle > 15) { |
| 2201 | printf("Error: N%d.QLM%d: Invalid AGC_Post_CTLE(%d)\n", |
| 2202 | node, qlm, agc_post_ctle); |
| 2203 | return -1; |
| 2204 | } |
| 2205 | |
| 2206 | /* Interfaces below 5Gbaud are already manually tuned. */ |
| 2207 | if (baud_mhz < 5000) |
| 2208 | return 0; |
| 2209 | |
| 2210 | /* Don't run on PCIe links, SATA or KR. These interfaces use training */ |
| 2211 | switch (mode) { |
| 2212 | case CVMX_QLM_MODE_10G_KR_1X2: |
| 2213 | case CVMX_QLM_MODE_10G_KR: |
| 2214 | case CVMX_QLM_MODE_40G_KR4: |
| 2215 | return 0; |
| 2216 | case CVMX_QLM_MODE_PCIE_1X1: |
| 2217 | case CVMX_QLM_MODE_PCIE_2X1: |
| 2218 | case CVMX_QLM_MODE_PCIE_1X2: |
| 2219 | case CVMX_QLM_MODE_PCIE: |
| 2220 | case CVMX_QLM_MODE_PCIE_1X8: |
| 2221 | return 0; |
| 2222 | case CVMX_QLM_MODE_SATA_2X1: |
| 2223 | return 0; |
| 2224 | default: |
| 2225 | break; |
| 2226 | } |
| 2227 | |
| 2228 | lmode.u64 = csr_rd_node(node, CVMX_GSERX_LANE_MODE(qlm)); |
| 2229 | |
| 2230 | /* 1. Enable VMA manual mode for the QLM's lane mode */ |
| 2231 | px_mode_1.u64 = csr_rd_node(node, CVMX_GSERX_LANE_PX_MODE_1(lmode.s.lmode, qlm)); |
| 2232 | px_mode_1.s.vma_mm = 1; |
| 2233 | csr_wr_node(node, CVMX_GSERX_LANE_PX_MODE_1(lmode.s.lmode, qlm), px_mode_1.u64); |
| 2234 | |
| 2235 | /* 2. Disable DFE */ |
| 2236 | octeon_qlm_dfe_disable(node, qlm, lane, baud_mhz, mode); |
| 2237 | |
| 2238 | for (l = 0; l < num_lanes; l++) { |
| 2239 | if (lane != -1 && lane != l) |
| 2240 | continue; |
| 2241 | |
| 2242 | /* 3. Write GSERX_LANEx_RX_VALBBD_CTRL_0.CFG_RX_AGC_GAIN = 0x2 */ |
| 2243 | ctrl_0.u64 = csr_rd_node(node, CVMX_GSERX_LANEX_RX_VALBBD_CTRL_0(l, qlm)); |
| 2244 | ctrl_0.s.agc_gain = 0x2; |
| 2245 | csr_wr_node(node, CVMX_GSERX_LANEX_RX_VALBBD_CTRL_0(l, qlm), ctrl_0.u64); |
| 2246 | |
| 2247 | /* 4. Write GSERX_LANEx_RX_LOOP_CTRL |
| 2248 | * bit<8> lctrl_men = 1'b1 |
| 2249 | * bit<0> cdr_en_byp = 1'b1 |
| 2250 | */ |
| 2251 | loop_ctrl.u64 = csr_rd_node(node, CVMX_GSERX_LANEX_RX_LOOP_CTRL(l, qlm)); |
| 2252 | loop_ctrl.s.cfg_rx_lctrl = loop_ctrl.s.cfg_rx_lctrl | 0x101; |
| 2253 | csr_wr_node(node, CVMX_GSERX_LANEX_RX_LOOP_CTRL(l, qlm), loop_ctrl.u64); |
| 2254 | |
| 2255 | /* 5. Write GSERX_LANEx_PWR_CTRL = 0x0040 (var "lanex_pwr_ctrl" with |
| 2256 | * following bits set) |
| 2257 | * bit<6> RX_LCTRL_OVRRD_EN = 1'b1 |
| 2258 | * all other bits cleared. |
| 2259 | */ |
| 2260 | lanex_pwr_ctrl.u64 = csr_rd_node(node, CVMX_GSERX_LANEX_PWR_CTRL(l, qlm)); |
| 2261 | lanex_pwr_ctrl.s.rx_lctrl_ovrrd_en = 1; |
| 2262 | csr_wr_node(node, CVMX_GSERX_LANEX_PWR_CTRL(l, qlm), lanex_pwr_ctrl.u64); |
| 2263 | |
| 2264 | /* --Setting AGC in manual mode and configuring CTLE-- */ |
| 2265 | rx_cfg_5.u64 = csr_rd_node(node, CVMX_GSERX_LANEX_RX_CFG_5(l, qlm)); |
| 2266 | rx_cfg_5.s.rx_agc_men_ovrrd_val = 1; |
| 2267 | rx_cfg_5.s.rx_agc_men_ovrrd_en = 1; |
| 2268 | csr_wr_node(node, CVMX_GSERX_LANEX_RX_CFG_5(l, qlm), rx_cfg_5.u64); |
| 2269 | |
| 2270 | ctle_ctrl.u64 = csr_rd_node(node, CVMX_GSERX_LANEX_RX_CTLE_CTRL(l, qlm)); |
| 2271 | ctle_ctrl.s.pcs_sds_rx_ctle_zero = ctle_zero; |
| 2272 | csr_wr_node(node, CVMX_GSERX_LANEX_RX_CTLE_CTRL(l, qlm), ctle_ctrl.u64); |
| 2273 | |
| 2274 | rx_cfg_2.u64 = csr_rd_node(node, CVMX_GSERX_LANEX_RX_CFG_2(l, qlm)); |
| 2275 | rx_cfg_2.s.rx_sds_rx_agc_mval = (agc_pre_ctle << 4) | agc_post_ctle; |
| 2276 | csr_wr_node(node, CVMX_GSERX_LANEX_RX_CFG_2(l, qlm), rx_cfg_2.u64); |
| 2277 | } |
| 2278 | return 0; |
| 2279 | } |
| 2280 | |
| 2281 | /** |
| 2282 | * Some QLM speeds need to override the default tuning parameters |
| 2283 | * |
| 2284 | * @param node Node to configure |
| 2285 | * @param qlm QLM to configure |
| 2286 | * @param baud_mhz Desired speed in MHz |
| 2287 | * @param lane Lane the apply the tuning parameters |
| 2288 | * @param tx_swing Voltage swing. The higher the value the lower the voltage, |
| 2289 | * the default value is 7. |
| 2290 | * @param tx_pre pre-cursor pre-emphasis |
| 2291 | * @param tx_post post-cursor pre-emphasis. |
| 2292 | * @param tx_gain Transmit gain. Range 0-7 |
| 2293 | * @param tx_vboost Transmit voltage boost. Range 0-1 |
| 2294 | */ |
| 2295 | void octeon_qlm_tune_per_lane_v3(int node, int qlm, int baud_mhz, int lane, int tx_swing, |
| 2296 | int tx_pre, int tx_post, int tx_gain, int tx_vboost) |
| 2297 | { |
| 2298 | cvmx_gserx_cfg_t gserx_cfg; |
| 2299 | cvmx_gserx_lanex_tx_cfg_0_t tx_cfg0; |
| 2300 | cvmx_gserx_lanex_tx_pre_emphasis_t pre_emphasis; |
| 2301 | cvmx_gserx_lanex_tx_cfg_1_t tx_cfg1; |
| 2302 | cvmx_gserx_lanex_tx_cfg_3_t tx_cfg3; |
| 2303 | cvmx_bgxx_spux_br_pmd_control_t pmd_control; |
| 2304 | cvmx_gserx_lanex_pcs_ctlifc_0_t pcs_ctlifc_0; |
| 2305 | cvmx_gserx_lanex_pcs_ctlifc_2_t pcs_ctlifc_2; |
| 2306 | int bgx, lmac; |
| 2307 | |
| 2308 | /* Do not apply QLM tuning to PCIe and KR interfaces. */ |
| 2309 | gserx_cfg.u64 = csr_rd_node(node, CVMX_GSERX_CFG(qlm)); |
| 2310 | if (gserx_cfg.s.pcie) |
| 2311 | return; |
| 2312 | |
| 2313 | /* Apply the QLM tuning only to cn73xx and cn78xx models only */ |
| 2314 | if (OCTEON_IS_MODEL(OCTEON_CN78XX)) |
| 2315 | bgx = (qlm < 2) ? qlm : (qlm - 2); |
| 2316 | else if (OCTEON_IS_MODEL(OCTEON_CN73XX)) |
| 2317 | bgx = (qlm < 4) ? (qlm - 2) : 2; |
| 2318 | else if (OCTEON_IS_MODEL(OCTEON_CNF75XX)) |
| 2319 | bgx = 0; |
| 2320 | else |
| 2321 | return; |
| 2322 | |
| 2323 | if ((OCTEON_IS_MODEL(OCTEON_CN73XX) && qlm == 6) || |
| 2324 | (OCTEON_IS_MODEL(OCTEON_CNF75XX) && qlm == 5)) |
| 2325 | lmac = 2; |
| 2326 | else |
| 2327 | lmac = lane; |
| 2328 | |
| 2329 | /* No need to tune 10G-KR and 40G-KR interfaces */ |
| 2330 | pmd_control.u64 = csr_rd_node(node, CVMX_BGXX_SPUX_BR_PMD_CONTROL(lmac, bgx)); |
| 2331 | if (pmd_control.s.train_en) |
| 2332 | return; |
| 2333 | |
| 2334 | if (tx_pre != -1 && tx_post == -1) |
| 2335 | tx_post = 0; |
| 2336 | |
| 2337 | if (tx_post != -1 && tx_pre == -1) |
| 2338 | tx_pre = 0; |
| 2339 | |
| 2340 | /* Check tuning constraints */ |
| 2341 | if (tx_swing < -1 || tx_swing > 25) { |
| 2342 | printf("ERROR: N%d:QLM%d: Lane %d: Invalid TX_SWING(%d). TX_SWING must be <= 25.\n", |
| 2343 | node, qlm, lane, tx_swing); |
| 2344 | return; |
| 2345 | } |
| 2346 | |
| 2347 | if (tx_pre < -1 || tx_pre > 10) { |
| 2348 | printf("ERROR: N%d:QLM%d: Lane %d: Invalid TX_PRE(%d). TX_PRE must be <= 10.\n", |
| 2349 | node, qlm, lane, tx_swing); |
| 2350 | return; |
| 2351 | } |
| 2352 | |
| 2353 | if (tx_post < -1 || tx_post > 31) { |
| 2354 | printf("ERROR: N%d:QLM%d: Lane %d: Invalid TX_POST(%d). TX_POST must be <= 15.\n", |
| 2355 | node, qlm, lane, tx_swing); |
| 2356 | return; |
| 2357 | } |
| 2358 | |
| 2359 | if (tx_pre >= 0 && tx_post >= 0 && tx_swing >= 0 && |
| 2360 | tx_pre + tx_post - tx_swing > 2) { |
| 2361 | printf("ERROR: N%d.QLM%d: Lane %d: TX_PRE(%d) + TX_POST(%d) - TX_SWING(%d) must be <= 2\n", |
| 2362 | node, qlm, lane, tx_pre, tx_post, tx_swing); |
| 2363 | return; |
| 2364 | } |
| 2365 | |
| 2366 | if (tx_pre >= 0 && tx_post >= 0 && tx_swing >= 0 && |
| 2367 | tx_pre + tx_post + tx_swing > 35) { |
| 2368 | printf("ERROR: N%d.QLM%d: Lane %d: TX_PRE(%d) + TX_POST(%d) + TX_SWING(%d) must be <= 35\n", |
| 2369 | node, qlm, lane, tx_pre, tx_post, tx_swing); |
| 2370 | return; |
| 2371 | } |
| 2372 | |
| 2373 | if (tx_gain < -1 || tx_gain > 7) { |
| 2374 | printf("ERROR: N%d.QLM%d: Lane %d: Invalid TX_GAIN(%d). TX_GAIN must be between 0 and 7\n", |
| 2375 | node, qlm, lane, tx_gain); |
| 2376 | return; |
| 2377 | } |
| 2378 | |
| 2379 | if (tx_vboost < -1 || tx_vboost > 1) { |
| 2380 | printf("ERROR: N%d.QLM%d: Lane %d: Invalid TX_VBOOST(%d). TX_VBOOST must be 0 or 1.\n", |
| 2381 | node, qlm, lane, tx_vboost); |
| 2382 | return; |
| 2383 | } |
| 2384 | |
| 2385 | debug("N%d.QLM%d: Lane %d: TX_SWING=%d, TX_PRE=%d, TX_POST=%d, TX_GAIN=%d, TX_VBOOST=%d\n", |
| 2386 | node, qlm, lane, tx_swing, tx_pre, tx_post, tx_gain, tx_vboost); |
| 2387 | |
| 2388 | /* Complete the Tx swing and Tx equilization programming */ |
| 2389 | /* 1) Enable Tx swing and Tx emphasis overrides */ |
| 2390 | tx_cfg1.u64 = csr_rd_node(node, CVMX_GSERX_LANEX_TX_CFG_1(lane, qlm)); |
| 2391 | tx_cfg1.s.tx_swing_ovrrd_en = (tx_swing != -1); |
| 2392 | tx_cfg1.s.tx_premptap_ovrrd_val = (tx_pre != -1) && (tx_post != -1); |
| 2393 | tx_cfg1.s.tx_vboost_en_ovrrd_en = (tx_vboost != -1); /* Vboost override */ |
| 2394 | ; |
| 2395 | csr_wr_node(node, CVMX_GSERX_LANEX_TX_CFG_1(lane, qlm), tx_cfg1.u64); |
| 2396 | /* 2) Program the Tx swing and Tx emphasis Pre-cursor and Post-cursor values */ |
| 2397 | /* CFG_TX_PREMPTAP[8:4] = Lane X's TX post-cursor value (C+1) */ |
| 2398 | /* CFG_TX_PREMPTAP[3:0] = Lane X's TX pre-cursor value (C-1) */ |
| 2399 | if (tx_swing != -1) { |
| 2400 | tx_cfg0.u64 = csr_rd_node(node, CVMX_GSERX_LANEX_TX_CFG_0(lane, qlm)); |
| 2401 | tx_cfg0.s.cfg_tx_swing = tx_swing; |
| 2402 | csr_wr_node(node, CVMX_GSERX_LANEX_TX_CFG_0(lane, qlm), tx_cfg0.u64); |
| 2403 | } |
| 2404 | |
| 2405 | if ((tx_pre != -1) && (tx_post != -1)) { |
| 2406 | pre_emphasis.u64 = csr_rd_node(node, CVMX_GSERX_LANEX_TX_PRE_EMPHASIS(lane, qlm)); |
| 2407 | pre_emphasis.s.cfg_tx_premptap = (tx_post << 4) | tx_pre; |
| 2408 | csr_wr_node(node, CVMX_GSERX_LANEX_TX_PRE_EMPHASIS(lane, qlm), pre_emphasis.u64); |
| 2409 | } |
| 2410 | |
| 2411 | /* Apply TX gain settings */ |
| 2412 | if (tx_gain != -1) { |
| 2413 | tx_cfg3.u64 = csr_rd_node(node, CVMX_GSERX_LANEX_TX_CFG_3(lane, qlm)); |
| 2414 | tx_cfg3.s.pcs_sds_tx_gain = tx_gain; |
| 2415 | csr_wr_node(node, CVMX_GSERX_LANEX_TX_CFG_3(lane, qlm), tx_cfg3.u64); |
| 2416 | } |
| 2417 | |
| 2418 | /* Apply TX vboot settings */ |
| 2419 | if (tx_vboost != -1) { |
| 2420 | tx_cfg3.u64 = csr_rd_node(node, CVMX_GSERX_LANEX_TX_CFG_3(lane, qlm)); |
| 2421 | tx_cfg3.s.cfg_tx_vboost_en = tx_vboost; |
| 2422 | csr_wr_node(node, CVMX_GSERX_LANEX_TX_CFG_3(lane, qlm), tx_cfg3.u64); |
| 2423 | } |
| 2424 | |
| 2425 | /* 3) Program override for the Tx coefficient request */ |
| 2426 | pcs_ctlifc_0.u64 = csr_rd_node(node, CVMX_GSERX_LANEX_PCS_CTLIFC_0(lane, qlm)); |
| 2427 | if (((tx_pre != -1) && (tx_post != -1)) || (tx_swing != -1)) |
| 2428 | pcs_ctlifc_0.s.cfg_tx_coeff_req_ovrrd_val = 0x1; |
| 2429 | if (tx_vboost != -1) |
| 2430 | pcs_ctlifc_0.s.cfg_tx_vboost_en_ovrrd_val = 1; |
| 2431 | csr_wr_node(node, CVMX_GSERX_LANEX_PCS_CTLIFC_0(lane, qlm), pcs_ctlifc_0.u64); |
| 2432 | |
| 2433 | /* 4) Enable the Tx coefficient request override enable */ |
| 2434 | pcs_ctlifc_2.u64 = csr_rd_node(node, CVMX_GSERX_LANEX_PCS_CTLIFC_2(lane, qlm)); |
| 2435 | if (((tx_pre != -1) && (tx_post != -1)) || (tx_swing != -1)) |
| 2436 | pcs_ctlifc_2.s.cfg_tx_coeff_req_ovrrd_en = 0x1; |
| 2437 | if (tx_vboost != -1) |
| 2438 | pcs_ctlifc_2.s.cfg_tx_vboost_en_ovrrd_en = 1; |
| 2439 | csr_wr_node(node, CVMX_GSERX_LANEX_PCS_CTLIFC_2(lane, qlm), pcs_ctlifc_2.u64); |
| 2440 | |
| 2441 | /* 5) Issue a Control Interface Configuration Override request to start the Tx equalizer */ |
| 2442 | pcs_ctlifc_2.u64 = csr_rd_node(node, CVMX_GSERX_LANEX_PCS_CTLIFC_2(lane, qlm)); |
| 2443 | pcs_ctlifc_2.s.ctlifc_ovrrd_req = 0x1; |
| 2444 | csr_wr_node(node, CVMX_GSERX_LANEX_PCS_CTLIFC_2(lane, qlm), pcs_ctlifc_2.u64); |
| 2445 | |
| 2446 | /* 6) Wait 1 ms for the request to complete */ |
| 2447 | udelay(1000); |
| 2448 | |
| 2449 | /* Steps 7 & 8 required for subsequent Tx swing and Tx equilization adjustment */ |
| 2450 | /* 7) Disable the Tx coefficient request override enable */ |
| 2451 | pcs_ctlifc_2.u64 = csr_rd_node(node, CVMX_GSERX_LANEX_PCS_CTLIFC_2(lane, qlm)); |
| 2452 | pcs_ctlifc_2.s.cfg_tx_coeff_req_ovrrd_en = 0; |
| 2453 | csr_wr_node(node, CVMX_GSERX_LANEX_PCS_CTLIFC_2(lane, qlm), pcs_ctlifc_2.u64); |
| 2454 | /* 8) Issue a Control Interface Configuration Override request */ |
| 2455 | pcs_ctlifc_2.u64 = csr_rd_node(node, CVMX_GSERX_LANEX_PCS_CTLIFC_2(lane, qlm)); |
| 2456 | pcs_ctlifc_2.s.ctlifc_ovrrd_req = 0x1; |
| 2457 | csr_wr_node(node, CVMX_GSERX_LANEX_PCS_CTLIFC_2(lane, qlm), pcs_ctlifc_2.u64); |
| 2458 | } |
| 2459 | |
| 2460 | /** |
| 2461 | * Some QLM speeds need to override the default tuning parameters |
| 2462 | * |
| 2463 | * @param node Node to configure |
| 2464 | * @param qlm QLM to configure |
| 2465 | * @param baud_mhz Desired speed in MHz |
| 2466 | * @param tx_swing Voltage swing. The higher the value the lower the voltage, |
| 2467 | * the default value is 7. |
| 2468 | * @param tx_premptap bits [0:3] pre-cursor pre-emphasis, bits[4:8] post-cursor |
| 2469 | * pre-emphasis. |
| 2470 | * @param tx_gain Transmit gain. Range 0-7 |
| 2471 | * @param tx_vboost Transmit voltage boost. Range 0-1 |
| 2472 | * |
| 2473 | */ |
| 2474 | void octeon_qlm_tune_v3(int node, int qlm, int baud_mhz, int tx_swing, int tx_premptap, int tx_gain, |
| 2475 | int tx_vboost) |
| 2476 | { |
| 2477 | int lane; |
| 2478 | int num_lanes = cvmx_qlm_get_lanes(qlm); |
| 2479 | |
| 2480 | for (lane = 0; lane < num_lanes; lane++) { |
| 2481 | int tx_pre = (tx_premptap == -1) ? -1 : tx_premptap & 0xf; |
| 2482 | int tx_post = (tx_premptap == -1) ? -1 : (tx_premptap >> 4) & 0x1f; |
| 2483 | |
| 2484 | octeon_qlm_tune_per_lane_v3(node, qlm, baud_mhz, lane, tx_swing, tx_pre, tx_post, |
| 2485 | tx_gain, tx_vboost); |
| 2486 | } |
| 2487 | } |
| 2488 | |
| 2489 | /** |
| 2490 | * Some QLMs need to override the default pre-ctle for low loss channels. |
| 2491 | * |
| 2492 | * @param node Node to configure |
| 2493 | * @param qlm QLM to configure |
| 2494 | * @param pre_ctle pre-ctle settings for low loss channels |
| 2495 | */ |
| 2496 | void octeon_qlm_set_channel_v3(int node, int qlm, int pre_ctle) |
| 2497 | { |
| 2498 | cvmx_gserx_lane_vma_fine_ctrl_2_t lane_vma_fine_ctrl_2; |
| 2499 | |
| 2500 | lane_vma_fine_ctrl_2.u64 = csr_rd_node(node, CVMX_GSERX_LANE_VMA_FINE_CTRL_2(qlm)); |
| 2501 | lane_vma_fine_ctrl_2.s.rx_prectle_gain_min_fine = pre_ctle; |
| 2502 | csr_wr_node(node, CVMX_GSERX_LANE_VMA_FINE_CTRL_2(qlm), lane_vma_fine_ctrl_2.u64); |
| 2503 | } |
| 2504 | |
| 2505 | static void __qlm_init_errata_20844(int node, int qlm) |
| 2506 | { |
| 2507 | int lane; |
| 2508 | |
| 2509 | /* Only applies to CN78XX pass 1.x */ |
| 2510 | if (!OCTEON_IS_MODEL(OCTEON_CN78XX_PASS1_0)) |
| 2511 | return; |
| 2512 | |
| 2513 | /* Errata GSER-20844: Electrical Idle logic can coast |
| 2514 | * 1) After the link first comes up write the following |
| 2515 | * register on each lane to prevent the application logic |
| 2516 | * from stomping on the Coast inputs. This is a one time write, |
| 2517 | * or if you prefer you could put it in the link up loop and |
| 2518 | * write it every time the link comes up. |
| 2519 | * 1a) Then write GSER(0..13)_LANE(0..3)_PCS_CTLIFC_2 |
| 2520 | * Set CTLIFC_OVRRD_REQ (later) |
| 2521 | * Set CFG_RX_CDR_COAST_REQ_OVRRD_EN |
| 2522 | * Its not clear if #1 and #1a can be combined, lets try it |
| 2523 | * this way first. |
| 2524 | */ |
| 2525 | for (lane = 0; lane < 4; lane++) { |
| 2526 | cvmx_gserx_lanex_rx_misc_ovrrd_t misc_ovrrd; |
| 2527 | cvmx_gserx_lanex_pcs_ctlifc_2_t ctlifc_2; |
| 2528 | |
| 2529 | ctlifc_2.u64 = csr_rd_node(node, CVMX_GSERX_LANEX_PCS_CTLIFC_2(lane, qlm)); |
| 2530 | ctlifc_2.s.cfg_rx_cdr_coast_req_ovrrd_en = 1; |
| 2531 | csr_wr_node(node, CVMX_GSERX_LANEX_PCS_CTLIFC_2(lane, qlm), ctlifc_2.u64); |
| 2532 | |
| 2533 | misc_ovrrd.u64 = csr_rd_node(node, CVMX_GSERX_LANEX_RX_MISC_OVRRD(lane, qlm)); |
| 2534 | misc_ovrrd.s.cfg_rx_eie_det_ovrrd_en = 1; |
| 2535 | misc_ovrrd.s.cfg_rx_eie_det_ovrrd_val = 0; |
| 2536 | csr_wr_node(node, CVMX_GSERX_LANEX_RX_MISC_OVRRD(lane, qlm), misc_ovrrd.u64); |
| 2537 | |
| 2538 | udelay(1); |
| 2539 | |
| 2540 | misc_ovrrd.u64 = csr_rd_node(node, CVMX_GSERX_LANEX_RX_MISC_OVRRD(lane, qlm)); |
| 2541 | misc_ovrrd.s.cfg_rx_eie_det_ovrrd_en = 1; |
| 2542 | misc_ovrrd.s.cfg_rx_eie_det_ovrrd_val = 1; |
| 2543 | csr_wr_node(node, CVMX_GSERX_LANEX_RX_MISC_OVRRD(lane, qlm), misc_ovrrd.u64); |
| 2544 | ctlifc_2.u64 = csr_rd_node(node, CVMX_GSERX_LANEX_PCS_CTLIFC_2(lane, qlm)); |
| 2545 | ctlifc_2.s.ctlifc_ovrrd_req = 1; |
| 2546 | csr_wr_node(node, CVMX_GSERX_LANEX_PCS_CTLIFC_2(lane, qlm), ctlifc_2.u64); |
| 2547 | } |
| 2548 | } |
| 2549 | |
| 2550 | /** CN78xx reference clock register settings */ |
| 2551 | struct refclk_settings_cn78xx { |
| 2552 | bool valid; /** Reference clock speed supported */ |
| 2553 | union cvmx_gserx_pll_px_mode_0 mode_0; |
| 2554 | union cvmx_gserx_pll_px_mode_1 mode_1; |
| 2555 | union cvmx_gserx_lane_px_mode_0 pmode_0; |
| 2556 | union cvmx_gserx_lane_px_mode_1 pmode_1; |
| 2557 | }; |
| 2558 | |
| 2559 | /** Default reference clock for various modes */ |
| 2560 | static const u8 def_ref_clk_cn78xx[R_NUM_LANE_MODES] = { 0, 0, 0, 2, 2, 2, 2, 2, 2, 1, 1, 1 }; |
| 2561 | |
| 2562 | /** |
| 2563 | * This data structure stores the reference clock for each mode for each QLM. |
| 2564 | * |
| 2565 | * It is indexed first by the node number, then the QLM number and then the |
| 2566 | * lane mode. It is initialized to the default values. |
| 2567 | */ |
| 2568 | static u8 ref_clk_cn78xx[CVMX_MAX_NODES][8][R_NUM_LANE_MODES] = { |
| 2569 | { { 0, 0, 0, 2, 2, 2, 2, 2, 2, 1, 1, 1 }, |
| 2570 | { 0, 0, 0, 2, 2, 2, 2, 2, 2, 1, 1, 1 }, |
| 2571 | { 0, 0, 0, 2, 2, 2, 2, 2, 2, 1, 1, 1 }, |
| 2572 | { 0, 0, 0, 2, 2, 2, 2, 2, 2, 1, 1, 1 }, |
| 2573 | { 0, 0, 0, 2, 2, 2, 2, 2, 2, 1, 1, 1 }, |
| 2574 | { 0, 0, 0, 2, 2, 2, 2, 2, 2, 1, 1, 1 }, |
| 2575 | { 0, 0, 0, 2, 2, 2, 2, 2, 2, 1, 1, 1 }, |
| 2576 | { 0, 0, 0, 2, 2, 2, 2, 2, 2, 1, 1, 1 } }, |
| 2577 | { { 0, 0, 0, 2, 2, 2, 2, 2, 2, 1, 1, 1 }, |
| 2578 | { 0, 0, 0, 2, 2, 2, 2, 2, 2, 1, 1, 1 }, |
| 2579 | { 0, 0, 0, 2, 2, 2, 2, 2, 2, 1, 1, 1 }, |
| 2580 | { 0, 0, 0, 2, 2, 2, 2, 2, 2, 1, 1, 1 }, |
| 2581 | { 0, 0, 0, 2, 2, 2, 2, 2, 2, 1, 1, 1 }, |
| 2582 | { 0, 0, 0, 2, 2, 2, 2, 2, 2, 1, 1, 1 }, |
| 2583 | { 0, 0, 0, 2, 2, 2, 2, 2, 2, 1, 1, 1 }, |
| 2584 | { 0, 0, 0, 2, 2, 2, 2, 2, 2, 1, 1, 1 } }, |
