blob: 51e5d5b6f699b66509622682a056938ef82ff6d3 [file] [log] [blame]
Nobuhiro Iwamatsu240b7232008-06-11 21:05:00 +09001/*
Yoshihiro Shimoda34cca922011-01-18 17:53:45 +09002 * sh_eth.h - Driver for Renesas SuperH ethernet controler.
Nobuhiro Iwamatsu240b7232008-06-11 21:05:00 +09003 *
4 * Copyright (C) 2008 Renesas Solutions Corp.
5 * Copyright (c) 2008 Nobuhiro Iwamatsu
6 * Copyright (c) 2007 Carlos Munoz <carlos@kenati.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 */
22
Nobuhiro Iwamatsud8f5d502008-11-21 12:04:18 +090023#include <netdev.h>
Nobuhiro Iwamatsu240b7232008-06-11 21:05:00 +090024#include <asm/types.h>
25
26#define SHETHER_NAME "sh_eth"
27
28/* Malloc returns addresses in the P1 area (cacheable). However we need to
29 use area P2 (non-cacheable) */
30#define ADDR_TO_P2(addr) ((((int)(addr) & ~0xe0000000) | 0xa0000000))
31
32/* The ethernet controller needs to use physical addresses */
Yoshihiro Shimoda34cca922011-01-18 17:53:45 +090033#if defined(CONFIG_SH_32BIT)
34#define ADDR_TO_PHY(addr) ((((int)(addr) & ~0xe0000000) | 0x40000000))
35#else
Nobuhiro Iwamatsu240b7232008-06-11 21:05:00 +090036#define ADDR_TO_PHY(addr) ((int)(addr) & ~0xe0000000)
Yoshihiro Shimoda34cca922011-01-18 17:53:45 +090037#endif
Nobuhiro Iwamatsu240b7232008-06-11 21:05:00 +090038
39/* Number of supported ports */
40#define MAX_PORT_NUM 2
41
42/* Buffers must be big enough to hold the largest ethernet frame. Also, rx
43 buffers must be a multiple of 32 bytes */
44#define MAX_BUF_SIZE (48 * 32)
45
46/* The number of tx descriptors must be large enough to point to 5 or more
47 frames. If each frame uses 2 descriptors, at least 10 descriptors are needed.
48 We use one descriptor per frame */
49#define NUM_TX_DESC 8
50
51/* The size of the tx descriptor is determined by how much padding is used.
52 4, 20, or 52 bytes of padding can be used */
53#define TX_DESC_PADDING 4
54#define TX_DESC_SIZE (12 + TX_DESC_PADDING)
55
Nobuhiro Iwamatsud8f5d502008-11-21 12:04:18 +090056/* Tx descriptor. We always use 3 bytes of padding */
Nobuhiro Iwamatsu240b7232008-06-11 21:05:00 +090057struct tx_desc_s {
58 volatile u32 td0;
59 u32 td1;
60 u32 td2; /* Buffer start */
61 u32 padding;
62};
63
64/* There is no limitation in the number of rx descriptors */
65#define NUM_RX_DESC 8
66
67/* The size of the rx descriptor is determined by how much padding is used.
