Brandon Maier | dbe88da | 2023-01-12 10:27:45 -0600 | [diff] [blame] | 1 | /* ****************************************************************** |
| 2 | * huff0 huffman decoder, |
| 3 | * part of Finite State Entropy library |
| 4 | * Copyright (c) Yann Collet, Facebook, Inc. |
| 5 | * |
| 6 | * You can contact the author at : |
| 7 | * - FSE+HUF source repository : https://github.com/Cyan4973/FiniteStateEntropy |
| 8 | * |
| 9 | * This source code is licensed under both the BSD-style license (found in the |
| 10 | * LICENSE file in the root directory of this source tree) and the GPLv2 (found |
| 11 | * in the COPYING file in the root directory of this source tree). |
| 12 | * You may select, at your option, one of the above-listed licenses. |
| 13 | ****************************************************************** */ |
| 14 | |
| 15 | /* ************************************************************** |
| 16 | * Dependencies |
| 17 | ****************************************************************/ |
| 18 | #include "../common/zstd_deps.h" /* ZSTD_memcpy, ZSTD_memset */ |
| 19 | #include "../common/compiler.h" |
| 20 | #include "../common/bitstream.h" /* BIT_* */ |
| 21 | #include "../common/fse.h" /* to compress headers */ |
| 22 | #define HUF_STATIC_LINKING_ONLY |
| 23 | #include "../common/huf.h" |
| 24 | #include "../common/error_private.h" |
| 25 | #include "../common/zstd_internal.h" |
| 26 | |
| 27 | /* ************************************************************** |
| 28 | * Constants |
| 29 | ****************************************************************/ |
| 30 | |
| 31 | #define HUF_DECODER_FAST_TABLELOG 11 |
| 32 | |
| 33 | /* ************************************************************** |
| 34 | * Macros |
| 35 | ****************************************************************/ |
| 36 | |
| 37 | /* These two optional macros force the use one way or another of the two |
| 38 | * Huffman decompression implementations. You can't force in both directions |
| 39 | * at the same time. |
| 40 | */ |
| 41 | #if defined(HUF_FORCE_DECOMPRESS_X1) && \ |
| 42 | defined(HUF_FORCE_DECOMPRESS_X2) |
| 43 | #error "Cannot force the use of the X1 and X2 decoders at the same time!" |
| 44 | #endif |
| 45 | |
| 46 | #if ZSTD_ENABLE_ASM_X86_64_BMI2 && DYNAMIC_BMI2 |
| 47 | # define HUF_ASM_X86_64_BMI2_ATTRS BMI2_TARGET_ATTRIBUTE |
| 48 | #else |
| 49 | # define HUF_ASM_X86_64_BMI2_ATTRS |
| 50 | #endif |
| 51 | |
| 52 | #define HUF_EXTERN_C |
| 53 | #define HUF_ASM_DECL HUF_EXTERN_C |
| 54 | |
| 55 | #if DYNAMIC_BMI2 || (ZSTD_ENABLE_ASM_X86_64_BMI2 && defined(__BMI2__)) |
| 56 | # define HUF_NEED_BMI2_FUNCTION 1 |
| 57 | #else |
| 58 | # define HUF_NEED_BMI2_FUNCTION 0 |
| 59 | #endif |
| 60 | |
| 61 | #if !(ZSTD_ENABLE_ASM_X86_64_BMI2 && defined(__BMI2__)) |
| 62 | # define HUF_NEED_DEFAULT_FUNCTION 1 |
| 63 | #else |
| 64 | # define HUF_NEED_DEFAULT_FUNCTION 0 |
| 65 | #endif |
| 66 | |
| 67 | /* ************************************************************** |
| 68 | * Error Management |
| 69 | ****************************************************************/ |
| 70 | #define HUF_isError ERR_isError |
| 71 | |
| 72 | |
| 73 | /* ************************************************************** |
| 74 | * Byte alignment for workSpace management |
| 75 | ****************************************************************/ |
| 76 | #define HUF_ALIGN(x, a) HUF_ALIGN_MASK((x), (a) - 1) |
| 77 | #define HUF_ALIGN_MASK(x, mask) (((x) + (mask)) & ~(mask)) |
| 78 | |
| 79 | |
| 80 | /* ************************************************************** |
| 81 | * BMI2 Variant Wrappers |
| 82 | ****************************************************************/ |
| 83 | #if DYNAMIC_BMI2 |
| 84 | |
| 85 | #define HUF_DGEN(fn) \ |
| 86 | \ |
| 87 | static size_t fn##_default( \ |
| 88 | void* dst, size_t dstSize, \ |
| 89 | const void* cSrc, size_t cSrcSize, \ |
| 90 | const HUF_DTable* DTable) \ |
| 91 | { \ |
| 92 | return fn##_body(dst, dstSize, cSrc, cSrcSize, DTable); \ |
| 93 | } \ |
| 94 | \ |
| 95 | static BMI2_TARGET_ATTRIBUTE size_t fn##_bmi2( \ |
| 96 | void* dst, size_t dstSize, \ |
| 97 | const void* cSrc, size_t cSrcSize, \ |
| 98 | const HUF_DTable* DTable) \ |
| 99 | { \ |
| 100 | return fn##_body(dst, dstSize, cSrc, cSrcSize, DTable); \ |
| 101 | } \ |
| 102 | \ |
| 103 | static size_t fn(void* dst, size_t dstSize, void const* cSrc, \ |
| 104 | size_t cSrcSize, HUF_DTable const* DTable, int bmi2) \ |
| 105 | { \ |
| 106 | if (bmi2) { \ |
| 107 | return fn##_bmi2(dst, dstSize, cSrc, cSrcSize, DTable); \ |
| 108 | } \ |
| 109 | return fn##_default(dst, dstSize, cSrc, cSrcSize, DTable); \ |
| 110 | } |
| 111 | |
| 112 | #else |
| 113 | |
| 114 | #define HUF_DGEN(fn) \ |
| 115 | static size_t fn(void* dst, size_t dstSize, void const* cSrc, \ |
| 116 | size_t cSrcSize, HUF_DTable const* DTable, int bmi2) \ |
| 117 | { \ |
| 118 | (void)bmi2; \ |
| 119 | return fn##_body(dst, dstSize, cSrc, cSrcSize, DTable); \ |
| 120 | } |
| 121 | |
| 122 | #endif |
| 123 | |
| 124 | |
| 125 | /*-***************************/ |
| 126 | /* generic DTableDesc */ |
| 127 | /*-***************************/ |
| 128 | typedef struct { BYTE maxTableLog; BYTE tableType; BYTE tableLog; BYTE reserved; } DTableDesc; |
| 129 | |
| 130 | static DTableDesc HUF_getDTableDesc(const HUF_DTable* table) |
| 131 | { |
| 132 | DTableDesc dtd; |
| 133 | ZSTD_memcpy(&dtd, table, sizeof(dtd)); |
| 134 | return dtd; |
| 135 | } |
| 136 | |
| 137 | #if ZSTD_ENABLE_ASM_X86_64_BMI2 |
| 138 | |
| 139 | static size_t HUF_initDStream(BYTE const* ip) { |
| 140 | BYTE const lastByte = ip[7]; |
| 141 | size_t const bitsConsumed = lastByte ? 8 - BIT_highbit32(lastByte) : 0; |
| 142 | size_t const value = MEM_readLEST(ip) | 1; |
| 143 | assert(bitsConsumed <= 8); |
| 144 | return value << bitsConsumed; |
| 145 | } |
| 146 | typedef struct { |
| 147 | BYTE const* ip[4]; |
| 148 | BYTE* op[4]; |
| 149 | U64 bits[4]; |
| 150 | void const* dt; |
| 151 | BYTE const* ilimit; |
| 152 | BYTE* oend; |
| 153 | BYTE const* iend[4]; |
| 154 | } HUF_DecompressAsmArgs; |
| 155 | |
| 156 | /* |
| 157 | * Initializes args for the asm decoding loop. |
| 158 | * @returns 0 on success |
| 159 | * 1 if the fallback implementation should be used. |
| 160 | * Or an error code on failure. |
| 161 | */ |
| 162 | static size_t HUF_DecompressAsmArgs_init(HUF_DecompressAsmArgs* args, void* dst, size_t dstSize, void const* src, size_t srcSize, const HUF_DTable* DTable) |
| 163 | { |
| 164 | void const* dt = DTable + 1; |
| 165 | U32 const dtLog = HUF_getDTableDesc(DTable).tableLog; |
| 166 | |
| 167 | const BYTE* const ilimit = (const BYTE*)src + 6 + 8; |
| 168 | |
| 169 | BYTE* const oend = (BYTE*)dst + dstSize; |
| 170 | |
| 171 | /* The following condition is false on x32 platform, |
| 172 | * but HUF_asm is not compatible with this ABI */ |
| 173 | if (!(MEM_isLittleEndian() && !MEM_32bits())) return 1; |
| 174 | |
| 175 | /* strict minimum : jump table + 1 byte per stream */ |
| 176 | if (srcSize < 10) |
| 177 | return ERROR(corruption_detected); |
| 178 | |
| 179 | /* Must have at least 8 bytes per stream because we don't handle initializing smaller bit containers. |
| 180 | * If table log is not correct at this point, fallback to the old decoder. |
| 181 | * On small inputs we don't have enough data to trigger the fast loop, so use the old decoder. |
| 182 | */ |
| 183 | if (dtLog != HUF_DECODER_FAST_TABLELOG) |
| 184 | return 1; |
| 185 | |
| 186 | /* Read the jump table. */ |
| 187 | { |
| 188 | const BYTE* const istart = (const BYTE*)src; |
| 189 | size_t const length1 = MEM_readLE16(istart); |
| 190 | size_t const length2 = MEM_readLE16(istart+2); |
| 191 | size_t const length3 = MEM_readLE16(istart+4); |
| 192 | size_t const length4 = srcSize - (length1 + length2 + length3 + 6); |
| 193 | args->iend[0] = istart + 6; /* jumpTable */ |
| 194 | args->iend[1] = args->iend[0] + length1; |
| 195 | args->iend[2] = args->iend[1] + length2; |
| 196 | args->iend[3] = args->iend[2] + length3; |
| 197 | |
| 198 | /* HUF_initDStream() requires this, and this small of an input |
| 199 | * won't benefit from the ASM loop anyways. |
| 200 | * length1 must be >= 16 so that ip[0] >= ilimit before the loop |
| 201 | * starts. |
| 202 | */ |
| 203 | if (length1 < 16 || length2 < 8 || length3 < 8 || length4 < 8) |
| 204 | return 1; |
| 205 | if (length4 > srcSize) return ERROR(corruption_detected); /* overflow */ |
| 206 | } |
| 207 | /* ip[] contains the position that is currently loaded into bits[]. */ |
| 208 | args->ip[0] = args->iend[1] - sizeof(U64); |
| 209 | args->ip[1] = args->iend[2] - sizeof(U64); |
| 210 | args->ip[2] = args->iend[3] - sizeof(U64); |
| 211 | args->ip[3] = (BYTE const*)src + srcSize - sizeof(U64); |
| 212 | |
| 213 | /* op[] contains the output pointers. */ |
| 214 | args->op[0] = (BYTE*)dst; |
| 215 | args->op[1] = args->op[0] + (dstSize+3)/4; |
| 216 | args->op[2] = args->op[1] + (dstSize+3)/4; |
| 217 | args->op[3] = args->op[2] + (dstSize+3)/4; |
| 218 | |
| 219 | /* No point to call the ASM loop for tiny outputs. */ |
| 220 | if (args->op[3] >= oend) |
| 221 | return 1; |
| 222 | |
| 223 | /* bits[] is the bit container. |
| 224 | * It is read from the MSB down to the LSB. |