| 2585 | { { 0, 0, 0, 2, 2, 2, 2, 2, 2, 1, 1, 1 }, |
| 2586 | { 0, 0, 0, 2, 2, 2, 2, 2, 2, 1, 1, 1 }, |
| 2587 | { 0, 0, 0, 2, 2, 2, 2, 2, 2, 1, 1, 1 }, |
| 2588 | { 0, 0, 0, 2, 2, 2, 2, 2, 2, 1, 1, 1 }, |
| 2589 | { 0, 0, 0, 2, 2, 2, 2, 2, 2, 1, 1, 1 }, |
| 2590 | { 0, 0, 0, 2, 2, 2, 2, 2, 2, 1, 1, 1 }, |
| 2591 | { 0, 0, 0, 2, 2, 2, 2, 2, 2, 1, 1, 1 }, |
| 2592 | { 0, 0, 0, 2, 2, 2, 2, 2, 2, 1, 1, 1 } }, |
| 2593 | { { 0, 0, 0, 2, 2, 2, 2, 2, 2, 1, 1, 1 }, |
| 2594 | { 0, 0, 0, 2, 2, 2, 2, 2, 2, 1, 1, 1 }, |
| 2595 | { 0, 0, 0, 2, 2, 2, 2, 2, 2, 1, 1, 1 }, |
| 2596 | { 0, 0, 0, 2, 2, 2, 2, 2, 2, 1, 1, 1 }, |
| 2597 | { 0, 0, 0, 2, 2, 2, 2, 2, 2, 1, 1, 1 }, |
| 2598 | { 0, 0, 0, 2, 2, 2, 2, 2, 2, 1, 1, 1 }, |
| 2599 | { 0, 0, 0, 2, 2, 2, 2, 2, 2, 1, 1, 1 }, |
| 2600 | { 0, 0, 0, 2, 2, 2, 2, 2, 2, 1, 1, 1 } } |
| 2601 | }; |
| 2602 | |
| 2603 | /** |
| 2604 | * This data structure contains the register values for the cn78xx PLLs |
| 2605 | * It is indexed first by the reference clock and second by the mode. |
| 2606 | * Note that not all combinations are supported. |
| 2607 | */ |
| 2608 | static const struct refclk_settings_cn78xx refclk_settings_cn78xx[R_NUM_LANE_MODES][4] = { |
| 2609 | { /* 0 R_2_5G_REFCLK100 */ |
| 2610 | { /* 100MHz reference clock */ |
| 2611 | .valid = true, |
| 2612 | .mode_0.s = { .pll_icp = 0x4, .pll_rloop = 0x3, .pll_pcs_div = 0x5 }, |
| 2613 | .mode_1.s = { .pll_16p5en = 0x0, |
| 2614 | .pll_cpadj = 0x2, |
| 2615 | .pll_pcie3en = 0x0, |
| 2616 | .pll_opr = 0x0, |
| 2617 | .pll_div = 0x19 }, |
| 2618 | .pmode_0.s = { .ctle = 0x0, |
| 2619 | .pcie = 0x1, |
| 2620 | .tx_ldiv = 0x1, |
| 2621 | .rx_ldiv = 0x1, |
| 2622 | .srate = 0x0, |
| 2623 | .tx_mode = 0x3, |
| 2624 | .rx_mode = 0x3 }, |
| 2625 | .pmode_1.s = { .vma_fine_cfg_sel = 0x0, |
| 2626 | .vma_mm = 0x1, |
| 2627 | .cdr_fgain = 0xa, |
| 2628 | .ph_acc_adj = 0x14 } }, |
| 2629 | { /* 125MHz reference clock */ |
| 2630 | .valid = true, |
| 2631 | .mode_0.s = { .pll_icp = 0x3, .pll_rloop = 0x3, .pll_pcs_div = 0x5 }, |
| 2632 | .mode_1.s = { .pll_16p5en = 0x0, |
| 2633 | .pll_cpadj = 0x1, |
| 2634 | .pll_pcie3en = 0x0, |
| 2635 | .pll_opr = 0x0, |
| 2636 | .pll_div = 0x14 }, |
| 2637 | .pmode_0.s = { .ctle = 0x0, |
| 2638 | .pcie = 0x1, |
| 2639 | .tx_ldiv = 0x1, |
| 2640 | .rx_ldiv = 0x1, |
| 2641 | .srate = 0x0, |
| 2642 | .tx_mode = 0x3, |
| 2643 | .rx_mode = 0x3 }, |
| 2644 | .pmode_1.s = { .vma_fine_cfg_sel = 0x0, |
| 2645 | .vma_mm = 0x1, |
| 2646 | .cdr_fgain = 0xa, |
| 2647 | .ph_acc_adj = 0x14 } }, |
| 2648 | { /* 156.25MHz reference clock */ |
| 2649 | .valid = true, |
| 2650 | .mode_0.s = { .pll_icp = 0x3, .pll_rloop = 0x3, .pll_pcs_div = 0x5 }, |
| 2651 | .mode_1.s = { .pll_16p5en = 0x0, |
| 2652 | .pll_cpadj = 0x2, |
| 2653 | .pll_pcie3en = 0x0, |
| 2654 | .pll_opr = 0x0, |
| 2655 | .pll_div = 0x10 }, |
| 2656 | .pmode_0.s = { .ctle = 0x0, |
| 2657 | .pcie = 0x1, |
| 2658 | .tx_ldiv = 0x1, |
| 2659 | .rx_ldiv = 0x1, |
| 2660 | .srate = 0x0, |
| 2661 | .tx_mode = 0x3, |
| 2662 | .rx_mode = 0x3 }, |
| 2663 | .pmode_1.s = { .vma_fine_cfg_sel = 0x0, |
| 2664 | .vma_mm = 0x1, |
| 2665 | .cdr_fgain = 0xa, |
| 2666 | .ph_acc_adj = 0x14 } }, |
| 2667 | { |
| 2668 | /* 161.1328125MHz reference clock */ |
| 2669 | .valid = false, |
| 2670 | } }, |
| 2671 | { |
| 2672 | /* 1 R_5G_REFCLK100 */ |
| 2673 | { /* 100MHz reference clock */ |
| 2674 | .valid = true, |
| 2675 | .mode_0.s = { .pll_icp = 0x4, .pll_rloop = 0x3, .pll_pcs_div = 0xa }, |
| 2676 | .mode_1.s = { .pll_16p5en = 0x0, |
| 2677 | .pll_cpadj = 0x2, |
| 2678 | .pll_pcie3en = 0x0, |
| 2679 | .pll_opr = 0x0, |
| 2680 | .pll_div = 0x19 }, |
| 2681 | .pmode_0.s = { .ctle = 0x0, |
| 2682 | .pcie = 0x1, |
| 2683 | .tx_ldiv = 0x0, |
| 2684 | .rx_ldiv = 0x0, |
| 2685 | .srate = 0x0, |
| 2686 | .tx_mode = 0x3, |
| 2687 | .rx_mode = 0x3 }, |
| 2688 | .pmode_1.s = { .vma_fine_cfg_sel = 0x0, |
| 2689 | .vma_mm = 0x0, |
| 2690 | .cdr_fgain = 0xa, |
| 2691 | .ph_acc_adj = 0x14 } }, |
| 2692 | { /* 125MHz reference clock */ |
| 2693 | .valid = true, |
| 2694 | .mode_0.s = { .pll_icp = 0x3, .pll_rloop = 0x3, .pll_pcs_div = 0xa }, |
| 2695 | .mode_1.s = { .pll_16p5en = 0x0, |
| 2696 | .pll_cpadj = 0x1, |
| 2697 | .pll_pcie3en = 0x0, |
| 2698 | .pll_opr = 0x0, |
| 2699 | .pll_div = 0x14 }, |
| 2700 | .pmode_0.s = { .ctle = 0x0, |
| 2701 | .pcie = 0x1, |
| 2702 | .tx_ldiv = 0x0, |
| 2703 | .rx_ldiv = 0x0, |
| 2704 | .srate = 0x0, |
| 2705 | .tx_mode = 0x3, |
| 2706 | .rx_mode = 0x3 }, |
| 2707 | .pmode_1.s = { .vma_fine_cfg_sel = 0x0, |
| 2708 | .vma_mm = 0x0, |
| 2709 | .cdr_fgain = 0xa, |
| 2710 | .ph_acc_adj = 0x14 } }, |
| 2711 | { /* 156.25MHz reference clock */ |
| 2712 | .valid = true, |
| 2713 | .mode_0.s = { .pll_icp = 0x3, .pll_rloop = 0x3, .pll_pcs_div = 0xa }, |
| 2714 | .mode_1.s = { .pll_16p5en = 0x0, |
| 2715 | .pll_cpadj = 0x2, |
| 2716 | .pll_pcie3en = 0x0, |
| 2717 | .pll_opr = 0x0, |
| 2718 | .pll_div = 0x10 }, |
| 2719 | .pmode_0.s = { .ctle = 0x0, |
| 2720 | .pcie = 0x1, |
| 2721 | .tx_ldiv = 0x0, |
| 2722 | .rx_ldiv = 0x0, |
| 2723 | .srate = 0x0, |
| 2724 | .tx_mode = 0x3, |
| 2725 | .rx_mode = 0x3 }, |
| 2726 | .pmode_1.s = { .vma_fine_cfg_sel = 0x0, |
| 2727 | .vma_mm = 0x0, |
| 2728 | .cdr_fgain = 0xa, |
| 2729 | .ph_acc_adj = 0x14 } }, |
| 2730 | { |
| 2731 | /* 161.1328125MHz reference clock */ |
| 2732 | .valid = false, |
| 2733 | }, |
| 2734 | }, |
| 2735 | { /* 2 R_8G_REFCLK100 */ |
| 2736 | { /* 100MHz reference clock */ |
| 2737 | .valid = true, |
| 2738 | .mode_0.s = { .pll_icp = 0x3, .pll_rloop = 0x5, .pll_pcs_div = 0xa }, |
| 2739 | .mode_1.s = { .pll_16p5en = 0x0, |
| 2740 | .pll_cpadj = 0x2, |
| 2741 | .pll_pcie3en = 0x1, |
| 2742 | .pll_opr = 0x1, |
| 2743 | .pll_div = 0x28 }, |
| 2744 | .pmode_0.s = { .ctle = 0x3, |
| 2745 | .pcie = 0x0, |
| 2746 | .tx_ldiv = 0x0, |
| 2747 | .rx_ldiv = 0x0, |
| 2748 | .srate = 0x0, |
| 2749 | .tx_mode = 0x3, |
| 2750 | .rx_mode = 0x3 }, |
| 2751 | .pmode_1.s = { .vma_fine_cfg_sel = 0x0, |
| 2752 | .vma_mm = 0x0, |
| 2753 | .cdr_fgain = 0xb, |
| 2754 | .ph_acc_adj = 0x23 } }, |
| 2755 | { /* 125MHz reference clock */ |
| 2756 | .valid = true, |
| 2757 | .mode_0.s = { .pll_icp = 0x2, .pll_rloop = 0x5, .pll_pcs_div = 0xa }, |
| 2758 | .mode_1.s = { .pll_16p5en = 0x0, |
| 2759 | .pll_cpadj = 0x1, |
| 2760 | .pll_pcie3en = 0x1, |
| 2761 | .pll_opr = 0x1, |
| 2762 | .pll_div = 0x20 }, |
| 2763 | .pmode_0.s = { .ctle = 0x3, |
| 2764 | .pcie = 0x0, |
| 2765 | .tx_ldiv = 0x0, |
| 2766 | .rx_ldiv = 0x0, |
| 2767 | .srate = 0x0, |
| 2768 | .tx_mode = 0x3, |
| 2769 | .rx_mode = 0x3 }, |
| 2770 | .pmode_1.s = { .vma_fine_cfg_sel = 0x0, |
| 2771 | .vma_mm = 0x0, |
| 2772 | .cdr_fgain = 0xb, |
| 2773 | .ph_acc_adj = 0x23 } }, |
| 2774 | { /* 156.25MHz reference clock not supported */ |
| 2775 | .valid = false } }, |
| 2776 | { |
| 2777 | /* 3 R_125G_REFCLK15625_KX */ |
| 2778 | { /* 100MHz reference */ |
| 2779 | .valid = true, |
| 2780 | .mode_0.s = { .pll_icp = 0x1, .pll_rloop = 0x3, .pll_pcs_div = 0x28 }, |
| 2781 | .mode_1.s = { .pll_16p5en = 0x1, |
| 2782 | .pll_cpadj = 0x2, |
| 2783 | .pll_pcie3en = 0x0, |
| 2784 | .pll_opr = 0x0, |
| 2785 | .pll_div = 0x19 }, |
| 2786 | .pmode_0.s = { .ctle = 0x0, |
| 2787 | .pcie = 0x0, |
| 2788 | .tx_ldiv = 0x2, |
| 2789 | .rx_ldiv = 0x2, |
| 2790 | .srate = 0x0, |
| 2791 | .tx_mode = 0x3, |
| 2792 | .rx_mode = 0x3 }, |
| 2793 | .pmode_1.s = { .vma_fine_cfg_sel = 0x0, |
| 2794 | .vma_mm = 0x1, |
| 2795 | .cdr_fgain = 0xc, |
| 2796 | .ph_acc_adj = 0x1e } }, |
| 2797 | { /* 125MHz reference */ |
| 2798 | .valid = true, |
| 2799 | .mode_0.s = { .pll_icp = 0x1, .pll_rloop = 0x3, .pll_pcs_div = 0x28 }, |
| 2800 | .mode_1.s = { .pll_16p5en = 0x1, |
| 2801 | .pll_cpadj = 0x2, |
| 2802 | .pll_pcie3en = 0x0, |
| 2803 | .pll_opr = 0x0, |
| 2804 | .pll_div = 0x14 }, |
| 2805 | .pmode_0.s = { .ctle = 0x0, |
| 2806 | .pcie = 0x0, |
| 2807 | .tx_ldiv = 0x2, |
| 2808 | .rx_ldiv = 0x2, |
| 2809 | .srate = 0x0, |
| 2810 | .tx_mode = 0x3, |
| 2811 | .rx_mode = 0x3 }, |
| 2812 | .pmode_1.s = { .vma_fine_cfg_sel = 0x0, |
| 2813 | .vma_mm = 0x1, |
| 2814 | .cdr_fgain = 0xc, |
| 2815 | .ph_acc_adj = 0x1e } }, |
| 2816 | { /* 156.25MHz reference */ |
| 2817 | .valid = true, |
| 2818 | .mode_0.s = { .pll_icp = 0x1, .pll_rloop = 0x3, .pll_pcs_div = 0x28 }, |
| 2819 | .mode_1.s = { .pll_16p5en = 0x1, |
| 2820 | .pll_cpadj = 0x3, |
| 2821 | .pll_pcie3en = 0x0, |
| 2822 | .pll_opr = 0x0, |
| 2823 | .pll_div = 0x10 }, |
| 2824 | .pmode_0.s = { .ctle = 0x0, |
| 2825 | .pcie = 0x0, |
| 2826 | .tx_ldiv = 0x2, |
| 2827 | .rx_ldiv = 0x2, |
| 2828 | .srate = 0x0, |
| 2829 | .tx_mode = 0x3, |
| 2830 | .rx_mode = 0x3 }, |
| 2831 | .pmode_1.s = { .vma_fine_cfg_sel = 0x0, |
| 2832 | .vma_mm = 0x1, |
| 2833 | .cdr_fgain = 0xc, |
| 2834 | .ph_acc_adj = 0x1e } }, |
| 2835 | { |
| 2836 | /* 161.1328125MHz reference clock */ |
| 2837 | .valid = false, |
| 2838 | }, |
| 2839 | }, |
| 2840 | { /* 4 R_3125G_REFCLK15625_XAUI */ |
| 2841 | { /* 100MHz reference */ |
| 2842 | .valid = false }, |
| 2843 | { /* 125MHz reference */ |
| 2844 | .valid = true, |
| 2845 | .mode_0.s = { .pll_icp = 0x1, .pll_rloop = 0x3, .pll_pcs_div = 0x14 }, |
| 2846 | .mode_1.s = { .pll_16p5en = 0x1, |
| 2847 | .pll_cpadj = 0x2, |
| 2848 | .pll_pcie3en = 0x0, |
| 2849 | .pll_opr = 0x0, |
| 2850 | .pll_div = 0x19 }, |
| 2851 | .pmode_0.s = { .ctle = 0x0, |
| 2852 | .pcie = 0x0, |
| 2853 | .tx_ldiv = 0x1, |
| 2854 | .rx_ldiv = 0x1, |
| 2855 | .srate = 0x0, |
| 2856 | .tx_mode = 0x3, |
| 2857 | .rx_mode = 0x3 }, |
| 2858 | .pmode_1.s = { .vma_fine_cfg_sel = 0x0, |
| 2859 | .vma_mm = 0x1, |
| 2860 | .cdr_fgain = 0xc, |
| 2861 | .ph_acc_adj = 0x1e } }, |
| 2862 | { /* 156.25MHz reference, default */ |
| 2863 | .valid = true, |
| 2864 | .mode_0.s = { .pll_icp = 0x1, .pll_rloop = 0x3, .pll_pcs_div = 0x14 }, |
| 2865 | .mode_1.s = { .pll_16p5en = 0x1, |
| 2866 | .pll_cpadj = 0x2, |
| 2867 | .pll_pcie3en = 0x0, |
| 2868 | .pll_opr = 0x0, |
| 2869 | .pll_div = 0x14 }, |
| 2870 | .pmode_0.s = { .ctle = 0x0, |
| 2871 | .pcie = 0x0, |
| 2872 | .tx_ldiv = 0x1, |
| 2873 | .rx_ldiv = 0x1, |
| 2874 | .srate = 0x0, |
| 2875 | .tx_mode = 0x3, |
| 2876 | .rx_mode = 0x3 }, |
| 2877 | .pmode_1.s = { .vma_fine_cfg_sel = 0x0, |
| 2878 | .vma_mm = 0x1, |
| 2879 | .cdr_fgain = 0xc, |
| 2880 | .ph_acc_adj = 0x1e } }, |
| 2881 | { |
| 2882 | /* 161.1328125MHz reference clock */ |
| 2883 | .valid = false, |
| 2884 | } }, |
| 2885 | { /* 5 R_103125G_REFCLK15625_KR */ |
| 2886 | { /* 100MHz reference */ |
| 2887 | .valid = false }, |
| 2888 | { /* 125MHz reference */ |
| 2889 | .valid = false }, |
| 2890 | { /* 156.25MHz reference */ |
| 2891 | .valid = true, |
| 2892 | .mode_0.s = { .pll_icp = 0x1, .pll_rloop = 0x5, .pll_pcs_div = 0xa }, |
| 2893 | .mode_1.s = { .pll_16p5en = 0x1, |
| 2894 | .pll_cpadj = 0x2, |
| 2895 | .pll_pcie3en = 0x0, |
| 2896 | .pll_opr = 0x1, |
| 2897 | .pll_div = 0x21 }, |
| 2898 | .pmode_0.s = { .ctle = 0x3, |
| 2899 | .pcie = 0x0, |
| 2900 | .tx_ldiv = 0x0, |
| 2901 | .rx_ldiv = 0x0, |
| 2902 | .srate = 0x0, |
| 2903 | .tx_mode = 0x3, |
| 2904 | .rx_mode = 0x3 }, |
| 2905 | .pmode_1.s = { .vma_fine_cfg_sel = 0x1, |
| 2906 | .vma_mm = 0x0, |
| 2907 | .cdr_fgain = 0xa, |
| 2908 | .ph_acc_adj = 0xf } }, |
| 2909 | { /* 161.1328125 reference */ |
| 2910 | .valid = true, |
| 2911 | .mode_0.s = { .pll_icp = 0x1, .pll_rloop = 0x5, .pll_pcs_div = 0xa }, |
| 2912 | .mode_1.s = { .pll_16p5en = 0x1, |
| 2913 | .pll_cpadj = 0x2, |
| 2914 | .pll_pcie3en = 0x0, |
| 2915 | .pll_opr = 0x1, |
| 2916 | .pll_div = 0x20 }, |
| 2917 | .pmode_0.s = { .ctle = 0x3, |
| 2918 | .pcie = 0x0, |
| 2919 | .tx_ldiv = 0x0, |
| 2920 | .rx_ldiv = 0x0, |
| 2921 | .srate = 0x0, |
| 2922 | .tx_mode = 0x3, |
| 2923 | .rx_mode = 0x3 }, |
| 2924 | .pmode_1.s = { .vma_fine_cfg_sel = 0x1, |
| 2925 | .vma_mm = 0x0, |
| 2926 | .cdr_fgain = 0xa, |
| 2927 | .ph_acc_adj = 0xf } } }, |
| 2928 | { /* 6 R_125G_REFCLK15625_SGMII */ |
| 2929 | { /* 100MHz reference clock */ |
| 2930 | .valid = 1, |
| 2931 | .mode_0.s = { .pll_icp = 0x1, .pll_rloop = 0x3, .pll_pcs_div = 0x28 }, |
| 2932 | .mode_1.s = { .pll_16p5en = 0x1, |
| 2933 | .pll_cpadj = 0x2, |
| 2934 | .pll_pcie3en = 0x0, |
| 2935 | .pll_opr = 0x0, |
| 2936 | .pll_div = 0x19 }, |
| 2937 | .pmode_0.s = { .ctle = 0x0, |
| 2938 | .pcie = 0x0, |
| 2939 | .tx_ldiv = 0x2, |
| 2940 | .rx_ldiv = 0x2, |
| 2941 | .srate = 0x0, |
| 2942 | .tx_mode = 0x3, |
| 2943 | .rx_mode = 0x3 }, |
| 2944 | .pmode_1.s = { .vma_fine_cfg_sel = 0x0, |
| 2945 | .vma_mm = 0x1, |
| 2946 | .cdr_fgain = 0xc, |
| 2947 | .ph_acc_adj = 0x1e } }, |
| 2948 | { /* 125MHz reference clock */ |
| 2949 | .valid = 1, |
| 2950 | .mode_0.s = { .pll_icp = 0x1, .pll_rloop = 0x3, .pll_pcs_div = 0x28 }, |
| 2951 | .mode_1.s = { .pll_16p5en = 0x1, |
| 2952 | .pll_cpadj = 0x2, |
| 2953 | .pll_pcie3en = 0x0, |
| 2954 | .pll_opr = 0x0, |
| 2955 | .pll_div = 0x14 }, |
| 2956 | .pmode_0.s = { .ctle = 0x0, |
| 2957 | .pcie = 0x0, |
| 2958 | .tx_ldiv = 0x2, |
| 2959 | .rx_ldiv = 0x2, |
| 2960 | .srate = 0x0, |
| 2961 | .tx_mode = 0x3, |
| 2962 | .rx_mode = 0x3 }, |
| 2963 | .pmode_1.s = { .vma_fine_cfg_sel = 0x0, |
| 2964 | .vma_mm = 0x0, |
| 2965 | .cdr_fgain = 0xc, |
| 2966 | .ph_acc_adj = 0x1e } }, |
| 2967 | { /* 156.25MHz reference clock */ |
| 2968 | .valid = 1, |
| 2969 | .mode_0.s = { .pll_icp = 0x1, .pll_rloop = 0x3, .pll_pcs_div = 0x28 }, |
| 2970 | .mode_1.s = { .pll_16p5en = 0x1, |
| 2971 | .pll_cpadj = 0x3, |
| 2972 | .pll_pcie3en = 0x0, |
| 2973 | .pll_opr = 0x0, |
| 2974 | .pll_div = 0x10 }, |
| 2975 | .pmode_0.s = { .ctle = 0x0, |
| 2976 | .pcie = 0x0, |
| 2977 | .tx_ldiv = 0x2, |
| 2978 | .rx_ldiv = 0x2, |
| 2979 | .srate = 0x0, |
| 2980 | .tx_mode = 0x3, |
| 2981 | .rx_mode = 0x3 }, |
| 2982 | .pmode_1.s = { .vma_fine_cfg_sel = 0x0, |
| 2983 | .vma_mm = 0x1, |
| 2984 | .cdr_fgain = 0xc, |
| 2985 | .ph_acc_adj = 0x1e } } }, |
| 2986 | { /* 7 R_5G_REFCLK15625_QSGMII */ |
| 2987 | { /* 100MHz reference */ |
| 2988 | .valid = true, |
| 2989 | .mode_0.s = { .pll_icp = 0x4, .pll_rloop = 0x3, .pll_pcs_div = 0xa }, |
| 2990 | .mode_1.s = { .pll_16p5en = 0x0, .pll_cpadj = 0x2, .pll_pcie3en = 0x0, |
| 2991 | .pll_div = 0x19 }, |
| 2992 | .pmode_0.s = { .ctle = 0x0, |
| 2993 | .pcie = 0x0, |
| 2994 | .tx_ldiv = 0x0, |
| 2995 | .rx_ldiv = 0x0, |
| 2996 | .srate = 0x0, |
| 2997 | .tx_mode = 0x3, |
| 2998 | .rx_mode = 0x3 }, |
| 2999 | .pmode_1.s = { .vma_fine_cfg_sel = 0x0, |
| 3000 | .vma_mm = 0x1, |
| 3001 | .cdr_fgain = 0xc, |
| 3002 | .ph_acc_adj = 0x1e } }, |
| 3003 | { /* 125MHz reference */ |
| 3004 | .valid = true, |
| 3005 | .mode_0.s = { .pll_icp = 0x3, .pll_rloop = 0x3, .pll_pcs_div = 0xa }, |
| 3006 | .mode_1.s = { .pll_16p5en = 0x0, .pll_cpadj = 0x1, .pll_pcie3en = 0x0, |
| 3007 | .pll_div = 0x14 }, |
| 3008 | .pmode_0.s = { .ctle = 0x0, |
| 3009 | .pcie = 0x0, |
| 3010 | .tx_ldiv = 0x0, |
| 3011 | .rx_ldiv = 0x0, |
| 3012 | .srate = 0x0, |
| 3013 | .tx_mode = 0x3, |
| 3014 | .rx_mode = 0x3 }, |
| 3015 | .pmode_1.s = { .vma_fine_cfg_sel = 0x0, |
| 3016 | .vma_mm = 0x1, |
| 3017 | .cdr_fgain = 0xc, |
| 3018 | .ph_acc_adj = 0x1e } }, |
| 3019 | { /* 156.25MHz reference */ |
| 3020 | .valid = true, |
| 3021 | .mode_0.s = { .pll_icp = 0x3, .pll_rloop = 0x3, .pll_pcs_div = 0xa }, |
| 3022 | .mode_1.s = { .pll_16p5en = 0x0, .pll_cpadj = 0x2, .pll_pcie3en = 0x0, |
| 3023 | .pll_div = 0x10 }, |
| 3024 | .pmode_0.s = { .ctle = 0x0, |
| 3025 | .pcie = 0x0, |
| 3026 | .tx_ldiv = 0x0, |
| 3027 | .rx_ldiv = 0x0, |
| 3028 | .srate = 0x0, |
| 3029 | .tx_mode = 0x3, |
| 3030 | .rx_mode = 0x3 }, |
| 3031 | .pmode_1.s = { .vma_fine_cfg_sel = 0x0, |
| 3032 | .vma_mm = 0x1, |
| 3033 | .cdr_fgain = 0xc, |
| 3034 | .ph_acc_adj = 0x1e } }, |
| 3035 | { |
| 3036 | /* 161.1328125MHz reference clock */ |
| 3037 | .valid = false, |
| 3038 | } }, |
| 3039 | { /* 8 R_625G_REFCLK15625_RXAUI */ |
| 3040 | { /* 100MHz reference */ |
| 3041 | .valid = false }, |
| 3042 | { /* 125MHz reference */ |
| 3043 | .valid = true, |
| 3044 | .mode_0.s = { .pll_icp = 0x1, .pll_rloop = 0x3, .pll_pcs_div = 0xa }, |
| 3045 | .mode_1.s = { .pll_16p5en = 0x0, |
| 3046 | .pll_cpadj = 0x2, |
| 3047 | .pll_pcie3en = 0x0, |
| 3048 | .pll_opr = 0x0, |
| 3049 | .pll_div = 0x19 }, |
| 3050 | .pmode_0.s = { .ctle = 0x0, |
| 3051 | .pcie = 0x0, |
| 3052 | .tx_ldiv = 0x0, |
| 3053 | .rx_ldiv = 0x0, |
| 3054 | .srate = 0x0, |
| 3055 | .tx_mode = 0x3, |
| 3056 | .rx_mode = 0x3 }, |
| 3057 | .pmode_1.s = { .vma_fine_cfg_sel = 0x0, |
| 3058 | .vma_mm = 0x0, |
| 3059 | .cdr_fgain = 0xa, |
| 3060 | .ph_acc_adj = 0x14 } }, |
| 3061 | { /* 156.25MHz reference */ |
| 3062 | .valid = true, |
| 3063 | .mode_0.s = { .pll_icp = 0x1, .pll_rloop = 0x3, .pll_pcs_div = 0xa }, |
| 3064 | .mode_1.s = { .pll_16p5en = 0x0, |
| 3065 | .pll_cpadj = 0x2, |
| 3066 | .pll_pcie3en = 0x0, |
| 3067 | .pll_opr = 0x0, |
| 3068 | .pll_div = 0x14 }, |
| 3069 | .pmode_0.s = { .ctle = 0x0, |
| 3070 | .pcie = 0x0, |
| 3071 | .tx_ldiv = 0x0, |
| 3072 | .rx_ldiv = 0x0, |
| 3073 | .srate = 0x0, |
| 3074 | .tx_mode = 0x3, |
| 3075 | .rx_mode = 0x3 }, |
| 3076 | .pmode_1.s = { .vma_fine_cfg_sel = 0x0, |
| 3077 | .vma_mm = 0x0, |
| 3078 | .cdr_fgain = 0xa, |
| 3079 | .ph_acc_adj = 0x14 } }, |
| 3080 | { /* 161.1328125 reference */ |
| 3081 | .valid = true, |
| 3082 | .mode_0.s = { .pll_icp = 0x1, .pll_rloop = 0x3, .pll_pcs_div = 0xa }, |
| 3083 | .mode_1.s = { .pll_16p5en = 0x0, |
| 3084 | .pll_cpadj = 0x2, |
| 3085 | .pll_pcie3en = 0x0, |
| 3086 | .pll_opr = 0x0, |
| 3087 | .pll_div = 0x14 }, |
| 3088 | .pmode_0.s = { .ctle = 0x0, |
| 3089 | .pcie = 0x0, |
| 3090 | .tx_ldiv = 0x0, |
| 3091 | .rx_ldiv = 0x0, |
| 3092 | .srate = 0x0, |
| 3093 | .tx_mode = 0x3, |
| 3094 | .rx_mode = 0x3 }, |
| 3095 | .pmode_1.s = { .vma_fine_cfg_sel = 0x0, |
| 3096 | .vma_mm = 0x0, |
| 3097 | .cdr_fgain = 0xa, |
| 3098 | .ph_acc_adj = 0x14 } } }, |
| 3099 | { /* 9 R_2_5G_REFCLK125 */ |
| 3100 | { /* 100MHz reference */ |
| 3101 | .valid = true, |