68 4, 20, or 52 bytes of padding can be used */
69#define RX_DESC_PADDING 4
70#define RX_DESC_SIZE (12 + RX_DESC_PADDING)
71
72/* Rx descriptor. We always use 4 bytes of padding */
73struct rx_desc_s {
74 volatile u32 rd0;
75 volatile u32 rd1;
76 u32 rd2; /* Buffer start */
77 u32 padding;
78};
79
Nobuhiro Iwamatsud8f5d502008-11-21 12:04:18 +090080struct sh_eth_info {
Nobuhiro Iwamatsu240b7232008-06-11 21:05:00 +090081 struct tx_desc_s *tx_desc_malloc;
82 struct tx_desc_s *tx_desc_base;
83 struct tx_desc_s *tx_desc_cur;
84 struct rx_desc_s *rx_desc_malloc;
85 struct rx_desc_s *rx_desc_base;
86 struct rx_desc_s *rx_desc_cur;
87 u8 *rx_buf_malloc;
88 u8 *rx_buf_base;
89 u8 mac_addr[6];
90 u8 phy_addr;
Nobuhiro Iwamatsud8f5d502008-11-21 12:04:18 +090091 struct eth_device *dev;
Nobuhiro Iwamatsu240b7232008-06-11 21:05:00 +090092};
93
Nobuhiro Iwamatsud8f5d502008-11-21 12:04:18 +090094struct sh_eth_dev {
Nobuhiro Iwamatsu240b7232008-06-11 21:05:00 +090095 int port;
Nobuhiro Iwamatsud8f5d502008-11-21 12:04:18 +090096 struct sh_eth_info port_info[MAX_PORT_NUM];
Nobuhiro Iwamatsu240b7232008-06-11 21:05:00 +090097};
98
99/* Register Address */
Yoshihiro Shimoda34cca922011-01-18 17:53:45 +0900100#ifdef CONFIG_CPU_SH7763
Nobuhiro Iwamatsu240b7232008-06-11 21:05:00 +0900101#define BASE_IO_ADDR 0xfee00000
102
103#define EDSR(port) (BASE_IO_ADDR + 0x800 * (port) + 0x0000)
104
105#define TDLAR(port) (BASE_IO_ADDR + 0x800 * (port) + 0x0010)
106#define TDFAR(port) (BASE_IO_ADDR + 0x800 * (port) + 0x0014)
107#define TDFXR(port) (BASE_IO_ADDR + 0x800 * (port) + 0x0018)
108#define TDFFR(port) (BASE_IO_ADDR + 0x800 * (port) + 0x001c)
109
110#define RDLAR(port) (BASE_IO_ADDR + 0x800 * (port) + 0x0030)
111#define RDFAR(port) (BASE_IO_ADDR + 0x800 * (port) + 0x0034)
112#define RDFXR(port) (BASE_IO_ADDR + 0x800 * (port) + 0x0038)
113#define RDFFR(port) (BASE_IO_ADDR + 0x800 * (port) + 0x003c)
114
115#define EDMR(port) (BASE_IO_ADDR + 0x800 * (port) + 0x0400)
116#define EDTRR(port) (BASE_IO_ADDR + 0x800 * (port) + 0x0408)
117#define EDRRR(port) (BASE_IO_ADDR + 0x800 * (port) + 0x0410)
118#define EESR(port) (BASE_IO_ADDR + 0x800 * (port) + 0x0428)
119#define EESIPR(port) (BASE_IO_ADDR + 0x800 * (port) + 0x0430)
120#define TRSCER(port) (BASE_IO_ADDR + 0x800 * (port) + 0x0438)
121#define TFTR(port) (BASE_IO_ADDR + 0x800 * (port) + 0x0448)
122#define FDR(port) (BASE_IO_ADDR + 0x800 * (port) + 0x0450)
123#define RMCR(port) (BASE_IO_ADDR + 0x800 * (port) + 0x0458)