| 225 | * It is shifted left as it is read, and zeros are |
| 226 | * shifted in. After the lowest valid bit a 1 is |
| 227 | * set, so that CountTrailingZeros(bits[]) can be used |
| 228 | * to count how many bits we've consumed. |
| 229 | */ |
| 230 | args->bits[0] = HUF_initDStream(args->ip[0]); |
| 231 | args->bits[1] = HUF_initDStream(args->ip[1]); |
| 232 | args->bits[2] = HUF_initDStream(args->ip[2]); |
| 233 | args->bits[3] = HUF_initDStream(args->ip[3]); |
| 234 | |
| 235 | /* If ip[] >= ilimit, it is guaranteed to be safe to |
| 236 | * reload bits[]. It may be beyond its section, but is |
| 237 | * guaranteed to be valid (>= istart). |
| 238 | */ |
| 239 | args->ilimit = ilimit; |
| 240 | |
| 241 | args->oend = oend; |
| 242 | args->dt = dt; |
| 243 | |
| 244 | return 0; |
| 245 | } |
| 246 | |
| 247 | static size_t HUF_initRemainingDStream(BIT_DStream_t* bit, HUF_DecompressAsmArgs const* args, int stream, BYTE* segmentEnd) |
| 248 | { |
| 249 | /* Validate that we haven't overwritten. */ |
| 250 | if (args->op[stream] > segmentEnd) |
| 251 | return ERROR(corruption_detected); |
| 252 | /* Validate that we haven't read beyond iend[]. |
| 253 | * Note that ip[] may be < iend[] because the MSB is |
| 254 | * the next bit to read, and we may have consumed 100% |
| 255 | * of the stream, so down to iend[i] - 8 is valid. |
| 256 | */ |
| 257 | if (args->ip[stream] < args->iend[stream] - 8) |
| 258 | return ERROR(corruption_detected); |
| 259 | |
| 260 | /* Construct the BIT_DStream_t. */ |
| 261 | bit->bitContainer = MEM_readLE64(args->ip[stream]); |
| 262 | bit->bitsConsumed = ZSTD_countTrailingZeros((size_t)args->bits[stream]); |
| 263 | bit->start = (const char*)args->iend[0]; |
| 264 | bit->limitPtr = bit->start + sizeof(size_t); |
| 265 | bit->ptr = (const char*)args->ip[stream]; |
| 266 | |
| 267 | return 0; |
| 268 | } |
| 269 | #endif |
| 270 | |
| 271 | |
| 272 | #ifndef HUF_FORCE_DECOMPRESS_X2 |
| 273 | |
| 274 | /*-***************************/ |
| 275 | /* single-symbol decoding */ |
| 276 | /*-***************************/ |
| 277 | typedef struct { BYTE nbBits; BYTE byte; } HUF_DEltX1; /* single-symbol decoding */ |
| 278 | |
| 279 | /* |
| 280 | * Packs 4 HUF_DEltX1 structs into a U64. This is used to lay down 4 entries at |
| 281 | * a time. |
| 282 | */ |
| 283 | static U64 HUF_DEltX1_set4(BYTE symbol, BYTE nbBits) { |
| 284 | U64 D4; |
| 285 | if (MEM_isLittleEndian()) { |
| 286 | D4 = (symbol << 8) + nbBits; |
| 287 | } else { |
| 288 | D4 = symbol + (nbBits << 8); |
| 289 | } |
| 290 | D4 *= 0x0001000100010001ULL; |
| 291 | return D4; |
| 292 | } |
| 293 | |
| 294 | /* |
| 295 | * Increase the tableLog to targetTableLog and rescales the stats. |
| 296 | * If tableLog > targetTableLog this is a no-op. |
| 297 | * @returns New tableLog |
| 298 | */ |
| 299 | static U32 HUF_rescaleStats(BYTE* huffWeight, U32* rankVal, U32 nbSymbols, U32 tableLog, U32 targetTableLog) |
| 300 | { |
| 301 | if (tableLog > targetTableLog) |
| 302 | return tableLog; |
| 303 | if (tableLog < targetTableLog) { |
| 304 | U32 const scale = targetTableLog - tableLog; |
| 305 | U32 s; |
| 306 | /* Increase the weight for all non-zero probability symbols by scale. */ |
| 307 | for (s = 0; s < nbSymbols; ++s) { |
| 308 | huffWeight[s] += (BYTE)((huffWeight[s] == 0) ? 0 : scale); |
| 309 | } |
| 310 | /* Update rankVal to reflect the new weights. |
| 311 | * All weights except 0 get moved to weight + scale. |
| 312 | * Weights [1, scale] are empty. |
| 313 | */ |
| 314 | for (s = targetTableLog; s > scale; --s) { |
| 315 | rankVal[s] = rankVal[s - scale]; |
| 316 | } |
| 317 | for (s = scale; s > 0; --s) { |
| 318 | rankVal[s] = 0; |
| 319 | } |
| 320 | } |
| 321 | return targetTableLog; |
| 322 | } |
| 323 | |
| 324 | typedef struct { |
| 325 | U32 rankVal[HUF_TABLELOG_ABSOLUTEMAX + 1]; |
| 326 | U32 rankStart[HUF_TABLELOG_ABSOLUTEMAX + 1]; |
| 327 | U32 statsWksp[HUF_READ_STATS_WORKSPACE_SIZE_U32]; |
| 328 | BYTE symbols[HUF_SYMBOLVALUE_MAX + 1]; |
| 329 | BYTE huffWeight[HUF_SYMBOLVALUE_MAX + 1]; |
| 330 | } HUF_ReadDTableX1_Workspace; |
| 331 | |
| 332 | |
| 333 | size_t HUF_readDTableX1_wksp(HUF_DTable* DTable, const void* src, size_t srcSize, void* workSpace, size_t wkspSize) |
| 334 | { |
| 335 | return HUF_readDTableX1_wksp_bmi2(DTable, src, srcSize, workSpace, wkspSize, /* bmi2 */ 0); |
| 336 | } |
| 337 | |
| 338 | size_t HUF_readDTableX1_wksp_bmi2(HUF_DTable* DTable, const void* src, size_t srcSize, void* workSpace, size_t wkspSize, int bmi2) |
| 339 | { |
| 340 | U32 tableLog = 0; |
| 341 | U32 nbSymbols = 0; |
| 342 | size_t iSize; |
| 343 | void* const dtPtr = DTable + 1; |
| 344 | HUF_DEltX1* const dt = (HUF_DEltX1*)dtPtr; |
| 345 | HUF_ReadDTableX1_Workspace* wksp = (HUF_ReadDTableX1_Workspace*)workSpace; |
| 346 | |
| 347 | DEBUG_STATIC_ASSERT(HUF_DECOMPRESS_WORKSPACE_SIZE >= sizeof(*wksp)); |
| 348 | if (sizeof(*wksp) > wkspSize) return ERROR(tableLog_tooLarge); |
| 349 | |
| 350 | DEBUG_STATIC_ASSERT(sizeof(DTableDesc) == sizeof(HUF_DTable)); |
| 351 | /* ZSTD_memset(huffWeight, 0, sizeof(huffWeight)); */ /* is not necessary, even though some analyzer complain ... */ |
| 352 | |
| 353 | iSize = HUF_readStats_wksp(wksp->huffWeight, HUF_SYMBOLVALUE_MAX + 1, wksp->rankVal, &nbSymbols, &tableLog, src, srcSize, wksp->statsWksp, sizeof(wksp->statsWksp), bmi2); |
| 354 | if (HUF_isError(iSize)) return iSize; |
| 355 | |
| 356 | |
| 357 | /* Table header */ |
| 358 | { DTableDesc dtd = HUF_getDTableDesc(DTable); |
| 359 | U32 const maxTableLog = dtd.maxTableLog + 1; |
| 360 | U32 const targetTableLog = MIN(maxTableLog, HUF_DECODER_FAST_TABLELOG); |
| 361 | tableLog = HUF_rescaleStats(wksp->huffWeight, wksp->rankVal, nbSymbols, tableLog, targetTableLog); |
| 362 | if (tableLog > (U32)(dtd.maxTableLog+1)) return ERROR(tableLog_tooLarge); /* DTable too small, Huffman tree cannot fit in */ |
| 363 | dtd.tableType = 0; |
| 364 | dtd.tableLog = (BYTE)tableLog; |
| 365 | ZSTD_memcpy(DTable, &dtd, sizeof(dtd)); |
| 366 | } |
| 367 | |
| 368 | /* Compute symbols and rankStart given rankVal: |
| 369 | * |
| 370 | * rankVal already contains the number of values of each weight. |
| 371 | * |
| 372 | * symbols contains the symbols ordered by weight. First are the rankVal[0] |
| 373 | * weight 0 symbols, followed by the rankVal[1] weight 1 symbols, and so on. |
| 374 | * symbols[0] is filled (but unused) to avoid a branch. |
| 375 | * |
| 376 | * rankStart contains the offset where each rank belongs in the DTable. |
| 377 | * rankStart[0] is not filled because there are no entries in the table for |
| 378 | * weight 0. |
| 379 | */ |
| 380 | { |
| 381 | int n; |
| 382 | int nextRankStart = 0; |
| 383 | int const unroll = 4; |
| 384 | int const nLimit = (int)nbSymbols - unroll + 1; |
| 385 | for (n=0; n<(int)tableLog+1; n++) { |
| 386 | U32 const curr = nextRankStart; |
| 387 | nextRankStart += wksp->rankVal[n]; |
| 388 | wksp->rankStart[n] = curr; |
| 389 | } |
| 390 | for (n=0; n < nLimit; n += unroll) { |
| 391 | int u; |
| 392 | for (u=0; u < unroll; ++u) { |
| 393 | size_t const w = wksp->huffWeight[n+u]; |
| 394 | wksp->symbols[wksp->rankStart[w]++] = (BYTE)(n+u); |
| 395 | } |
| 396 | } |
| 397 | for (; n < (int)nbSymbols; ++n) { |
| 398 | size_t const w = wksp->huffWeight[n]; |
| 399 | wksp->symbols[wksp->rankStart[w]++] = (BYTE)n; |
| 400 | } |
| 401 | } |
| 402 | |
| 403 | /* fill DTable |
| 404 | * We fill all entries of each weight in order. |
| 405 | * That way length is a constant for each iteration of the outer loop. |
| 406 | * We can switch based on the length to a different inner loop which is |
| 407 | * optimized for that particular case. |
| 408 | */ |
| 409 | { |
| 410 | U32 w; |
| 411 | int symbol=wksp->rankVal[0]; |
| 412 | int rankStart=0; |
| 413 | for (w=1; w<tableLog+1; ++w) { |
| 414 | int const symbolCount = wksp->rankVal[w]; |
| 415 | int const length = (1 << w) >> 1; |
| 416 | int uStart = rankStart; |
| 417 | BYTE const nbBits = (BYTE)(tableLog + 1 - w); |
| 418 | int s; |
| 419 | int u; |
| 420 | switch (length) { |
| 421 | case 1: |
| 422 | for (s=0; s<symbolCount; ++s) { |
| 423 | HUF_DEltX1 D; |
| 424 | D.byte = wksp->symbols[symbol + s]; |
| 425 | D.nbBits = nbBits; |
| 426 | dt[uStart] = D; |
| 427 | uStart += 1; |
| 428 | } |
| 429 | break; |
| 430 | case 2: |
| 431 | for (s=0; s<symbolCount; ++s) { |
| 432 | HUF_DEltX1 D; |
| 433 | D.byte = wksp->symbols[symbol + s]; |
| 434 | D.nbBits = nbBits; |
| 435 | dt[uStart+0] = D; |
| 436 | dt[uStart+1] = D; |
| 437 | uStart += 2; |
| 438 | } |
| 439 | break; |
| 440 | case 4: |
| 441 | for (s=0; s<symbolCount; ++s) { |
| 442 | U64 const D4 = HUF_DEltX1_set4(wksp->symbols[symbol + s], nbBits); |
| 443 | MEM_write64(dt + uStart, D4); |
| 444 | uStart += 4; |
| 445 | } |
| 446 | break; |
| 447 | case 8: |
| 448 | for (s=0; s<symbolCount; ++s) { |
| 449 | U64 const D4 = HUF_DEltX1_set4(wksp->symbols[symbol + s], nbBits); |
| 450 | MEM_write64(dt + uStart, D4); |
| 451 | MEM_write64(dt + uStart + 4, D4); |
| 452 | uStart += 8; |
| 453 | } |
| 454 | break; |
| 455 | default: |
| 456 | for (s=0; s<symbolCount; ++s) { |
| 457 | U64 const D4 = HUF_DEltX1_set4(wksp->symbols[symbol + s], nbBits); |
| 458 | for (u=0; u < length; u += 16) { |