| 3102 | .mode_0.s = { .pll_icp = 0x4, .pll_rloop = 0x3, .pll_pcs_div = 0x5 }, |
| 3103 | .mode_1.s = { .pll_16p5en = 0x0, |
| 3104 | .pll_cpadj = 0x2, |
| 3105 | .pll_pcie3en = 0x0, |
| 3106 | .pll_opr = 0x0, |
| 3107 | .pll_div = 0x19 }, |
| 3108 | .pmode_0.s = { .ctle = 0x0, |
| 3109 | .pcie = 0x1, |
| 3110 | .tx_ldiv = 0x1, |
| 3111 | .rx_ldiv = 0x1, |
| 3112 | .srate = 0x0, |
| 3113 | .tx_mode = 0x3, |
| 3114 | .rx_mode = 0x3 }, |
| 3115 | .pmode_1.s = { .vma_fine_cfg_sel = 0x0, |
| 3116 | .vma_mm = 0x1, |
| 3117 | .cdr_fgain = 0xa, |
| 3118 | .ph_acc_adj = 0x14 } }, |
| 3119 | { /* 125MHz reference */ |
| 3120 | .valid = true, |
| 3121 | .mode_0.s = { .pll_icp = 0x3, .pll_rloop = 0x3, .pll_pcs_div = 0x5 }, |
| 3122 | .mode_1.s = { .pll_16p5en = 0x0, |
| 3123 | .pll_cpadj = 0x1, |
| 3124 | .pll_pcie3en = 0x0, |
| 3125 | .pll_opr = 0x0, |
| 3126 | .pll_div = 0x14 }, |
| 3127 | .pmode_0.s = { .ctle = 0x0, |
| 3128 | .pcie = 0x1, |
| 3129 | .tx_ldiv = 0x1, |
| 3130 | .rx_ldiv = 0x1, |
| 3131 | .srate = 0x0, |
| 3132 | .tx_mode = 0x3, |
| 3133 | .rx_mode = 0x3 }, |
| 3134 | .pmode_1.s = { .vma_fine_cfg_sel = 0x0, |
| 3135 | .vma_mm = 0x1, |
| 3136 | .cdr_fgain = 0xa, |
| 3137 | .ph_acc_adj = 0x14 } }, |
| 3138 | { /* 156,25MHz reference */ |
| 3139 | .valid = true, |
| 3140 | .mode_0.s = { .pll_icp = 0x3, .pll_rloop = 0x3, .pll_pcs_div = 0x5 }, |
| 3141 | .mode_1.s = { .pll_16p5en = 0x0, |
| 3142 | .pll_cpadj = 0x2, |
| 3143 | .pll_pcie3en = 0x0, |
| 3144 | .pll_opr = 0x0, |
| 3145 | .pll_div = 0x10 }, |
| 3146 | .pmode_0.s = { .ctle = 0x0, |
| 3147 | .pcie = 0x1, |
| 3148 | .tx_ldiv = 0x1, |
| 3149 | .rx_ldiv = 0x1, |
| 3150 | .srate = 0x0, |
| 3151 | .tx_mode = 0x3, |
| 3152 | .rx_mode = 0x3 }, |
| 3153 | .pmode_1.s = { .vma_fine_cfg_sel = 0x0, |
| 3154 | .vma_mm = 0x1, |
| 3155 | .cdr_fgain = 0xa, |
| 3156 | .ph_acc_adj = 0x14 } }, |
| 3157 | { |
| 3158 | /* 161.1328125MHz reference clock */ |
| 3159 | .valid = false, |
| 3160 | } }, |
| 3161 | { /* 0xa R_5G_REFCLK125 */ |
| 3162 | { /* 100MHz reference */ |
| 3163 | .valid = true, |
| 3164 | .mode_0.s = { .pll_icp = 0x4, .pll_rloop = 0x3, .pll_pcs_div = 0xa }, |
| 3165 | .mode_1.s = { .pll_16p5en = 0x0, |
| 3166 | .pll_cpadj = 0x2, |
| 3167 | .pll_pcie3en = 0x0, |
| 3168 | .pll_opr = 0x0, |
| 3169 | .pll_div = 0x19 }, |
| 3170 | .pmode_0.s = { .ctle = 0x0, |
| 3171 | .pcie = 0x1, |
| 3172 | .tx_ldiv = 0x0, |
| 3173 | .rx_ldiv = 0x0, |
| 3174 | .srate = 0x0, |
| 3175 | .tx_mode = 0x3, |
| 3176 | .rx_mode = 0x3 }, |
| 3177 | .pmode_1.s = { .vma_fine_cfg_sel = 0x0, |
| 3178 | .vma_mm = 0x0, |
| 3179 | .cdr_fgain = 0xa, |
| 3180 | .ph_acc_adj = 0x14 } }, |
| 3181 | { /* 125MHz reference */ |
| 3182 | .valid = true, |
| 3183 | .mode_0.s = { .pll_icp = 0x3, .pll_rloop = 0x3, .pll_pcs_div = 0xa }, |
| 3184 | .mode_1.s = { .pll_16p5en = 0x0, |
| 3185 | .pll_cpadj = 0x1, |
| 3186 | .pll_pcie3en = 0x0, |
| 3187 | .pll_opr = 0x0, |
| 3188 | .pll_div = 0x14 }, |
| 3189 | .pmode_0.s = { .ctle = 0x0, |
| 3190 | .pcie = 0x1, |
| 3191 | .tx_ldiv = 0x0, |
| 3192 | .rx_ldiv = 0x0, |
| 3193 | .srate = 0x0, |
| 3194 | .tx_mode = 0x3, |
| 3195 | .rx_mode = 0x3 }, |
| 3196 | .pmode_1.s = { .vma_fine_cfg_sel = 0x0, |
| 3197 | .vma_mm = 0x0, |
| 3198 | .cdr_fgain = 0xa, |
| 3199 | .ph_acc_adj = 0x14 } }, |
| 3200 | { /* 156.25MHz reference */ |
| 3201 | .valid = true, |
| 3202 | .mode_0.s = { .pll_icp = 0x3, .pll_rloop = 0x3, .pll_pcs_div = 0xa }, |
| 3203 | .mode_1.s = { .pll_16p5en = 0x0, |
| 3204 | .pll_cpadj = 0x2, |
| 3205 | .pll_pcie3en = 0x0, |
| 3206 | .pll_opr = 0x0, |
| 3207 | .pll_div = 0x10 }, |
| 3208 | .pmode_0.s = { .ctle = 0x0, |
| 3209 | .pcie = 0x1, |
| 3210 | .tx_ldiv = 0x0, |
| 3211 | .rx_ldiv = 0x0, |
| 3212 | .srate = 0x0, |
| 3213 | .tx_mode = 0x3, |
| 3214 | .rx_mode = 0x3 }, |
| 3215 | .pmode_1.s = { .vma_fine_cfg_sel = 0x0, |
| 3216 | .vma_mm = 0x0, |
| 3217 | .cdr_fgain = 0xa, |
| 3218 | .ph_acc_adj = 0x14 } }, |
| 3219 | { |
| 3220 | /* 161.1328125MHz reference clock */ |
| 3221 | .valid = false, |
| 3222 | } }, |
| 3223 | { /* 0xb R_8G_REFCLK125 */ |
| 3224 | { /* 100MHz reference */ |
| 3225 | .valid = true, |
| 3226 | .mode_0.s = { .pll_icp = 0x3, .pll_rloop = 0x5, .pll_pcs_div = 0xa }, |
| 3227 | .mode_1.s = { .pll_16p5en = 0x0, |
| 3228 | .pll_cpadj = 0x2, |
| 3229 | .pll_pcie3en = 0x1, |
| 3230 | .pll_opr = 0x1, |
| 3231 | .pll_div = 0x28 }, |
| 3232 | .pmode_0.s = { .ctle = 0x3, |
| 3233 | .pcie = 0x0, |
| 3234 | .tx_ldiv = 0x0, |
| 3235 | .rx_ldiv = 0x0, |
| 3236 | .srate = 0x0, |
| 3237 | .tx_mode = 0x3, |
| 3238 | .rx_mode = 0x3 }, |
| 3239 | .pmode_1.s = { .vma_fine_cfg_sel = 0x0, |
| 3240 | .vma_mm = 0x0, |
| 3241 | .cdr_fgain = 0xb, |
| 3242 | .ph_acc_adj = 0x23 } }, |
| 3243 | { /* 125MHz reference */ |
| 3244 | .valid = true, |
| 3245 | .mode_0.s = { .pll_icp = 0x2, .pll_rloop = 0x5, .pll_pcs_div = 0xa }, |
| 3246 | .mode_1.s = { .pll_16p5en = 0x0, |
| 3247 | .pll_cpadj = 0x1, |
| 3248 | .pll_pcie3en = 0x1, |
| 3249 | .pll_opr = 0x1, |
| 3250 | .pll_div = 0x20 }, |
| 3251 | .pmode_0.s = { .ctle = 0x3, |
| 3252 | .pcie = 0x0, |
| 3253 | .tx_ldiv = 0x0, |
| 3254 | .rx_ldiv = 0x0, |
| 3255 | .srate = 0x0, |
| 3256 | .tx_mode = 0x3, |
| 3257 | .rx_mode = 0x3 }, |
| 3258 | .pmode_1.s = { .vma_fine_cfg_sel = 0x0, |
| 3259 | .vma_mm = 0x0, |
| 3260 | .cdr_fgain = 0xb, |
| 3261 | .ph_acc_adj = 0x23 } }, |
| 3262 | { /* 156.25MHz reference */ |
| 3263 | .valid = false }, |
| 3264 | { |
| 3265 | /* 161.1328125MHz reference clock */ |
| 3266 | .valid = false, |
| 3267 | } } |
| 3268 | }; |
| 3269 | |
| 3270 | /** |
| 3271 | * Set a non-standard reference clock for a node, qlm and lane mode. |
| 3272 | * |
| 3273 | * @INTERNAL |
| 3274 | * |
| 3275 | * @param node node number the reference clock is used with |
| 3276 | * @param qlm qlm number the reference clock is hooked up to |
| 3277 | * @param lane_mode current lane mode selected for the QLM |
| 3278 | * @param ref_clk_sel 0 = 100MHz, 1 = 125MHz, 2 = 156.25MHz, |
| 3279 | * 3 = 161.1328125MHz |
| 3280 | * |
| 3281 | * @return 0 for success or -1 if the reference clock selector is not supported |
| 3282 | * |
| 3283 | * NOTE: This must be called before __qlm_setup_pll_cn78xx. |
| 3284 | */ |
| 3285 | static int __set_qlm_ref_clk_cn78xx(int node, int qlm, int lane_mode, int ref_clk_sel) |
| 3286 | { |
| 3287 | if (ref_clk_sel > 3 || ref_clk_sel < 0 || |
| 3288 | !refclk_settings_cn78xx[lane_mode][ref_clk_sel].valid) { |
| 3289 | debug("%s: Invalid reference clock %d for lane mode %d for node %d, QLM %d\n", |
| 3290 | __func__, ref_clk_sel, lane_mode, node, qlm); |
| 3291 | return -1; |
| 3292 | } |
| 3293 | debug("%s(%d, %d, 0x%x, %d)\n", __func__, node, qlm, lane_mode, ref_clk_sel); |
| 3294 | ref_clk_cn78xx[node][qlm][lane_mode] = ref_clk_sel; |
| 3295 | return 0; |
| 3296 | } |
| 3297 | |
| 3298 | /** |
| 3299 | * KR - Inverted Tx Coefficient Direction Change. Changing Pre & Post Tap inc/dec direction |
| 3300 | * |
| 3301 | * |
| 3302 | * @INTERNAL |
| 3303 | * |
| 3304 | * @param node Node number to configure |
| 3305 | * @param qlm QLM number to configure |
| 3306 | */ |
| 3307 | static void __qlm_kr_inc_dec_gser26636(int node, int qlm) |
| 3308 | { |
| 3309 | cvmx_gserx_rx_txdir_ctrl_1_t rx_txdir_ctrl; |
| 3310 | |
| 3311 | /* Apply workaround for Errata GSER-26636, |
| 3312 | * KR training coefficient update inverted |
| 3313 | */ |
| 3314 | rx_txdir_ctrl.u64 = csr_rd_node(node, CVMX_GSERX_RX_TXDIR_CTRL_1(qlm)); |
| 3315 | rx_txdir_ctrl.s.rx_precorr_chg_dir = 1; |
| 3316 | rx_txdir_ctrl.s.rx_tap1_chg_dir = 1; |
| 3317 | csr_wr_node(node, CVMX_GSERX_RX_TXDIR_CTRL_1(qlm), rx_txdir_ctrl.u64); |
| 3318 | } |
| 3319 | |
| 3320 | /** |
| 3321 | * Updating the RX EQ settings to support wider temperature range |
| 3322 | * @INTERNAL |
| 3323 | * |
| 3324 | * @param node Node number to configure |
| 3325 | * @param qlm QLM number to configure |
| 3326 | */ |
| 3327 | static void __qlm_rx_eq_temp_gser27140(int node, int qlm) |
| 3328 | { |
| 3329 | int lane; |
| 3330 | int num_lanes = cvmx_qlm_get_lanes(qlm); |
| 3331 | cvmx_gserx_lanex_rx_valbbd_ctrl_0_t rx_valbbd_ctrl_0; |
| 3332 | cvmx_gserx_lane_vma_fine_ctrl_2_t lane_vma_fine_ctrl_2; |
| 3333 | cvmx_gserx_lane_vma_fine_ctrl_0_t lane_vma_fine_ctrl_0; |
| 3334 | cvmx_gserx_rx_txdir_ctrl_1_t rx_txdir_ctrl_1; |
| 3335 | cvmx_gserx_eq_wait_time_t eq_wait_time; |
| 3336 | cvmx_gserx_rx_txdir_ctrl_2_t rx_txdir_ctrl_2; |
| 3337 | cvmx_gserx_rx_txdir_ctrl_0_t rx_txdir_ctrl_0; |
| 3338 | |
| 3339 | for (lane = 0; lane < num_lanes; lane++) { |
| 3340 | rx_valbbd_ctrl_0.u64 = |
| 3341 | csr_rd_node(node, CVMX_GSERX_LANEX_RX_VALBBD_CTRL_0(lane, qlm)); |
| 3342 | rx_valbbd_ctrl_0.s.agc_gain = 3; |
| 3343 | rx_valbbd_ctrl_0.s.dfe_gain = 2; |
| 3344 | csr_wr_node(node, CVMX_GSERX_LANEX_RX_VALBBD_CTRL_0(lane, qlm), |
| 3345 | rx_valbbd_ctrl_0.u64); |
| 3346 | } |
| 3347 | |
| 3348 | /* do_pre_ctle_limits_work_around: */ |
| 3349 | lane_vma_fine_ctrl_2.u64 = csr_rd_node(node, CVMX_GSERX_LANE_VMA_FINE_CTRL_2(qlm)); |
| 3350 | //lane_vma_fine_ctrl_2.s.rx_prectle_peak_max_fine = 11; |
| 3351 | lane_vma_fine_ctrl_2.s.rx_prectle_gain_max_fine = 11; |
| 3352 | //lane_vma_fine_ctrl_2.s.rx_prectle_peak_min_fine = 6; |
| 3353 | lane_vma_fine_ctrl_2.s.rx_prectle_gain_min_fine = 6; |
| 3354 | csr_wr_node(node, CVMX_GSERX_LANE_VMA_FINE_CTRL_2(qlm), lane_vma_fine_ctrl_2.u64); |
| 3355 | |
| 3356 | /* do_inc_dec_thres_work_around: */ |
| 3357 | rx_txdir_ctrl_0.u64 = csr_rd_node(node, CVMX_GSERX_RX_TXDIR_CTRL_0(qlm)); |
| 3358 | rx_txdir_ctrl_0.s.rx_boost_hi_thrs = 11; |
| 3359 | rx_txdir_ctrl_0.s.rx_boost_lo_thrs = 4; |
| 3360 | rx_txdir_ctrl_0.s.rx_boost_hi_val = 15; |
| 3361 | csr_wr_node(node, CVMX_GSERX_RX_TXDIR_CTRL_0(qlm), rx_txdir_ctrl_0.u64); |
| 3362 | |
| 3363 | /* do_sdll_iq_work_around: */ |
| 3364 | lane_vma_fine_ctrl_0.u64 = csr_rd_node(node, CVMX_GSERX_LANE_VMA_FINE_CTRL_0(qlm)); |
| 3365 | lane_vma_fine_ctrl_0.s.rx_sdll_iq_max_fine = 14; |
| 3366 | lane_vma_fine_ctrl_0.s.rx_sdll_iq_min_fine = 8; |
| 3367 | lane_vma_fine_ctrl_0.s.rx_sdll_iq_step_fine = 2; |
| 3368 | |
| 3369 | /* do_vma_window_work_around_2: */ |
| 3370 | lane_vma_fine_ctrl_0.s.vma_window_wait_fine = 5; |
| 3371 | lane_vma_fine_ctrl_0.s.lms_wait_time_fine = 5; |
| 3372 | |
| 3373 | csr_wr_node(node, CVMX_GSERX_LANE_VMA_FINE_CTRL_0(qlm), lane_vma_fine_ctrl_0.u64); |
| 3374 | |
| 3375 | /* Set dfe_tap_1_lo_thres_val: */ |
| 3376 | rx_txdir_ctrl_1.u64 = csr_rd_node(node, CVMX_GSERX_RX_TXDIR_CTRL_1(qlm)); |
| 3377 | rx_txdir_ctrl_1.s.rx_tap1_lo_thrs = 8; |
| 3378 | rx_txdir_ctrl_1.s.rx_tap1_hi_thrs = 0x17; |
| 3379 | csr_wr_node(node, CVMX_GSERX_RX_TXDIR_CTRL_1(qlm), rx_txdir_ctrl_1.u64); |
| 3380 | |
| 3381 | /* do_rxeq_wait_cnt_work_around: */ |
| 3382 | eq_wait_time.u64 = csr_rd_node(node, CVMX_GSERX_EQ_WAIT_TIME(qlm)); |
| 3383 | eq_wait_time.s.rxeq_wait_cnt = 6; |
| 3384 | csr_wr_node(node, CVMX_GSERX_EQ_WAIT_TIME(qlm), eq_wait_time.u64); |
| 3385 | |
| 3386 | /* do_write_rx_txdir_precorr_thresholds: */ |
| 3387 | rx_txdir_ctrl_2.u64 = csr_rd_node(node, CVMX_GSERX_RX_TXDIR_CTRL_2(qlm)); |
| 3388 | rx_txdir_ctrl_2.s.rx_precorr_hi_thrs = 0xc0; |
| 3389 | rx_txdir_ctrl_2.s.rx_precorr_lo_thrs = 0x40; |
| 3390 | csr_wr_node(node, CVMX_GSERX_RX_TXDIR_CTRL_2(qlm), rx_txdir_ctrl_2.u64); |
| 3391 | } |
| 3392 | |
| 3393 | /* Errata GSER-26150: 10G PHY PLL Temperature Failure |
| 3394 | * This workaround must be completed after the final deassertion of |
| 3395 | * GSERx_PHY_CTL[PHY_RESET] |
| 3396 | */ |
| 3397 | static int __qlm_errata_gser_26150(int node, int qlm, int is_pcie) |
| 3398 | { |
| 3399 | int num_lanes = 4; |
| 3400 | int i; |
| 3401 | cvmx_gserx_glbl_pll_cfg_3_t pll_cfg_3; |
| 3402 | cvmx_gserx_glbl_misc_config_1_t misc_config_1; |
| 3403 | |
| 3404 | /* PCIe only requires the LC-VCO parameters to be updated */ |
| 3405 | if (is_pcie) { |
| 3406 | /* Update PLL parameters */ |
| 3407 | /* Step 1: Set GSER()_GLBL_PLL_CFG_3[PLL_VCTRL_SEL_LCVCO_VAL] = 0x2, and |
| 3408 | * GSER()_GLBL_PLL_CFG_3[PCS_SDS_PLL_VCO_AMP] = 0 |
| 3409 | */ |
| 3410 | pll_cfg_3.u64 = csr_rd_node(node, CVMX_GSERX_GLBL_PLL_CFG_3(qlm)); |
| 3411 | pll_cfg_3.s.pcs_sds_pll_vco_amp = 0; |
| 3412 | pll_cfg_3.s.pll_vctrl_sel_lcvco_val = 2; |
| 3413 | csr_wr_node(node, CVMX_GSERX_GLBL_PLL_CFG_3(qlm), pll_cfg_3.u64); |
| 3414 | |
| 3415 | /* Step 2: Set GSER()_GLBL_MISC_CONFIG_1[PCS_SDS_TRIM_CHP_REG] = 0x2. */ |
| 3416 | misc_config_1.u64 = csr_rd_node(node, CVMX_GSERX_GLBL_MISC_CONFIG_1(qlm)); |
| 3417 | misc_config_1.s.pcs_sds_trim_chp_reg = 2; |
| 3418 | csr_wr_node(node, CVMX_GSERX_GLBL_MISC_CONFIG_1(qlm), misc_config_1.u64); |
| 3419 | return 0; |
| 3420 | } |
| 3421 | |
| 3422 | /* Applying this errata twice causes problems */ |
| 3423 | pll_cfg_3.u64 = csr_rd_node(node, CVMX_GSERX_GLBL_PLL_CFG_3(qlm)); |
| 3424 | if (pll_cfg_3.s.pll_vctrl_sel_lcvco_val == 0x2) |
| 3425 | return 0; |
| 3426 | |
| 3427 | /* (GSER-26150) 10 Gb temperature excursions can cause lock failure */ |
| 3428 | /* Change the calibration point of the VCO at start up to shift some |
| 3429 | * available range of the VCO from -deltaT direction to the +deltaT |
| 3430 | * ramp direction allowing a greater range of VCO temperatures before |
| 3431 | * experiencing the failure. |
| 3432 | */ |
| 3433 | |
| 3434 | /* Check for DLMs on CN73XX and CNF75XX */ |
| 3435 | if (OCTEON_IS_MODEL(OCTEON_CN73XX) && (qlm == 5 || qlm == 6)) |
| 3436 | num_lanes = 2; |
| 3437 | |
| 3438 | /* Put PHY in P2 Power-down state Need to Power down all lanes in a |
| 3439 | * QLM/DLM to force PHY to P2 state |
| 3440 | */ |
| 3441 | for (i = 0; i < num_lanes; i++) { |
| 3442 | cvmx_gserx_lanex_pcs_ctlifc_0_t ctlifc0; |
| 3443 | cvmx_gserx_lanex_pcs_ctlifc_1_t ctlifc1; |
| 3444 | cvmx_gserx_lanex_pcs_ctlifc_2_t ctlifc2; |
| 3445 | |
| 3446 | /* Step 1: Set Set GSER()_LANE(lane_n)_PCS_CTLIFC_0[CFG_TX_PSTATE_REQ_OVERRD_VAL] |
| 3447 | * = 0x3 |
| 3448 | * Select P2 power state for Tx lane |
| 3449 | */ |
| 3450 | ctlifc0.u64 = csr_rd_node(node, CVMX_GSERX_LANEX_PCS_CTLIFC_0(i, qlm)); |
| 3451 | ctlifc0.s.cfg_tx_pstate_req_ovrrd_val = 0x3; |
| 3452 | csr_wr_node(node, CVMX_GSERX_LANEX_PCS_CTLIFC_0(i, qlm), ctlifc0.u64); |
| 3453 | /* Step 2: Set GSER()_LANE(lane_n)_PCS_CTLIFC_1[CFG_RX_PSTATE_REQ_OVERRD_VAL] |
| 3454 | * = 0x3 |
| 3455 | * Select P2 power state for Rx lane |
| 3456 | */ |
| 3457 | ctlifc1.u64 = csr_rd_node(node, CVMX_GSERX_LANEX_PCS_CTLIFC_1(i, qlm)); |
| 3458 | ctlifc1.s.cfg_rx_pstate_req_ovrrd_val = 0x3; |
| 3459 | csr_wr_node(node, CVMX_GSERX_LANEX_PCS_CTLIFC_1(i, qlm), ctlifc1.u64); |
| 3460 | /* Step 3: Set GSER()_LANE(lane_n)_PCS_CTLIFC_2[CFG_TX_PSTATE_REQ_OVRRD_EN] = 1 |
| 3461 | * Enable Tx power state override and Set |
| 3462 | * GSER()_LANE(lane_n)_PCS_CTLIFC_2[CFG_RX_PSTATE_REQ_OVRRD_EN] = 1 |
| 3463 | * Enable Rx power state override |
| 3464 | */ |
| 3465 | ctlifc2.u64 = csr_rd_node(node, CVMX_GSERX_LANEX_PCS_CTLIFC_2(i, qlm)); |
| 3466 | ctlifc2.s.cfg_tx_pstate_req_ovrrd_en = 0x1; |
| 3467 | ctlifc2.s.cfg_rx_pstate_req_ovrrd_en = 0x1; |
| 3468 | csr_wr_node(node, CVMX_GSERX_LANEX_PCS_CTLIFC_2(i, qlm), ctlifc2.u64); |
| 3469 | /* Step 4: Set GSER()_LANE(lane_n)_PCS_CTLIFC_2[CTLIFC_OVRRD_REQ] = 1 |
| 3470 | * Start the CTLIFC override state machine |
| 3471 | */ |
| 3472 | ctlifc2.u64 = csr_rd_node(node, CVMX_GSERX_LANEX_PCS_CTLIFC_2(i, qlm)); |
| 3473 | ctlifc2.s.ctlifc_ovrrd_req = 0x1; |
| 3474 | csr_wr_node(node, CVMX_GSERX_LANEX_PCS_CTLIFC_2(i, qlm), ctlifc2.u64); |
| 3475 | } |
| 3476 | |
| 3477 | /* Update PLL parameters */ |
| 3478 | /* Step 5: Set GSER()_GLBL_PLL_CFG_3[PLL_VCTRL_SEL_LCVCO_VAL] = 0x2, and |
| 3479 | * GSER()_GLBL_PLL_CFG_3[PCS_SDS_PLL_VCO_AMP] = 0 |
| 3480 | */ |
| 3481 | pll_cfg_3.u64 = csr_rd_node(node, CVMX_GSERX_GLBL_PLL_CFG_3(qlm)); |
| 3482 | pll_cfg_3.s.pcs_sds_pll_vco_amp = 0; |
| 3483 | pll_cfg_3.s.pll_vctrl_sel_lcvco_val = 2; |
| 3484 | csr_wr_node(node, CVMX_GSERX_GLBL_PLL_CFG_3(qlm), pll_cfg_3.u64); |
| 3485 | |
| 3486 | /* Step 6: Set GSER()_GLBL_MISC_CONFIG_1[PCS_SDS_TRIM_CHP_REG] = 0x2. */ |
| 3487 | misc_config_1.u64 = csr_rd_node(node, CVMX_GSERX_GLBL_MISC_CONFIG_1(qlm)); |
| 3488 | misc_config_1.s.pcs_sds_trim_chp_reg = 2; |
| 3489 | csr_wr_node(node, CVMX_GSERX_GLBL_MISC_CONFIG_1(qlm), misc_config_1.u64); |
| 3490 | |
| 3491 | /* Wake up PHY and transition to P0 Power-up state to bring-up the lanes, |
| 3492 | * need to wake up all PHY lanes |
| 3493 | */ |
| 3494 | for (i = 0; i < num_lanes; i++) { |
| 3495 | cvmx_gserx_lanex_pcs_ctlifc_0_t ctlifc0; |
| 3496 | cvmx_gserx_lanex_pcs_ctlifc_1_t ctlifc1; |
| 3497 | cvmx_gserx_lanex_pcs_ctlifc_2_t ctlifc2; |
| 3498 | /* Step 7: Set GSER()_LANE(lane_n)_PCS_CTLIFC_0[CFG_TX_PSTATE_REQ_OVERRD_VAL] = 0x0 |
| 3499 | * Select P0 power state for Tx lane |
| 3500 | */ |
| 3501 | ctlifc0.u64 = csr_rd_node(node, CVMX_GSERX_LANEX_PCS_CTLIFC_0(i, qlm)); |
| 3502 | ctlifc0.s.cfg_tx_pstate_req_ovrrd_val = 0x0; |
| 3503 | csr_wr_node(node, CVMX_GSERX_LANEX_PCS_CTLIFC_0(i, qlm), ctlifc0.u64); |
| 3504 | /* Step 8: Set GSER()_LANE(lane_n)_PCS_CTLIFC_1[CFG_RX_PSTATE_REQ_OVERRD_VAL] = 0x0 |
| 3505 | * Select P0 power state for Rx lane |
| 3506 | */ |
| 3507 | ctlifc1.u64 = csr_rd_node(node, CVMX_GSERX_LANEX_PCS_CTLIFC_1(i, qlm)); |
| 3508 | ctlifc1.s.cfg_rx_pstate_req_ovrrd_val = 0x0; |
| 3509 | csr_wr_node(node, CVMX_GSERX_LANEX_PCS_CTLIFC_1(i, qlm), ctlifc1.u64); |
| 3510 | /* Step 9: Set GSER()_LANE(lane_n)_PCS_CTLIFC_2[CFG_TX_PSTATE_REQ_OVRRD_EN] = 1 |
| 3511 | * Enable Tx power state override and Set |
| 3512 | * GSER()_LANE(lane_n)_PCS_CTLIFC_2[CFG_RX_PSTATE_REQ_OVRRD_EN] = 1 |
| 3513 | * Enable Rx power state override |
| 3514 | */ |
| 3515 | ctlifc2.u64 = csr_rd_node(node, CVMX_GSERX_LANEX_PCS_CTLIFC_2(i, qlm)); |
| 3516 | ctlifc2.s.cfg_tx_pstate_req_ovrrd_en = 0x1; |
| 3517 | ctlifc2.s.cfg_rx_pstate_req_ovrrd_en = 0x1; |
| 3518 | csr_wr_node(node, CVMX_GSERX_LANEX_PCS_CTLIFC_2(i, qlm), ctlifc2.u64); |