124#define RPADIR(port) (BASE_IO_ADDR + 0x800 * (port) + 0x0460)
125#define FCFTR(port) (BASE_IO_ADDR + 0x800 * (port) + 0x0468)
126#define ECMR(port) (BASE_IO_ADDR + 0x800 * (port) + 0x0500)
127#define RFLR(port) (BASE_IO_ADDR + 0x800 * (port) + 0x0508)
128#define ECSIPR(port) (BASE_IO_ADDR + 0x800 * (port) + 0x0518)
129#define PIR(port) (BASE_IO_ADDR + 0x800 * (port) + 0x0520)
130#define PIPR(port) (BASE_IO_ADDR + 0x800 * (port) + 0x052c)
131#define APR(port) (BASE_IO_ADDR + 0x800 * (port) + 0x0554)
132#define MPR(port) (BASE_IO_ADDR + 0x800 * (port) + 0x0558)
133#define TPAUSER(port) (BASE_IO_ADDR + 0x800 * (port) + 0x0564)
134#define GECMR(port) (BASE_IO_ADDR + 0x800 * (port) + 0x05b0)
135#define MALR(port) (BASE_IO_ADDR + 0x800 * (port) + 0x05c8)
136#define MAHR(port) (BASE_IO_ADDR + 0x800 * (port) + 0x05c0)
137
Yoshihiro Shimoda34cca922011-01-18 17:53:45 +0900138#elif defined(CONFIG_CPU_SH7757)
139#define BASE_IO_ADDR 0xfef00000
140
141#define TDLAR(port) (BASE_IO_ADDR + 0x800 * (port) + 0x0018)
142#define RDLAR(port) (BASE_IO_ADDR + 0x800 * (port) + 0x0020)
143
144#define EDMR(port) (BASE_IO_ADDR + 0x800 * (port) + 0x0000)
145#define EDTRR(port) (BASE_IO_ADDR + 0x800 * (port) + 0x0008)
146#define EDRRR(port) (BASE_IO_ADDR + 0x800 * (port) + 0x0010)
147#define EESR(port) (BASE_IO_ADDR + 0x800 * (port) + 0x0028)
148#define EESIPR(port) (BASE_IO_ADDR + 0x800 * (port) + 0x0030)
149#define TRSCER(port) (BASE_IO_ADDR + 0x800 * (port) + 0x0038)
150#define TFTR(port) (BASE_IO_ADDR + 0x800 * (port) + 0x0048)
151#define FDR(port) (BASE_IO_ADDR + 0x800 * (port) + 0x0050)
152#define RMCR(port) (BASE_IO_ADDR + 0x800 * (port) + 0x0058)
153#define FCFTR(port) (BASE_IO_ADDR + 0x800 * (port) + 0x0070)
154#define ECMR(port) (BASE_IO_ADDR + 0x800 * (port) + 0x0100)
155#define RFLR(port) (BASE_IO_ADDR + 0x800 * (port) + 0x0108)
156#define ECSIPR(port) (BASE_IO_ADDR + 0x800 * (port) + 0x0118)
157#define PIR(port) (BASE_IO_ADDR + 0x800 * (port) + 0x0120)
158#define APR(port) (BASE_IO_ADDR + 0x800 * (port) + 0x0154)
159#define MPR(port) (BASE_IO_ADDR + 0x800 * (port) + 0x0158)
160#define TPAUSER(port) (BASE_IO_ADDR + 0x800 * (port) + 0x0164)
161#define MAHR(port) (BASE_IO_ADDR + 0x800 * (port) + 0x01c0)
162#define MALR(port) (BASE_IO_ADDR + 0x800 * (port) + 0x01c8)
163#define RTRATE(port) (BASE_IO_ADDR + 0x800 * (port) + 0x01fc)
164#endif
165
Nobuhiro Iwamatsu240b7232008-06-11 21:05:00 +0900166/*
167 * Register's bits
168 * Copy from Linux driver source code