| 459 | MEM_write64(dt + uStart + u + 0, D4); |
| 460 | MEM_write64(dt + uStart + u + 4, D4); |
| 461 | MEM_write64(dt + uStart + u + 8, D4); |
| 462 | MEM_write64(dt + uStart + u + 12, D4); |
| 463 | } |
| 464 | assert(u == length); |
| 465 | uStart += length; |
| 466 | } |
| 467 | break; |
| 468 | } |
| 469 | symbol += symbolCount; |
| 470 | rankStart += symbolCount * length; |
| 471 | } |
| 472 | } |
| 473 | return iSize; |
| 474 | } |
| 475 | |
| 476 | FORCE_INLINE_TEMPLATE BYTE |
| 477 | HUF_decodeSymbolX1(BIT_DStream_t* Dstream, const HUF_DEltX1* dt, const U32 dtLog) |
| 478 | { |
| 479 | size_t const val = BIT_lookBitsFast(Dstream, dtLog); /* note : dtLog >= 1 */ |
| 480 | BYTE const c = dt[val].byte; |
| 481 | BIT_skipBits(Dstream, dt[val].nbBits); |
| 482 | return c; |
| 483 | } |
| 484 | |
| 485 | #define HUF_DECODE_SYMBOLX1_0(ptr, DStreamPtr) \ |
| 486 | *ptr++ = HUF_decodeSymbolX1(DStreamPtr, dt, dtLog) |
| 487 | |
| 488 | #define HUF_DECODE_SYMBOLX1_1(ptr, DStreamPtr) \ |
| 489 | if (MEM_64bits() || (HUF_TABLELOG_MAX<=12)) \ |
| 490 | HUF_DECODE_SYMBOLX1_0(ptr, DStreamPtr) |
| 491 | |
| 492 | #define HUF_DECODE_SYMBOLX1_2(ptr, DStreamPtr) \ |
| 493 | if (MEM_64bits()) \ |
| 494 | HUF_DECODE_SYMBOLX1_0(ptr, DStreamPtr) |
| 495 | |
| 496 | HINT_INLINE size_t |
| 497 | HUF_decodeStreamX1(BYTE* p, BIT_DStream_t* const bitDPtr, BYTE* const pEnd, const HUF_DEltX1* const dt, const U32 dtLog) |
| 498 | { |
| 499 | BYTE* const pStart = p; |
| 500 | |
| 501 | /* up to 4 symbols at a time */ |
| 502 | if ((pEnd - p) > 3) { |
| 503 | while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p < pEnd-3)) { |
| 504 | HUF_DECODE_SYMBOLX1_2(p, bitDPtr); |
| 505 | HUF_DECODE_SYMBOLX1_1(p, bitDPtr); |
| 506 | HUF_DECODE_SYMBOLX1_2(p, bitDPtr); |
| 507 | HUF_DECODE_SYMBOLX1_0(p, bitDPtr); |
| 508 | } |
| 509 | } else { |
| 510 | BIT_reloadDStream(bitDPtr); |
| 511 | } |
| 512 | |
| 513 | /* [0-3] symbols remaining */ |
| 514 | if (MEM_32bits()) |
| 515 | while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p < pEnd)) |
| 516 | HUF_DECODE_SYMBOLX1_0(p, bitDPtr); |
| 517 | |
| 518 | /* no more data to retrieve from bitstream, no need to reload */ |
| 519 | while (p < pEnd) |
| 520 | HUF_DECODE_SYMBOLX1_0(p, bitDPtr); |
| 521 | |
| 522 | return pEnd-pStart; |
| 523 | } |
| 524 | |
| 525 | FORCE_INLINE_TEMPLATE size_t |
| 526 | HUF_decompress1X1_usingDTable_internal_body( |
| 527 | void* dst, size_t dstSize, |
| 528 | const void* cSrc, size_t cSrcSize, |
| 529 | const HUF_DTable* DTable) |
| 530 | { |
| 531 | BYTE* op = (BYTE*)dst; |
| 532 | BYTE* const oend = op + dstSize; |
| 533 | const void* dtPtr = DTable + 1; |
| 534 | const HUF_DEltX1* const dt = (const HUF_DEltX1*)dtPtr; |
| 535 | BIT_DStream_t bitD; |
| 536 | DTableDesc const dtd = HUF_getDTableDesc(DTable); |
| 537 | U32 const dtLog = dtd.tableLog; |
| 538 | |
| 539 | CHECK_F( BIT_initDStream(&bitD, cSrc, cSrcSize) ); |
| 540 | |
| 541 | HUF_decodeStreamX1(op, &bitD, oend, dt, dtLog); |
| 542 | |
| 543 | if (!BIT_endOfDStream(&bitD)) return ERROR(corruption_detected); |
| 544 | |
| 545 | return dstSize; |
| 546 | } |
| 547 | |
| 548 | FORCE_INLINE_TEMPLATE size_t |
| 549 | HUF_decompress4X1_usingDTable_internal_body( |
| 550 | void* dst, size_t dstSize, |
| 551 | const void* cSrc, size_t cSrcSize, |
| 552 | const HUF_DTable* DTable) |
| 553 | { |
| 554 | /* Check */ |
| 555 | if (cSrcSize < 10) return ERROR(corruption_detected); /* strict minimum : jump table + 1 byte per stream */ |
| 556 | |
| 557 | { const BYTE* const istart = (const BYTE*) cSrc; |
| 558 | BYTE* const ostart = (BYTE*) dst; |
| 559 | BYTE* const oend = ostart + dstSize; |
| 560 | BYTE* const olimit = oend - 3; |
| 561 | const void* const dtPtr = DTable + 1; |
| 562 | const HUF_DEltX1* const dt = (const HUF_DEltX1*)dtPtr; |
| 563 | |
| 564 | /* Init */ |
| 565 | BIT_DStream_t bitD1; |
| 566 | BIT_DStream_t bitD2; |
| 567 | BIT_DStream_t bitD3; |
| 568 | BIT_DStream_t bitD4; |
| 569 | size_t const length1 = MEM_readLE16(istart); |
| 570 | size_t const length2 = MEM_readLE16(istart+2); |
| 571 | size_t const length3 = MEM_readLE16(istart+4); |
| 572 | size_t const length4 = cSrcSize - (length1 + length2 + length3 + 6); |
| 573 | const BYTE* const istart1 = istart + 6; /* jumpTable */ |
| 574 | const BYTE* const istart2 = istart1 + length1; |
| 575 | const BYTE* const istart3 = istart2 + length2; |
| 576 | const BYTE* const istart4 = istart3 + length3; |
| 577 | const size_t segmentSize = (dstSize+3) / 4; |
| 578 | BYTE* const opStart2 = ostart + segmentSize; |
| 579 | BYTE* const opStart3 = opStart2 + segmentSize; |
| 580 | BYTE* const opStart4 = opStart3 + segmentSize; |
| 581 | BYTE* op1 = ostart; |
| 582 | BYTE* op2 = opStart2; |
| 583 | BYTE* op3 = opStart3; |
| 584 | BYTE* op4 = opStart4; |
| 585 | DTableDesc const dtd = HUF_getDTableDesc(DTable); |
| 586 | U32 const dtLog = dtd.tableLog; |
| 587 | U32 endSignal = 1; |
| 588 | |
| 589 | if (length4 > cSrcSize) return ERROR(corruption_detected); /* overflow */ |
| 590 | if (opStart4 > oend) return ERROR(corruption_detected); /* overflow */ |
| 591 | CHECK_F( BIT_initDStream(&bitD1, istart1, length1) ); |
| 592 | CHECK_F( BIT_initDStream(&bitD2, istart2, length2) ); |
| 593 | CHECK_F( BIT_initDStream(&bitD3, istart3, length3) ); |
| 594 | CHECK_F( BIT_initDStream(&bitD4, istart4, length4) ); |
| 595 | |
| 596 | /* up to 16 symbols per loop (4 symbols per stream) in 64-bit mode */ |
| 597 | if ((size_t)(oend - op4) >= sizeof(size_t)) { |
| 598 | for ( ; (endSignal) & (op4 < olimit) ; ) { |
| 599 | HUF_DECODE_SYMBOLX1_2(op1, &bitD1); |
| 600 | HUF_DECODE_SYMBOLX1_2(op2, &bitD2); |
| 601 | HUF_DECODE_SYMBOLX1_2(op3, &bitD3); |
| 602 | HUF_DECODE_SYMBOLX1_2(op4, &bitD4); |
| 603 | HUF_DECODE_SYMBOLX1_1(op1, &bitD1); |
| 604 | HUF_DECODE_SYMBOLX1_1(op2, &bitD2); |
| 605 | HUF_DECODE_SYMBOLX1_1(op3, &bitD3); |
| 606 | HUF_DECODE_SYMBOLX1_1(op4, &bitD4); |
| 607 | HUF_DECODE_SYMBOLX1_2(op1, &bitD1); |
| 608 | HUF_DECODE_SYMBOLX1_2(op2, &bitD2); |
| 609 | HUF_DECODE_SYMBOLX1_2(op3, &bitD3); |
| 610 | HUF_DECODE_SYMBOLX1_2(op4, &bitD4); |
| 611 | HUF_DECODE_SYMBOLX1_0(op1, &bitD1); |
| 612 | HUF_DECODE_SYMBOLX1_0(op2, &bitD2); |
| 613 | HUF_DECODE_SYMBOLX1_0(op3, &bitD3); |
| 614 | HUF_DECODE_SYMBOLX1_0(op4, &bitD4); |
| 615 | endSignal &= BIT_reloadDStreamFast(&bitD1) == BIT_DStream_unfinished; |
| 616 | endSignal &= BIT_reloadDStreamFast(&bitD2) == BIT_DStream_unfinished; |
| 617 | endSignal &= BIT_reloadDStreamFast(&bitD3) == BIT_DStream_unfinished; |
| 618 | endSignal &= BIT_reloadDStreamFast(&bitD4) == BIT_DStream_unfinished; |
| 619 | } |
| 620 | } |
| 621 | |
| 622 | /* check corruption */ |
| 623 | /* note : should not be necessary : op# advance in lock step, and we control op4. |
| 624 | * but curiously, binary generated by gcc 7.2 & 7.3 with -mbmi2 runs faster when >=1 test is present */ |
| 625 | if (op1 > opStart2) return ERROR(corruption_detected); |
| 626 | if (op2 > opStart3) return ERROR(corruption_detected); |
| 627 | if (op3 > opStart4) return ERROR(corruption_detected); |
| 628 | /* note : op4 supposed already verified within main loop */ |
| 629 | |
| 630 | /* finish bitStreams one by one */ |
| 631 | HUF_decodeStreamX1(op1, &bitD1, opStart2, dt, dtLog); |
| 632 | HUF_decodeStreamX1(op2, &bitD2, opStart3, dt, dtLog); |
| 633 | HUF_decodeStreamX1(op3, &bitD3, opStart4, dt, dtLog); |
| 634 | HUF_decodeStreamX1(op4, &bitD4, oend, dt, dtLog); |
| 635 | |
| 636 | /* check */ |
| 637 | { U32 const endCheck = BIT_endOfDStream(&bitD1) & BIT_endOfDStream(&bitD2) & BIT_endOfDStream(&bitD3) & BIT_endOfDStream(&bitD4); |
| 638 | if (!endCheck) return ERROR(corruption_detected); } |
| 639 | |
| 640 | /* decoded size */ |
| 641 | return dstSize; |
| 642 | } |
| 643 | } |
| 644 | |
| 645 | #if HUF_NEED_BMI2_FUNCTION |
| 646 | static BMI2_TARGET_ATTRIBUTE |
| 647 | size_t HUF_decompress4X1_usingDTable_internal_bmi2(void* dst, size_t dstSize, void const* cSrc, |
| 648 | size_t cSrcSize, HUF_DTable const* DTable) { |
| 649 | return HUF_decompress4X1_usingDTable_internal_body(dst, dstSize, cSrc, cSrcSize, DTable); |
| 650 | } |
| 651 | #endif |
| 652 | |
| 653 | #if HUF_NEED_DEFAULT_FUNCTION |
| 654 | static |
| 655 | size_t HUF_decompress4X1_usingDTable_internal_default(void* dst, size_t dstSize, void const* cSrc, |
| 656 | size_t cSrcSize, HUF_DTable const* DTable) { |
| 657 | return HUF_decompress4X1_usingDTable_internal_body(dst, dstSize, cSrc, cSrcSize, DTable); |
| 658 | } |
| 659 | #endif |
| 660 | |
| 661 | #if ZSTD_ENABLE_ASM_X86_64_BMI2 |
| 662 | |
| 663 | HUF_ASM_DECL void HUF_decompress4X1_usingDTable_internal_bmi2_asm_loop(HUF_DecompressAsmArgs* args) ZSTDLIB_HIDDEN; |
| 664 | |
| 665 | static HUF_ASM_X86_64_BMI2_ATTRS |
| 666 | size_t |
| 667 | HUF_decompress4X1_usingDTable_internal_bmi2_asm( |
| 668 | void* dst, size_t dstSize, |
| 669 | const void* cSrc, size_t cSrcSize, |
| 670 | const HUF_DTable* DTable) |
| 671 | { |
| 672 | void const* dt = DTable + 1; |
| 673 | const BYTE* const iend = (const BYTE*)cSrc + 6; |
| 674 | BYTE* const oend = (BYTE*)dst + dstSize; |
| 675 | HUF_DecompressAsmArgs args; |
| 676 | { |
| 677 | size_t const ret = HUF_DecompressAsmArgs_init(&args, dst, dstSize, cSrc, cSrcSize, DTable); |