| 3519 | /* Step 10: Set GSER()_LANE(lane_n)_PCS_CTLIFC_2[CTLIFC_OVRRD_REQ] = 1 |
| 3520 | * Start the CTLIFC override state machine |
| 3521 | */ |
| 3522 | ctlifc2.u64 = csr_rd_node(node, CVMX_GSERX_LANEX_PCS_CTLIFC_2(i, qlm)); |
| 3523 | ctlifc2.s.ctlifc_ovrrd_req = 0x1; |
| 3524 | csr_wr_node(node, CVMX_GSERX_LANEX_PCS_CTLIFC_2(i, qlm), ctlifc2.u64); |
| 3525 | } |
| 3526 | |
| 3527 | /* Step 11: Wait 10 msec */ |
| 3528 | mdelay(10); |
| 3529 | |
| 3530 | /* Release Lane Tx/Rx Power state override enables. */ |
| 3531 | for (i = 0; i < num_lanes; i++) { |
| 3532 | cvmx_gserx_lanex_pcs_ctlifc_2_t ctlifc2; |
| 3533 | |
| 3534 | ctlifc2.u64 = csr_rd_node(node, CVMX_GSERX_LANEX_PCS_CTLIFC_2(i, qlm)); |
| 3535 | ctlifc2.s.cfg_tx_pstate_req_ovrrd_en = 0x0; |
| 3536 | ctlifc2.s.cfg_rx_pstate_req_ovrrd_en = 0x0; |
| 3537 | csr_wr_node(node, CVMX_GSERX_LANEX_PCS_CTLIFC_2(i, qlm), ctlifc2.u64); |
| 3538 | } |
| 3539 | |
| 3540 | /* Step 12: Poll GSER()_PLL_STAT.[PLL_LOCK] = 1 |
| 3541 | * Poll and check that PLL is locked |
| 3542 | */ |
| 3543 | if (CVMX_WAIT_FOR_FIELD64_NODE(node, CVMX_GSERX_PLL_STAT(qlm), cvmx_gserx_pll_stat_t, |
| 3544 | pll_lock, ==, 1, 10000)) { |
| 3545 | printf("%d:QLM%d: Timeout waiting for GSERX_PLL_STAT[pll_lock]\n", node, qlm); |
| 3546 | return -1; |
| 3547 | } |
| 3548 | |
| 3549 | /* Step 13: Poll GSER()_QLM_STAT.[RST_RDY] = 1 |
| 3550 | * Poll and check that QLM/DLM is Ready |
| 3551 | */ |
| 3552 | if (is_pcie == 0 && |
| 3553 | CVMX_WAIT_FOR_FIELD64_NODE(node, CVMX_GSERX_QLM_STAT(qlm), cvmx_gserx_qlm_stat_t, |
| 3554 | rst_rdy, ==, 1, 10000)) { |
| 3555 | printf("%d:QLM%d: Timeout waiting for GSERX_QLM_STAT[rst_rdy]\n", node, qlm); |
| 3556 | return -1; |
| 3557 | } |
| 3558 | |
| 3559 | return 0; |
| 3560 | } |
| 3561 | |
| 3562 | /** |
| 3563 | * Configure all of the PLLs for a particular node and qlm |
| 3564 | * @INTERNAL |
| 3565 | * |
| 3566 | * @param node Node number to configure |
| 3567 | * @param qlm QLM number to configure |
| 3568 | */ |
| 3569 | static void __qlm_setup_pll_cn78xx(int node, int qlm) |
| 3570 | { |
| 3571 | cvmx_gserx_pll_px_mode_0_t mode_0; |
| 3572 | cvmx_gserx_pll_px_mode_1_t mode_1; |
| 3573 | cvmx_gserx_lane_px_mode_0_t pmode_0; |
| 3574 | cvmx_gserx_lane_px_mode_1_t pmode_1; |
| 3575 | int lane_mode; |
| 3576 | int ref_clk; |
| 3577 | const struct refclk_settings_cn78xx *clk_settings; |
| 3578 | |
| 3579 | for (lane_mode = 0; lane_mode < R_NUM_LANE_MODES; lane_mode++) { |
| 3580 | mode_0.u64 = csr_rd_node(node, CVMX_GSERX_PLL_PX_MODE_0(lane_mode, qlm)); |
| 3581 | mode_1.u64 = csr_rd_node(node, CVMX_GSERX_PLL_PX_MODE_1(lane_mode, qlm)); |
| 3582 | pmode_0.u64 = 0; |
| 3583 | pmode_1.u64 = 0; |
| 3584 | ref_clk = ref_clk_cn78xx[node][qlm][lane_mode]; |
| 3585 | clk_settings = &refclk_settings_cn78xx[lane_mode][ref_clk]; |
| 3586 | debug("%s(%d, %d): lane_mode: 0x%x, ref_clk: %d\n", __func__, node, qlm, lane_mode, |
| 3587 | ref_clk); |
| 3588 | |
| 3589 | if (!clk_settings->valid) { |
| 3590 | printf("%s: Error: reference clock %d is not supported for lane mode %d on qlm %d\n", |
| 3591 | __func__, ref_clk, lane_mode, qlm); |
| 3592 | continue; |
| 3593 | } |
| 3594 | |
| 3595 | mode_0.s.pll_icp = clk_settings->mode_0.s.pll_icp; |
| 3596 | mode_0.s.pll_rloop = clk_settings->mode_0.s.pll_rloop; |
| 3597 | mode_0.s.pll_pcs_div = clk_settings->mode_0.s.pll_pcs_div; |
| 3598 | |
| 3599 | mode_1.s.pll_16p5en = clk_settings->mode_1.s.pll_16p5en; |
| 3600 | mode_1.s.pll_cpadj = clk_settings->mode_1.s.pll_cpadj; |
| 3601 | mode_1.s.pll_pcie3en = clk_settings->mode_1.s.pll_pcie3en; |
| 3602 | mode_1.s.pll_opr = clk_settings->mode_1.s.pll_opr; |
| 3603 | mode_1.s.pll_div = clk_settings->mode_1.s.pll_div; |
| 3604 | |
| 3605 | pmode_0.u64 = clk_settings->pmode_0.u64; |
| 3606 | |
| 3607 | pmode_1.u64 = clk_settings->pmode_1.u64; |
| 3608 | |
| 3609 | csr_wr_node(node, CVMX_GSERX_PLL_PX_MODE_1(lane_mode, qlm), mode_1.u64); |
| 3610 | csr_wr_node(node, CVMX_GSERX_LANE_PX_MODE_0(lane_mode, qlm), pmode_0.u64); |
| 3611 | csr_wr_node(node, CVMX_GSERX_LANE_PX_MODE_1(lane_mode, qlm), pmode_1.u64); |
| 3612 | csr_wr_node(node, CVMX_GSERX_PLL_PX_MODE_0(lane_mode, qlm), mode_0.u64); |
| 3613 | } |
| 3614 | } |
| 3615 | |
| 3616 | /** |
| 3617 | * Get the lane mode for the specified node and QLM. |
| 3618 | * |
| 3619 | * @param ref_clk_sel The reference-clock selection to use to configure QLM |
| 3620 | * 0 = REF_100MHZ |
| 3621 | * 1 = REF_125MHZ |
| 3622 | * 2 = REF_156MHZ |
| 3623 | * @param baud_mhz The speed the QLM needs to be configured in Mhz. |
| 3624 | * @param[out] alt_pll_settings If non-NULL this will be set if non-default PLL |
| 3625 | * settings are required for the mode. |
| 3626 | * |
| 3627 | * @return lane mode to use or -1 on error |
| 3628 | * |
| 3629 | * NOTE: In some modes |
| 3630 | */ |
| 3631 | static int __get_lane_mode_for_speed_and_ref_clk(int ref_clk_sel, int baud_mhz, |
| 3632 | bool *alt_pll_settings) |
| 3633 | { |
| 3634 | if (alt_pll_settings) |
| 3635 | *alt_pll_settings = false; |
| 3636 | switch (baud_mhz) { |
| 3637 | case 98304: |
| 3638 | case 49152: |
| 3639 | case 24576: |
| 3640 | case 12288: |
| 3641 | if (ref_clk_sel != 3) { |
| 3642 | printf("Error: Invalid ref clock\n"); |
| 3643 | return -1; |
| 3644 | } |
| 3645 | return 0x5; |
| 3646 | case 6144: |
| 3647 | case 3072: |
| 3648 | if (ref_clk_sel != 3) { |
| 3649 | printf("Error: Invalid ref clock\n"); |
| 3650 | return -1; |
| 3651 | } |
| 3652 | return 0x8; |
| 3653 | case 1250: |
| 3654 | if (alt_pll_settings) |
| 3655 | *alt_pll_settings = (ref_clk_sel != 2); |
| 3656 | return R_125G_REFCLK15625_SGMII; |
| 3657 | case 2500: |
| 3658 | if (ref_clk_sel == 0) |
| 3659 | return R_2_5G_REFCLK100; |
| 3660 | |
| 3661 | if (alt_pll_settings) |
| 3662 | *alt_pll_settings = (ref_clk_sel != 1); |
| 3663 | return R_2_5G_REFCLK125; |
| 3664 | case 3125: |
| 3665 | if (ref_clk_sel == 2) { |
| 3666 | return R_3125G_REFCLK15625_XAUI; |
| 3667 | } else if (ref_clk_sel == 1) { |
| 3668 | if (alt_pll_settings) |
| 3669 | *alt_pll_settings = true; |
| 3670 | return R_3125G_REFCLK15625_XAUI; |
| 3671 | } |
| 3672 | |
| 3673 | printf("Error: Invalid speed\n"); |
| 3674 | return -1; |
| 3675 | case 5000: |
| 3676 | if (ref_clk_sel == 0) { |
| 3677 | return R_5G_REFCLK100; |
| 3678 | } else if (ref_clk_sel == 1) { |
| 3679 | if (alt_pll_settings) |
| 3680 | *alt_pll_settings = (ref_clk_sel != 1); |
| 3681 | return R_5G_REFCLK125; |
| 3682 | } else { |
| 3683 | return R_5G_REFCLK15625_QSGMII; |
| 3684 | } |
| 3685 | case 6250: |
| 3686 | if (ref_clk_sel != 0) { |
| 3687 | if (alt_pll_settings) |
| 3688 | *alt_pll_settings = (ref_clk_sel != 2); |
| 3689 | return R_625G_REFCLK15625_RXAUI; |
| 3690 | } |
| 3691 | |
| 3692 | printf("Error: Invalid speed\n"); |
| 3693 | return -1; |
| 3694 | case 6316: |
| 3695 | if (ref_clk_sel != 3) { |
| 3696 | printf("Error: Invalid speed\n"); |
| 3697 | } else { |
| 3698 | *alt_pll_settings = true; |
| 3699 | return R_625G_REFCLK15625_RXAUI; |
| 3700 | } |
| 3701 | case 8000: |
| 3702 | if (ref_clk_sel == 0) |
| 3703 | return R_8G_REFCLK100; |
| 3704 | else if (ref_clk_sel == 1) |
| 3705 | return R_8G_REFCLK125; |
| 3706 | |
| 3707 | printf("Error: Invalid speed\n"); |
| 3708 | return -1; |
| 3709 | case 103125: |
| 3710 | if (ref_clk_sel == 3 && alt_pll_settings) |
| 3711 | *alt_pll_settings = true; |
| 3712 | |
| 3713 | if (ref_clk_sel == 2 || ref_clk_sel == 3) |
| 3714 | return R_103125G_REFCLK15625_KR; |
| 3715 | |
| 3716 | default: |
| 3717 | printf("Error: Invalid speed\n"); |
| 3718 | return -1; |
| 3719 | } |
| 3720 | |
| 3721 | return -1; |
| 3722 | } |
| 3723 | |
| 3724 | /* |
| 3725 | * Errata PEM-31375 PEM RSL accesses to PCLK registers can timeout |
| 3726 | * during speed change. Change SLI_WINDOW_CTL[time] to 525us |
| 3727 | */ |
| 3728 | static void __set_sli_window_ctl_errata_31375(int node) |
| 3729 | { |
| 3730 | if (OCTEON_IS_MODEL(OCTEON_CN78XX) || OCTEON_IS_MODEL(OCTEON_CN73XX) || |
| 3731 | OCTEON_IS_MODEL(OCTEON_CNF75XX)) { |
| 3732 | cvmx_sli_window_ctl_t window_ctl; |
| 3733 | |
| 3734 | window_ctl.u64 = csr_rd_node(node, CVMX_PEXP_SLI_WINDOW_CTL); |
| 3735 | /* Configure SLI_WINDOW_CTL only once */ |
| 3736 | if (window_ctl.s.time != 8191) |
| 3737 | return; |
| 3738 | |
| 3739 | window_ctl.s.time = gd->bus_clk * 525ull / 1000000; |
| 3740 | csr_wr_node(node, CVMX_PEXP_SLI_WINDOW_CTL, window_ctl.u64); |
| 3741 | } |
| 3742 | } |
| 3743 | |
| 3744 | static void __cvmx_qlm_pcie_errata_ep_cn78xx(int node, int pem) |
| 3745 | { |
| 3746 | cvmx_pciercx_cfg031_t cfg031; |
| 3747 | cvmx_pciercx_cfg032_t cfg032; |
| 3748 | cvmx_pciercx_cfg040_t cfg040; |
| 3749 | cvmx_pemx_cfg_t pemx_cfg; |
| 3750 | cvmx_pemx_on_t pemx_on; |
| 3751 | int low_qlm, high_qlm; |
| 3752 | int qlm, lane; |
| 3753 | u64 start_cycle; |
| 3754 | |
| 3755 | pemx_on.u64 = csr_rd_node(node, CVMX_PEMX_ON(pem)); |
| 3756 | |
| 3757 | /* Errata (GSER-21178) PCIe gen3 doesn't work, continued */ |
| 3758 | |
| 3759 | /* Wait for the link to come up as Gen1 */ |
| 3760 | printf("PCIe%d: Waiting for EP out of reset\n", pem); |
| 3761 | while (pemx_on.s.pemoor == 0) { |
| 3762 | udelay(1000); |
| 3763 | pemx_on.u64 = csr_rd_node(node, CVMX_PEMX_ON(pem)); |
| 3764 | } |
| 3765 | |
| 3766 | /* Enable gen3 speed selection */ |
| 3767 | printf("PCIe%d: Enabling Gen3 for EP\n", pem); |
| 3768 | /* Force Gen1 for initial link bringup. We'll fix it later */ |
| 3769 | pemx_cfg.u64 = csr_rd_node(node, CVMX_PEMX_CFG(pem)); |
| 3770 | pemx_cfg.s.md = 2; |
| 3771 | csr_wr_node(node, CVMX_PEMX_CFG(pem), pemx_cfg.u64); |
| 3772 | cfg031.u32 = cvmx_pcie_cfgx_read_node(node, pem, CVMX_PCIERCX_CFG031(pem)); |
| 3773 | cfg031.s.mls = 2; |
| 3774 | cvmx_pcie_cfgx_write_node(node, pem, CVMX_PCIERCX_CFG031(pem), cfg031.u32); |
| 3775 | cfg040.u32 = cvmx_pcie_cfgx_read_node(node, pem, CVMX_PCIERCX_CFG040(pem)); |
| 3776 | cfg040.s.tls = 3; |
| 3777 | cvmx_pcie_cfgx_write_node(node, pem, CVMX_PCIERCX_CFG040(pem), cfg040.u32); |
| 3778 | |
| 3779 | /* Wait up to 10ms for the link speed change to complete */ |
| 3780 | start_cycle = get_timer(0); |
| 3781 | do { |
| 3782 | if (get_timer(start_cycle) > 10) |
| 3783 | return; |
| 3784 | |
| 3785 | mdelay(1); |
| 3786 | cfg032.u32 = cvmx_pcie_cfgx_read_node(node, pem, CVMX_PCIERCX_CFG032(pem)); |
| 3787 | } while (cfg032.s.ls != 3); |
| 3788 | |
| 3789 | pemx_cfg.u64 = csr_rd_node(node, CVMX_PEMX_CFG(pem)); |
| 3790 | low_qlm = pem; /* FIXME */ |
| 3791 | high_qlm = (pemx_cfg.cn78xx.lanes8) ? low_qlm + 1 : low_qlm; |
| 3792 | |
| 3793 | /* Toggle cfg_rx_dll_locken_ovrrd_en and rx_resetn_ovrrd_en across |
| 3794 | * all QM lanes in use |
| 3795 | */ |
| 3796 | for (qlm = low_qlm; qlm <= high_qlm; qlm++) { |
| 3797 | for (lane = 0; lane < 4; lane++) { |
| 3798 | cvmx_gserx_lanex_rx_misc_ovrrd_t misc_ovrrd; |
| 3799 | cvmx_gserx_lanex_pwr_ctrl_t pwr_ctrl; |
| 3800 | |
| 3801 | misc_ovrrd.u64 = |
| 3802 | csr_rd_node(node, CVMX_GSERX_LANEX_RX_MISC_OVRRD(lane, pem)); |
| 3803 | misc_ovrrd.s.cfg_rx_dll_locken_ovrrd_en = 1; |
| 3804 | csr_wr_node(node, CVMX_GSERX_LANEX_RX_MISC_OVRRD(lane, pem), |
| 3805 | misc_ovrrd.u64); |
| 3806 | pwr_ctrl.u64 = csr_rd_node(node, CVMX_GSERX_LANEX_PWR_CTRL(lane, pem)); |
| 3807 | pwr_ctrl.s.rx_resetn_ovrrd_en = 1; |
| 3808 | csr_wr_node(node, CVMX_GSERX_LANEX_PWR_CTRL(lane, pem), pwr_ctrl.u64); |
| 3809 | } |
| 3810 | } |
| 3811 | for (qlm = low_qlm; qlm <= high_qlm; qlm++) { |
| 3812 | for (lane = 0; lane < 4; lane++) { |
| 3813 | cvmx_gserx_lanex_rx_misc_ovrrd_t misc_ovrrd; |
| 3814 | cvmx_gserx_lanex_pwr_ctrl_t pwr_ctrl; |
| 3815 | |
| 3816 | misc_ovrrd.u64 = |
| 3817 | csr_rd_node(node, CVMX_GSERX_LANEX_RX_MISC_OVRRD(lane, pem)); |
| 3818 | misc_ovrrd.s.cfg_rx_dll_locken_ovrrd_en = 0; |
| 3819 | csr_wr_node(node, CVMX_GSERX_LANEX_RX_MISC_OVRRD(lane, pem), |
| 3820 | misc_ovrrd.u64); |
| 3821 | pwr_ctrl.u64 = csr_rd_node(node, CVMX_GSERX_LANEX_PWR_CTRL(lane, pem)); |
| 3822 | pwr_ctrl.s.rx_resetn_ovrrd_en = 0; |
| 3823 | csr_wr_node(node, CVMX_GSERX_LANEX_PWR_CTRL(lane, pem), pwr_ctrl.u64); |
| 3824 | } |
| 3825 | } |
| 3826 | |
| 3827 | //printf("PCIe%d: Waiting for EP link up at Gen3\n", pem); |
| 3828 | if (CVMX_WAIT_FOR_FIELD64_NODE(node, CVMX_PEMX_ON(pem), cvmx_pemx_on_t, pemoor, ==, 1, |
| 3829 | 1000000)) { |
| 3830 | printf("PCIe%d: Timeout waiting for EP link up at Gen3\n", pem); |
| 3831 | return; |
| 3832 | } |
| 3833 | } |
| 3834 | |
| 3835 | static void __cvmx_qlm_pcie_errata_cn78xx(int node, int qlm) |
| 3836 | { |
| 3837 | int pem, i, q; |
| 3838 | int is_8lanes; |
| 3839 | int is_high_lanes; |
| 3840 | int low_qlm, high_qlm, is_host; |
| 3841 | int need_ep_monitor; |
| 3842 | cvmx_pemx_cfg_t pem_cfg, pem3_cfg; |
| 3843 | cvmx_gserx_slice_cfg_t slice_cfg; |
| 3844 | cvmx_gserx_rx_pwr_ctrl_p1_t pwr_ctrl_p1; |
| 3845 | cvmx_rst_soft_prstx_t soft_prst; |
| 3846 | |
| 3847 | /* Only applies to CN78XX pass 1.x */ |
| 3848 | if (!OCTEON_IS_MODEL(OCTEON_CN78XX_PASS1_X)) |
| 3849 | return; |
| 3850 | |
| 3851 | /* Determine the PEM for this QLM, whether we're in 8 lane mode, |
| 3852 | * and whether these are the top lanes of the 8 |
| 3853 | */ |
| 3854 | switch (qlm) { |
| 3855 | case 0: /* First 4 lanes of PEM0 */ |
| 3856 | pem_cfg.u64 = csr_rd_node(node, CVMX_PEMX_CFG(0)); |
| 3857 | pem = 0; |
| 3858 | is_8lanes = pem_cfg.cn78xx.lanes8; |
| 3859 | is_high_lanes = 0; |
| 3860 | break; |
| 3861 | case 1: /* Either last 4 lanes of PEM0, or PEM1 */ |
| 3862 | pem_cfg.u64 = csr_rd_node(node, CVMX_PEMX_CFG(0)); |
| 3863 | pem = (pem_cfg.cn78xx.lanes8) ? 0 : 1; |
| 3864 | is_8lanes = pem_cfg.cn78xx.lanes8; |
| 3865 | is_high_lanes = is_8lanes; |
| 3866 | break; |
| 3867 | case 2: /* First 4 lanes of PEM2 */ |
| 3868 | pem_cfg.u64 = csr_rd_node(node, CVMX_PEMX_CFG(2)); |
| 3869 | pem = 2; |
| 3870 | is_8lanes = pem_cfg.cn78xx.lanes8; |
| 3871 | is_high_lanes = 0; |
| 3872 | break; |
| 3873 | case 3: /* Either last 4 lanes of PEM2, or PEM3 */ |
| 3874 | pem_cfg.u64 = csr_rd_node(node, CVMX_PEMX_CFG(2)); |
| 3875 | pem3_cfg.u64 = csr_rd_node(node, CVMX_PEMX_CFG(3)); |
| 3876 | pem = (pem_cfg.cn78xx.lanes8) ? 2 : 3; |
| 3877 | is_8lanes = (pem == 2) ? pem_cfg.cn78xx.lanes8 : pem3_cfg.cn78xx.lanes8; |
| 3878 | is_high_lanes = (pem == 2) && is_8lanes; |
| 3879 | break; |
| 3880 | case 4: /* Last 4 lanes of PEM3 */ |
| 3881 | pem = 3; |
| 3882 | is_8lanes = 1; |
| 3883 | is_high_lanes = 1; |
| 3884 | break; |
| 3885 | default: |
| 3886 | return; |
| 3887 | } |
| 3888 | |
| 3889 | /* These workaround must be applied once per PEM. Since we're called per |
| 3890 | * QLM, wait for the 2nd half of 8 lane setups before doing the workaround |
| 3891 | */ |
| 3892 | if (is_8lanes && !is_high_lanes) |
| 3893 | return; |
| 3894 | |
| 3895 | pem_cfg.u64 = csr_rd_node(node, CVMX_PEMX_CFG(pem)); |
| 3896 | is_host = pem_cfg.cn78xx.hostmd; |
| 3897 | low_qlm = (is_8lanes) ? qlm - 1 : qlm; |
| 3898 | high_qlm = qlm; |
| 3899 | qlm = -1; |
| 3900 | |
| 3901 | if (!is_host) { |
| 3902 | /* Read the current slice config value. If its at the value we will |
| 3903 | * program then skip doing the workaround. We're probably doing a |
| 3904 | * hot reset and the workaround is already applied |
| 3905 | */ |
| 3906 | slice_cfg.u64 = csr_rd_node(node, CVMX_GSERX_SLICE_CFG(low_qlm)); |
| 3907 | if (slice_cfg.s.tx_rx_detect_lvl_enc == 7 && OCTEON_IS_MODEL(OCTEON_CN78XX_PASS1_0)) |
| 3908 | return; |
| 3909 | } |
| 3910 | |
| 3911 | if (is_host && OCTEON_IS_MODEL(OCTEON_CN78XX_PASS1_0)) { |
| 3912 | /* (GSER-XXXX) GSER PHY needs to be reset at initialization */ |
| 3913 | cvmx_gserx_phy_ctl_t phy_ctl; |
| 3914 | |
| 3915 | for (q = low_qlm; q <= high_qlm; q++) { |
| 3916 | phy_ctl.u64 = csr_rd_node(node, CVMX_GSERX_PHY_CTL(q)); |
| 3917 | phy_ctl.s.phy_reset = 1; |
| 3918 | csr_wr_node(node, CVMX_GSERX_PHY_CTL(q), phy_ctl.u64); |
| 3919 | } |
| 3920 | udelay(5); |
| 3921 | |
| 3922 | for (q = low_qlm; q <= high_qlm; q++) { |
| 3923 | phy_ctl.u64 = csr_rd_node(node, CVMX_GSERX_PHY_CTL(q)); |
| 3924 | phy_ctl.s.phy_reset = 0; |
| 3925 | csr_wr_node(node, CVMX_GSERX_PHY_CTL(q), phy_ctl.u64); |
| 3926 | } |
| 3927 | udelay(5); |
| 3928 | } |
| 3929 | |
| 3930 | if (OCTEON_IS_MODEL(OCTEON_CN78XX_PASS1_0)) { |
| 3931 | /* (GSER-20936) GSER has wrong PCIe RX detect reset value */ |
| 3932 | for (q = low_qlm; q <= high_qlm; q++) { |
| 3933 | slice_cfg.u64 = csr_rd_node(node, CVMX_GSERX_SLICE_CFG(q)); |
| 3934 | slice_cfg.s.tx_rx_detect_lvl_enc = 7; |
| 3935 | csr_wr_node(node, CVMX_GSERX_SLICE_CFG(q), slice_cfg.u64); |
| 3936 | } |
| 3937 | |
| 3938 | /* Clear the bit in GSERX_RX_PWR_CTRL_P1[p1_rx_subblk_pd] |
| 3939 | * that coresponds to "Lane DLL" |
| 3940 | */ |
| 3941 | for (q = low_qlm; q <= high_qlm; q++) { |
| 3942 | pwr_ctrl_p1.u64 = csr_rd_node(node, CVMX_GSERX_RX_PWR_CTRL_P1(q)); |
| 3943 | pwr_ctrl_p1.s.p1_rx_subblk_pd &= ~4; |
| 3944 | csr_wr_node(node, CVMX_GSERX_RX_PWR_CTRL_P1(q), pwr_ctrl_p1.u64); |
| 3945 | } |
| 3946 | |
| 3947 | /* Errata (GSER-20888) GSER incorrect synchronizers hurts PCIe |
| 3948 | * Override TX Power State machine TX reset control signal |
| 3949 | */ |
| 3950 | for (q = low_qlm; q <= high_qlm; q++) { |
| 3951 | for (i = 0; i < 4; i++) { |
| 3952 | cvmx_gserx_lanex_tx_cfg_0_t tx_cfg; |
| 3953 | cvmx_gserx_lanex_pwr_ctrl_t pwr_ctrl; |
| 3954 | |
| 3955 | tx_cfg.u64 = csr_rd_node(node, CVMX_GSERX_LANEX_TX_CFG_0(i, q)); |
| 3956 | tx_cfg.s.tx_resetn_ovrrd_val = 1; |
| 3957 | csr_wr_node(node, CVMX_GSERX_LANEX_TX_CFG_0(i, q), tx_cfg.u64); |
| 3958 | pwr_ctrl.u64 = csr_rd_node(node, CVMX_GSERX_LANEX_PWR_CTRL(i, q)); |
| 3959 | pwr_ctrl.s.tx_p2s_resetn_ovrrd_en = 1; |
| 3960 | csr_wr_node(node, CVMX_GSERX_LANEX_PWR_CTRL(i, q), pwr_ctrl.u64); |
| 3961 | } |
| 3962 | } |
| 3963 | } |
| 3964 | |
| 3965 | if (!is_host) { |
| 3966 | cvmx_pciercx_cfg089_t cfg089; |
| 3967 | cvmx_pciercx_cfg090_t cfg090; |