169 */
170#ifdef CONFIG_CPU_SH7763
171/* EDSR */
172enum EDSR_BIT {
173 EDSR_ENT = 0x01, EDSR_ENR = 0x02,
174};
175#define EDSR_ENALL (EDSR_ENT|EDSR_ENR)
176#endif
177
178/* EDMR */
179enum DMAC_M_BIT {
180 EDMR_DL1 = 0x20, EDMR_DL0 = 0x10,
181#ifdef CONFIG_CPU_SH7763
182 EDMR_SRST = 0x03,
183 EMDR_DESC_R = 0x30, /* Descriptor reserve size */
184 EDMR_EL = 0x40, /* Litte endian */
Yoshihiro Shimoda34cca922011-01-18 17:53:45 +0900185#elif defined CONFIG_CPU_SH7757
186 EDMR_SRST = 0x01,
187 EMDR_DESC_R = 0x30, /* Descriptor reserve size */
188 EDMR_EL = 0x40, /* Litte endian */
Nobuhiro Iwamatsu240b7232008-06-11 21:05:00 +0900189#else /* CONFIG_CPU_SH7763 */
190 EDMR_SRST = 0x01,
191#endif
192};
193
194/* RFLR */
195#define RFLR_RFL_MIN 0x05EE /* Recv Frame length 1518 byte */
196
197/* EDTRR */
198enum DMAC_T_BIT {
199#ifdef CONFIG_CPU_SH7763
200 EDTRR_TRNS = 0x03,
201#else
202 EDTRR_TRNS = 0x01,
203#endif
204};
205
206/* GECMR */
207enum GECMR_BIT {
Simon Muntonc2d704f2009-02-02 09:44:08 +0000208 GECMR_1000B = 0x01, GECMR_100B = 0x04, GECMR_10B = 0x00,
Nobuhiro Iwamatsu240b7232008-06-11 21:05:00 +0900209};
210
211/* EDRRR*/
212enum EDRRR_R_BIT {
213 EDRRR_R = 0x01,
214};
215
216/* TPAUSER */
217enum TPAUSER_BIT {
218 TPAUSER_TPAUSE = 0x0000ffff,
219 TPAUSER_UNLIMITED = 0,
220};
221
222/* BCFR */
223enum BCFR_BIT {
224 BCFR_RPAUSE = 0x0000ffff,
225 BCFR_UNLIMITED = 0,
226};
227
228/* PIR */
229enum PIR_BIT {
230 PIR_MDI = 0x08, PIR_MDO = 0x04, PIR_MMD = 0x02, PIR_MDC = 0x01,
231};
232
233/* PSR */
234enum PHY_STATUS_BIT { PHY_ST_LINK = 0x01, };
235
236/* EESR */
237enum EESR_BIT {
238#ifndef CONFIG_CPU_SH7763
239 EESR_TWB = 0x40000000,
240#else
241 EESR_TWB = 0xC0000000,
242 EESR_TC1 = 0x20000000,
243 EESR_TUC = 0x10000000,
244 EESR_ROC = 0x80000000,
245#endif
246 EESR_TABT = 0x04000000,
247 EESR_RABT = 0x02000000, EESR_RFRMER = 0x01000000,
248#ifndef CONFIG_CPU_SH7763
249 EESR_ADE = 0x00800000,
250#endif
251 EESR_ECI = 0x00400000,
252 EESR_FTC = 0x00200000, EESR_TDE = 0x00100000,
253 EESR_TFE = 0x00080000, EESR_FRC = 0x00040000,
254 EESR_RDE = 0x00020000, EESR_RFE = 0x00010000,
255#ifndef CONFIG_CPU_SH7763
256 EESR_CND = 0x00000800,
257#endif
258 EESR_DLC = 0x00000400,
259 EESR_CD = 0x00000200, EESR_RTO = 0x00000100,
260 EESR_RMAF = 0x00000080, EESR_CEEF = 0x00000040,
261 EESR_CELF = 0x00000020, EESR_RRF = 0x00000010,
262 rESR_RTLF = 0x00000008, EESR_RTSF = 0x00000004,
263 EESR_PRE = 0x00000002, EESR_CERF = 0x00000001,
264};
265
266