| 678 | FORWARD_IF_ERROR(ret, "Failed to init asm args"); |
| 679 | if (ret != 0) |
| 680 | return HUF_decompress4X1_usingDTable_internal_bmi2(dst, dstSize, cSrc, cSrcSize, DTable); |
| 681 | } |
| 682 | |
| 683 | assert(args.ip[0] >= args.ilimit); |
| 684 | HUF_decompress4X1_usingDTable_internal_bmi2_asm_loop(&args); |
| 685 | |
| 686 | /* Our loop guarantees that ip[] >= ilimit and that we haven't |
| 687 | * overwritten any op[]. |
| 688 | */ |
| 689 | assert(args.ip[0] >= iend); |
| 690 | assert(args.ip[1] >= iend); |
| 691 | assert(args.ip[2] >= iend); |
| 692 | assert(args.ip[3] >= iend); |
| 693 | assert(args.op[3] <= oend); |
| 694 | (void)iend; |
| 695 | |
| 696 | /* finish bit streams one by one. */ |
| 697 | { |
| 698 | size_t const segmentSize = (dstSize+3) / 4; |
| 699 | BYTE* segmentEnd = (BYTE*)dst; |
| 700 | int i; |
| 701 | for (i = 0; i < 4; ++i) { |
| 702 | BIT_DStream_t bit; |
| 703 | if (segmentSize <= (size_t)(oend - segmentEnd)) |
| 704 | segmentEnd += segmentSize; |
| 705 | else |
| 706 | segmentEnd = oend; |
| 707 | FORWARD_IF_ERROR(HUF_initRemainingDStream(&bit, &args, i, segmentEnd), "corruption"); |
| 708 | /* Decompress and validate that we've produced exactly the expected length. */ |
| 709 | args.op[i] += HUF_decodeStreamX1(args.op[i], &bit, segmentEnd, (HUF_DEltX1 const*)dt, HUF_DECODER_FAST_TABLELOG); |
| 710 | if (args.op[i] != segmentEnd) return ERROR(corruption_detected); |
| 711 | } |
| 712 | } |
| 713 | |
| 714 | /* decoded size */ |
| 715 | return dstSize; |
| 716 | } |
| 717 | #endif /* ZSTD_ENABLE_ASM_X86_64_BMI2 */ |
| 718 | |
| 719 | typedef size_t (*HUF_decompress_usingDTable_t)(void *dst, size_t dstSize, |
| 720 | const void *cSrc, |
| 721 | size_t cSrcSize, |
| 722 | const HUF_DTable *DTable); |
| 723 | |
| 724 | HUF_DGEN(HUF_decompress1X1_usingDTable_internal) |
| 725 | |
| 726 | static size_t HUF_decompress4X1_usingDTable_internal(void* dst, size_t dstSize, void const* cSrc, |
| 727 | size_t cSrcSize, HUF_DTable const* DTable, int bmi2) |
| 728 | { |
| 729 | #if DYNAMIC_BMI2 |
| 730 | if (bmi2) { |
| 731 | # if ZSTD_ENABLE_ASM_X86_64_BMI2 |
| 732 | return HUF_decompress4X1_usingDTable_internal_bmi2_asm(dst, dstSize, cSrc, cSrcSize, DTable); |
| 733 | # else |
| 734 | return HUF_decompress4X1_usingDTable_internal_bmi2(dst, dstSize, cSrc, cSrcSize, DTable); |
| 735 | # endif |
| 736 | } |
| 737 | #else |
| 738 | (void)bmi2; |
| 739 | #endif |
| 740 | |
| 741 | #if ZSTD_ENABLE_ASM_X86_64_BMI2 && defined(__BMI2__) |
| 742 | return HUF_decompress4X1_usingDTable_internal_bmi2_asm(dst, dstSize, cSrc, cSrcSize, DTable); |
| 743 | #else |
| 744 | return HUF_decompress4X1_usingDTable_internal_default(dst, dstSize, cSrc, cSrcSize, DTable); |
| 745 | #endif |
| 746 | } |
| 747 | |
| 748 | |
| 749 | size_t HUF_decompress1X1_usingDTable( |
| 750 | void* dst, size_t dstSize, |
| 751 | const void* cSrc, size_t cSrcSize, |
| 752 | const HUF_DTable* DTable) |
| 753 | { |
| 754 | DTableDesc dtd = HUF_getDTableDesc(DTable); |
| 755 | if (dtd.tableType != 0) return ERROR(GENERIC); |
| 756 | return HUF_decompress1X1_usingDTable_internal(dst, dstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0); |
| 757 | } |
| 758 | |
| 759 | size_t HUF_decompress1X1_DCtx_wksp(HUF_DTable* DCtx, void* dst, size_t dstSize, |
| 760 | const void* cSrc, size_t cSrcSize, |
| 761 | void* workSpace, size_t wkspSize) |
| 762 | { |
| 763 | const BYTE* ip = (const BYTE*) cSrc; |
| 764 | |
| 765 | size_t const hSize = HUF_readDTableX1_wksp(DCtx, cSrc, cSrcSize, workSpace, wkspSize); |
| 766 | if (HUF_isError(hSize)) return hSize; |
| 767 | if (hSize >= cSrcSize) return ERROR(srcSize_wrong); |
| 768 | ip += hSize; cSrcSize -= hSize; |
| 769 | |
| 770 | return HUF_decompress1X1_usingDTable_internal(dst, dstSize, ip, cSrcSize, DCtx, /* bmi2 */ 0); |
| 771 | } |
| 772 | |
| 773 | |
| 774 | size_t HUF_decompress4X1_usingDTable( |
| 775 | void* dst, size_t dstSize, |
| 776 | const void* cSrc, size_t cSrcSize, |
| 777 | const HUF_DTable* DTable) |
| 778 | { |
| 779 | DTableDesc dtd = HUF_getDTableDesc(DTable); |
| 780 | if (dtd.tableType != 0) return ERROR(GENERIC); |
| 781 | return HUF_decompress4X1_usingDTable_internal(dst, dstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0); |
| 782 | } |
| 783 | |
| 784 | static size_t HUF_decompress4X1_DCtx_wksp_bmi2(HUF_DTable* dctx, void* dst, size_t dstSize, |
| 785 | const void* cSrc, size_t cSrcSize, |
| 786 | void* workSpace, size_t wkspSize, int bmi2) |
| 787 | { |
| 788 | const BYTE* ip = (const BYTE*) cSrc; |
| 789 | |
| 790 | size_t const hSize = HUF_readDTableX1_wksp_bmi2(dctx, cSrc, cSrcSize, workSpace, wkspSize, bmi2); |
| 791 | if (HUF_isError(hSize)) return hSize; |
| 792 | if (hSize >= cSrcSize) return ERROR(srcSize_wrong); |
| 793 | ip += hSize; cSrcSize -= hSize; |
| 794 | |
| 795 | return HUF_decompress4X1_usingDTable_internal(dst, dstSize, ip, cSrcSize, dctx, bmi2); |
| 796 | } |
| 797 | |
| 798 | size_t HUF_decompress4X1_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize, |
| 799 | const void* cSrc, size_t cSrcSize, |
| 800 | void* workSpace, size_t wkspSize) |
| 801 | { |
| 802 | return HUF_decompress4X1_DCtx_wksp_bmi2(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, 0); |
| 803 | } |
| 804 | |
| 805 | |
| 806 | #endif /* HUF_FORCE_DECOMPRESS_X2 */ |
| 807 | |
| 808 | |
| 809 | #ifndef HUF_FORCE_DECOMPRESS_X1 |
| 810 | |
| 811 | /* *************************/ |
| 812 | /* double-symbols decoding */ |
| 813 | /* *************************/ |
| 814 | |
| 815 | typedef struct { U16 sequence; BYTE nbBits; BYTE length; } HUF_DEltX2; /* double-symbols decoding */ |
| 816 | typedef struct { BYTE symbol; } sortedSymbol_t; |
| 817 | typedef U32 rankValCol_t[HUF_TABLELOG_MAX + 1]; |
| 818 | typedef rankValCol_t rankVal_t[HUF_TABLELOG_MAX]; |
| 819 | |
| 820 | /* |
| 821 | * Constructs a HUF_DEltX2 in a U32. |
| 822 | */ |
| 823 | static U32 HUF_buildDEltX2U32(U32 symbol, U32 nbBits, U32 baseSeq, int level) |
| 824 | { |
| 825 | U32 seq; |
| 826 | DEBUG_STATIC_ASSERT(offsetof(HUF_DEltX2, sequence) == 0); |
| 827 | DEBUG_STATIC_ASSERT(offsetof(HUF_DEltX2, nbBits) == 2); |
| 828 | DEBUG_STATIC_ASSERT(offsetof(HUF_DEltX2, length) == 3); |
| 829 | DEBUG_STATIC_ASSERT(sizeof(HUF_DEltX2) == sizeof(U32)); |
| 830 | if (MEM_isLittleEndian()) { |
| 831 | seq = level == 1 ? symbol : (baseSeq + (symbol << 8)); |
| 832 | return seq + (nbBits << 16) + ((U32)level << 24); |
| 833 | } else { |
| 834 | seq = level == 1 ? (symbol << 8) : ((baseSeq << 8) + symbol); |
| 835 | return (seq << 16) + (nbBits << 8) + (U32)level; |
| 836 | } |
| 837 | } |
| 838 | |
| 839 | /* |
| 840 | * Constructs a HUF_DEltX2. |
| 841 | */ |
| 842 | static HUF_DEltX2 HUF_buildDEltX2(U32 symbol, U32 nbBits, U32 baseSeq, int level) |
| 843 | { |
| 844 | HUF_DEltX2 DElt; |
| 845 | U32 const val = HUF_buildDEltX2U32(symbol, nbBits, baseSeq, level); |
| 846 | DEBUG_STATIC_ASSERT(sizeof(DElt) == sizeof(val)); |
| 847 | ZSTD_memcpy(&DElt, &val, sizeof(val)); |
| 848 | return DElt; |
| 849 | } |
| 850 | |
| 851 | /* |
| 852 | * Constructs 2 HUF_DEltX2s and packs them into a U64. |
| 853 | */ |
| 854 | static U64 HUF_buildDEltX2U64(U32 symbol, U32 nbBits, U16 baseSeq, int level) |
| 855 | { |
| 856 | U32 DElt = HUF_buildDEltX2U32(symbol, nbBits, baseSeq, level); |
| 857 | return (U64)DElt + ((U64)DElt << 32); |
| 858 | } |
| 859 | |
| 860 | /* |
| 861 | * Fills the DTable rank with all the symbols from [begin, end) that are each |
| 862 | * nbBits long. |
| 863 | * |
| 864 | * @param DTableRank The start of the rank in the DTable. |
| 865 | * @param begin The first symbol to fill (inclusive). |
| 866 | * @param end The last symbol to fill (exclusive). |
| 867 | * @param nbBits Each symbol is nbBits long. |
| 868 | * @param tableLog The table log. |
| 869 | * @param baseSeq If level == 1 { 0 } else { the first level symbol } |
| 870 | * @param level The level in the table. Must be 1 or 2. |
| 871 | */ |
| 872 | static void HUF_fillDTableX2ForWeight( |
| 873 | HUF_DEltX2* DTableRank, |
| 874 | sortedSymbol_t const* begin, sortedSymbol_t const* end, |
| 875 | U32 nbBits, U32 tableLog, |
| 876 | U16 baseSeq, int const level) |
| 877 | { |
| 878 | U32 const length = 1U << ((tableLog - nbBits) & 0x1F /* quiet static-analyzer */); |
| 879 | const sortedSymbol_t* ptr; |
| 880 | assert(level >= 1 && level <= 2); |
| 881 | switch (length) { |
| 882 | case 1: |
| 883 | for (ptr = begin; ptr != end; ++ptr) { |
| 884 | HUF_DEltX2 const DElt = HUF_buildDEltX2(ptr->symbol, nbBits, baseSeq, level); |
| 885 | *DTableRank++ = DElt; |
| 886 | } |
| 887 | break; |
| 888 | case 2: |
| 889 | for (ptr = begin; ptr != end; ++ptr) { |
| 890 | HUF_DEltX2 const DElt = HUF_buildDEltX2(ptr->symbol, nbBits, baseSeq, level); |
| 891 | DTableRank[0] = DElt; |
| 892 | DTableRank[1] = DElt; |
| 893 | DTableRank += 2; |
| 894 | } |
| 895 | break; |
| 896 | case 4: |
| 897 | for (ptr = begin; ptr != end; ++ptr) { |
| 898 | U64 const DEltX2 = HUF_buildDEltX2U64(ptr->symbol, nbBits, baseSeq, level); |
| 899 | ZSTD_memcpy(DTableRank + 0, &DEltX2, sizeof(DEltX2)); |
| 900 | ZSTD_memcpy(DTableRank + 2, &DEltX2, sizeof(DEltX2)); |
| 901 | DTableRank += 4; |
| 902 | } |
| 903 | break; |
| 904 | case 8: |
| 905 | for (ptr = begin; ptr != end; ++ptr) { |