| 3968 | cvmx_pciercx_cfg091_t cfg091; |
| 3969 | cvmx_pciercx_cfg092_t cfg092; |
| 3970 | cvmx_pciercx_cfg548_t cfg548; |
| 3971 | cvmx_pciercx_cfg554_t cfg554; |
| 3972 | |
| 3973 | if (OCTEON_IS_MODEL(OCTEON_CN78XX_PASS1_0)) { |
| 3974 | /* Errata (GSER-21178) PCIe gen3 doesn't work */ |
| 3975 | /* The starting equalization hints are incorrect on CN78XX pass 1.x. Fix |
| 3976 | * them for the 8 possible lanes. It doesn't hurt to program them even |
| 3977 | * for lanes not in use |
| 3978 | */ |
| 3979 | cfg089.u32 = cvmx_pcie_cfgx_read_node(node, pem, CVMX_PCIERCX_CFG089(pem)); |
| 3980 | cfg089.s.l1urph = 2; |
| 3981 | cfg089.s.l1utp = 7; |
| 3982 | cfg089.s.l0urph = 2; |
| 3983 | cfg089.s.l0utp = 7; |
| 3984 | cvmx_pcie_cfgx_write_node(node, pem, CVMX_PCIERCX_CFG089(pem), cfg089.u32); |
| 3985 | cfg090.u32 = cvmx_pcie_cfgx_read_node(node, pem, CVMX_PCIERCX_CFG090(pem)); |
| 3986 | cfg090.s.l3urph = 2; |
| 3987 | cfg090.s.l3utp = 7; |
| 3988 | cfg090.s.l2urph = 2; |
| 3989 | cfg090.s.l2utp = 7; |
| 3990 | cvmx_pcie_cfgx_write_node(node, pem, CVMX_PCIERCX_CFG090(pem), cfg090.u32); |
| 3991 | cfg091.u32 = cvmx_pcie_cfgx_read_node(node, pem, CVMX_PCIERCX_CFG091(pem)); |
| 3992 | cfg091.s.l5urph = 2; |
| 3993 | cfg091.s.l5utp = 7; |
| 3994 | cfg091.s.l4urph = 2; |
| 3995 | cfg091.s.l4utp = 7; |
| 3996 | cvmx_pcie_cfgx_write_node(node, pem, CVMX_PCIERCX_CFG091(pem), cfg091.u32); |
| 3997 | cfg092.u32 = cvmx_pcie_cfgx_read_node(node, pem, CVMX_PCIERCX_CFG092(pem)); |
| 3998 | cfg092.s.l7urph = 2; |
| 3999 | cfg092.s.l7utp = 7; |
| 4000 | cfg092.s.l6urph = 2; |
| 4001 | cfg092.s.l6utp = 7; |
| 4002 | cvmx_pcie_cfgx_write_node(node, pem, CVMX_PCIERCX_CFG092(pem), cfg092.u32); |
| 4003 | /* FIXME: Disable phase 2 and phase 3 equalization */ |
| 4004 | cfg548.u32 = cvmx_pcie_cfgx_read_node(node, pem, CVMX_PCIERCX_CFG548(pem)); |
| 4005 | cfg548.s.ep2p3d = 1; |
| 4006 | cvmx_pcie_cfgx_write_node(node, pem, CVMX_PCIERCX_CFG548(pem), cfg548.u32); |
| 4007 | } |
| 4008 | /* Errata (GSER-21331) GEN3 Equalization may fail */ |
| 4009 | /* Disable preset #10 and disable the 2ms timeout */ |
| 4010 | cfg554.u32 = cvmx_pcie_cfgx_read_node(node, pem, CVMX_PCIERCX_CFG554(pem)); |
| 4011 | if (OCTEON_IS_MODEL(OCTEON_CN78XX_PASS1_0)) |
| 4012 | cfg554.s.p23td = 1; |
| 4013 | cfg554.s.prv = 0x3ff; |
| 4014 | cvmx_pcie_cfgx_write_node(node, pem, CVMX_PCIERCX_CFG554(pem), cfg554.u32); |
| 4015 | |
| 4016 | if (OCTEON_IS_MODEL(OCTEON_CN78XX_PASS1_0)) { |
| 4017 | need_ep_monitor = (pem_cfg.s.md == 2); |
| 4018 | if (need_ep_monitor) { |
| 4019 | cvmx_pciercx_cfg031_t cfg031; |
| 4020 | cvmx_pciercx_cfg040_t cfg040; |
| 4021 | |
| 4022 | /* Force Gen1 for initial link bringup. We'll |
| 4023 | * fix it later |
| 4024 | */ |
| 4025 | pem_cfg.u64 = csr_rd_node(node, CVMX_PEMX_CFG(pem)); |
| 4026 | pem_cfg.s.md = 0; |
| 4027 | csr_wr_node(node, CVMX_PEMX_CFG(pem), pem_cfg.u64); |
| 4028 | cfg031.u32 = cvmx_pcie_cfgx_read_node(node, pem, |
| 4029 | CVMX_PCIERCX_CFG031(pem)); |
| 4030 | cfg031.s.mls = 0; |
| 4031 | cvmx_pcie_cfgx_write_node(node, pem, CVMX_PCIERCX_CFG031(pem), |
| 4032 | cfg031.u32); |
| 4033 | cfg040.u32 = cvmx_pcie_cfgx_read_node(node, pem, |
| 4034 | CVMX_PCIERCX_CFG040(pem)); |
| 4035 | cfg040.s.tls = 1; |
| 4036 | cvmx_pcie_cfgx_write_node(node, pem, CVMX_PCIERCX_CFG040(pem), |
| 4037 | cfg040.u32); |
| 4038 | __cvmx_qlm_pcie_errata_ep_cn78xx(node, pem); |
| 4039 | } |
| 4040 | return; |
| 4041 | } |
| 4042 | } |
| 4043 | |
| 4044 | if (OCTEON_IS_MODEL(OCTEON_CN78XX_PASS1_0)) { |
| 4045 | /* De-assert the SOFT_RST bit for this QLM (PEM), causing the PCIe |
| 4046 | * workarounds code above to take effect. |
| 4047 | */ |
| 4048 | soft_prst.u64 = csr_rd_node(node, CVMX_RST_SOFT_PRSTX(pem)); |
| 4049 | soft_prst.s.soft_prst = 0; |
| 4050 | csr_wr_node(node, CVMX_RST_SOFT_PRSTX(pem), soft_prst.u64); |
| 4051 | udelay(1); |
| 4052 | |
| 4053 | /* Assert the SOFT_RST bit for this QLM (PEM), putting the PCIe back into |
| 4054 | * reset state with disturbing the workarounds. |
| 4055 | */ |
| 4056 | soft_prst.u64 = csr_rd_node(node, CVMX_RST_SOFT_PRSTX(pem)); |
| 4057 | soft_prst.s.soft_prst = 1; |
| 4058 | csr_wr_node(node, CVMX_RST_SOFT_PRSTX(pem), soft_prst.u64); |
| 4059 | } |
| 4060 | udelay(1); |
| 4061 | } |
| 4062 | |
| 4063 | /** |
| 4064 | * Setup the PEM to either driver or receive reset from PRST based on RC or EP |
| 4065 | * |
| 4066 | * @param node Node to use in a Numa setup |
| 4067 | * @param pem Which PEM to setuo |
| 4068 | * @param is_endpoint |
| 4069 | * Non zero if PEM is a EP |
| 4070 | */ |
| 4071 | static void __setup_pem_reset(int node, int pem, int is_endpoint) |
| 4072 | { |
| 4073 | cvmx_rst_ctlx_t rst_ctl; |
| 4074 | |
| 4075 | /* Make sure is_endpoint is either 0 or 1 */ |
| 4076 | is_endpoint = (is_endpoint != 0); |
| 4077 | rst_ctl.u64 = csr_rd_node(node, CVMX_RST_CTLX(pem)); |
| 4078 | rst_ctl.s.prst_link = 0; /* Link down causes soft reset */ |
| 4079 | rst_ctl.s.rst_link = is_endpoint; /* EP PERST causes a soft reset */ |
| 4080 | rst_ctl.s.rst_drv = !is_endpoint; /* Drive if RC */ |
| 4081 | rst_ctl.s.rst_rcv = is_endpoint; /* Only read PERST in EP mode */ |
| 4082 | rst_ctl.s.rst_chip = 0; /* PERST doesn't pull CHIP_RESET */ |
| 4083 | csr_wr_node(node, CVMX_RST_CTLX(pem), rst_ctl.u64); |
| 4084 | } |
| 4085 | |
| 4086 | /** |
| 4087 | * Configure QLM speed and mode for cn78xx. |
| 4088 | * |
| 4089 | * @param node Node to configure the QLM |
| 4090 | * @param qlm The QLM to configure |
| 4091 | * @param baud_mhz The speed the QLM needs to be configured in Mhz. |
| 4092 | * @param mode The QLM to be configured as SGMII/XAUI/PCIe. |
| 4093 | * @param rc Only used for PCIe, rc = 1 for root complex mode, 0 for EP mode. |
| 4094 | * @param gen3 Only used for PCIe |
| 4095 | * gen3 = 2 GEN3 mode |
| 4096 | * gen3 = 1 GEN2 mode |
| 4097 | * gen3 = 0 GEN1 mode |
| 4098 | * |
| 4099 | * @param ref_clk_sel The reference-clock selection to use to configure QLM |
| 4100 | * 0 = REF_100MHZ |
| 4101 | * 1 = REF_125MHZ |
| 4102 | * 2 = REF_156MHZ |
| 4103 | * 3 = REF_161MHZ |
| 4104 | * @param ref_clk_input The reference-clock input to use to configure QLM |
| 4105 | * |
| 4106 | * @return Return 0 on success or -1. |
| 4107 | */ |
| 4108 | int octeon_configure_qlm_cn78xx(int node, int qlm, int baud_mhz, int mode, int rc, int gen3, |
| 4109 | int ref_clk_sel, int ref_clk_input) |
| 4110 | { |
| 4111 | cvmx_gserx_phy_ctl_t phy_ctl; |
| 4112 | cvmx_gserx_lane_mode_t lmode; |
| 4113 | cvmx_gserx_cfg_t cfg; |
| 4114 | cvmx_gserx_refclk_sel_t refclk_sel; |
| 4115 | |
| 4116 | int is_pcie = 0; |
| 4117 | int is_ilk = 0; |
| 4118 | int is_bgx = 0; |
| 4119 | int lane_mode = 0; |
| 4120 | int lmac_type = 0; |
| 4121 | bool alt_pll = false; |
| 4122 | int num_ports = 0; |
| 4123 | int lane_to_sds = 0; |
| 4124 | |
| 4125 | debug("%s(node: %d, qlm: %d, baud_mhz: %d, mode: %d, rc: %d, gen3: %d, ref_clk_sel: %d, ref_clk_input: %d\n", |
| 4126 | __func__, node, qlm, baud_mhz, mode, rc, gen3, ref_clk_sel, ref_clk_input); |
| 4127 | if (OCTEON_IS_MODEL(OCTEON_CN76XX) && qlm > 4) { |
| 4128 | debug("%s: qlm %d not present on CN76XX\n", __func__, qlm); |
| 4129 | return -1; |
| 4130 | } |
| 4131 | |
| 4132 | /* Errata PEM-31375 PEM RSL accesses to PCLK registers can timeout |
| 4133 | * during speed change. Change SLI_WINDOW_CTL[time] to 525us |
| 4134 | */ |
| 4135 | __set_sli_window_ctl_errata_31375(node); |
| 4136 | |
| 4137 | cfg.u64 = csr_rd_node(node, CVMX_GSERX_CFG(qlm)); |
| 4138 | /* If PEM is in EP, no need to do anything */ |
| 4139 | |
| 4140 | if (cfg.s.pcie && rc == 0) { |
| 4141 | debug("%s: node %d, qlm %d is in PCIe endpoint mode, returning\n", |
| 4142 | __func__, node, qlm); |
| 4143 | return 0; |
| 4144 | } |
| 4145 | |
| 4146 | /* Set the reference clock to use */ |
| 4147 | refclk_sel.u64 = 0; |
| 4148 | if (ref_clk_input == 0) { /* External ref clock */ |
| 4149 | refclk_sel.s.com_clk_sel = 0; |
| 4150 | refclk_sel.s.use_com1 = 0; |
| 4151 | } else if (ref_clk_input == 1) { |
| 4152 | refclk_sel.s.com_clk_sel = 1; |
| 4153 | refclk_sel.s.use_com1 = 0; |
| 4154 | } else { |
| 4155 | refclk_sel.s.com_clk_sel = 1; |
| 4156 | refclk_sel.s.use_com1 = 1; |
| 4157 | } |
| 4158 | |
| 4159 | csr_wr_node(node, CVMX_GSERX_REFCLK_SEL(qlm), refclk_sel.u64); |
| 4160 | |
| 4161 | /* Reset the QLM after changing the reference clock */ |
| 4162 | phy_ctl.u64 = csr_rd_node(node, CVMX_GSERX_PHY_CTL(qlm)); |
| 4163 | phy_ctl.s.phy_reset = 1; |
| 4164 | phy_ctl.s.phy_pd = 1; |
| 4165 | csr_wr_node(node, CVMX_GSERX_PHY_CTL(qlm), phy_ctl.u64); |
| 4166 | |
| 4167 | udelay(1000); |
| 4168 | |
| 4169 | /* Always restore the reference clocks for a QLM */ |
| 4170 | memcpy(ref_clk_cn78xx[node][qlm], def_ref_clk_cn78xx, sizeof(def_ref_clk_cn78xx)); |
| 4171 | switch (mode) { |
| 4172 | case CVMX_QLM_MODE_PCIE: |
| 4173 | case CVMX_QLM_MODE_PCIE_1X8: { |
| 4174 | cvmx_pemx_cfg_t pemx_cfg; |
| 4175 | cvmx_pemx_on_t pemx_on; |
| 4176 | |
| 4177 | is_pcie = 1; |
| 4178 | |
| 4179 | if (ref_clk_sel == 0) { |
| 4180 | refclk_sel.u64 = csr_rd_node(node, CVMX_GSERX_REFCLK_SEL(qlm)); |
| 4181 | refclk_sel.s.pcie_refclk125 = 0; |
| 4182 | csr_wr_node(node, CVMX_GSERX_REFCLK_SEL(qlm), refclk_sel.u64); |
| 4183 | if (gen3 == 0) /* Gen1 mode */ |
| 4184 | lane_mode = R_2_5G_REFCLK100; |
| 4185 | else if (gen3 == 1) /* Gen2 mode */ |
| 4186 | lane_mode = R_5G_REFCLK100; |
| 4187 | else |
| 4188 | lane_mode = R_8G_REFCLK100; |
| 4189 | } else if (ref_clk_sel == 1) { |
| 4190 | refclk_sel.u64 = csr_rd_node(node, CVMX_GSERX_REFCLK_SEL(qlm)); |
| 4191 | refclk_sel.s.pcie_refclk125 = 1; |
| 4192 | csr_wr_node(node, CVMX_GSERX_REFCLK_SEL(qlm), refclk_sel.u64); |
| 4193 | if (gen3 == 0) /* Gen1 mode */ |
| 4194 | lane_mode = R_2_5G_REFCLK125; |
| 4195 | else if (gen3 == 1) /* Gen2 mode */ |
| 4196 | lane_mode = R_5G_REFCLK125; |
| 4197 | else |
| 4198 | lane_mode = R_8G_REFCLK125; |
| 4199 | } else { |
| 4200 | printf("Invalid reference clock for PCIe on QLM%d\n", qlm); |
| 4201 | return -1; |
| 4202 | } |
| 4203 | |
| 4204 | switch (qlm) { |
| 4205 | case 0: /* Either x4 or x8 based on PEM0 */ |
| 4206 | { |
| 4207 | cvmx_rst_soft_prstx_t rst_prst; |
| 4208 | |
| 4209 | rst_prst.u64 = csr_rd_node(node, CVMX_RST_SOFT_PRSTX(0)); |
| 4210 | rst_prst.s.soft_prst = rc; |
| 4211 | csr_wr_node(node, CVMX_RST_SOFT_PRSTX(0), rst_prst.u64); |
| 4212 | __setup_pem_reset(node, 0, !rc); |
| 4213 | |
| 4214 | pemx_cfg.u64 = csr_rd_node(node, CVMX_PEMX_CFG(0)); |
| 4215 | pemx_cfg.cn78xx.lanes8 = (mode == CVMX_QLM_MODE_PCIE_1X8); |
| 4216 | pemx_cfg.cn78xx.hostmd = rc; |
| 4217 | pemx_cfg.cn78xx.md = gen3; |
| 4218 | csr_wr_node(node, CVMX_PEMX_CFG(0), pemx_cfg.u64); |
| 4219 | /* x8 mode waits for QLM1 setup before turning on the PEM */ |
| 4220 | if (mode == CVMX_QLM_MODE_PCIE) { |
| 4221 | pemx_on.u64 = csr_rd_node(node, CVMX_PEMX_ON(0)); |
| 4222 | pemx_on.s.pemon = 1; |
| 4223 | csr_wr_node(node, CVMX_PEMX_ON(0), pemx_on.u64); |
| 4224 | } |
| 4225 | break; |
| 4226 | } |
| 4227 | case 1: /* Either PEM0 x8 or PEM1 x4 */ |
| 4228 | { |
| 4229 | if (mode == CVMX_QLM_MODE_PCIE) { |
| 4230 | cvmx_rst_soft_prstx_t rst_prst; |
| 4231 | cvmx_pemx_cfg_t pemx_cfg; |
| 4232 | |
| 4233 | rst_prst.u64 = csr_rd_node(node, CVMX_RST_SOFT_PRSTX(1)); |
| 4234 | rst_prst.s.soft_prst = rc; |
| 4235 | csr_wr_node(node, CVMX_RST_SOFT_PRSTX(1), rst_prst.u64); |
| 4236 | __setup_pem_reset(node, 1, !rc); |
| 4237 | |
| 4238 | pemx_cfg.u64 = csr_rd_node(node, CVMX_PEMX_CFG(1)); |
| 4239 | pemx_cfg.cn78xx.lanes8 = 0; |
| 4240 | pemx_cfg.cn78xx.hostmd = rc; |
| 4241 | pemx_cfg.cn78xx.md = gen3; |
| 4242 | csr_wr_node(node, CVMX_PEMX_CFG(1), pemx_cfg.u64); |
| 4243 | |
| 4244 | pemx_on.u64 = csr_rd_node(node, CVMX_PEMX_ON(1)); |
| 4245 | pemx_on.s.pemon = 1; |
| 4246 | csr_wr_node(node, CVMX_PEMX_ON(1), pemx_on.u64); |
| 4247 | } else { |
| 4248 | pemx_on.u64 = csr_rd_node(node, CVMX_PEMX_ON(0)); |
| 4249 | pemx_on.s.pemon = 1; |
| 4250 | csr_wr_node(node, CVMX_PEMX_ON(0), pemx_on.u64); |
| 4251 | } |
| 4252 | break; |
| 4253 | } |
| 4254 | case 2: /* Either PEM2 x4 or PEM2 x8 */ |
| 4255 | { |
| 4256 | cvmx_rst_soft_prstx_t rst_prst; |
| 4257 | |
| 4258 | rst_prst.u64 = csr_rd_node(node, CVMX_RST_SOFT_PRSTX(2)); |
| 4259 | rst_prst.s.soft_prst = rc; |
| 4260 | csr_wr_node(node, CVMX_RST_SOFT_PRSTX(2), rst_prst.u64); |
| 4261 | __setup_pem_reset(node, 2, !rc); |
| 4262 | |
| 4263 | pemx_cfg.u64 = csr_rd_node(node, CVMX_PEMX_CFG(2)); |
| 4264 | pemx_cfg.cn78xx.lanes8 = (mode == CVMX_QLM_MODE_PCIE_1X8); |
| 4265 | pemx_cfg.cn78xx.hostmd = rc; |
| 4266 | pemx_cfg.cn78xx.md = gen3; |
| 4267 | csr_wr_node(node, CVMX_PEMX_CFG(2), pemx_cfg.u64); |
| 4268 | /* x8 mode waits for QLM3 setup before turning on the PEM */ |
| 4269 | if (mode == CVMX_QLM_MODE_PCIE) { |
| 4270 | pemx_on.u64 = csr_rd_node(node, CVMX_PEMX_ON(2)); |
| 4271 | pemx_on.s.pemon = 1; |
| 4272 | csr_wr_node(node, CVMX_PEMX_ON(2), pemx_on.u64); |
| 4273 | } |
| 4274 | break; |
| 4275 | } |
| 4276 | case 3: /* Either PEM2 x8 or PEM3 x4 */ |
| 4277 | { |
| 4278 | pemx_cfg.u64 = csr_rd_node(node, CVMX_PEMX_CFG(2)); |
| 4279 | if (pemx_cfg.cn78xx.lanes8) { |
| 4280 | /* Last 4 lanes of PEM2 */ |
| 4281 | /* PEMX_CFG already setup */ |
| 4282 | pemx_on.u64 = csr_rd_node(node, CVMX_PEMX_ON(2)); |
| 4283 | pemx_on.s.pemon = 1; |
| 4284 | csr_wr_node(node, CVMX_PEMX_ON(2), pemx_on.u64); |
| 4285 | } |
| 4286 | /* Check if PEM3 uses QLM3 and in x4 lane mode */ |
| 4287 | if (mode == CVMX_QLM_MODE_PCIE) { |
| 4288 | cvmx_rst_soft_prstx_t rst_prst; |
| 4289 | |
| 4290 | rst_prst.u64 = csr_rd_node(node, CVMX_RST_SOFT_PRSTX(3)); |
| 4291 | rst_prst.s.soft_prst = rc; |
| 4292 | csr_wr_node(node, CVMX_RST_SOFT_PRSTX(3), rst_prst.u64); |
| 4293 | __setup_pem_reset(node, 3, !rc); |
| 4294 | |
| 4295 | pemx_cfg.u64 = csr_rd_node(node, CVMX_PEMX_CFG(3)); |
| 4296 | pemx_cfg.cn78xx.lanes8 = 0; |
| 4297 | pemx_cfg.cn78xx.hostmd = rc; |
| 4298 | pemx_cfg.cn78xx.md = gen3; |
| 4299 | csr_wr_node(node, CVMX_PEMX_CFG(3), pemx_cfg.u64); |
| 4300 | |
| 4301 | pemx_on.u64 = csr_rd_node(node, CVMX_PEMX_ON(3)); |
| 4302 | pemx_on.s.pemon = 1; |
| 4303 | csr_wr_node(node, CVMX_PEMX_ON(3), pemx_on.u64); |
| 4304 | } |
| 4305 | break; |
| 4306 | } |
| 4307 | case 4: /* Either PEM3 x4 or PEM3 x8 */ |
| 4308 | { |
| 4309 | if (mode == CVMX_QLM_MODE_PCIE_1X8) { |
| 4310 | /* Last 4 lanes of PEM3 */ |
| 4311 | /* PEMX_CFG already setup */ |
| 4312 | pemx_on.u64 = csr_rd_node(node, CVMX_PEMX_ON(3)); |
| 4313 | pemx_on.s.pemon = 1; |
| 4314 | csr_wr_node(node, CVMX_PEMX_ON(3), pemx_on.u64); |
| 4315 | } else { |
| 4316 | /* 4 lanes of PEM3 */ |
| 4317 | cvmx_pemx_qlm_t pemx_qlm; |
| 4318 | cvmx_rst_soft_prstx_t rst_prst; |
| 4319 | |
| 4320 | rst_prst.u64 = csr_rd_node(node, CVMX_RST_SOFT_PRSTX(3)); |
| 4321 | rst_prst.s.soft_prst = rc; |
| 4322 | csr_wr_node(node, CVMX_RST_SOFT_PRSTX(3), rst_prst.u64); |
| 4323 | __setup_pem_reset(node, 3, !rc); |
| 4324 | |
| 4325 | pemx_cfg.u64 = csr_rd_node(node, CVMX_PEMX_CFG(3)); |
| 4326 | pemx_cfg.cn78xx.lanes8 = 0; |
| 4327 | pemx_cfg.cn78xx.hostmd = rc; |
| 4328 | pemx_cfg.cn78xx.md = gen3; |
| 4329 | csr_wr_node(node, CVMX_PEMX_CFG(3), pemx_cfg.u64); |
| 4330 | /* PEM3 is on QLM4 */ |
| 4331 | pemx_qlm.u64 = csr_rd_node(node, CVMX_PEMX_QLM(3)); |
| 4332 | pemx_qlm.cn78xx.pem3qlm = 1; |
| 4333 | csr_wr_node(node, CVMX_PEMX_QLM(3), pemx_qlm.u64); |
| 4334 | pemx_on.u64 = csr_rd_node(node, CVMX_PEMX_ON(3)); |
| 4335 | pemx_on.s.pemon = 1; |
| 4336 | csr_wr_node(node, CVMX_PEMX_ON(3), pemx_on.u64); |
| 4337 | } |
| 4338 | break; |
| 4339 | } |
| 4340 | default: |
| 4341 | break; |
| 4342 | } |
| 4343 | break; |
| 4344 | } |
| 4345 | case CVMX_QLM_MODE_ILK: |
| 4346 | is_ilk = 1; |
| 4347 | lane_mode = __get_lane_mode_for_speed_and_ref_clk(ref_clk_sel, baud_mhz, &alt_pll); |
| 4348 | if (lane_mode == -1) |
| 4349 | return -1; |
| 4350 | /* FIXME: Set lane_mode for other speeds */ |
| 4351 | break; |
| 4352 | case CVMX_QLM_MODE_SGMII: |
| 4353 | is_bgx = 1; |
| 4354 | lmac_type = 0; |
| 4355 | lane_to_sds = 1; |
| 4356 | num_ports = 4; |
| 4357 | lane_mode = __get_lane_mode_for_speed_and_ref_clk(ref_clk_sel, baud_mhz, &alt_pll); |
| 4358 | debug("%s: SGMII lane mode: %d, alternate PLL: %s\n", __func__, lane_mode, |
| 4359 | alt_pll ? "true" : "false"); |
| 4360 | if (lane_mode == -1) |
| 4361 | return -1; |
| 4362 | break; |
| 4363 | case CVMX_QLM_MODE_XAUI: |
| 4364 | is_bgx = 5; |
| 4365 | lmac_type = 1; |
| 4366 | lane_to_sds = 0xe4; |
| 4367 | num_ports = 1; |
| 4368 | lane_mode = __get_lane_mode_for_speed_and_ref_clk(ref_clk_sel, baud_mhz, &alt_pll); |
| 4369 | debug("%s: XAUI lane mode: %d\n", __func__, lane_mode); |
| 4370 | if (lane_mode == -1) |
| 4371 | return -1; |
| 4372 | break; |
| 4373 | case CVMX_QLM_MODE_RXAUI: |
| 4374 | is_bgx = 3; |
| 4375 | lmac_type = 2; |
| 4376 | lane_to_sds = 0; |
| 4377 | num_ports = 2; |
| 4378 | debug("%s: RXAUI lane mode: %d\n", __func__, lane_mode); |
| 4379 | lane_mode = __get_lane_mode_for_speed_and_ref_clk(ref_clk_sel, baud_mhz, &alt_pll); |
| 4380 | if (lane_mode == -1) |
| 4381 | return -1; |
| 4382 | break; |
| 4383 | case CVMX_QLM_MODE_XFI: /* 10GR_4X1 */ |
| 4384 | case CVMX_QLM_MODE_10G_KR: |
| 4385 | is_bgx = 1; |
| 4386 | lmac_type = 3; |
| 4387 | lane_to_sds = 1; |
| 4388 | num_ports = 4; |
| 4389 | lane_mode = __get_lane_mode_for_speed_and_ref_clk(ref_clk_sel, baud_mhz, &alt_pll); |
| 4390 | debug("%s: XFI/10G_KR lane mode: %d\n", __func__, lane_mode); |
| 4391 | if (lane_mode == -1) |
| 4392 | return -1; |
| 4393 | break; |
| 4394 | case CVMX_QLM_MODE_XLAUI: /* 40GR4_1X4 */ |
| 4395 | case CVMX_QLM_MODE_40G_KR4: |
| 4396 | is_bgx = 5; |
| 4397 | lmac_type = 4; |
| 4398 | lane_to_sds = 0xe4; |
| 4399 | num_ports = 1; |
| 4400 | lane_mode = __get_lane_mode_for_speed_and_ref_clk(ref_clk_sel, baud_mhz, &alt_pll); |
| 4401 | debug("%s: XLAUI/40G_KR4 lane mode: %d\n", __func__, lane_mode); |