267#ifdef CONFIG_CPU_SH7763
268# define TX_CHECK (EESR_TC1 | EESR_FTC)
269# define EESR_ERR_CHECK (EESR_TWB | EESR_TABT | EESR_RABT | EESR_RDE \
270 | EESR_RFRMER | EESR_TFE | EESR_TDE | EESR_ECI)
271# define TX_ERROR_CEHCK (EESR_TWB | EESR_TABT | EESR_TDE | EESR_TFE)
272
273#else
274# define TX_CHECK (EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO)
275# define EESR_ERR_CHECK (EESR_TWB | EESR_TABT | EESR_RABT | EESR_RDE \
276 | EESR_RFRMER | EESR_ADE | EESR_TFE | EESR_TDE | EESR_ECI)
277# define TX_ERROR_CEHCK (EESR_TWB | EESR_TABT | EESR_ADE | EESR_TDE | EESR_TFE)
278#endif
279
280/* EESIPR */
281enum DMAC_IM_BIT {
282 DMAC_M_TWB = 0x40000000, DMAC_M_TABT = 0x04000000,
283 DMAC_M_RABT = 0x02000000,
284 DMAC_M_RFRMER = 0x01000000, DMAC_M_ADF = 0x00800000,
285 DMAC_M_ECI = 0x00400000, DMAC_M_FTC = 0x00200000,
286 DMAC_M_TDE = 0x00100000, DMAC_M_TFE = 0x00080000,
287 DMAC_M_FRC = 0x00040000, DMAC_M_RDE = 0x00020000,
288 DMAC_M_RFE = 0x00010000, DMAC_M_TINT4 = 0x00000800,
289 DMAC_M_TINT3 = 0x00000400, DMAC_M_TINT2 = 0x00000200,
290 DMAC_M_TINT1 = 0x00000100, DMAC_M_RINT8 = 0x00000080,
291 DMAC_M_RINT5 = 0x00000010, DMAC_M_RINT4 = 0x00000008,
292 DMAC_M_RINT3 = 0x00000004, DMAC_M_RINT2 = 0x00000002,
293 DMAC_M_RINT1 = 0x00000001,
294};
295
296/* Receive descriptor bit */
297enum RD_STS_BIT {
298 RD_RACT = 0x80000000, RD_RDLE = 0x40000000,
299 RD_RFP1 = 0x20000000, RD_RFP0 = 0x10000000,
300 RD_RFE = 0x08000000, RD_RFS10 = 0x00000200,
301 RD_RFS9 = 0x00000100, RD_RFS8 = 0x00000080,
302 RD_RFS7 = 0x00000040, RD_RFS6 = 0x00000020,
303 RD_RFS5 = 0x00000010, RD_RFS4 = 0x00000008,
304 RD_RFS3 = 0x00000004, RD_RFS2 = 0x00000002,
305 RD_RFS1 = 0x00000001,
306};
307#define RDF1ST RD_RFP1
308#define RDFEND RD_RFP0
309#define RD_RFP (RD_RFP1|RD_RFP0)
310
311/* RDFFR*/
312enum RDFFR_BIT {
313 RDFFR_RDLF = 0x01,
314};
315
316/* FCFTR */
317enum FCFTR_BIT {
318 FCFTR_RFF2 = 0x00040000, FCFTR_RFF1 = 0x00020000,
319 FCFTR_RFF0 = 0x00010000, FCFTR_RFD2 = 0x00000004,
320 FCFTR_RFD1 = 0x00000002, FCFTR_RFD0 = 0x00000001,
321};
322#define FIFO_F_D_RFF (FCFTR_RFF2|FCFTR_RFF1|FCFTR_RFF0)
323#define FIFO_F_D_RFD (FCFTR_RFD2|FCFTR_RFD1|FCFTR_RFD0)
324
325/* Transfer descriptor bit */
326enum TD_STS_BIT {
Yoshihiro Shimoda34cca922011-01-18 17:53:45 +0900327#if defined(CONFIG_CPU_SH7763) || defined(CONFIG_CPU_SH7757)
Nobuhiro Iwamatsu240b7232008-06-11 21:05:00 +0900328 TD_TACT = 0x80000000,
329#else
330 TD_TACT = 0x7fffffff,
331#endif