| 906 | U64 const DEltX2 = HUF_buildDEltX2U64(ptr->symbol, nbBits, baseSeq, level); |
| 907 | ZSTD_memcpy(DTableRank + 0, &DEltX2, sizeof(DEltX2)); |
| 908 | ZSTD_memcpy(DTableRank + 2, &DEltX2, sizeof(DEltX2)); |
| 909 | ZSTD_memcpy(DTableRank + 4, &DEltX2, sizeof(DEltX2)); |
| 910 | ZSTD_memcpy(DTableRank + 6, &DEltX2, sizeof(DEltX2)); |
| 911 | DTableRank += 8; |
| 912 | } |
| 913 | break; |
| 914 | default: |
| 915 | for (ptr = begin; ptr != end; ++ptr) { |
| 916 | U64 const DEltX2 = HUF_buildDEltX2U64(ptr->symbol, nbBits, baseSeq, level); |
| 917 | HUF_DEltX2* const DTableRankEnd = DTableRank + length; |
| 918 | for (; DTableRank != DTableRankEnd; DTableRank += 8) { |
| 919 | ZSTD_memcpy(DTableRank + 0, &DEltX2, sizeof(DEltX2)); |
| 920 | ZSTD_memcpy(DTableRank + 2, &DEltX2, sizeof(DEltX2)); |
| 921 | ZSTD_memcpy(DTableRank + 4, &DEltX2, sizeof(DEltX2)); |
| 922 | ZSTD_memcpy(DTableRank + 6, &DEltX2, sizeof(DEltX2)); |
| 923 | } |
| 924 | } |
| 925 | break; |
| 926 | } |
| 927 | } |
| 928 | |
| 929 | /* HUF_fillDTableX2Level2() : |
| 930 | * `rankValOrigin` must be a table of at least (HUF_TABLELOG_MAX + 1) U32 */ |
| 931 | static void HUF_fillDTableX2Level2(HUF_DEltX2* DTable, U32 targetLog, const U32 consumedBits, |
| 932 | const U32* rankVal, const int minWeight, const int maxWeight1, |
| 933 | const sortedSymbol_t* sortedSymbols, U32 const* rankStart, |
| 934 | U32 nbBitsBaseline, U16 baseSeq) |
| 935 | { |
| 936 | /* Fill skipped values (all positions up to rankVal[minWeight]). |
| 937 | * These are positions only get a single symbol because the combined weight |
| 938 | * is too large. |
| 939 | */ |
| 940 | if (minWeight>1) { |
| 941 | U32 const length = 1U << ((targetLog - consumedBits) & 0x1F /* quiet static-analyzer */); |
| 942 | U64 const DEltX2 = HUF_buildDEltX2U64(baseSeq, consumedBits, /* baseSeq */ 0, /* level */ 1); |
| 943 | int const skipSize = rankVal[minWeight]; |
| 944 | assert(length > 1); |
| 945 | assert((U32)skipSize < length); |
| 946 | switch (length) { |
| 947 | case 2: |
| 948 | assert(skipSize == 1); |
| 949 | ZSTD_memcpy(DTable, &DEltX2, sizeof(DEltX2)); |
| 950 | break; |
| 951 | case 4: |
| 952 | assert(skipSize <= 4); |
| 953 | ZSTD_memcpy(DTable + 0, &DEltX2, sizeof(DEltX2)); |
| 954 | ZSTD_memcpy(DTable + 2, &DEltX2, sizeof(DEltX2)); |
| 955 | break; |
| 956 | default: |
| 957 | { |
| 958 | int i; |
| 959 | for (i = 0; i < skipSize; i += 8) { |
| 960 | ZSTD_memcpy(DTable + i + 0, &DEltX2, sizeof(DEltX2)); |
| 961 | ZSTD_memcpy(DTable + i + 2, &DEltX2, sizeof(DEltX2)); |
| 962 | ZSTD_memcpy(DTable + i + 4, &DEltX2, sizeof(DEltX2)); |
| 963 | ZSTD_memcpy(DTable + i + 6, &DEltX2, sizeof(DEltX2)); |
| 964 | } |
| 965 | } |
| 966 | } |
| 967 | } |
| 968 | |
| 969 | /* Fill each of the second level symbols by weight. */ |
| 970 | { |
| 971 | int w; |
| 972 | for (w = minWeight; w < maxWeight1; ++w) { |
| 973 | int const begin = rankStart[w]; |
| 974 | int const end = rankStart[w+1]; |
| 975 | U32 const nbBits = nbBitsBaseline - w; |
| 976 | U32 const totalBits = nbBits + consumedBits; |
| 977 | HUF_fillDTableX2ForWeight( |
| 978 | DTable + rankVal[w], |
| 979 | sortedSymbols + begin, sortedSymbols + end, |
| 980 | totalBits, targetLog, |
| 981 | baseSeq, /* level */ 2); |
| 982 | } |
| 983 | } |
| 984 | } |
| 985 | |
| 986 | static void HUF_fillDTableX2(HUF_DEltX2* DTable, const U32 targetLog, |
| 987 | const sortedSymbol_t* sortedList, |
| 988 | const U32* rankStart, rankVal_t rankValOrigin, const U32 maxWeight, |
| 989 | const U32 nbBitsBaseline) |
| 990 | { |
| 991 | U32* const rankVal = rankValOrigin[0]; |
| 992 | const int scaleLog = nbBitsBaseline - targetLog; /* note : targetLog >= srcLog, hence scaleLog <= 1 */ |
| 993 | const U32 minBits = nbBitsBaseline - maxWeight; |
| 994 | int w; |
| 995 | int const wEnd = (int)maxWeight + 1; |
| 996 | |
| 997 | /* Fill DTable in order of weight. */ |
| 998 | for (w = 1; w < wEnd; ++w) { |
| 999 | int const begin = (int)rankStart[w]; |
| 1000 | int const end = (int)rankStart[w+1]; |
| 1001 | U32 const nbBits = nbBitsBaseline - w; |
| 1002 | |
| 1003 | if (targetLog-nbBits >= minBits) { |
| 1004 | /* Enough room for a second symbol. */ |
| 1005 | int start = rankVal[w]; |
| 1006 | U32 const length = 1U << ((targetLog - nbBits) & 0x1F /* quiet static-analyzer */); |
| 1007 | int minWeight = nbBits + scaleLog; |
| 1008 | int s; |
| 1009 | if (minWeight < 1) minWeight = 1; |
| 1010 | /* Fill the DTable for every symbol of weight w. |
| 1011 | * These symbols get at least 1 second symbol. |
| 1012 | */ |
| 1013 | for (s = begin; s != end; ++s) { |
| 1014 | HUF_fillDTableX2Level2( |
| 1015 | DTable + start, targetLog, nbBits, |
| 1016 | rankValOrigin[nbBits], minWeight, wEnd, |
| 1017 | sortedList, rankStart, |
| 1018 | nbBitsBaseline, sortedList[s].symbol); |
| 1019 | start += length; |
| 1020 | } |
| 1021 | } else { |
| 1022 | /* Only a single symbol. */ |
| 1023 | HUF_fillDTableX2ForWeight( |
| 1024 | DTable + rankVal[w], |
| 1025 | sortedList + begin, sortedList + end, |
| 1026 | nbBits, targetLog, |
| 1027 | /* baseSeq */ 0, /* level */ 1); |
| 1028 | } |
| 1029 | } |
| 1030 | } |
| 1031 | |
| 1032 | typedef struct { |
| 1033 | rankValCol_t rankVal[HUF_TABLELOG_MAX]; |
| 1034 | U32 rankStats[HUF_TABLELOG_MAX + 1]; |
| 1035 | U32 rankStart0[HUF_TABLELOG_MAX + 3]; |
| 1036 | sortedSymbol_t sortedSymbol[HUF_SYMBOLVALUE_MAX + 1]; |
| 1037 | BYTE weightList[HUF_SYMBOLVALUE_MAX + 1]; |
| 1038 | U32 calleeWksp[HUF_READ_STATS_WORKSPACE_SIZE_U32]; |
| 1039 | } HUF_ReadDTableX2_Workspace; |
| 1040 | |
| 1041 | size_t HUF_readDTableX2_wksp(HUF_DTable* DTable, |
| 1042 | const void* src, size_t srcSize, |
| 1043 | void* workSpace, size_t wkspSize) |
| 1044 | { |
| 1045 | return HUF_readDTableX2_wksp_bmi2(DTable, src, srcSize, workSpace, wkspSize, /* bmi2 */ 0); |
| 1046 | } |
| 1047 | |
| 1048 | size_t HUF_readDTableX2_wksp_bmi2(HUF_DTable* DTable, |
| 1049 | const void* src, size_t srcSize, |
| 1050 | void* workSpace, size_t wkspSize, int bmi2) |
| 1051 | { |
| 1052 | U32 tableLog, maxW, nbSymbols; |
| 1053 | DTableDesc dtd = HUF_getDTableDesc(DTable); |
| 1054 | U32 maxTableLog = dtd.maxTableLog; |
| 1055 | size_t iSize; |
| 1056 | void* dtPtr = DTable+1; /* force compiler to avoid strict-aliasing */ |
| 1057 | HUF_DEltX2* const dt = (HUF_DEltX2*)dtPtr; |
| 1058 | U32 *rankStart; |
| 1059 | |
| 1060 | HUF_ReadDTableX2_Workspace* const wksp = (HUF_ReadDTableX2_Workspace*)workSpace; |
| 1061 | |
| 1062 | if (sizeof(*wksp) > wkspSize) return ERROR(GENERIC); |
| 1063 | |
| 1064 | rankStart = wksp->rankStart0 + 1; |
| 1065 | ZSTD_memset(wksp->rankStats, 0, sizeof(wksp->rankStats)); |
| 1066 | ZSTD_memset(wksp->rankStart0, 0, sizeof(wksp->rankStart0)); |
| 1067 | |
| 1068 | DEBUG_STATIC_ASSERT(sizeof(HUF_DEltX2) == sizeof(HUF_DTable)); /* if compiler fails here, assertion is wrong */ |
| 1069 | if (maxTableLog > HUF_TABLELOG_MAX) return ERROR(tableLog_tooLarge); |
| 1070 | /* ZSTD_memset(weightList, 0, sizeof(weightList)); */ /* is not necessary, even though some analyzer complain ... */ |
| 1071 | |
| 1072 | iSize = HUF_readStats_wksp(wksp->weightList, HUF_SYMBOLVALUE_MAX + 1, wksp->rankStats, &nbSymbols, &tableLog, src, srcSize, wksp->calleeWksp, sizeof(wksp->calleeWksp), bmi2); |
| 1073 | if (HUF_isError(iSize)) return iSize; |
| 1074 | |
| 1075 | /* check result */ |
| 1076 | if (tableLog > maxTableLog) return ERROR(tableLog_tooLarge); /* DTable can't fit code depth */ |
| 1077 | if (tableLog <= HUF_DECODER_FAST_TABLELOG && maxTableLog > HUF_DECODER_FAST_TABLELOG) maxTableLog = HUF_DECODER_FAST_TABLELOG; |
| 1078 | |
| 1079 | /* find maxWeight */ |
| 1080 | for (maxW = tableLog; wksp->rankStats[maxW]==0; maxW--) {} /* necessarily finds a solution before 0 */ |
| 1081 | |
| 1082 | /* Get start index of each weight */ |
| 1083 | { U32 w, nextRankStart = 0; |
| 1084 | for (w=1; w<maxW+1; w++) { |
| 1085 | U32 curr = nextRankStart; |
| 1086 | nextRankStart += wksp->rankStats[w]; |
| 1087 | rankStart[w] = curr; |
| 1088 | } |
| 1089 | rankStart[0] = nextRankStart; /* put all 0w symbols at the end of sorted list*/ |
| 1090 | rankStart[maxW+1] = nextRankStart; |
| 1091 | } |
| 1092 | |
| 1093 | /* sort symbols by weight */ |
| 1094 | { U32 s; |
| 1095 | for (s=0; s<nbSymbols; s++) { |
| 1096 | U32 const w = wksp->weightList[s]; |
| 1097 | U32 const r = rankStart[w]++; |
| 1098 | wksp->sortedSymbol[r].symbol = (BYTE)s; |
| 1099 | } |
| 1100 | rankStart[0] = 0; /* forget 0w symbols; this is beginning of weight(1) */ |
| 1101 | } |
| 1102 | |
| 1103 | /* Build rankVal */ |
| 1104 | { U32* const rankVal0 = wksp->rankVal[0]; |
| 1105 | { int const rescale = (maxTableLog-tableLog) - 1; /* tableLog <= maxTableLog */ |
| 1106 | U32 nextRankVal = 0; |
| 1107 | U32 w; |
| 1108 | for (w=1; w<maxW+1; w++) { |
| 1109 | U32 curr = nextRankVal; |
| 1110 | nextRankVal += wksp->rankStats[w] << (w+rescale); |
| 1111 | rankVal0[w] = curr; |
| 1112 | } } |
| 1113 | { U32 const minBits = tableLog+1 - maxW; |
| 1114 | U32 consumed; |
| 1115 | for (consumed = minBits; consumed < maxTableLog - minBits + 1; consumed++) { |
| 1116 | U32* const rankValPtr = wksp->rankVal[consumed]; |
| 1117 | U32 w; |
| 1118 | for (w = 1; w < maxW+1; w++) { |