| 4402 | if (lane_mode == -1) |
| 4403 | return -1; |
| 4404 | break; |
| 4405 | case CVMX_QLM_MODE_DISABLED: |
| 4406 | /* Power down the QLM */ |
| 4407 | phy_ctl.u64 = csr_rd_node(node, CVMX_GSERX_PHY_CTL(qlm)); |
| 4408 | phy_ctl.s.phy_pd = 1; |
| 4409 | phy_ctl.s.phy_reset = 1; |
| 4410 | csr_wr_node(node, CVMX_GSERX_PHY_CTL(qlm), phy_ctl.u64); |
| 4411 | /* Disable all modes */ |
| 4412 | csr_wr_node(node, CVMX_GSERX_CFG(qlm), 0); |
| 4413 | /* Do nothing */ |
| 4414 | return 0; |
| 4415 | default: |
| 4416 | break; |
| 4417 | } |
| 4418 | |
| 4419 | if (alt_pll) { |
| 4420 | debug("%s: alternate PLL settings used for node %d, qlm %d, lane mode %d, reference clock %d\n", |
| 4421 | __func__, node, qlm, lane_mode, ref_clk_sel); |
| 4422 | if (__set_qlm_ref_clk_cn78xx(node, qlm, lane_mode, ref_clk_sel)) { |
| 4423 | printf("%s: Error: reference clock %d is not supported for node %d, qlm %d\n", |
| 4424 | __func__, ref_clk_sel, node, qlm); |
| 4425 | return -1; |
| 4426 | } |
| 4427 | } |
| 4428 | |
| 4429 | /* Power up PHY, but keep it in reset */ |
| 4430 | phy_ctl.u64 = csr_rd_node(node, CVMX_GSERX_PHY_CTL(qlm)); |
| 4431 | phy_ctl.s.phy_pd = 0; |
| 4432 | phy_ctl.s.phy_reset = 1; |
| 4433 | csr_wr_node(node, CVMX_GSERX_PHY_CTL(qlm), phy_ctl.u64); |
| 4434 | |
| 4435 | /* Errata GSER-20788: GSER(0..13)_CFG[BGX_QUAD]=1 is broken. Force the |
| 4436 | * BGX_QUAD bit to be clear for CN78XX pass 1.x |
| 4437 | */ |
| 4438 | if (OCTEON_IS_MODEL(OCTEON_CN78XX_PASS1_X)) |
| 4439 | is_bgx &= 3; |
| 4440 | |
| 4441 | /* Set GSER for the interface mode */ |
| 4442 | cfg.u64 = csr_rd_node(node, CVMX_GSERX_CFG(qlm)); |
| 4443 | cfg.s.ila = is_ilk; |
| 4444 | cfg.s.bgx = is_bgx & 1; |
| 4445 | cfg.s.bgx_quad = (is_bgx >> 2) & 1; |
| 4446 | cfg.s.bgx_dual = (is_bgx >> 1) & 1; |
| 4447 | cfg.s.pcie = is_pcie; |
| 4448 | csr_wr_node(node, CVMX_GSERX_CFG(qlm), cfg.u64); |
| 4449 | |
| 4450 | /* Lane mode */ |
| 4451 | lmode.u64 = csr_rd_node(node, CVMX_GSERX_LANE_MODE(qlm)); |
| 4452 | lmode.s.lmode = lane_mode; |
| 4453 | csr_wr_node(node, CVMX_GSERX_LANE_MODE(qlm), lmode.u64); |
| 4454 | |
| 4455 | /* BGX0-1 can connect to QLM0-1 or QLM 2-3. Program the select bit if we're |
| 4456 | * one of these QLMs and we're using BGX |
| 4457 | */ |
| 4458 | if (qlm < 4 && is_bgx) { |
| 4459 | int bgx = qlm & 1; |
| 4460 | int use_upper = (qlm >> 1) & 1; |
| 4461 | cvmx_bgxx_cmr_global_config_t global_cfg; |
| 4462 | |
| 4463 | global_cfg.u64 = csr_rd_node(node, CVMX_BGXX_CMR_GLOBAL_CONFIG(bgx)); |
| 4464 | global_cfg.s.pmux_sds_sel = use_upper; |
| 4465 | csr_wr_node(node, CVMX_BGXX_CMR_GLOBAL_CONFIG(bgx), global_cfg.u64); |
| 4466 | } |
| 4467 | |
| 4468 | /* Bring phy out of reset */ |
| 4469 | phy_ctl.u64 = csr_rd_node(node, CVMX_GSERX_PHY_CTL(qlm)); |
| 4470 | phy_ctl.s.phy_reset = 0; |
| 4471 | csr_wr_node(node, CVMX_GSERX_PHY_CTL(qlm), phy_ctl.u64); |
| 4472 | csr_rd_node(node, CVMX_GSERX_PHY_CTL(qlm)); |
| 4473 | |
| 4474 | /* |
| 4475 | * Wait 250 ns until the management interface is ready to accept |
| 4476 | * read/write commands. |
| 4477 | */ |
| 4478 | udelay(1); |
| 4479 | |
| 4480 | if (is_bgx) { |
| 4481 | int bgx = (qlm < 2) ? qlm : qlm - 2; |
| 4482 | cvmx_bgxx_cmrx_config_t cmr_config; |
| 4483 | int index; |
| 4484 | |
| 4485 | for (index = 0; index < num_ports; index++) { |
| 4486 | cmr_config.u64 = csr_rd_node(node, CVMX_BGXX_CMRX_CONFIG(index, bgx)); |
| 4487 | cmr_config.s.enable = 0; |
| 4488 | cmr_config.s.data_pkt_tx_en = 0; |
| 4489 | cmr_config.s.data_pkt_rx_en = 0; |
| 4490 | cmr_config.s.lmac_type = lmac_type; |
| 4491 | cmr_config.s.lane_to_sds = ((lane_to_sds == 1) ? |
| 4492 | index : ((lane_to_sds == 0) ? |
| 4493 | (index ? 0xe : 4) : |
| 4494 | lane_to_sds)); |
| 4495 | csr_wr_node(node, CVMX_BGXX_CMRX_CONFIG(index, bgx), cmr_config.u64); |
| 4496 | } |
| 4497 | csr_wr_node(node, CVMX_BGXX_CMR_TX_LMACS(bgx), num_ports); |
| 4498 | csr_wr_node(node, CVMX_BGXX_CMR_RX_LMACS(bgx), num_ports); |
| 4499 | |
| 4500 | /* Enable/disable training for 10G_KR/40G_KR4/XFI/XLAUI modes */ |
| 4501 | for (index = 0; index < num_ports; index++) { |
| 4502 | cvmx_bgxx_spux_br_pmd_control_t spu_pmd_control; |
| 4503 | |
| 4504 | spu_pmd_control.u64 = |
| 4505 | csr_rd_node(node, CVMX_BGXX_SPUX_BR_PMD_CONTROL(index, bgx)); |
| 4506 | |
| 4507 | if (mode == CVMX_QLM_MODE_10G_KR || mode == CVMX_QLM_MODE_40G_KR4) |
| 4508 | spu_pmd_control.s.train_en = 1; |
| 4509 | else if (mode == CVMX_QLM_MODE_XFI || mode == CVMX_QLM_MODE_XLAUI) |
| 4510 | spu_pmd_control.s.train_en = 0; |
| 4511 | |
| 4512 | csr_wr_node(node, CVMX_BGXX_SPUX_BR_PMD_CONTROL(index, bgx), |
| 4513 | spu_pmd_control.u64); |
| 4514 | } |
| 4515 | } |
| 4516 | |
| 4517 | /* Configure the gser pll */ |
| 4518 | if (!is_pcie) |
| 4519 | __qlm_setup_pll_cn78xx(node, qlm); |
| 4520 | |
| 4521 | /* Wait for reset to complete and the PLL to lock */ |
| 4522 | if (CVMX_WAIT_FOR_FIELD64_NODE(node, CVMX_GSERX_PLL_STAT(qlm), |
| 4523 | cvmx_gserx_pll_stat_t, |
| 4524 | pll_lock, ==, 1, 10000)) { |
| 4525 | printf("%d:QLM%d: Timeout waiting for GSERX_PLL_STAT[pll_lock]\n", |
| 4526 | node, qlm); |
| 4527 | return -1; |
| 4528 | } |
| 4529 | |
| 4530 | /* Perform PCIe errata workaround */ |
| 4531 | if (is_pcie) |
| 4532 | __cvmx_qlm_pcie_errata_cn78xx(node, qlm); |
| 4533 | else |
| 4534 | __qlm_init_errata_20844(node, qlm); |
| 4535 | |
| 4536 | /* Wait for reset to complete and the PLL to lock */ |
| 4537 | /* PCIe mode doesn't become ready until the PEM block attempts to bring |
| 4538 | * the interface up. Skip this check for PCIe |
| 4539 | */ |
| 4540 | if (!is_pcie && CVMX_WAIT_FOR_FIELD64_NODE(node, CVMX_GSERX_QLM_STAT(qlm), |
| 4541 | cvmx_gserx_qlm_stat_t, rst_rdy, |
| 4542 | ==, 1, 10000)) { |
| 4543 | printf("%d:QLM%d: Timeout waiting for GSERX_QLM_STAT[rst_rdy]\n", |
| 4544 | node, qlm); |
| 4545 | return -1; |
| 4546 | } |
| 4547 | |
| 4548 | /* Errata GSER-26150: 10G PHY PLL Temperature Failure */ |
| 4549 | /* This workaround must be completed after the final deassertion of |
| 4550 | * GSERx_PHY_CTL[PHY_RESET]. |
| 4551 | * Apply the workaround to 10.3125Gbps and 8Gbps only. |
| 4552 | */ |
| 4553 | if (OCTEON_IS_MODEL(OCTEON_CN78XX_PASS1_X) && |
| 4554 | (baud_mhz == 103125 || (is_pcie && gen3 == 2))) |
| 4555 | __qlm_errata_gser_26150(0, qlm, is_pcie); |
| 4556 | |
| 4557 | /* Errata GSER-26636: 10G-KR/40G-KR - Inverted Tx Coefficient Direction |
| 4558 | * Change. Applied to all 10G standards (required for KR) but also |
| 4559 | * applied to other standards in case software training is used |
| 4560 | */ |
| 4561 | if (OCTEON_IS_MODEL(OCTEON_CN78XX_PASS1_X) && baud_mhz == 103125) |
| 4562 | __qlm_kr_inc_dec_gser26636(node, qlm); |
| 4563 | |
| 4564 | /* Errata GSER-25992: RX EQ Default Settings Update (CTLE Bias) */ |
| 4565 | /* This workaround will only be applied to Pass 1.x */ |
| 4566 | /* It will also only be applied if the SERDES data-rate is 10G */ |
| 4567 | /* or if PCIe Gen3 (gen3=2 is PCIe Gen3) */ |
| 4568 | if (OCTEON_IS_MODEL(OCTEON_CN78XX_PASS1_X) && |
| 4569 | (baud_mhz == 103125 || (is_pcie && gen3 == 2))) |
| 4570 | cvmx_qlm_gser_errata_25992(node, qlm); |
| 4571 | |
| 4572 | /* Errata GSER-27140: Updating the RX EQ settings due to temperature |
| 4573 | * drift sensitivities |
| 4574 | */ |
| 4575 | /* This workaround will also only be applied if the SERDES data-rate is 10G */ |
| 4576 | if (baud_mhz == 103125) |
| 4577 | __qlm_rx_eq_temp_gser27140(node, qlm); |
| 4578 | |
| 4579 | /* Reduce the voltage amplitude coming from Marvell PHY and also change |
| 4580 | * DFE threshold settings for RXAUI interface |
| 4581 | */ |
| 4582 | if (is_bgx && mode == CVMX_QLM_MODE_RXAUI) { |
| 4583 | int l; |
| 4584 | |
| 4585 | for (l = 0; l < 4; l++) { |
| 4586 | cvmx_gserx_lanex_rx_cfg_4_t cfg4; |
| 4587 | cvmx_gserx_lanex_tx_cfg_0_t cfg0; |
| 4588 | /* Change the Q/QB error sampler 0 threshold from 0xD to 0xF */ |
| 4589 | cfg4.u64 = csr_rd_node(node, CVMX_GSERX_LANEX_RX_CFG_4(l, qlm)); |
| 4590 | cfg4.s.cfg_rx_errdet_ctrl = 0xcf6f; |
| 4591 | csr_wr_node(node, CVMX_GSERX_LANEX_RX_CFG_4(l, qlm), cfg4.u64); |
| 4592 | /* Reduce the voltage swing to roughly 460mV */ |
| 4593 | cfg0.u64 = csr_rd_node(node, CVMX_GSERX_LANEX_TX_CFG_0(l, qlm)); |
| 4594 | cfg0.s.cfg_tx_swing = 0x12; |
| 4595 | csr_wr_node(node, CVMX_GSERX_LANEX_TX_CFG_0(l, qlm), cfg0.u64); |
| 4596 | } |
| 4597 | } |
| 4598 | |
| 4599 | return 0; |
| 4600 | } |
| 4601 | |
| 4602 | static int __is_qlm_valid_bgx_cn73xx(int qlm) |
| 4603 | { |
| 4604 | if (qlm == 2 || qlm == 3 || qlm == 5 || qlm == 6) |
| 4605 | return 0; |
| 4606 | return 1; |
| 4607 | } |
| 4608 | |
| 4609 | /** |
| 4610 | * Configure QLM/DLM speed and mode for cn73xx. |
| 4611 | * |
| 4612 | * @param qlm The QLM to configure |
| 4613 | * @param baud_mhz The speed the QLM needs to be configured in Mhz. |
| 4614 | * @param mode The QLM to be configured as SGMII/XAUI/PCIe. |
| 4615 | * @param rc Only used for PCIe, rc = 1 for root complex mode, 0 for EP mode. |
| 4616 | * @param gen3 Only used for PCIe |
| 4617 | * gen3 = 2 GEN3 mode |
| 4618 | * gen3 = 1 GEN2 mode |
| 4619 | * gen3 = 0 GEN1 mode |
| 4620 | * |
| 4621 | * @param ref_clk_sel The reference-clock selection to use to configure QLM |
| 4622 | * 0 = REF_100MHZ |
| 4623 | * 1 = REF_125MHZ |
| 4624 | * 2 = REF_156MHZ |
| 4625 | * 3 = REF_161MHZ |
| 4626 | * |
| 4627 | * @param ref_clk_input The reference-clock input to use to configure QLM |
| 4628 | * 0 = QLM/DLM reference clock input |
| 4629 | * 1 = common reference clock input 0 |
| 4630 | * 2 = common reference clock input 1 |
| 4631 | * |
| 4632 | * @return Return 0 on success or -1. |
| 4633 | */ |
| 4634 | static int octeon_configure_qlm_cn73xx(int qlm, int baud_mhz, int mode, int rc, int gen3, |
| 4635 | int ref_clk_sel, int ref_clk_input) |
| 4636 | { |
| 4637 | cvmx_gserx_phy_ctl_t phy_ctl; |
| 4638 | cvmx_gserx_lane_mode_t lmode; |
| 4639 | cvmx_gserx_cfg_t cfg; |
| 4640 | cvmx_gserx_refclk_sel_t refclk_sel; |
| 4641 | int is_pcie = 0; |
| 4642 | int is_bgx = 0; |
| 4643 | int lane_mode = 0; |
| 4644 | short lmac_type[4] = { 0 }; |
| 4645 | short sds_lane[4] = { 0 }; |
| 4646 | bool alt_pll = false; |
| 4647 | int enable_training = 0; |
| 4648 | int additional_lmacs = 0; |
| 4649 | |
| 4650 | debug("%s(qlm: %d, baud_mhz: %d, mode: %d, rc: %d, gen3: %d, ref_clk_sel: %d, ref_clk_input: %d\n", |
| 4651 | __func__, qlm, baud_mhz, mode, rc, gen3, ref_clk_sel, ref_clk_input); |
| 4652 | |
| 4653 | /* Don't configure QLM4 if it is not in SATA mode */ |
| 4654 | if (qlm == 4) { |
| 4655 | if (mode == CVMX_QLM_MODE_SATA_2X1) |
| 4656 | return __setup_sata(qlm, baud_mhz, ref_clk_sel, ref_clk_input); |
| 4657 | |
| 4658 | printf("Invalid mode for QLM4\n"); |
| 4659 | return 0; |
| 4660 | } |
| 4661 | |
| 4662 | cfg.u64 = csr_rd(CVMX_GSERX_CFG(qlm)); |
| 4663 | |
| 4664 | /* Errata PEM-31375 PEM RSL accesses to PCLK registers can timeout |
| 4665 | * during speed change. Change SLI_WINDOW_CTL[time] to 525us |
| 4666 | */ |
| 4667 | __set_sli_window_ctl_errata_31375(0); |
| 4668 | /* If PEM is in EP, no need to do anything */ |
| 4669 | if (cfg.s.pcie && rc == 0 && |
| 4670 | (mode == CVMX_QLM_MODE_PCIE || mode == CVMX_QLM_MODE_PCIE_1X8 || |
| 4671 | mode == CVMX_QLM_MODE_PCIE_1X2)) { |
| 4672 | debug("%s: qlm %d is in PCIe endpoint mode, returning\n", __func__, qlm); |
| 4673 | return 0; |
| 4674 | } |
| 4675 | |
| 4676 | /* Set the reference clock to use */ |
| 4677 | refclk_sel.u64 = 0; |
| 4678 | if (ref_clk_input == 0) { /* External ref clock */ |
| 4679 | refclk_sel.s.com_clk_sel = 0; |
| 4680 | refclk_sel.s.use_com1 = 0; |
| 4681 | } else if (ref_clk_input == 1) { |
| 4682 | refclk_sel.s.com_clk_sel = 1; |
| 4683 | refclk_sel.s.use_com1 = 0; |
| 4684 | } else { |
| 4685 | refclk_sel.s.com_clk_sel = 1; |
| 4686 | refclk_sel.s.use_com1 = 1; |
| 4687 | } |
| 4688 | |
| 4689 | csr_wr(CVMX_GSERX_REFCLK_SEL(qlm), refclk_sel.u64); |
| 4690 | |
| 4691 | /* Reset the QLM after changing the reference clock */ |
| 4692 | phy_ctl.u64 = csr_rd(CVMX_GSERX_PHY_CTL(qlm)); |
| 4693 | phy_ctl.s.phy_reset = 1; |
| 4694 | phy_ctl.s.phy_pd = 1; |
| 4695 | csr_wr(CVMX_GSERX_PHY_CTL(qlm), phy_ctl.u64); |
| 4696 | |
| 4697 | udelay(1000); |
| 4698 | |
| 4699 | /* Check if QLM is a valid BGX interface */ |
| 4700 | if (mode != CVMX_QLM_MODE_PCIE && mode != CVMX_QLM_MODE_PCIE_1X2 && |
| 4701 | mode != CVMX_QLM_MODE_PCIE_1X8) { |
| 4702 | if (__is_qlm_valid_bgx_cn73xx(qlm)) |
| 4703 | return -1; |
| 4704 | } |
| 4705 | |
| 4706 | switch (mode) { |
| 4707 | case CVMX_QLM_MODE_PCIE: |
| 4708 | case CVMX_QLM_MODE_PCIE_1X2: |
| 4709 | case CVMX_QLM_MODE_PCIE_1X8: { |
| 4710 | cvmx_pemx_cfg_t pemx_cfg; |
| 4711 | cvmx_pemx_on_t pemx_on; |
| 4712 | cvmx_pemx_qlm_t pemx_qlm; |
| 4713 | cvmx_rst_soft_prstx_t rst_prst; |
| 4714 | int port = 0; |
| 4715 | |
| 4716 | is_pcie = 1; |
| 4717 | |
| 4718 | if (qlm < 5 && mode == CVMX_QLM_MODE_PCIE_1X2) { |
| 4719 | printf("Invalid PCIe mode(%d) for QLM%d\n", mode, qlm); |
| 4720 | return -1; |
| 4721 | } |
| 4722 | |
| 4723 | if (ref_clk_sel == 0) { |
| 4724 | refclk_sel.u64 = csr_rd(CVMX_GSERX_REFCLK_SEL(qlm)); |
| 4725 | refclk_sel.s.pcie_refclk125 = 0; |
| 4726 | csr_wr(CVMX_GSERX_REFCLK_SEL(qlm), refclk_sel.u64); |
| 4727 | if (gen3 == 0) /* Gen1 mode */ |
| 4728 | lane_mode = R_2_5G_REFCLK100; |
| 4729 | else if (gen3 == 1) /* Gen2 mode */ |
| 4730 | lane_mode = R_5G_REFCLK100; |
| 4731 | else |
| 4732 | lane_mode = R_8G_REFCLK100; |
| 4733 | } else if (ref_clk_sel == 1) { |
| 4734 | refclk_sel.u64 = csr_rd(CVMX_GSERX_REFCLK_SEL(qlm)); |
| 4735 | refclk_sel.s.pcie_refclk125 = 1; |
| 4736 | csr_wr(CVMX_GSERX_REFCLK_SEL(qlm), refclk_sel.u64); |
| 4737 | if (gen3 == 0) /* Gen1 mode */ |
| 4738 | lane_mode = R_2_5G_REFCLK125; |
| 4739 | else if (gen3 == 1) /* Gen2 mode */ |
| 4740 | lane_mode = R_5G_REFCLK125; |
| 4741 | else |
| 4742 | lane_mode = R_8G_REFCLK125; |
| 4743 | } else { |
| 4744 | printf("Invalid reference clock for PCIe on QLM%d\n", qlm); |
| 4745 | return -1; |
| 4746 | } |
| 4747 | |
| 4748 | switch (qlm) { |
| 4749 | case 0: /* Either x4 or x8 based on PEM0 */ |
| 4750 | rst_prst.u64 = csr_rd(CVMX_RST_SOFT_PRSTX(0)); |
| 4751 | rst_prst.s.soft_prst = rc; |
| 4752 | csr_wr(CVMX_RST_SOFT_PRSTX(0), rst_prst.u64); |
| 4753 | __setup_pem_reset(0, 0, !rc); |
| 4754 | |
| 4755 | pemx_cfg.u64 = csr_rd(CVMX_PEMX_CFG(0)); |
| 4756 | pemx_cfg.cn78xx.lanes8 = (mode == CVMX_QLM_MODE_PCIE_1X8); |
| 4757 | pemx_cfg.cn78xx.hostmd = rc; |
| 4758 | pemx_cfg.cn78xx.md = gen3; |
| 4759 | csr_wr(CVMX_PEMX_CFG(0), pemx_cfg.u64); |
| 4760 | /* x8 mode waits for QLM1 setup before turning on the PEM */ |
| 4761 | if (mode == CVMX_QLM_MODE_PCIE) { |
| 4762 | pemx_on.u64 = csr_rd(CVMX_PEMX_ON(0)); |
| 4763 | pemx_on.s.pemon = 1; |
| 4764 | csr_wr(CVMX_PEMX_ON(0), pemx_on.u64); |
| 4765 | } |
| 4766 | break; |
| 4767 | case 1: /* Either PEM0 x8 or PEM1 x4 */ |
| 4768 | if (mode == CVMX_QLM_MODE_PCIE) { |
| 4769 | rst_prst.u64 = csr_rd(CVMX_RST_SOFT_PRSTX(1)); |
| 4770 | rst_prst.s.soft_prst = rc; |
| 4771 | csr_wr(CVMX_RST_SOFT_PRSTX(1), rst_prst.u64); |
| 4772 | __setup_pem_reset(0, 1, !rc); |
| 4773 | |
| 4774 | pemx_cfg.u64 = csr_rd(CVMX_PEMX_CFG(1)); |
| 4775 | pemx_cfg.cn78xx.lanes8 = 0; |
| 4776 | pemx_cfg.cn78xx.hostmd = rc; |
| 4777 | pemx_cfg.cn78xx.md = gen3; |
| 4778 | csr_wr(CVMX_PEMX_CFG(1), pemx_cfg.u64); |
| 4779 | |
| 4780 | pemx_on.u64 = csr_rd(CVMX_PEMX_ON(1)); |
| 4781 | pemx_on.s.pemon = 1; |
| 4782 | csr_wr(CVMX_PEMX_ON(1), pemx_on.u64); |
| 4783 | } else { /* x8 mode */ |
| 4784 | pemx_on.u64 = csr_rd(CVMX_PEMX_ON(0)); |
| 4785 | pemx_on.s.pemon = 1; |
| 4786 | csr_wr(CVMX_PEMX_ON(0), pemx_on.u64); |
| 4787 | } |
| 4788 | break; |
| 4789 | case 2: /* Either PEM2 x4 or PEM2 x8 or BGX0 */ |
| 4790 | { |
| 4791 | pemx_qlm.u64 = csr_rd(CVMX_PEMX_QLM(2)); |
| 4792 | pemx_qlm.cn73xx.pemdlmsel = 0; |
| 4793 | csr_wr(CVMX_PEMX_QLM(2), pemx_qlm.u64); |
| 4794 | |
| 4795 | rst_prst.u64 = csr_rd(CVMX_RST_SOFT_PRSTX(2)); |
| 4796 | rst_prst.s.soft_prst = rc; |
| 4797 | csr_wr(CVMX_RST_SOFT_PRSTX(2), rst_prst.u64); |
| 4798 | __setup_pem_reset(0, 2, !rc); |
| 4799 | |
| 4800 | pemx_cfg.u64 = csr_rd(CVMX_PEMX_CFG(2)); |
| 4801 | pemx_cfg.cn78xx.lanes8 = (mode == CVMX_QLM_MODE_PCIE_1X8); |
| 4802 | pemx_cfg.cn78xx.hostmd = rc; |
| 4803 | pemx_cfg.cn78xx.md = gen3; |
| 4804 | csr_wr(CVMX_PEMX_CFG(2), pemx_cfg.u64); |
| 4805 | /* x8 mode waits for QLM3 setup before turning on the PEM */ |
| 4806 | if (mode == CVMX_QLM_MODE_PCIE) { |
| 4807 | pemx_on.u64 = csr_rd(CVMX_PEMX_ON(2)); |
| 4808 | pemx_on.s.pemon = 1; |
| 4809 | csr_wr(CVMX_PEMX_ON(2), pemx_on.u64); |
| 4810 | } |
| 4811 | break; |
| 4812 | } |
| 4813 | case 3: /* Either PEM2 x8 or PEM3 x4 or BGX1 */ |
| 4814 | /* PEM2/PEM3 are configured to use QLM2/3 */ |
| 4815 | pemx_cfg.u64 = csr_rd(CVMX_PEMX_CFG(2)); |
| 4816 | if (pemx_cfg.cn78xx.lanes8) { |
| 4817 | /* Last 4 lanes of PEM2 */ |
| 4818 | /* PEMX_CFG already setup */ |
| 4819 | pemx_on.u64 = csr_rd(CVMX_PEMX_ON(2)); |
| 4820 | pemx_on.s.pemon = 1; |
| 4821 | csr_wr(CVMX_PEMX_ON(2), pemx_on.u64); |
| 4822 | } |
| 4823 | /* Check if PEM3 uses QLM3 and in x4 lane mode */ |
| 4824 | if (mode == CVMX_QLM_MODE_PCIE) { |
| 4825 | pemx_qlm.u64 = csr_rd(CVMX_PEMX_QLM(3)); |
| 4826 | pemx_qlm.cn73xx.pemdlmsel = 0; |
| 4827 | csr_wr(CVMX_PEMX_QLM(3), pemx_qlm.u64); |
| 4828 | |
| 4829 | rst_prst.u64 = csr_rd(CVMX_RST_SOFT_PRSTX(3)); |
| 4830 | rst_prst.s.soft_prst = rc; |
| 4831 | csr_wr(CVMX_RST_SOFT_PRSTX(3), rst_prst.u64); |
| 4832 | __setup_pem_reset(0, 3, !rc); |
| 4833 | |
| 4834 | pemx_cfg.u64 = csr_rd(CVMX_PEMX_CFG(3)); |
| 4835 | pemx_cfg.cn78xx.lanes8 = 0; |
| 4836 | pemx_cfg.cn78xx.hostmd = rc; |
| 4837 | pemx_cfg.cn78xx.md = gen3; |
| 4838 | csr_wr(CVMX_PEMX_CFG(3), pemx_cfg.u64); |
| 4839 | |
| 4840 | pemx_on.u64 = csr_rd(CVMX_PEMX_ON(3)); |
| 4841 | pemx_on.s.pemon = 1; |