332 TD_TDLE = 0x40000000, TD_TFP1 = 0x20000000,
333 TD_TFP0 = 0x10000000,
334};
335#define TDF1ST TD_TFP1
336#define TDFEND TD_TFP0
337#define TD_TFP (TD_TFP1|TD_TFP0)
338
339/* RMCR */
340enum RECV_RST_BIT { RMCR_RST = 0x01, };
341/* ECMR */
342enum FELIC_MODE_BIT {
343#ifdef CONFIG_CPU_SH7763
344 ECMR_TRCCM=0x04000000, ECMR_RCSC= 0x00800000, ECMR_DPAD= 0x00200000,
345 ECMR_RZPF = 0x00100000,
346#endif
347 ECMR_ZPF = 0x00080000, ECMR_PFR = 0x00040000, ECMR_RXF = 0x00020000,
348 ECMR_TXF = 0x00010000, ECMR_MCT = 0x00002000, ECMR_PRCEF = 0x00001000,
349 ECMR_PMDE = 0x00000200, ECMR_RE = 0x00000040, ECMR_TE = 0x00000020,
350 ECMR_ILB = 0x00000008, ECMR_ELB = 0x00000004, ECMR_DM = 0x00000002,
351 ECMR_PRM = 0x00000001,
352};
353
354#ifdef CONFIG_CPU_SH7763
355#define ECMR_CHG_DM (ECMR_TRCCM | ECMR_RZPF | ECMR_ZPF | ECMR_PFR | ECMR_RXF | \
356 ECMR_TXF | ECMR_MCT)
Yoshihiro Shimoda34cca922011-01-18 17:53:45 +0900357#elif CONFIG_CPU_SH7757
358#define ECMR_CHG_DM (ECMR_ZPF)
Nobuhiro Iwamatsu240b7232008-06-11 21:05:00 +0900359#else
Yoshihiro Shimoda34cca922011-01-18 17:53:45 +0900360#define ECMR_CHG_DM (ECMR_ZPF | ECMR_PFR | ECMR_RXF | ECMR_TXF | ECMR_MCT)
Nobuhiro Iwamatsu240b7232008-06-11 21:05:00 +0900361#endif
362
363/* ECSR */
364enum ECSR_STATUS_BIT {
365#ifndef CONFIG_CPU_SH7763
366 ECSR_BRCRX = 0x20, ECSR_PSRTO = 0x10,
367#endif
368 ECSR_LCHNG = 0x04,
369 ECSR_MPD = 0x02, ECSR_ICD = 0x01,
370};
371
372#ifdef CONFIG_CPU_SH7763
373# define ECSR_INIT (ECSR_ICD | ECSIPR_MPDIP)
374#else
375# define ECSR_INIT (ECSR_BRCRX | ECSR_PSRTO | \
376 ECSR_LCHNG | ECSR_ICD | ECSIPR_MPDIP)
377#endif
378
379/* ECSIPR */
380enum ECSIPR_STATUS_MASK_BIT {
381#ifndef CONFIG_CPU_SH7763
382 ECSIPR_BRCRXIP = 0x20, ECSIPR_PSRTOIP = 0x10,
383#endif
384 ECSIPR_LCHNGIP = 0x04,
385 ECSIPR_MPDIP = 0x02, ECSIPR_ICDIP = 0x01,
386};
387
388#ifdef CONFIG_CPU_SH7763
389# define ECSIPR_INIT (ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP)
390#else
391# define ECSIPR_INIT (ECSIPR_BRCRXIP | ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | \
392 ECSIPR_ICDIP | ECSIPR_MPDIP)
393#endif
394
395/* APR */
396enum APR_BIT {
Yoshihiro Shimoda34cca922011-01-18 17:53:45 +0900397#ifdef CONFIG_CPU_SH7757
398 APR_AP = 0x00000001,
399#else
Nobuhiro Iwamatsu240b7232008-06-11 21:05:00 +0900400 APR_AP = 0x00000004,
Yoshihiro Shimoda34cca922011-01-18 17:53:45 +0900401#endif
Nobuhiro Iwamatsu240b7232008-06-11 21:05:00 +0900402};
403
404/* MPR */
405enum MPR_BIT {