| 1119 | rankValPtr[w] = rankVal0[w] >> consumed; |
| 1120 | } } } } |
| 1121 | |
| 1122 | HUF_fillDTableX2(dt, maxTableLog, |
| 1123 | wksp->sortedSymbol, |
| 1124 | wksp->rankStart0, wksp->rankVal, maxW, |
| 1125 | tableLog+1); |
| 1126 | |
| 1127 | dtd.tableLog = (BYTE)maxTableLog; |
| 1128 | dtd.tableType = 1; |
| 1129 | ZSTD_memcpy(DTable, &dtd, sizeof(dtd)); |
| 1130 | return iSize; |
| 1131 | } |
| 1132 | |
| 1133 | |
| 1134 | FORCE_INLINE_TEMPLATE U32 |
| 1135 | HUF_decodeSymbolX2(void* op, BIT_DStream_t* DStream, const HUF_DEltX2* dt, const U32 dtLog) |
| 1136 | { |
| 1137 | size_t const val = BIT_lookBitsFast(DStream, dtLog); /* note : dtLog >= 1 */ |
| 1138 | ZSTD_memcpy(op, &dt[val].sequence, 2); |
| 1139 | BIT_skipBits(DStream, dt[val].nbBits); |
| 1140 | return dt[val].length; |
| 1141 | } |
| 1142 | |
| 1143 | FORCE_INLINE_TEMPLATE U32 |
| 1144 | HUF_decodeLastSymbolX2(void* op, BIT_DStream_t* DStream, const HUF_DEltX2* dt, const U32 dtLog) |
| 1145 | { |
| 1146 | size_t const val = BIT_lookBitsFast(DStream, dtLog); /* note : dtLog >= 1 */ |
| 1147 | ZSTD_memcpy(op, &dt[val].sequence, 1); |
| 1148 | if (dt[val].length==1) { |
| 1149 | BIT_skipBits(DStream, dt[val].nbBits); |
| 1150 | } else { |
| 1151 | if (DStream->bitsConsumed < (sizeof(DStream->bitContainer)*8)) { |
| 1152 | BIT_skipBits(DStream, dt[val].nbBits); |
| 1153 | if (DStream->bitsConsumed > (sizeof(DStream->bitContainer)*8)) |
| 1154 | /* ugly hack; works only because it's the last symbol. Note : can't easily extract nbBits from just this symbol */ |
| 1155 | DStream->bitsConsumed = (sizeof(DStream->bitContainer)*8); |
| 1156 | } |
| 1157 | } |
| 1158 | return 1; |
| 1159 | } |
| 1160 | |
| 1161 | #define HUF_DECODE_SYMBOLX2_0(ptr, DStreamPtr) \ |
| 1162 | ptr += HUF_decodeSymbolX2(ptr, DStreamPtr, dt, dtLog) |
| 1163 | |
| 1164 | #define HUF_DECODE_SYMBOLX2_1(ptr, DStreamPtr) \ |
| 1165 | if (MEM_64bits() || (HUF_TABLELOG_MAX<=12)) \ |
| 1166 | ptr += HUF_decodeSymbolX2(ptr, DStreamPtr, dt, dtLog) |
| 1167 | |
| 1168 | #define HUF_DECODE_SYMBOLX2_2(ptr, DStreamPtr) \ |
| 1169 | if (MEM_64bits()) \ |
| 1170 | ptr += HUF_decodeSymbolX2(ptr, DStreamPtr, dt, dtLog) |
| 1171 | |
| 1172 | HINT_INLINE size_t |
| 1173 | HUF_decodeStreamX2(BYTE* p, BIT_DStream_t* bitDPtr, BYTE* const pEnd, |
| 1174 | const HUF_DEltX2* const dt, const U32 dtLog) |
| 1175 | { |
| 1176 | BYTE* const pStart = p; |
| 1177 | |
| 1178 | /* up to 8 symbols at a time */ |
| 1179 | if ((size_t)(pEnd - p) >= sizeof(bitDPtr->bitContainer)) { |
| 1180 | if (dtLog <= 11 && MEM_64bits()) { |
| 1181 | /* up to 10 symbols at a time */ |
| 1182 | while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p < pEnd-9)) { |
| 1183 | HUF_DECODE_SYMBOLX2_0(p, bitDPtr); |
| 1184 | HUF_DECODE_SYMBOLX2_0(p, bitDPtr); |
| 1185 | HUF_DECODE_SYMBOLX2_0(p, bitDPtr); |
| 1186 | HUF_DECODE_SYMBOLX2_0(p, bitDPtr); |
| 1187 | HUF_DECODE_SYMBOLX2_0(p, bitDPtr); |
| 1188 | } |
| 1189 | } else { |
| 1190 | /* up to 8 symbols at a time */ |
| 1191 | while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p < pEnd-(sizeof(bitDPtr->bitContainer)-1))) { |
| 1192 | HUF_DECODE_SYMBOLX2_2(p, bitDPtr); |
| 1193 | HUF_DECODE_SYMBOLX2_1(p, bitDPtr); |
| 1194 | HUF_DECODE_SYMBOLX2_2(p, bitDPtr); |
| 1195 | HUF_DECODE_SYMBOLX2_0(p, bitDPtr); |
| 1196 | } |
| 1197 | } |
| 1198 | } else { |
| 1199 | BIT_reloadDStream(bitDPtr); |
| 1200 | } |
| 1201 | |
| 1202 | /* closer to end : up to 2 symbols at a time */ |
| 1203 | if ((size_t)(pEnd - p) >= 2) { |
| 1204 | while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p <= pEnd-2)) |
| 1205 | HUF_DECODE_SYMBOLX2_0(p, bitDPtr); |
| 1206 | |
| 1207 | while (p <= pEnd-2) |
| 1208 | HUF_DECODE_SYMBOLX2_0(p, bitDPtr); /* no need to reload : reached the end of DStream */ |
| 1209 | } |
| 1210 | |
| 1211 | if (p < pEnd) |
| 1212 | p += HUF_decodeLastSymbolX2(p, bitDPtr, dt, dtLog); |
| 1213 | |
| 1214 | return p-pStart; |
| 1215 | } |
| 1216 | |
| 1217 | FORCE_INLINE_TEMPLATE size_t |
| 1218 | HUF_decompress1X2_usingDTable_internal_body( |
| 1219 | void* dst, size_t dstSize, |
| 1220 | const void* cSrc, size_t cSrcSize, |
| 1221 | const HUF_DTable* DTable) |
| 1222 | { |
| 1223 | BIT_DStream_t bitD; |
| 1224 | |
| 1225 | /* Init */ |
| 1226 | CHECK_F( BIT_initDStream(&bitD, cSrc, cSrcSize) ); |
| 1227 | |
| 1228 | /* decode */ |
| 1229 | { BYTE* const ostart = (BYTE*) dst; |
| 1230 | BYTE* const oend = ostart + dstSize; |
| 1231 | const void* const dtPtr = DTable+1; /* force compiler to not use strict-aliasing */ |
| 1232 | const HUF_DEltX2* const dt = (const HUF_DEltX2*)dtPtr; |
| 1233 | DTableDesc const dtd = HUF_getDTableDesc(DTable); |
| 1234 | HUF_decodeStreamX2(ostart, &bitD, oend, dt, dtd.tableLog); |
| 1235 | } |
| 1236 | |
| 1237 | /* check */ |
| 1238 | if (!BIT_endOfDStream(&bitD)) return ERROR(corruption_detected); |
| 1239 | |
| 1240 | /* decoded size */ |
| 1241 | return dstSize; |
| 1242 | } |
| 1243 | FORCE_INLINE_TEMPLATE size_t |
| 1244 | HUF_decompress4X2_usingDTable_internal_body( |
| 1245 | void* dst, size_t dstSize, |
| 1246 | const void* cSrc, size_t cSrcSize, |
| 1247 | const HUF_DTable* DTable) |
| 1248 | { |
| 1249 | if (cSrcSize < 10) return ERROR(corruption_detected); /* strict minimum : jump table + 1 byte per stream */ |
| 1250 | |
| 1251 | { const BYTE* const istart = (const BYTE*) cSrc; |
| 1252 | BYTE* const ostart = (BYTE*) dst; |
| 1253 | BYTE* const oend = ostart + dstSize; |
| 1254 | BYTE* const olimit = oend - (sizeof(size_t)-1); |
| 1255 | const void* const dtPtr = DTable+1; |
| 1256 | const HUF_DEltX2* const dt = (const HUF_DEltX2*)dtPtr; |
| 1257 | |
| 1258 | /* Init */ |
| 1259 | BIT_DStream_t bitD1; |
| 1260 | BIT_DStream_t bitD2; |
| 1261 | BIT_DStream_t bitD3; |
| 1262 | BIT_DStream_t bitD4; |
| 1263 | size_t const length1 = MEM_readLE16(istart); |
| 1264 | size_t const length2 = MEM_readLE16(istart+2); |
| 1265 | size_t const length3 = MEM_readLE16(istart+4); |
| 1266 | size_t const length4 = cSrcSize - (length1 + length2 + length3 + 6); |
| 1267 | const BYTE* const istart1 = istart + 6; /* jumpTable */ |
| 1268 | const BYTE* const istart2 = istart1 + length1; |
| 1269 | const BYTE* const istart3 = istart2 + length2; |
| 1270 | const BYTE* const istart4 = istart3 + length3; |
| 1271 | size_t const segmentSize = (dstSize+3) / 4; |
| 1272 | BYTE* const opStart2 = ostart + segmentSize; |
| 1273 | BYTE* const opStart3 = opStart2 + segmentSize; |
| 1274 | BYTE* const opStart4 = opStart3 + segmentSize; |
| 1275 | BYTE* op1 = ostart; |
| 1276 | BYTE* op2 = opStart2; |
| 1277 | BYTE* op3 = opStart3; |
| 1278 | BYTE* op4 = opStart4; |
| 1279 | U32 endSignal = 1; |
| 1280 | DTableDesc const dtd = HUF_getDTableDesc(DTable); |
| 1281 | U32 const dtLog = dtd.tableLog; |
| 1282 | |
| 1283 | if (length4 > cSrcSize) return ERROR(corruption_detected); /* overflow */ |
| 1284 | if (opStart4 > oend) return ERROR(corruption_detected); /* overflow */ |
| 1285 | CHECK_F( BIT_initDStream(&bitD1, istart1, length1) ); |
| 1286 | CHECK_F( BIT_initDStream(&bitD2, istart2, length2) ); |
| 1287 | CHECK_F( BIT_initDStream(&bitD3, istart3, length3) ); |
| 1288 | CHECK_F( BIT_initDStream(&bitD4, istart4, length4) ); |
| 1289 | |
| 1290 | /* 16-32 symbols per loop (4-8 symbols per stream) */ |
| 1291 | if ((size_t)(oend - op4) >= sizeof(size_t)) { |
| 1292 | for ( ; (endSignal) & (op4 < olimit); ) { |
| 1293 | #if defined(__clang__) && (defined(__x86_64__) || defined(__i386__)) |
| 1294 | HUF_DECODE_SYMBOLX2_2(op1, &bitD1); |
| 1295 | HUF_DECODE_SYMBOLX2_1(op1, &bitD1); |
| 1296 | HUF_DECODE_SYMBOLX2_2(op1, &bitD1); |
| 1297 | HUF_DECODE_SYMBOLX2_0(op1, &bitD1); |
| 1298 | HUF_DECODE_SYMBOLX2_2(op2, &bitD2); |
| 1299 | HUF_DECODE_SYMBOLX2_1(op2, &bitD2); |
| 1300 | HUF_DECODE_SYMBOLX2_2(op2, &bitD2); |
| 1301 | HUF_DECODE_SYMBOLX2_0(op2, &bitD2); |
| 1302 | endSignal &= BIT_reloadDStreamFast(&bitD1) == BIT_DStream_unfinished; |
| 1303 | endSignal &= BIT_reloadDStreamFast(&bitD2) == BIT_DStream_unfinished; |
| 1304 | HUF_DECODE_SYMBOLX2_2(op3, &bitD3); |
| 1305 | HUF_DECODE_SYMBOLX2_1(op3, &bitD3); |
| 1306 | HUF_DECODE_SYMBOLX2_2(op3, &bitD3); |
| 1307 | HUF_DECODE_SYMBOLX2_0(op3, &bitD3); |
| 1308 | HUF_DECODE_SYMBOLX2_2(op4, &bitD4); |
| 1309 | HUF_DECODE_SYMBOLX2_1(op4, &bitD4); |
| 1310 | HUF_DECODE_SYMBOLX2_2(op4, &bitD4); |
| 1311 | HUF_DECODE_SYMBOLX2_0(op4, &bitD4); |
| 1312 | endSignal &= BIT_reloadDStreamFast(&bitD3) == BIT_DStream_unfinished; |
| 1313 | endSignal &= BIT_reloadDStreamFast(&bitD4) == BIT_DStream_unfinished; |
| 1314 | #else |
| 1315 | HUF_DECODE_SYMBOLX2_2(op1, &bitD1); |
| 1316 | HUF_DECODE_SYMBOLX2_2(op2, &bitD2); |
| 1317 | HUF_DECODE_SYMBOLX2_2(op3, &bitD3); |
| 1318 | HUF_DECODE_SYMBOLX2_2(op4, &bitD4); |
| 1319 | HUF_DECODE_SYMBOLX2_1(op1, &bitD1); |
| 1320 | HUF_DECODE_SYMBOLX2_1(op2, &bitD2); |
| 1321 | HUF_DECODE_SYMBOLX2_1(op3, &bitD3); |
| 1322 | HUF_DECODE_SYMBOLX2_1(op4, &bitD4); |
| 1323 | HUF_DECODE_SYMBOLX2_2(op1, &bitD1); |
| 1324 | HUF_DECODE_SYMBOLX2_2(op2, &bitD2); |
| 1325 | HUF_DECODE_SYMBOLX2_2(op3, &bitD3); |
| 1326 | HUF_DECODE_SYMBOLX2_2(op4, &bitD4); |
| 1327 | HUF_DECODE_SYMBOLX2_0(op1, &bitD1); |
| 1328 | HUF_DECODE_SYMBOLX2_0(op2, &bitD2); |
| 1329 | HUF_DECODE_SYMBOLX2_0(op3, &bitD3); |