| 4842 | csr_wr(CVMX_PEMX_ON(3), pemx_on.u64); |
| 4843 | } |
| 4844 | break; |
| 4845 | case 5: /* PEM2/PEM3 x2 or BGX2 */ |
| 4846 | case 6: |
| 4847 | port = (qlm == 5) ? 2 : 3; |
| 4848 | if (mode == CVMX_QLM_MODE_PCIE_1X2) { |
| 4849 | /* PEM2/PEM3 are configured to use DLM5/6 */ |
| 4850 | pemx_qlm.u64 = csr_rd(CVMX_PEMX_QLM(port)); |
| 4851 | pemx_qlm.cn73xx.pemdlmsel = 1; |
| 4852 | csr_wr(CVMX_PEMX_QLM(port), pemx_qlm.u64); |
| 4853 | /* 2 lanes of PEM3 */ |
| 4854 | rst_prst.u64 = csr_rd(CVMX_RST_SOFT_PRSTX(port)); |
| 4855 | rst_prst.s.soft_prst = rc; |
| 4856 | csr_wr(CVMX_RST_SOFT_PRSTX(port), rst_prst.u64); |
| 4857 | __setup_pem_reset(0, port, !rc); |
| 4858 | |
| 4859 | pemx_cfg.u64 = csr_rd(CVMX_PEMX_CFG(port)); |
| 4860 | pemx_cfg.cn78xx.lanes8 = 0; |
| 4861 | pemx_cfg.cn78xx.hostmd = rc; |
| 4862 | pemx_cfg.cn78xx.md = gen3; |
| 4863 | csr_wr(CVMX_PEMX_CFG(port), pemx_cfg.u64); |
| 4864 | |
| 4865 | pemx_on.u64 = csr_rd(CVMX_PEMX_ON(port)); |
| 4866 | pemx_on.s.pemon = 1; |
| 4867 | csr_wr(CVMX_PEMX_ON(port), pemx_on.u64); |
| 4868 | } |
| 4869 | break; |
| 4870 | default: |
| 4871 | break; |
| 4872 | } |
| 4873 | break; |
| 4874 | } |
| 4875 | case CVMX_QLM_MODE_SGMII: |
| 4876 | is_bgx = 1; |
| 4877 | lmac_type[0] = 0; |
| 4878 | lmac_type[1] = 0; |
| 4879 | lmac_type[2] = 0; |
| 4880 | lmac_type[3] = 0; |
| 4881 | sds_lane[0] = 0; |
| 4882 | sds_lane[1] = 1; |
| 4883 | sds_lane[2] = 2; |
| 4884 | sds_lane[3] = 3; |
| 4885 | break; |
| 4886 | case CVMX_QLM_MODE_SGMII_2X1: |
| 4887 | if (qlm == 5) { |
| 4888 | is_bgx = 1; |
| 4889 | lmac_type[0] = 0; |
| 4890 | lmac_type[1] = 0; |
| 4891 | lmac_type[2] = -1; |
| 4892 | lmac_type[3] = -1; |
| 4893 | sds_lane[0] = 0; |
| 4894 | sds_lane[1] = 1; |
| 4895 | } else if (qlm == 6) { |
| 4896 | is_bgx = 1; |
| 4897 | lmac_type[0] = -1; |
| 4898 | lmac_type[1] = -1; |
| 4899 | lmac_type[2] = 0; |
| 4900 | lmac_type[3] = 0; |
| 4901 | sds_lane[2] = 2; |
| 4902 | sds_lane[3] = 3; |
| 4903 | additional_lmacs = 2; |
| 4904 | } |
| 4905 | break; |
| 4906 | case CVMX_QLM_MODE_XAUI: |
| 4907 | is_bgx = 5; |
| 4908 | lmac_type[0] = 1; |
| 4909 | lmac_type[1] = -1; |
| 4910 | lmac_type[2] = -1; |
| 4911 | lmac_type[3] = -1; |
| 4912 | sds_lane[0] = 0xe4; |
| 4913 | break; |
| 4914 | case CVMX_QLM_MODE_RXAUI: |
| 4915 | is_bgx = 3; |
| 4916 | lmac_type[0] = 2; |
| 4917 | lmac_type[1] = 2; |
| 4918 | lmac_type[2] = -1; |
| 4919 | lmac_type[3] = -1; |
| 4920 | sds_lane[0] = 0x4; |
| 4921 | sds_lane[1] = 0xe; |
| 4922 | break; |
| 4923 | case CVMX_QLM_MODE_RXAUI_1X2: |
| 4924 | if (qlm == 5) { |
| 4925 | is_bgx = 3; |
| 4926 | lmac_type[0] = 2; |
| 4927 | lmac_type[1] = -1; |
| 4928 | lmac_type[2] = -1; |
| 4929 | lmac_type[3] = -1; |
| 4930 | sds_lane[0] = 0x4; |
| 4931 | } |
| 4932 | if (qlm == 6) { |
| 4933 | is_bgx = 3; |
| 4934 | lmac_type[0] = -1; |
| 4935 | lmac_type[1] = -1; |
| 4936 | lmac_type[2] = 2; |
| 4937 | lmac_type[3] = -1; |
| 4938 | sds_lane[2] = 0xe; |
| 4939 | additional_lmacs = 2; |
| 4940 | } |
| 4941 | break; |
| 4942 | case CVMX_QLM_MODE_10G_KR: |
| 4943 | enable_training = 1; |
| 4944 | case CVMX_QLM_MODE_XFI: /* 10GR_4X1 */ |
| 4945 | is_bgx = 1; |
| 4946 | lmac_type[0] = 3; |
| 4947 | lmac_type[1] = 3; |
| 4948 | lmac_type[2] = 3; |
| 4949 | lmac_type[3] = 3; |
| 4950 | sds_lane[0] = 0; |
| 4951 | sds_lane[1] = 1; |
| 4952 | sds_lane[2] = 2; |
| 4953 | sds_lane[3] = 3; |
| 4954 | break; |
| 4955 | case CVMX_QLM_MODE_10G_KR_1X2: |
| 4956 | enable_training = 1; |
| 4957 | case CVMX_QLM_MODE_XFI_1X2: |
| 4958 | if (qlm == 5) { |
| 4959 | is_bgx = 1; |
| 4960 | lmac_type[0] = 3; |
| 4961 | lmac_type[1] = 3; |
| 4962 | lmac_type[2] = -1; |
| 4963 | lmac_type[3] = -1; |
| 4964 | sds_lane[0] = 0; |
| 4965 | sds_lane[1] = 1; |
| 4966 | } else if (qlm == 6) { |
| 4967 | is_bgx = 1; |
| 4968 | lmac_type[0] = -1; |
| 4969 | lmac_type[1] = -1; |
| 4970 | lmac_type[2] = 3; |
| 4971 | lmac_type[3] = 3; |
| 4972 | sds_lane[2] = 2; |
| 4973 | sds_lane[3] = 3; |
| 4974 | additional_lmacs = 2; |
| 4975 | } |
| 4976 | break; |
| 4977 | case CVMX_QLM_MODE_40G_KR4: |
| 4978 | enable_training = 1; |
| 4979 | case CVMX_QLM_MODE_XLAUI: /* 40GR4_1X4 */ |
| 4980 | is_bgx = 5; |
| 4981 | lmac_type[0] = 4; |
| 4982 | lmac_type[1] = -1; |
| 4983 | lmac_type[2] = -1; |
| 4984 | lmac_type[3] = -1; |
| 4985 | sds_lane[0] = 0xe4; |
| 4986 | break; |
| 4987 | case CVMX_QLM_MODE_RGMII_SGMII: |
| 4988 | is_bgx = 1; |
| 4989 | lmac_type[0] = 5; |
| 4990 | lmac_type[1] = 0; |
| 4991 | lmac_type[2] = 0; |
| 4992 | lmac_type[3] = 0; |
| 4993 | sds_lane[0] = 0; |
| 4994 | sds_lane[1] = 1; |
| 4995 | sds_lane[2] = 2; |
| 4996 | sds_lane[3] = 3; |
| 4997 | break; |
| 4998 | case CVMX_QLM_MODE_RGMII_SGMII_1X1: |
| 4999 | if (qlm == 5) { |
| 5000 | is_bgx = 1; |
| 5001 | lmac_type[0] = 5; |
| 5002 | lmac_type[1] = 0; |
| 5003 | lmac_type[2] = -1; |
| 5004 | lmac_type[3] = -1; |
| 5005 | sds_lane[0] = 0; |
| 5006 | sds_lane[1] = 1; |
| 5007 | } |
| 5008 | break; |
| 5009 | case CVMX_QLM_MODE_RGMII_SGMII_2X1: |
| 5010 | if (qlm == 6) { |
| 5011 | is_bgx = 1; |
| 5012 | lmac_type[0] = 5; |
| 5013 | lmac_type[1] = -1; |
| 5014 | lmac_type[2] = 0; |
| 5015 | lmac_type[3] = 0; |
| 5016 | sds_lane[0] = 0; |
| 5017 | sds_lane[2] = 0; |
| 5018 | sds_lane[3] = 1; |
| 5019 | } |
| 5020 | break; |
| 5021 | case CVMX_QLM_MODE_RGMII_10G_KR: |
| 5022 | enable_training = 1; |
| 5023 | case CVMX_QLM_MODE_RGMII_XFI: |
| 5024 | is_bgx = 1; |
| 5025 | lmac_type[0] = 5; |
| 5026 | lmac_type[1] = 3; |
| 5027 | lmac_type[2] = 3; |
| 5028 | lmac_type[3] = 3; |
| 5029 | sds_lane[0] = 0; |
| 5030 | sds_lane[1] = 1; |
| 5031 | sds_lane[2] = 2; |
| 5032 | sds_lane[3] = 3; |
| 5033 | break; |
| 5034 | case CVMX_QLM_MODE_RGMII_10G_KR_1X1: |
| 5035 | enable_training = 1; |
| 5036 | case CVMX_QLM_MODE_RGMII_XFI_1X1: |
| 5037 | if (qlm == 5) { |
| 5038 | is_bgx = 3; |
| 5039 | lmac_type[0] = 5; |
| 5040 | lmac_type[1] = 3; |
| 5041 | lmac_type[2] = -1; |
| 5042 | lmac_type[3] = -1; |
| 5043 | sds_lane[0] = 0; |
| 5044 | sds_lane[1] = 1; |
| 5045 | } |
| 5046 | break; |
| 5047 | case CVMX_QLM_MODE_RGMII_40G_KR4: |
| 5048 | enable_training = 1; |
| 5049 | case CVMX_QLM_MODE_RGMII_XLAUI: |
| 5050 | is_bgx = 5; |
| 5051 | lmac_type[0] = 5; |
| 5052 | lmac_type[1] = 4; |
| 5053 | lmac_type[2] = -1; |
| 5054 | lmac_type[3] = -1; |
| 5055 | sds_lane[0] = 0x0; |
| 5056 | sds_lane[1] = 0xe4; |
| 5057 | break; |
| 5058 | case CVMX_QLM_MODE_RGMII_RXAUI: |
| 5059 | is_bgx = 3; |
| 5060 | lmac_type[0] = 5; |
| 5061 | lmac_type[1] = 2; |
| 5062 | lmac_type[2] = 2; |
| 5063 | lmac_type[3] = -1; |
| 5064 | sds_lane[0] = 0x0; |
| 5065 | sds_lane[1] = 0x4; |
| 5066 | sds_lane[2] = 0xe; |
| 5067 | break; |
| 5068 | case CVMX_QLM_MODE_RGMII_XAUI: |
| 5069 | is_bgx = 5; |
| 5070 | lmac_type[0] = 5; |
| 5071 | lmac_type[1] = 1; |
| 5072 | lmac_type[2] = -1; |
| 5073 | lmac_type[3] = -1; |
| 5074 | sds_lane[0] = 0; |
| 5075 | sds_lane[1] = 0xe4; |
| 5076 | break; |
| 5077 | default: |
| 5078 | break; |
| 5079 | } |
| 5080 | |
| 5081 | if (is_pcie == 0) |
| 5082 | lane_mode = __get_lane_mode_for_speed_and_ref_clk(ref_clk_sel, baud_mhz, &alt_pll); |
| 5083 | debug("%s: %d lane mode: %d, alternate PLL: %s\n", __func__, mode, lane_mode, |
| 5084 | alt_pll ? "true" : "false"); |
| 5085 | if (lane_mode == -1) |
| 5086 | return -1; |
| 5087 | |
| 5088 | if (alt_pll) { |
| 5089 | debug("%s: alternate PLL settings used for qlm %d, lane mode %d, reference clock %d\n", |
| 5090 | __func__, qlm, lane_mode, ref_clk_sel); |
| 5091 | if (__set_qlm_ref_clk_cn78xx(0, qlm, lane_mode, ref_clk_sel)) { |
| 5092 | printf("%s: Error: reference clock %d is not supported for qlm %d, lane mode: 0x%x\n", |
| 5093 | __func__, ref_clk_sel, qlm, lane_mode); |
| 5094 | return -1; |
| 5095 | } |
| 5096 | } |
| 5097 | |
| 5098 | /* Power up PHY, but keep it in reset */ |
| 5099 | phy_ctl.u64 = csr_rd(CVMX_GSERX_PHY_CTL(qlm)); |
| 5100 | phy_ctl.s.phy_pd = 0; |
| 5101 | phy_ctl.s.phy_reset = 1; |
| 5102 | csr_wr(CVMX_GSERX_PHY_CTL(qlm), phy_ctl.u64); |
| 5103 | |
| 5104 | /* Set GSER for the interface mode */ |
| 5105 | cfg.u64 = csr_rd(CVMX_GSERX_CFG(qlm)); |
| 5106 | cfg.s.bgx = is_bgx & 1; |
| 5107 | cfg.s.bgx_quad = (is_bgx >> 2) & 1; |
| 5108 | cfg.s.bgx_dual = (is_bgx >> 1) & 1; |
| 5109 | cfg.s.pcie = is_pcie; |
| 5110 | csr_wr(CVMX_GSERX_CFG(qlm), cfg.u64); |
| 5111 | |
| 5112 | /* Lane mode */ |
| 5113 | lmode.u64 = csr_rd(CVMX_GSERX_LANE_MODE(qlm)); |
| 5114 | lmode.s.lmode = lane_mode; |
| 5115 | csr_wr(CVMX_GSERX_LANE_MODE(qlm), lmode.u64); |
| 5116 | |
| 5117 | /* Program lmac_type to figure out the type of BGX interface configured */ |
| 5118 | if (is_bgx) { |
| 5119 | int bgx = (qlm < 4) ? qlm - 2 : 2; |
| 5120 | cvmx_bgxx_cmrx_config_t cmr_config; |
| 5121 | cvmx_bgxx_cmr_rx_lmacs_t rx_lmacs; |
| 5122 | cvmx_bgxx_spux_br_pmd_control_t spu_pmd_control; |
| 5123 | int index, total_lmacs = 0; |
| 5124 | |
| 5125 | for (index = 0; index < 4; index++) { |
| 5126 | cmr_config.u64 = csr_rd(CVMX_BGXX_CMRX_CONFIG(index, bgx)); |
| 5127 | cmr_config.s.enable = 0; |
| 5128 | cmr_config.s.data_pkt_rx_en = 0; |
| 5129 | cmr_config.s.data_pkt_tx_en = 0; |
| 5130 | if (lmac_type[index] != -1) { |
| 5131 | cmr_config.s.lmac_type = lmac_type[index]; |
| 5132 | cmr_config.s.lane_to_sds = sds_lane[index]; |
| 5133 | total_lmacs++; |
| 5134 | /* RXAUI takes up 2 lmacs */ |
| 5135 | if (lmac_type[index] == 2) |
| 5136 | total_lmacs += 1; |
| 5137 | } |
| 5138 | csr_wr(CVMX_BGXX_CMRX_CONFIG(index, bgx), cmr_config.u64); |
| 5139 | |
| 5140 | /* Errata (TBD) RGMII doesn't turn on clock if its by |
| 5141 | * itself. Force them on |
| 5142 | */ |
| 5143 | if (lmac_type[index] == 5) { |
| 5144 | cvmx_bgxx_cmr_global_config_t global_config; |
| 5145 | |
| 5146 | global_config.u64 = csr_rd(CVMX_BGXX_CMR_GLOBAL_CONFIG(bgx)); |
| 5147 | global_config.s.bgx_clk_enable = 1; |
| 5148 | csr_wr(CVMX_BGXX_CMR_GLOBAL_CONFIG(bgx), global_config.u64); |
| 5149 | } |
| 5150 | |
| 5151 | /* Enable training for 10G_KR/40G_KR4 modes */ |
| 5152 | if (enable_training == 1 && |
| 5153 | (lmac_type[index] == 3 || lmac_type[index] == 4)) { |
| 5154 | spu_pmd_control.u64 = |
| 5155 | csr_rd(CVMX_BGXX_SPUX_BR_PMD_CONTROL(index, bgx)); |
| 5156 | spu_pmd_control.s.train_en = 1; |
| 5157 | csr_wr(CVMX_BGXX_SPUX_BR_PMD_CONTROL(index, bgx), |
| 5158 | spu_pmd_control.u64); |
| 5159 | } |
| 5160 | } |
| 5161 | |
| 5162 | /* Update the total number of lmacs */ |
| 5163 | rx_lmacs.u64 = csr_rd(CVMX_BGXX_CMR_RX_LMACS(bgx)); |
| 5164 | rx_lmacs.s.lmacs = total_lmacs + additional_lmacs; |
| 5165 | csr_wr(CVMX_BGXX_CMR_RX_LMACS(bgx), rx_lmacs.u64); |
| 5166 | csr_wr(CVMX_BGXX_CMR_TX_LMACS(bgx), rx_lmacs.u64); |
| 5167 | } |
| 5168 | |
| 5169 | /* Bring phy out of reset */ |
| 5170 | phy_ctl.u64 = csr_rd(CVMX_GSERX_PHY_CTL(qlm)); |
| 5171 | phy_ctl.s.phy_reset = 0; |
| 5172 | csr_wr(CVMX_GSERX_PHY_CTL(qlm), phy_ctl.u64); |
| 5173 | |
| 5174 | /* |
| 5175 | * Wait 1us until the management interface is ready to accept |
| 5176 | * read/write commands. |
| 5177 | */ |
| 5178 | udelay(1); |
| 5179 | |
| 5180 | /* Wait for reset to complete and the PLL to lock */ |
| 5181 | /* PCIe mode doesn't become ready until the PEM block attempts to bring |
| 5182 | * the interface up. Skip this check for PCIe |
| 5183 | */ |
| 5184 | if (!is_pcie && CVMX_WAIT_FOR_FIELD64(CVMX_GSERX_QLM_STAT(qlm), |
| 5185 | cvmx_gserx_qlm_stat_t, |
| 5186 | rst_rdy, ==, 1, 10000)) { |
| 5187 | printf("QLM%d: Timeout waiting for GSERX_QLM_STAT[rst_rdy]\n", qlm); |
| 5188 | return -1; |
| 5189 | } |
| 5190 | |
| 5191 | /* Configure the gser pll */ |
| 5192 | if (!is_pcie) |
| 5193 | __qlm_setup_pll_cn78xx(0, qlm); |
| 5194 | |
| 5195 | /* Wait for reset to complete and the PLL to lock */ |
| 5196 | if (CVMX_WAIT_FOR_FIELD64(CVMX_GSERX_PLL_STAT(qlm), cvmx_gserx_pll_stat_t, |
| 5197 | pll_lock, ==, 1, 10000)) { |
| 5198 | printf("QLM%d: Timeout waiting for GSERX_PLL_STAT[pll_lock]\n", qlm); |
| 5199 | return -1; |
| 5200 | } |
| 5201 | |
| 5202 | /* Errata GSER-26150: 10G PHY PLL Temperature Failure */ |
| 5203 | /* This workaround must be completed after the final deassertion of |
| 5204 | * GSERx_PHY_CTL[PHY_RESET]. |
| 5205 | * Apply the workaround to 10.3125Gbps and 8Gbps only. |
| 5206 | */ |
| 5207 | if (OCTEON_IS_MODEL(OCTEON_CN73XX_PASS1_0) && |
| 5208 | (baud_mhz == 103125 || (is_pcie && gen3 == 2))) |
| 5209 | __qlm_errata_gser_26150(0, qlm, is_pcie); |
| 5210 | |
| 5211 | /* Errata GSER-26636: 10G-KR/40G-KR - Inverted Tx Coefficient Direction |
| 5212 | * Change. Applied to all 10G standards (required for KR) but also |
| 5213 | * applied to other standards in case software training is used |
| 5214 | */ |
| 5215 | if (baud_mhz == 103125) |
| 5216 | __qlm_kr_inc_dec_gser26636(0, qlm); |
| 5217 | |
| 5218 | /* Errata GSER-25992: RX EQ Default Settings Update (CTLE Bias) */ |
| 5219 | /* This workaround will only be applied to Pass 1.x */ |
| 5220 | /* It will also only be applied if the SERDES data-rate is 10G */ |
| 5221 | /* or if PCIe Gen3 (gen3=2 is PCIe Gen3) */ |
| 5222 | if (baud_mhz == 103125 || (is_pcie && gen3 == 2)) |
| 5223 | cvmx_qlm_gser_errata_25992(0, qlm); |
| 5224 | |
| 5225 | /* Errata GSER-27140: Updating the RX EQ settings due to temperature |
| 5226 | * drift sensitivities |
| 5227 | */ |
| 5228 | /* This workaround will also only be applied if the SERDES data-rate is 10G */ |
| 5229 | if (baud_mhz == 103125) |
| 5230 | __qlm_rx_eq_temp_gser27140(0, qlm); |
| 5231 | |
| 5232 | /* Reduce the voltage amplitude coming from Marvell PHY and also change |
| 5233 | * DFE threshold settings for RXAUI interface |
| 5234 | */ |
| 5235 | if (is_bgx) { |
| 5236 | int l; |
| 5237 | |
| 5238 | for (l = 0; l < 4; l++) { |
| 5239 | cvmx_gserx_lanex_rx_cfg_4_t cfg4; |
| 5240 | cvmx_gserx_lanex_tx_cfg_0_t cfg0; |
| 5241 | |
| 5242 | if (lmac_type[l] == 2) { |
| 5243 | /* Change the Q/QB error sampler 0 threshold from 0xD to 0xF */ |
| 5244 | cfg4.u64 = csr_rd(CVMX_GSERX_LANEX_RX_CFG_4(l, qlm)); |
| 5245 | cfg4.s.cfg_rx_errdet_ctrl = 0xcf6f; |
| 5246 | csr_wr(CVMX_GSERX_LANEX_RX_CFG_4(l, qlm), cfg4.u64); |
| 5247 | /* Reduce the voltage swing to roughly 460mV */ |
| 5248 | cfg0.u64 = csr_rd(CVMX_GSERX_LANEX_TX_CFG_0(l, qlm)); |
| 5249 | cfg0.s.cfg_tx_swing = 0x12; |
| 5250 | csr_wr(CVMX_GSERX_LANEX_TX_CFG_0(l, qlm), cfg0.u64); |
| 5251 | } |
| 5252 | } |
| 5253 | } |
| 5254 | |
| 5255 | return 0; |
| 5256 | } |
| 5257 | |
| 5258 | static int __rmac_pll_config(int baud_mhz, int qlm, int mode) |
| 5259 | { |
| 5260 | cvmx_gserx_pll_px_mode_0_t pmode0; |
| 5261 | cvmx_gserx_pll_px_mode_1_t pmode1; |
| 5262 | cvmx_gserx_lane_px_mode_0_t lmode0; |
| 5263 | cvmx_gserx_lane_px_mode_1_t lmode1; |
| 5264 | cvmx_gserx_lane_mode_t lmode; |
| 5265 | |
| 5266 | switch (baud_mhz) { |
| 5267 | case 98304: |
| 5268 | pmode0.u64 = 0x1a0a; |
| 5269 | pmode1.u64 = 0x3228; |
| 5270 | lmode0.u64 = 0x600f; |
| 5271 | lmode1.u64 = 0xa80f; |
| 5272 | break; |
| 5273 | case 49152: |
| 5274 | if (mode == CVMX_QLM_MODE_SDL) { |
| 5275 | pmode0.u64 = 0x3605; |
| 5276 | pmode1.u64 = 0x0814; |
| 5277 | lmode0.u64 = 0x000f; |
| 5278 | lmode1.u64 = 0x6814; |
| 5279 | } else { |
| 5280 | pmode0.u64 = 0x1a0a; |
| 5281 | pmode1.u64 = 0x3228; |
| 5282 | lmode0.u64 = 0x650f; |
| 5283 | lmode1.u64 = 0xe80f; |
| 5284 | } |
| 5285 | break; |
| 5286 | case 24576: |
| 5287 | pmode0.u64 = 0x1a0a; |
| 5288 | pmode1.u64 = 0x3228; |
| 5289 | lmode0.u64 = 0x6a0f; |
| 5290 | lmode1.u64 = 0xe80f; |
| 5291 | break; |
| 5292 | case 12288: |
| 5293 | pmode0.u64 = 0x1a0a; |
| 5294 | pmode1.u64 = 0x3228; |
| 5295 | lmode0.u64 = 0x6f0f; |
| 5296 | lmode1.u64 = 0xe80f; |
| 5297 | break; |
| 5298 | case 6144: |
| 5299 | pmode0.u64 = 0x160a; |
| 5300 | pmode1.u64 = 0x1019; |
| 5301 | lmode0.u64 = 0x000f; |
| 5302 | lmode1.u64 = 0x2814; |
| 5303 | break; |
| 5304 | case 3072: |
| 5305 | pmode0.u64 = 0x160a; |
| 5306 | pmode1.u64 = 0x1019; |
| 5307 | lmode0.u64 = 0x050f; |
| 5308 | lmode1.u64 = 0x6814; |
| 5309 | break; |
| 5310 | default: |
| 5311 | printf("Invalid speed for CPRI/SDL configuration\n"); |
| 5312 | return -1; |
| 5313 | } |
| 5314 | |
| 5315 | lmode.u64 = csr_rd(CVMX_GSERX_LANE_MODE(qlm)); |
| 5316 | csr_wr(CVMX_GSERX_PLL_PX_MODE_0(lmode.s.lmode, qlm), pmode0.u64); |
| 5317 | csr_wr(CVMX_GSERX_PLL_PX_MODE_1(lmode.s.lmode, qlm), pmode1.u64); |
| 5318 | csr_wr(CVMX_GSERX_LANE_PX_MODE_0(lmode.s.lmode, qlm), lmode0.u64); |
| 5319 | csr_wr(CVMX_GSERX_LANE_PX_MODE_1(lmode.s.lmode, qlm), lmode1.u64); |
| 5320 | return 0; |
| 5321 | } |
| 5322 | |
| 5323 | /** |
| 5324 | * Configure QLM/DLM speed and mode for cnf75xx. |
| 5325 | * |
| 5326 | * @param qlm The QLM to configure |
| 5327 | * @param baud_mhz The speed the QLM needs to be configured in Mhz. |
| 5328 | * @param mode The QLM to be configured as SGMII/XAUI/PCIe. |
| 5329 | * @param rc Only used for PCIe, rc = 1 for root complex mode, 0 for EP mode. |
| 5330 | * @param gen3 Only used for PCIe |
| 5331 | * gen3 = 2 GEN3 mode |
| 5332 | * gen3 = 1 GEN2 mode |
| 5333 | * gen3 = 0 GEN1 mode |
| 5334 | * |
| 5335 | * @param ref_clk_sel The reference-clock selection to use to configure QLM |
| 5336 | * 0 = REF_100MHZ |
| 5337 | * 1 = REF_125MHZ |
| 5338 | * 2 = REF_156MHZ |
| 5339 | * 3 = REF_122MHZ |
| 5340 | * @param ref_clk_input The reference-clock input to use to configure QLM |
| 5341 | * |
| 5342 | * @return Return 0 on success or -1. |
| 5343 | */ |
| 5344 | static int octeon_configure_qlm_cnf75xx(int qlm, int baud_mhz, int mode, int rc, int gen3, |
| 5345 | int ref_clk_sel, int ref_clk_input) |
| 5346 | { |
| 5347 | cvmx_gserx_phy_ctl_t phy_ctl; |
| 5348 | cvmx_gserx_lane_mode_t lmode; |
| 5349 | cvmx_gserx_cfg_t cfg; |
| 5350 | cvmx_gserx_refclk_sel_t refclk_sel; |
| 5351 | int is_pcie = 0; |
| 5352 | int is_bgx = 0; |
| 5353 | int is_srio = 0; |
| 5354 | int is_rmac = 0; |
| 5355 | int is_rmac_pipe = 0; |
| 5356 | int lane_mode = 0; |