| 1330 | HUF_DECODE_SYMBOLX2_0(op4, &bitD4); |
| 1331 | endSignal = (U32)LIKELY((U32) |
| 1332 | (BIT_reloadDStreamFast(&bitD1) == BIT_DStream_unfinished) |
| 1333 | & (BIT_reloadDStreamFast(&bitD2) == BIT_DStream_unfinished) |
| 1334 | & (BIT_reloadDStreamFast(&bitD3) == BIT_DStream_unfinished) |
| 1335 | & (BIT_reloadDStreamFast(&bitD4) == BIT_DStream_unfinished)); |
| 1336 | #endif |
| 1337 | } |
| 1338 | } |
| 1339 | |
| 1340 | /* check corruption */ |
| 1341 | if (op1 > opStart2) return ERROR(corruption_detected); |
| 1342 | if (op2 > opStart3) return ERROR(corruption_detected); |
| 1343 | if (op3 > opStart4) return ERROR(corruption_detected); |
| 1344 | /* note : op4 already verified within main loop */ |
| 1345 | |
| 1346 | /* finish bitStreams one by one */ |
| 1347 | HUF_decodeStreamX2(op1, &bitD1, opStart2, dt, dtLog); |
| 1348 | HUF_decodeStreamX2(op2, &bitD2, opStart3, dt, dtLog); |
| 1349 | HUF_decodeStreamX2(op3, &bitD3, opStart4, dt, dtLog); |
| 1350 | HUF_decodeStreamX2(op4, &bitD4, oend, dt, dtLog); |
| 1351 | |
| 1352 | /* check */ |
| 1353 | { U32 const endCheck = BIT_endOfDStream(&bitD1) & BIT_endOfDStream(&bitD2) & BIT_endOfDStream(&bitD3) & BIT_endOfDStream(&bitD4); |
| 1354 | if (!endCheck) return ERROR(corruption_detected); } |
| 1355 | |
| 1356 | /* decoded size */ |
| 1357 | return dstSize; |
| 1358 | } |
| 1359 | } |
| 1360 | |
| 1361 | #if HUF_NEED_BMI2_FUNCTION |
| 1362 | static BMI2_TARGET_ATTRIBUTE |
| 1363 | size_t HUF_decompress4X2_usingDTable_internal_bmi2(void* dst, size_t dstSize, void const* cSrc, |
| 1364 | size_t cSrcSize, HUF_DTable const* DTable) { |
| 1365 | return HUF_decompress4X2_usingDTable_internal_body(dst, dstSize, cSrc, cSrcSize, DTable); |
| 1366 | } |
| 1367 | #endif |
| 1368 | |
| 1369 | #if HUF_NEED_DEFAULT_FUNCTION |
| 1370 | static |
| 1371 | size_t HUF_decompress4X2_usingDTable_internal_default(void* dst, size_t dstSize, void const* cSrc, |
| 1372 | size_t cSrcSize, HUF_DTable const* DTable) { |
| 1373 | return HUF_decompress4X2_usingDTable_internal_body(dst, dstSize, cSrc, cSrcSize, DTable); |
| 1374 | } |
| 1375 | #endif |
| 1376 | |
| 1377 | #if ZSTD_ENABLE_ASM_X86_64_BMI2 |
| 1378 | |
| 1379 | HUF_ASM_DECL void HUF_decompress4X2_usingDTable_internal_bmi2_asm_loop(HUF_DecompressAsmArgs* args) ZSTDLIB_HIDDEN; |
| 1380 | |
| 1381 | static HUF_ASM_X86_64_BMI2_ATTRS size_t |
| 1382 | HUF_decompress4X2_usingDTable_internal_bmi2_asm( |
| 1383 | void* dst, size_t dstSize, |
| 1384 | const void* cSrc, size_t cSrcSize, |
| 1385 | const HUF_DTable* DTable) { |
| 1386 | void const* dt = DTable + 1; |
| 1387 | const BYTE* const iend = (const BYTE*)cSrc + 6; |
| 1388 | BYTE* const oend = (BYTE*)dst + dstSize; |
| 1389 | HUF_DecompressAsmArgs args; |
| 1390 | { |
| 1391 | size_t const ret = HUF_DecompressAsmArgs_init(&args, dst, dstSize, cSrc, cSrcSize, DTable); |
| 1392 | FORWARD_IF_ERROR(ret, "Failed to init asm args"); |
| 1393 | if (ret != 0) |
| 1394 | return HUF_decompress4X2_usingDTable_internal_bmi2(dst, dstSize, cSrc, cSrcSize, DTable); |
| 1395 | } |
| 1396 | |
| 1397 | assert(args.ip[0] >= args.ilimit); |
| 1398 | HUF_decompress4X2_usingDTable_internal_bmi2_asm_loop(&args); |
| 1399 | |
| 1400 | /* note : op4 already verified within main loop */ |
| 1401 | assert(args.ip[0] >= iend); |
| 1402 | assert(args.ip[1] >= iend); |
| 1403 | assert(args.ip[2] >= iend); |
| 1404 | assert(args.ip[3] >= iend); |
| 1405 | assert(args.op[3] <= oend); |
| 1406 | (void)iend; |
| 1407 | |
| 1408 | /* finish bitStreams one by one */ |
| 1409 | { |
| 1410 | size_t const segmentSize = (dstSize+3) / 4; |
| 1411 | BYTE* segmentEnd = (BYTE*)dst; |
| 1412 | int i; |
| 1413 | for (i = 0; i < 4; ++i) { |
| 1414 | BIT_DStream_t bit; |
| 1415 | if (segmentSize <= (size_t)(oend - segmentEnd)) |
| 1416 | segmentEnd += segmentSize; |
| 1417 | else |
| 1418 | segmentEnd = oend; |
| 1419 | FORWARD_IF_ERROR(HUF_initRemainingDStream(&bit, &args, i, segmentEnd), "corruption"); |
| 1420 | args.op[i] += HUF_decodeStreamX2(args.op[i], &bit, segmentEnd, (HUF_DEltX2 const*)dt, HUF_DECODER_FAST_TABLELOG); |
| 1421 | if (args.op[i] != segmentEnd) |
| 1422 | return ERROR(corruption_detected); |
| 1423 | } |
| 1424 | } |
| 1425 | |
| 1426 | /* decoded size */ |
| 1427 | return dstSize; |
| 1428 | } |
| 1429 | #endif /* ZSTD_ENABLE_ASM_X86_64_BMI2 */ |
| 1430 | |
| 1431 | static size_t HUF_decompress4X2_usingDTable_internal(void* dst, size_t dstSize, void const* cSrc, |
| 1432 | size_t cSrcSize, HUF_DTable const* DTable, int bmi2) |
| 1433 | { |
| 1434 | #if DYNAMIC_BMI2 |
| 1435 | if (bmi2) { |
| 1436 | # if ZSTD_ENABLE_ASM_X86_64_BMI2 |
| 1437 | return HUF_decompress4X2_usingDTable_internal_bmi2_asm(dst, dstSize, cSrc, cSrcSize, DTable); |
| 1438 | # else |
| 1439 | return HUF_decompress4X2_usingDTable_internal_bmi2(dst, dstSize, cSrc, cSrcSize, DTable); |
| 1440 | # endif |
| 1441 | } |
| 1442 | #else |
| 1443 | (void)bmi2; |
| 1444 | #endif |
| 1445 | |
| 1446 | #if ZSTD_ENABLE_ASM_X86_64_BMI2 && defined(__BMI2__) |
| 1447 | return HUF_decompress4X2_usingDTable_internal_bmi2_asm(dst, dstSize, cSrc, cSrcSize, DTable); |
| 1448 | #else |
| 1449 | return HUF_decompress4X2_usingDTable_internal_default(dst, dstSize, cSrc, cSrcSize, DTable); |
| 1450 | #endif |
| 1451 | } |
| 1452 | |
| 1453 | HUF_DGEN(HUF_decompress1X2_usingDTable_internal) |
| 1454 | |
| 1455 | size_t HUF_decompress1X2_usingDTable( |
| 1456 | void* dst, size_t dstSize, |
| 1457 | const void* cSrc, size_t cSrcSize, |
| 1458 | const HUF_DTable* DTable) |
| 1459 | { |
| 1460 | DTableDesc dtd = HUF_getDTableDesc(DTable); |
| 1461 | if (dtd.tableType != 1) return ERROR(GENERIC); |
| 1462 | return HUF_decompress1X2_usingDTable_internal(dst, dstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0); |
| 1463 | } |
| 1464 | |
| 1465 | size_t HUF_decompress1X2_DCtx_wksp(HUF_DTable* DCtx, void* dst, size_t dstSize, |
| 1466 | const void* cSrc, size_t cSrcSize, |
| 1467 | void* workSpace, size_t wkspSize) |
| 1468 | { |
| 1469 | const BYTE* ip = (const BYTE*) cSrc; |
| 1470 | |
| 1471 | size_t const hSize = HUF_readDTableX2_wksp(DCtx, cSrc, cSrcSize, |
| 1472 | workSpace, wkspSize); |
| 1473 | if (HUF_isError(hSize)) return hSize; |
| 1474 | if (hSize >= cSrcSize) return ERROR(srcSize_wrong); |
| 1475 | ip += hSize; cSrcSize -= hSize; |
| 1476 | |
| 1477 | return HUF_decompress1X2_usingDTable_internal(dst, dstSize, ip, cSrcSize, DCtx, /* bmi2 */ 0); |
| 1478 | } |
| 1479 | |
| 1480 | |
| 1481 | size_t HUF_decompress4X2_usingDTable( |
| 1482 | void* dst, size_t dstSize, |
| 1483 | const void* cSrc, size_t cSrcSize, |
| 1484 | const HUF_DTable* DTable) |
| 1485 | { |
| 1486 | DTableDesc dtd = HUF_getDTableDesc(DTable); |
| 1487 | if (dtd.tableType != 1) return ERROR(GENERIC); |
| 1488 | return HUF_decompress4X2_usingDTable_internal(dst, dstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0); |
| 1489 | } |
| 1490 | |
| 1491 | static size_t HUF_decompress4X2_DCtx_wksp_bmi2(HUF_DTable* dctx, void* dst, size_t dstSize, |
| 1492 | const void* cSrc, size_t cSrcSize, |
| 1493 | void* workSpace, size_t wkspSize, int bmi2) |
| 1494 | { |
| 1495 | const BYTE* ip = (const BYTE*) cSrc; |
| 1496 | |
| 1497 | size_t hSize = HUF_readDTableX2_wksp(dctx, cSrc, cSrcSize, |
| 1498 | workSpace, wkspSize); |
| 1499 | if (HUF_isError(hSize)) return hSize; |
| 1500 | if (hSize >= cSrcSize) return ERROR(srcSize_wrong); |
| 1501 | ip += hSize; cSrcSize -= hSize; |
| 1502 | |
| 1503 | return HUF_decompress4X2_usingDTable_internal(dst, dstSize, ip, cSrcSize, dctx, bmi2); |
| 1504 | } |
| 1505 | |
| 1506 | size_t HUF_decompress4X2_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize, |
| 1507 | const void* cSrc, size_t cSrcSize, |
| 1508 | void* workSpace, size_t wkspSize) |
| 1509 | { |
| 1510 | return HUF_decompress4X2_DCtx_wksp_bmi2(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, /* bmi2 */ 0); |
| 1511 | } |
| 1512 | |
| 1513 | |
| 1514 | #endif /* HUF_FORCE_DECOMPRESS_X1 */ |
| 1515 | |
| 1516 | |
| 1517 | /* ***********************************/ |
| 1518 | /* Universal decompression selectors */ |
| 1519 | /* ***********************************/ |
| 1520 | |
| 1521 | size_t HUF_decompress1X_usingDTable(void* dst, size_t maxDstSize, |
| 1522 | const void* cSrc, size_t cSrcSize, |
| 1523 | const HUF_DTable* DTable) |
| 1524 | { |
| 1525 | DTableDesc const dtd = HUF_getDTableDesc(DTable); |
| 1526 | #if defined(HUF_FORCE_DECOMPRESS_X1) |
| 1527 | (void)dtd; |
| 1528 | assert(dtd.tableType == 0); |
| 1529 | return HUF_decompress1X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0); |
| 1530 | #elif defined(HUF_FORCE_DECOMPRESS_X2) |
| 1531 | (void)dtd; |
| 1532 | assert(dtd.tableType == 1); |
| 1533 | return HUF_decompress1X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0); |
| 1534 | #else |
| 1535 | return dtd.tableType ? HUF_decompress1X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0) : |
| 1536 | HUF_decompress1X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0); |
| 1537 | #endif |
| 1538 | } |
| 1539 | |
| 1540 | size_t HUF_decompress4X_usingDTable(void* dst, size_t maxDstSize, |
| 1541 | const void* cSrc, size_t cSrcSize, |
| 1542 | const HUF_DTable* DTable) |
| 1543 | { |
| 1544 | DTableDesc const dtd = HUF_getDTableDesc(DTable); |