| 5357 | short lmac_type[4] = { 0 }; |
| 5358 | short sds_lane[4] = { 0 }; |
| 5359 | bool alt_pll = false; |
| 5360 | int enable_training = 0; |
| 5361 | int additional_lmacs = 0; |
| 5362 | int port = (qlm == 3) ? 1 : 0; |
| 5363 | cvmx_sriox_status_reg_t status_reg; |
| 5364 | |
| 5365 | debug("%s(qlm: %d, baud_mhz: %d, mode: %d, rc: %d, gen3: %d, ref_clk_sel: %d, ref_clk_input: %d\n", |
| 5366 | __func__, qlm, baud_mhz, mode, rc, gen3, ref_clk_sel, ref_clk_input); |
| 5367 | if (qlm > 8) { |
| 5368 | printf("Invalid qlm%d passed\n", qlm); |
| 5369 | return -1; |
| 5370 | } |
| 5371 | |
| 5372 | /* Errata PEM-31375 PEM RSL accesses to PCLK registers can timeout |
| 5373 | * during speed change. Change SLI_WINDOW_CTL[time] to 525us |
| 5374 | */ |
| 5375 | __set_sli_window_ctl_errata_31375(0); |
| 5376 | |
| 5377 | cfg.u64 = csr_rd(CVMX_GSERX_CFG(qlm)); |
| 5378 | |
| 5379 | /* If PEM is in EP, no need to do anything */ |
| 5380 | if (cfg.s.pcie && rc == 0) { |
| 5381 | debug("%s: qlm %d is in PCIe endpoint mode, returning\n", __func__, qlm); |
| 5382 | return 0; |
| 5383 | } |
| 5384 | |
| 5385 | if (cfg.s.srio && rc == 0) { |
| 5386 | debug("%s: qlm %d is in SRIO endpoint mode, returning\n", __func__, qlm); |
| 5387 | return 0; |
| 5388 | } |
| 5389 | |
| 5390 | /* Set the reference clock to use */ |
| 5391 | refclk_sel.u64 = 0; |
| 5392 | if (ref_clk_input == 0) { /* External ref clock */ |
| 5393 | refclk_sel.s.com_clk_sel = 0; |
| 5394 | refclk_sel.s.use_com1 = 0; |
| 5395 | } else if (ref_clk_input == 1) { |
| 5396 | refclk_sel.s.com_clk_sel = 1; |
| 5397 | refclk_sel.s.use_com1 = 0; |
| 5398 | } else { |
| 5399 | refclk_sel.s.com_clk_sel = 1; |
| 5400 | refclk_sel.s.use_com1 = 1; |
| 5401 | } |
| 5402 | |
| 5403 | csr_wr(CVMX_GSERX_REFCLK_SEL(qlm), refclk_sel.u64); |
| 5404 | |
| 5405 | /* Reset the QLM after changing the reference clock */ |
| 5406 | phy_ctl.u64 = csr_rd(CVMX_GSERX_PHY_CTL(qlm)); |
| 5407 | phy_ctl.s.phy_reset = 1; |
| 5408 | phy_ctl.s.phy_pd = 1; |
| 5409 | csr_wr(CVMX_GSERX_PHY_CTL(qlm), phy_ctl.u64); |
| 5410 | |
| 5411 | udelay(1000); |
| 5412 | |
| 5413 | switch (mode) { |
| 5414 | case CVMX_QLM_MODE_PCIE: |
| 5415 | case CVMX_QLM_MODE_PCIE_1X2: |
| 5416 | case CVMX_QLM_MODE_PCIE_2X1: { |
| 5417 | cvmx_pemx_cfg_t pemx_cfg; |
| 5418 | cvmx_pemx_on_t pemx_on; |
| 5419 | cvmx_rst_soft_prstx_t rst_prst; |
| 5420 | |
| 5421 | is_pcie = 1; |
| 5422 | |
| 5423 | if (qlm > 1) { |
| 5424 | printf("Invalid PCIe mode for QLM%d\n", qlm); |
| 5425 | return -1; |
| 5426 | } |
| 5427 | |
| 5428 | if (ref_clk_sel == 0) { |
| 5429 | refclk_sel.u64 = csr_rd(CVMX_GSERX_REFCLK_SEL(qlm)); |
| 5430 | refclk_sel.s.pcie_refclk125 = 0; |
| 5431 | csr_wr(CVMX_GSERX_REFCLK_SEL(qlm), refclk_sel.u64); |
| 5432 | if (gen3 == 0) /* Gen1 mode */ |
| 5433 | lane_mode = R_2_5G_REFCLK100; |
| 5434 | else if (gen3 == 1) /* Gen2 mode */ |
| 5435 | lane_mode = R_5G_REFCLK100; |
| 5436 | else |
| 5437 | lane_mode = R_8G_REFCLK100; |
| 5438 | } else if (ref_clk_sel == 1) { |
| 5439 | refclk_sel.u64 = csr_rd(CVMX_GSERX_REFCLK_SEL(qlm)); |
| 5440 | refclk_sel.s.pcie_refclk125 = 1; |
| 5441 | csr_wr(CVMX_GSERX_REFCLK_SEL(qlm), refclk_sel.u64); |
| 5442 | if (gen3 == 0) /* Gen1 mode */ |
| 5443 | lane_mode = R_2_5G_REFCLK125; |
| 5444 | else if (gen3 == 1) /* Gen2 mode */ |
| 5445 | lane_mode = R_5G_REFCLK125; |
| 5446 | else |
| 5447 | lane_mode = R_8G_REFCLK125; |
| 5448 | } else { |
| 5449 | printf("Invalid reference clock for PCIe on QLM%d\n", qlm); |
| 5450 | return -1; |
| 5451 | } |
| 5452 | |
| 5453 | switch (qlm) { |
| 5454 | case 0: /* Either x4 or x2 based on PEM0 */ |
| 5455 | rst_prst.u64 = csr_rd(CVMX_RST_SOFT_PRSTX(0)); |
| 5456 | rst_prst.s.soft_prst = rc; |
| 5457 | csr_wr(CVMX_RST_SOFT_PRSTX(0), rst_prst.u64); |
| 5458 | __setup_pem_reset(0, 0, !rc); |
| 5459 | |
| 5460 | pemx_cfg.u64 = csr_rd(CVMX_PEMX_CFG(0)); |
| 5461 | pemx_cfg.cnf75xx.hostmd = rc; |
| 5462 | pemx_cfg.cnf75xx.lanes8 = (mode == CVMX_QLM_MODE_PCIE); |
| 5463 | pemx_cfg.cnf75xx.md = gen3; |
| 5464 | csr_wr(CVMX_PEMX_CFG(0), pemx_cfg.u64); |
| 5465 | /* x4 mode waits for QLM1 setup before turning on the PEM */ |
| 5466 | if (mode == CVMX_QLM_MODE_PCIE_1X2 || mode == CVMX_QLM_MODE_PCIE_2X1) { |
| 5467 | pemx_on.u64 = csr_rd(CVMX_PEMX_ON(0)); |
| 5468 | pemx_on.s.pemon = 1; |
| 5469 | csr_wr(CVMX_PEMX_ON(0), pemx_on.u64); |
| 5470 | } |
| 5471 | break; |
| 5472 | case 1: /* Either PEM0 x4 or PEM1 x2 */ |
| 5473 | if (mode == CVMX_QLM_MODE_PCIE_1X2 || mode == CVMX_QLM_MODE_PCIE_2X1) { |
| 5474 | rst_prst.u64 = csr_rd(CVMX_RST_SOFT_PRSTX(1)); |
| 5475 | rst_prst.s.soft_prst = rc; |
| 5476 | csr_wr(CVMX_RST_SOFT_PRSTX(1), rst_prst.u64); |
| 5477 | __setup_pem_reset(0, 1, !rc); |
| 5478 | |
| 5479 | pemx_cfg.u64 = csr_rd(CVMX_PEMX_CFG(1)); |
| 5480 | pemx_cfg.cnf75xx.hostmd = rc; |
| 5481 | pemx_cfg.cnf75xx.md = gen3; |
| 5482 | csr_wr(CVMX_PEMX_CFG(1), pemx_cfg.u64); |
| 5483 | |
| 5484 | pemx_on.u64 = csr_rd(CVMX_PEMX_ON(1)); |
| 5485 | pemx_on.s.pemon = 1; |
| 5486 | csr_wr(CVMX_PEMX_ON(1), pemx_on.u64); |
| 5487 | } else { |
| 5488 | pemx_on.u64 = csr_rd(CVMX_PEMX_ON(0)); |
| 5489 | pemx_on.s.pemon = 1; |
| 5490 | csr_wr(CVMX_PEMX_ON(0), pemx_on.u64); |
| 5491 | } |
| 5492 | break; |
| 5493 | default: |
| 5494 | break; |
| 5495 | } |
| 5496 | break; |
| 5497 | } |
| 5498 | case CVMX_QLM_MODE_SRIO_1X4: |
| 5499 | case CVMX_QLM_MODE_SRIO_2X2: |
| 5500 | case CVMX_QLM_MODE_SRIO_4X1: { |
| 5501 | int spd = 0xf; |
| 5502 | |
| 5503 | if (cvmx_fuse_read(1601)) { |
| 5504 | debug("SRIO is not supported on cnf73xx model\n"); |
| 5505 | return -1; |
| 5506 | } |
| 5507 | |
| 5508 | switch (baud_mhz) { |
| 5509 | case 1250: |
| 5510 | switch (ref_clk_sel) { |
| 5511 | case 0: /* 100 MHz ref clock */ |
| 5512 | spd = 0x3; |
| 5513 | break; |
| 5514 | case 1: /* 125 MHz ref clock */ |
| 5515 | spd = 0xa; |
| 5516 | break; |
| 5517 | case 2: /* 156.25 MHz ref clock */ |
| 5518 | spd = 0x4; |
| 5519 | break; |
| 5520 | default: |
| 5521 | spd = 0xf; /* Disabled */ |
| 5522 | break; |
| 5523 | } |
| 5524 | break; |
| 5525 | case 2500: |
| 5526 | switch (ref_clk_sel) { |
| 5527 | case 0: /* 100 MHz ref clock */ |
| 5528 | spd = 0x2; |
| 5529 | break; |
| 5530 | case 1: /* 125 MHz ref clock */ |
| 5531 | spd = 0x9; |
| 5532 | break; |
| 5533 | case 2: /* 156.25 MHz ref clock */ |
| 5534 | spd = 0x7; |
| 5535 | break; |
| 5536 | default: |
| 5537 | spd = 0xf; /* Disabled */ |
| 5538 | break; |
| 5539 | } |
| 5540 | break; |
| 5541 | case 3125: |
| 5542 | switch (ref_clk_sel) { |
| 5543 | case 1: /* 125 MHz ref clock */ |
| 5544 | spd = 0x8; |
| 5545 | break; |
| 5546 | case 2: /* 156.25 MHz ref clock */ |
| 5547 | spd = 0xe; |
| 5548 | break; |
| 5549 | default: |
| 5550 | spd = 0xf; /* Disabled */ |
| 5551 | break; |
| 5552 | } |
| 5553 | break; |
| 5554 | case 5000: |
| 5555 | switch (ref_clk_sel) { |
| 5556 | case 0: /* 100 MHz ref clock */ |
| 5557 | spd = 0x0; |
| 5558 | break; |
| 5559 | case 1: /* 125 MHz ref clock */ |
| 5560 | spd = 0x6; |
| 5561 | break; |
| 5562 | case 2: /* 156.25 MHz ref clock */ |
| 5563 | spd = 0xb; |
| 5564 | break; |
| 5565 | default: |
| 5566 | spd = 0xf; /* Disabled */ |
| 5567 | break; |
| 5568 | } |
| 5569 | break; |
| 5570 | default: |
| 5571 | spd = 0xf; |
| 5572 | break; |
| 5573 | } |
| 5574 | |
| 5575 | if (spd == 0xf) { |
| 5576 | printf("ERROR: Invalid SRIO speed (%d) configured for QLM%d\n", baud_mhz, |
| 5577 | qlm); |
| 5578 | return -1; |
| 5579 | } |
| 5580 | |
| 5581 | status_reg.u64 = csr_rd(CVMX_SRIOX_STATUS_REG(port)); |
| 5582 | status_reg.s.spd = spd; |
| 5583 | csr_wr(CVMX_SRIOX_STATUS_REG(port), status_reg.u64); |
| 5584 | is_srio = 1; |
| 5585 | break; |
| 5586 | } |
| 5587 | |
| 5588 | case CVMX_QLM_MODE_SGMII_2X1: |
| 5589 | if (qlm == 4) { |
| 5590 | is_bgx = 1; |
| 5591 | lmac_type[0] = 0; |
| 5592 | lmac_type[1] = 0; |
| 5593 | lmac_type[2] = -1; |
| 5594 | lmac_type[3] = -1; |
| 5595 | sds_lane[0] = 0; |
| 5596 | sds_lane[1] = 1; |
| 5597 | } else if (qlm == 5) { |
| 5598 | is_bgx = 1; |
| 5599 | lmac_type[0] = -1; |
| 5600 | lmac_type[1] = -1; |
| 5601 | lmac_type[2] = 0; |
| 5602 | lmac_type[3] = 0; |
| 5603 | sds_lane[2] = 2; |
| 5604 | sds_lane[3] = 3; |
| 5605 | additional_lmacs = 2; |
| 5606 | } |
| 5607 | break; |
| 5608 | case CVMX_QLM_MODE_10G_KR_1X2: |
| 5609 | enable_training = 1; |
| 5610 | case CVMX_QLM_MODE_XFI_1X2: |
| 5611 | if (qlm == 5) { |
| 5612 | is_bgx = 1; |
| 5613 | lmac_type[0] = -1; |
| 5614 | lmac_type[1] = -1; |
| 5615 | lmac_type[2] = 3; |
| 5616 | lmac_type[3] = 3; |
| 5617 | sds_lane[2] = 2; |
| 5618 | sds_lane[3] = 3; |
| 5619 | additional_lmacs = 2; |
| 5620 | } |
| 5621 | break; |
| 5622 | case CVMX_QLM_MODE_CPRI: /* CPRI / JESD204B */ |
| 5623 | is_rmac = 1; |
| 5624 | break; |
| 5625 | case CVMX_QLM_MODE_SDL: /* Serdes Lite (SDL) */ |
| 5626 | is_rmac = 1; |
| 5627 | is_rmac_pipe = 1; |
| 5628 | lane_mode = 1; |
| 5629 | break; |
| 5630 | default: |
| 5631 | break; |
| 5632 | } |
| 5633 | |
| 5634 | if (is_rmac_pipe == 0 && is_pcie == 0) { |
| 5635 | lane_mode = __get_lane_mode_for_speed_and_ref_clk(ref_clk_sel, baud_mhz, |
| 5636 | &alt_pll); |
| 5637 | } |
| 5638 | |
| 5639 | debug("%s: %d lane mode: %d, alternate PLL: %s\n", __func__, mode, lane_mode, |
| 5640 | alt_pll ? "true" : "false"); |
| 5641 | if (lane_mode == -1) |
| 5642 | return -1; |
| 5643 | |
| 5644 | if (alt_pll) { |
| 5645 | debug("%s: alternate PLL settings used for qlm %d, lane mode %d, reference clock %d\n", |
| 5646 | __func__, qlm, lane_mode, ref_clk_sel); |
| 5647 | if (__set_qlm_ref_clk_cn78xx(0, qlm, lane_mode, ref_clk_sel)) { |
| 5648 | printf("%s: Error: reference clock %d is not supported for qlm %d\n", |
| 5649 | __func__, ref_clk_sel, qlm); |
| 5650 | return -1; |
| 5651 | } |
| 5652 | } |
| 5653 | |
| 5654 | /* Power up PHY, but keep it in reset */ |
| 5655 | phy_ctl.u64 = csr_rd(CVMX_GSERX_PHY_CTL(qlm)); |
| 5656 | phy_ctl.s.phy_pd = 0; |
| 5657 | phy_ctl.s.phy_reset = 1; |
| 5658 | csr_wr(CVMX_GSERX_PHY_CTL(qlm), phy_ctl.u64); |
| 5659 | |
| 5660 | /* Set GSER for the interface mode */ |
| 5661 | cfg.u64 = csr_rd(CVMX_GSERX_CFG(qlm)); |
| 5662 | cfg.s.bgx = is_bgx & 1; |
| 5663 | cfg.s.bgx_quad = (is_bgx >> 2) & 1; |
| 5664 | cfg.s.bgx_dual = (is_bgx >> 1) & 1; |
| 5665 | cfg.s.pcie = is_pcie; |
| 5666 | cfg.s.srio = is_srio; |
| 5667 | cfg.s.rmac = is_rmac; |
| 5668 | cfg.s.rmac_pipe = is_rmac_pipe; |
| 5669 | csr_wr(CVMX_GSERX_CFG(qlm), cfg.u64); |
| 5670 | |
| 5671 | /* Lane mode */ |
| 5672 | lmode.u64 = csr_rd(CVMX_GSERX_LANE_MODE(qlm)); |
| 5673 | lmode.s.lmode = lane_mode; |
| 5674 | csr_wr(CVMX_GSERX_LANE_MODE(qlm), lmode.u64); |
| 5675 | |
| 5676 | /* Because of the Errata where quad mode does not work, program |
| 5677 | * lmac_type to figure out the type of BGX interface configured |
| 5678 | */ |
| 5679 | if (is_bgx) { |
| 5680 | int bgx = 0; |
| 5681 | cvmx_bgxx_cmrx_config_t cmr_config; |
| 5682 | cvmx_bgxx_cmr_rx_lmacs_t rx_lmacs; |
| 5683 | cvmx_bgxx_spux_br_pmd_control_t spu_pmd_control; |
| 5684 | int index, total_lmacs = 0; |
| 5685 | |
| 5686 | for (index = 0; index < 4; index++) { |
| 5687 | cmr_config.u64 = csr_rd(CVMX_BGXX_CMRX_CONFIG(index, bgx)); |
| 5688 | cmr_config.s.enable = 0; |
| 5689 | cmr_config.s.data_pkt_rx_en = 0; |
| 5690 | cmr_config.s.data_pkt_tx_en = 0; |
| 5691 | if (lmac_type[index] != -1) { |
| 5692 | cmr_config.s.lmac_type = lmac_type[index]; |
| 5693 | cmr_config.s.lane_to_sds = sds_lane[index]; |
| 5694 | total_lmacs++; |
| 5695 | } |
| 5696 | csr_wr(CVMX_BGXX_CMRX_CONFIG(index, bgx), cmr_config.u64); |
| 5697 | |
| 5698 | /* Enable training for 10G_KR/40G_KR4 modes */ |
| 5699 | if (enable_training == 1 && |
| 5700 | (lmac_type[index] == 3 || lmac_type[index] == 4)) { |
| 5701 | spu_pmd_control.u64 = |
| 5702 | csr_rd(CVMX_BGXX_SPUX_BR_PMD_CONTROL(index, bgx)); |
| 5703 | spu_pmd_control.s.train_en = 1; |
| 5704 | csr_wr(CVMX_BGXX_SPUX_BR_PMD_CONTROL(index, bgx), |
| 5705 | spu_pmd_control.u64); |
| 5706 | } |
| 5707 | } |
| 5708 | |
| 5709 | /* Update the total number of lmacs */ |
| 5710 | rx_lmacs.u64 = csr_rd(CVMX_BGXX_CMR_RX_LMACS(bgx)); |
| 5711 | rx_lmacs.s.lmacs = total_lmacs + additional_lmacs; |
| 5712 | csr_wr(CVMX_BGXX_CMR_RX_LMACS(bgx), rx_lmacs.u64); |
| 5713 | csr_wr(CVMX_BGXX_CMR_TX_LMACS(bgx), rx_lmacs.u64); |
| 5714 | } |
| 5715 | |
| 5716 | /* Bring phy out of reset */ |
| 5717 | phy_ctl.u64 = csr_rd(CVMX_GSERX_PHY_CTL(qlm)); |
| 5718 | phy_ctl.s.phy_reset = 0; |
| 5719 | csr_wr(CVMX_GSERX_PHY_CTL(qlm), phy_ctl.u64); |
| 5720 | |
| 5721 | /* |
| 5722 | * Wait 1us until the management interface is ready to accept |
| 5723 | * read/write commands. |
| 5724 | */ |
| 5725 | udelay(1); |
| 5726 | |
| 5727 | if (is_srio) { |
| 5728 | status_reg.u64 = csr_rd(CVMX_SRIOX_STATUS_REG(port)); |
| 5729 | status_reg.s.srio = 1; |
| 5730 | csr_wr(CVMX_SRIOX_STATUS_REG(port), status_reg.u64); |
| 5731 | return 0; |
| 5732 | } |
| 5733 | |
| 5734 | /* Wait for reset to complete and the PLL to lock */ |
| 5735 | /* PCIe mode doesn't become ready until the PEM block attempts to bring |
| 5736 | * the interface up. Skip this check for PCIe |
| 5737 | */ |
| 5738 | if (!is_pcie && CVMX_WAIT_FOR_FIELD64(CVMX_GSERX_QLM_STAT(qlm), cvmx_gserx_qlm_stat_t, |
| 5739 | rst_rdy, ==, 1, 10000)) { |
| 5740 | printf("QLM%d: Timeout waiting for GSERX_QLM_STAT[rst_rdy]\n", qlm); |
| 5741 | return -1; |
| 5742 | } |
| 5743 | |
| 5744 | /* Configure the gser pll */ |
| 5745 | if (is_rmac) |
| 5746 | __rmac_pll_config(baud_mhz, qlm, mode); |
| 5747 | else if (!(is_pcie || is_srio)) |
| 5748 | __qlm_setup_pll_cn78xx(0, qlm); |
| 5749 | |
| 5750 | /* Wait for reset to complete and the PLL to lock */ |
| 5751 | if (CVMX_WAIT_FOR_FIELD64(CVMX_GSERX_PLL_STAT(qlm), cvmx_gserx_pll_stat_t, |
| 5752 | pll_lock, ==, 1, 10000)) { |
| 5753 | printf("QLM%d: Timeout waiting for GSERX_PLL_STAT[pll_lock]\n", qlm); |
| 5754 | return -1; |
| 5755 | } |
| 5756 | |
| 5757 | /* Errata GSER-27140: Updating the RX EQ settings due to temperature |
| 5758 | * drift sensitivities |
| 5759 | */ |
| 5760 | /* This workaround will also only be applied if the SERDES data-rate is 10G */ |
| 5761 | if (baud_mhz == 103125) |
| 5762 | __qlm_rx_eq_temp_gser27140(0, qlm); |
| 5763 | |
| 5764 | return 0; |
| 5765 | } |
| 5766 | |
| 5767 | /** |
| 5768 | * Configure qlm/dlm speed and mode. |
| 5769 | * @param qlm The QLM or DLM to configure |
| 5770 | * @param speed The speed the QLM needs to be configured in Mhz. |
| 5771 | * @param mode The QLM to be configured as SGMII/XAUI/PCIe. |
| 5772 | * @param rc Only used for PCIe, rc = 1 for root complex mode, 0 for EP |
| 5773 | * mode. |
| 5774 | * @param pcie_mode Only used when qlm/dlm are in pcie mode. |
| 5775 | * @param ref_clk_sel Reference clock to use for 70XX where: |
| 5776 | * 0: 100MHz |
| 5777 | * 1: 125MHz |
| 5778 | * 2: 156.25MHz |
| 5779 | * 3: 122MHz (Used by RMAC) |
| 5780 | * @param ref_clk_input This selects which reference clock input to use. For |
| 5781 | * cn70xx: |
| 5782 | * 0: DLMC_REF_CLK0 |
| 5783 | * 1: DLMC_REF_CLK1 |
| 5784 | * 2: DLM0_REF_CLK |
| 5785 | * cn61xx: (not used) |
| 5786 | * cn78xx/cn76xx/cn73xx: |
| 5787 | * 0: Internal clock (QLM[0-7]_REF_CLK) |
| 5788 | * 1: QLMC_REF_CLK0 |
| 5789 | * 2: QLMC_REF_CLK1 |
| 5790 | * |
| 5791 | * @return Return 0 on success or -1. |
| 5792 | */ |
| 5793 | int octeon_configure_qlm(int qlm, int speed, int mode, int rc, int pcie_mode, int ref_clk_sel, |
| 5794 | int ref_clk_input) |
| 5795 | { |
| 5796 | int node = 0; // ToDo: corrently only node 0 is supported |
| 5797 | |
| 5798 | debug("%s(%d, %d, %d, %d, %d, %d, %d)\n", __func__, qlm, speed, mode, rc, pcie_mode, |
| 5799 | ref_clk_sel, ref_clk_input); |
| 5800 | if (OCTEON_IS_MODEL(OCTEON_CN61XX) || OCTEON_IS_MODEL(OCTEON_CNF71XX)) |
| 5801 | return octeon_configure_qlm_cn61xx(qlm, speed, mode, rc, pcie_mode); |
| 5802 | else if (OCTEON_IS_MODEL(OCTEON_CN70XX)) |
| 5803 | return octeon_configure_qlm_cn70xx(qlm, speed, mode, rc, pcie_mode, ref_clk_sel, |
| 5804 | ref_clk_input); |
| 5805 | else if (OCTEON_IS_MODEL(OCTEON_CN78XX)) |
| 5806 | return octeon_configure_qlm_cn78xx(node, qlm, speed, mode, rc, pcie_mode, |
| 5807 | ref_clk_sel, ref_clk_input); |
| 5808 | else if (OCTEON_IS_MODEL(OCTEON_CN73XX)) |
| 5809 | return octeon_configure_qlm_cn73xx(qlm, speed, mode, rc, pcie_mode, ref_clk_sel, |
| 5810 | ref_clk_input); |
| 5811 | else if (OCTEON_IS_MODEL(OCTEON_CNF75XX)) |
| 5812 | return octeon_configure_qlm_cnf75xx(qlm, speed, mode, rc, pcie_mode, ref_clk_sel, |
| 5813 | ref_clk_input); |
| 5814 | else |
| 5815 | return -1; |
| 5816 | } |
| 5817 | |
| 5818 | void octeon_init_qlm(int node) |
| 5819 | { |
| 5820 | int qlm; |
| 5821 | cvmx_gserx_phy_ctl_t phy_ctl; |
| 5822 | cvmx_gserx_cfg_t cfg; |
| 5823 | int baud_mhz; |
| 5824 | int pem; |
| 5825 | |
| 5826 | if (!OCTEON_IS_MODEL(OCTEON_CN78XX)) |
| 5827 | return; |
| 5828 | |
| 5829 | for (qlm = 0; qlm < 8; qlm++) { |
| 5830 | phy_ctl.u64 = csr_rd_node(node, CVMX_GSERX_PHY_CTL(qlm)); |
| 5831 | if (phy_ctl.s.phy_reset == 0) { |
| 5832 | cfg.u64 = csr_rd_node(node, CVMX_GSERX_CFG(qlm)); |
| 5833 | if (cfg.s.pcie) |
| 5834 | __cvmx_qlm_pcie_errata_cn78xx(node, qlm); |
| 5835 | else |
| 5836 | __qlm_init_errata_20844(node, qlm); |
| 5837 | |
| 5838 | baud_mhz = cvmx_qlm_get_gbaud_mhz_node(node, qlm); |
| 5839 | if (baud_mhz == 6250 || baud_mhz == 6316) |
| 5840 | octeon_qlm_tune_v3(node, qlm, baud_mhz, 0xa, 0xa0, -1, -1); |
| 5841 | else if (baud_mhz == 103125) |
| 5842 | octeon_qlm_tune_v3(node, qlm, baud_mhz, 0xd, 0xd0, -1, -1); |
| 5843 | } |
| 5844 | } |
| 5845 | |
| 5846 | /* Setup how each PEM drives the PERST lines */ |
| 5847 | for (pem = 0; pem < 4; pem++) { |
| 5848 | cvmx_rst_ctlx_t rst_ctl; |
| 5849 | |
| 5850 | rst_ctl.u64 = csr_rd_node(node, CVMX_RST_CTLX(pem)); |
| 5851 | __setup_pem_reset(node, pem, !rst_ctl.s.host_mode); |
| 5852 | } |
| 5853 | } |