| 1545 | #if defined(HUF_FORCE_DECOMPRESS_X1) |
| 1546 | (void)dtd; |
| 1547 | assert(dtd.tableType == 0); |
| 1548 | return HUF_decompress4X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0); |
| 1549 | #elif defined(HUF_FORCE_DECOMPRESS_X2) |
| 1550 | (void)dtd; |
| 1551 | assert(dtd.tableType == 1); |
| 1552 | return HUF_decompress4X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0); |
| 1553 | #else |
| 1554 | return dtd.tableType ? HUF_decompress4X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0) : |
| 1555 | HUF_decompress4X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0); |
| 1556 | #endif |
| 1557 | } |
| 1558 | |
| 1559 | |
| 1560 | #if !defined(HUF_FORCE_DECOMPRESS_X1) && !defined(HUF_FORCE_DECOMPRESS_X2) |
| 1561 | typedef struct { U32 tableTime; U32 decode256Time; } algo_time_t; |
| 1562 | static const algo_time_t algoTime[16 /* Quantization */][2 /* single, double */] = |
| 1563 | { |
| 1564 | /* single, double, quad */ |
| 1565 | {{0,0}, {1,1}}, /* Q==0 : impossible */ |
| 1566 | {{0,0}, {1,1}}, /* Q==1 : impossible */ |
| 1567 | {{ 150,216}, { 381,119}}, /* Q == 2 : 12-18% */ |
| 1568 | {{ 170,205}, { 514,112}}, /* Q == 3 : 18-25% */ |
| 1569 | {{ 177,199}, { 539,110}}, /* Q == 4 : 25-32% */ |
| 1570 | {{ 197,194}, { 644,107}}, /* Q == 5 : 32-38% */ |
| 1571 | {{ 221,192}, { 735,107}}, /* Q == 6 : 38-44% */ |
| 1572 | {{ 256,189}, { 881,106}}, /* Q == 7 : 44-50% */ |
| 1573 | {{ 359,188}, {1167,109}}, /* Q == 8 : 50-56% */ |
| 1574 | {{ 582,187}, {1570,114}}, /* Q == 9 : 56-62% */ |
| 1575 | {{ 688,187}, {1712,122}}, /* Q ==10 : 62-69% */ |
| 1576 | {{ 825,186}, {1965,136}}, /* Q ==11 : 69-75% */ |
| 1577 | {{ 976,185}, {2131,150}}, /* Q ==12 : 75-81% */ |
| 1578 | {{1180,186}, {2070,175}}, /* Q ==13 : 81-87% */ |
| 1579 | {{1377,185}, {1731,202}}, /* Q ==14 : 87-93% */ |
| 1580 | {{1412,185}, {1695,202}}, /* Q ==15 : 93-99% */ |
| 1581 | }; |
| 1582 | #endif |
| 1583 | |
| 1584 | /* HUF_selectDecoder() : |
| 1585 | * Tells which decoder is likely to decode faster, |
| 1586 | * based on a set of pre-computed metrics. |
| 1587 | * @return : 0==HUF_decompress4X1, 1==HUF_decompress4X2 . |
| 1588 | * Assumption : 0 < dstSize <= 128 KB */ |
| 1589 | U32 HUF_selectDecoder (size_t dstSize, size_t cSrcSize) |
| 1590 | { |
| 1591 | assert(dstSize > 0); |
| 1592 | assert(dstSize <= 128*1024); |
| 1593 | #if defined(HUF_FORCE_DECOMPRESS_X1) |
| 1594 | (void)dstSize; |
| 1595 | (void)cSrcSize; |
| 1596 | return 0; |
| 1597 | #elif defined(HUF_FORCE_DECOMPRESS_X2) |
| 1598 | (void)dstSize; |
| 1599 | (void)cSrcSize; |
| 1600 | return 1; |
| 1601 | #else |
| 1602 | /* decoder timing evaluation */ |
| 1603 | { U32 const Q = (cSrcSize >= dstSize) ? 15 : (U32)(cSrcSize * 16 / dstSize); /* Q < 16 */ |
| 1604 | U32 const D256 = (U32)(dstSize >> 8); |
| 1605 | U32 const DTime0 = algoTime[Q][0].tableTime + (algoTime[Q][0].decode256Time * D256); |
| 1606 | U32 DTime1 = algoTime[Q][1].tableTime + (algoTime[Q][1].decode256Time * D256); |
| 1607 | DTime1 += DTime1 >> 5; /* small advantage to algorithm using less memory, to reduce cache eviction */ |
| 1608 | return DTime1 < DTime0; |
| 1609 | } |
| 1610 | #endif |
| 1611 | } |
| 1612 | |
| 1613 | |
| 1614 | size_t HUF_decompress4X_hufOnly_wksp(HUF_DTable* dctx, void* dst, |
| 1615 | size_t dstSize, const void* cSrc, |
| 1616 | size_t cSrcSize, void* workSpace, |
| 1617 | size_t wkspSize) |
| 1618 | { |
| 1619 | /* validation checks */ |
| 1620 | if (dstSize == 0) return ERROR(dstSize_tooSmall); |
| 1621 | if (cSrcSize == 0) return ERROR(corruption_detected); |
| 1622 | |
| 1623 | { U32 const algoNb = HUF_selectDecoder(dstSize, cSrcSize); |
| 1624 | #if defined(HUF_FORCE_DECOMPRESS_X1) |
| 1625 | (void)algoNb; |
| 1626 | assert(algoNb == 0); |
| 1627 | return HUF_decompress4X1_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize); |
| 1628 | #elif defined(HUF_FORCE_DECOMPRESS_X2) |
| 1629 | (void)algoNb; |
| 1630 | assert(algoNb == 1); |
| 1631 | return HUF_decompress4X2_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize); |
| 1632 | #else |
| 1633 | return algoNb ? HUF_decompress4X2_DCtx_wksp(dctx, dst, dstSize, cSrc, |
| 1634 | cSrcSize, workSpace, wkspSize): |
| 1635 | HUF_decompress4X1_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize); |
| 1636 | #endif |
| 1637 | } |
| 1638 | } |
| 1639 | |
| 1640 | size_t HUF_decompress1X_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize, |
| 1641 | const void* cSrc, size_t cSrcSize, |
| 1642 | void* workSpace, size_t wkspSize) |
| 1643 | { |
| 1644 | /* validation checks */ |
| 1645 | if (dstSize == 0) return ERROR(dstSize_tooSmall); |
| 1646 | if (cSrcSize > dstSize) return ERROR(corruption_detected); /* invalid */ |
| 1647 | if (cSrcSize == dstSize) { ZSTD_memcpy(dst, cSrc, dstSize); return dstSize; } /* not compressed */ |
| 1648 | if (cSrcSize == 1) { ZSTD_memset(dst, *(const BYTE*)cSrc, dstSize); return dstSize; } /* RLE */ |
| 1649 | |
| 1650 | { U32 const algoNb = HUF_selectDecoder(dstSize, cSrcSize); |
| 1651 | #if defined(HUF_FORCE_DECOMPRESS_X1) |
| 1652 | (void)algoNb; |
| 1653 | assert(algoNb == 0); |
| 1654 | return HUF_decompress1X1_DCtx_wksp(dctx, dst, dstSize, cSrc, |
| 1655 | cSrcSize, workSpace, wkspSize); |
| 1656 | #elif defined(HUF_FORCE_DECOMPRESS_X2) |
| 1657 | (void)algoNb; |
| 1658 | assert(algoNb == 1); |
| 1659 | return HUF_decompress1X2_DCtx_wksp(dctx, dst, dstSize, cSrc, |
| 1660 | cSrcSize, workSpace, wkspSize); |
| 1661 | #else |
| 1662 | return algoNb ? HUF_decompress1X2_DCtx_wksp(dctx, dst, dstSize, cSrc, |
| 1663 | cSrcSize, workSpace, wkspSize): |
| 1664 | HUF_decompress1X1_DCtx_wksp(dctx, dst, dstSize, cSrc, |
| 1665 | cSrcSize, workSpace, wkspSize); |
| 1666 | #endif |
| 1667 | } |
| 1668 | } |
| 1669 | |
| 1670 | |
| 1671 | size_t HUF_decompress1X_usingDTable_bmi2(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable, int bmi2) |
| 1672 | { |
| 1673 | DTableDesc const dtd = HUF_getDTableDesc(DTable); |
| 1674 | #if defined(HUF_FORCE_DECOMPRESS_X1) |
| 1675 | (void)dtd; |
| 1676 | assert(dtd.tableType == 0); |
| 1677 | return HUF_decompress1X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, bmi2); |
| 1678 | #elif defined(HUF_FORCE_DECOMPRESS_X2) |
| 1679 | (void)dtd; |
| 1680 | assert(dtd.tableType == 1); |
| 1681 | return HUF_decompress1X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, bmi2); |
| 1682 | #else |
| 1683 | return dtd.tableType ? HUF_decompress1X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, bmi2) : |
| 1684 | HUF_decompress1X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, bmi2); |
| 1685 | #endif |
| 1686 | } |
| 1687 | |
| 1688 | #ifndef HUF_FORCE_DECOMPRESS_X2 |
| 1689 | size_t HUF_decompress1X1_DCtx_wksp_bmi2(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize, int bmi2) |
| 1690 | { |
| 1691 | const BYTE* ip = (const BYTE*) cSrc; |
| 1692 | |
| 1693 | size_t const hSize = HUF_readDTableX1_wksp_bmi2(dctx, cSrc, cSrcSize, workSpace, wkspSize, bmi2); |
| 1694 | if (HUF_isError(hSize)) return hSize; |
| 1695 | if (hSize >= cSrcSize) return ERROR(srcSize_wrong); |
| 1696 | ip += hSize; cSrcSize -= hSize; |
| 1697 | |
| 1698 | return HUF_decompress1X1_usingDTable_internal(dst, dstSize, ip, cSrcSize, dctx, bmi2); |
| 1699 | } |
| 1700 | #endif |
| 1701 | |
| 1702 | size_t HUF_decompress4X_usingDTable_bmi2(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable, int bmi2) |
| 1703 | { |
| 1704 | DTableDesc const dtd = HUF_getDTableDesc(DTable); |
| 1705 | #if defined(HUF_FORCE_DECOMPRESS_X1) |
| 1706 | (void)dtd; |
| 1707 | assert(dtd.tableType == 0); |
| 1708 | return HUF_decompress4X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, bmi2); |
| 1709 | #elif defined(HUF_FORCE_DECOMPRESS_X2) |
| 1710 | (void)dtd; |
| 1711 | assert(dtd.tableType == 1); |
| 1712 | return HUF_decompress4X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, bmi2); |
| 1713 | #else |
| 1714 | return dtd.tableType ? HUF_decompress4X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, bmi2) : |
| 1715 | HUF_decompress4X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, bmi2); |
| 1716 | #endif |
| 1717 | } |
| 1718 | |
| 1719 | size_t HUF_decompress4X_hufOnly_wksp_bmi2(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize, int bmi2) |
| 1720 | { |
| 1721 | /* validation checks */ |
| 1722 | if (dstSize == 0) return ERROR(dstSize_tooSmall); |
| 1723 | if (cSrcSize == 0) return ERROR(corruption_detected); |
| 1724 | |
| 1725 | { U32 const algoNb = HUF_selectDecoder(dstSize, cSrcSize); |
| 1726 | #if defined(HUF_FORCE_DECOMPRESS_X1) |
| 1727 | (void)algoNb; |
| 1728 | assert(algoNb == 0); |
| 1729 | return HUF_decompress4X1_DCtx_wksp_bmi2(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, bmi2); |
| 1730 | #elif defined(HUF_FORCE_DECOMPRESS_X2) |
| 1731 | (void)algoNb; |
| 1732 | assert(algoNb == 1); |
| 1733 | return HUF_decompress4X2_DCtx_wksp_bmi2(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, bmi2); |
| 1734 | #else |
| 1735 | return algoNb ? HUF_decompress4X2_DCtx_wksp_bmi2(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, bmi2) : |
| 1736 | HUF_decompress4X1_DCtx_wksp_bmi2(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, bmi2); |
| 1737 | #endif |
| 1738 | } |
| 1739 | } |
| 1740 | |