Yoshihiro Shimoda34cca922011-01-18 17:53:45 +0900406#ifdef CONFIG_CPU_SH7757
407 MPR_MP = 0x00000001,
408#else
Nobuhiro Iwamatsu240b7232008-06-11 21:05:00 +0900409 MPR_MP = 0x00000006,
Yoshihiro Shimoda34cca922011-01-18 17:53:45 +0900410#endif
Nobuhiro Iwamatsu240b7232008-06-11 21:05:00 +0900411};
412
413/* TRSCER */
414enum DESC_I_BIT {
415 DESC_I_TINT4 = 0x0800, DESC_I_TINT3 = 0x0400, DESC_I_TINT2 = 0x0200,
416 DESC_I_TINT1 = 0x0100, DESC_I_RINT8 = 0x0080, DESC_I_RINT5 = 0x0010,
417 DESC_I_RINT4 = 0x0008, DESC_I_RINT3 = 0x0004, DESC_I_RINT2 = 0x0002,
418 DESC_I_RINT1 = 0x0001,
419};
420
421/* RPADIR */
422enum RPADIR_BIT {
423 RPADIR_PADS1 = 0x20000, RPADIR_PADS0 = 0x10000,
424 RPADIR_PADR = 0x0003f,
425};
426
427#ifdef CONFIG_CPU_SH7763
428# define RPADIR_INIT (0x00)
429#else
430# define RPADIR_INIT (RPADIR_PADS1)
431#endif
432
433/* FDR */
434enum FIFO_SIZE_BIT {
435 FIFO_SIZE_T = 0x00000700, FIFO_SIZE_R = 0x00000007,
436};
437
438enum PHY_OFFSETS {
439 PHY_CTRL = 0, PHY_STAT = 1, PHY_IDT1 = 2, PHY_IDT2 = 3,
440 PHY_ANA = 4, PHY_ANL = 5, PHY_ANE = 6,
441 PHY_16 = 16,
442};
443
444/* PHY_CTRL */
445enum PHY_CTRL_BIT {
446 PHY_C_RESET = 0x8000, PHY_C_LOOPBK = 0x4000, PHY_C_SPEEDSL = 0x2000,
447 PHY_C_ANEGEN = 0x1000, PHY_C_PWRDN = 0x0800, PHY_C_ISO = 0x0400,
448 PHY_C_RANEG = 0x0200, PHY_C_DUPLEX = 0x0100, PHY_C_COLT = 0x0080,
449};
450#define DM9161_PHY_C_ANEGEN 0 /* auto nego special */
451
452/* PHY_STAT */
453enum PHY_STAT_BIT {
454 PHY_S_100T4 = 0x8000, PHY_S_100X_F = 0x4000, PHY_S_100X_H = 0x2000,
455 PHY_S_10T_F = 0x1000, PHY_S_10T_H = 0x0800, PHY_S_ANEGC = 0x0020,
456 PHY_S_RFAULT = 0x0010, PHY_S_ANEGA = 0x0008, PHY_S_LINK = 0x0004,
457 PHY_S_JAB = 0x0002, PHY_S_EXTD = 0x0001,
458};
459
460/* PHY_ANA */
461enum PHY_ANA_BIT {
462 PHY_A_NP = 0x8000, PHY_A_ACK = 0x4000, PHY_A_RF = 0x2000,
463 PHY_A_FCS = 0x0400, PHY_A_T4 = 0x0200, PHY_A_FDX = 0x0100,
464 PHY_A_HDX = 0x0080, PHY_A_10FDX = 0x0040, PHY_A_10HDX = 0x0020,
465 PHY_A_SEL = 0x001e,
466 PHY_A_EXT = 0x0001,
467};
468
469/* PHY_ANL */
470enum PHY_ANL_BIT {
471 PHY_L_NP = 0x8000, PHY_L_ACK = 0x4000, PHY_L_RF = 0x2000,
472 PHY_L_FCS = 0x0400, PHY_L_T4 = 0x0200, PHY_L_FDX = 0x0100,
473 PHY_L_HDX = 0x0080, PHY_L_10FDX = 0x0040, PHY_L_10HDX = 0x0020,
474 PHY_L_SEL = 0x001f,
475};
476
477/* PHY_ANE */
478enum PHY_ANE_BIT {
479 PHY_E_PDF = 0x0010, PHY_E_LPNPA = 0x0008, PHY_E_NPA = 0x0004,
480 PHY_E_PRX = 0x0002, PHY_E_LPANEGA = 0x0001,
481};
482
483/* DM9161 */
484enum PHY_16_BIT {
485 PHY_16_BP4B45 = 0x8000, PHY_16_BPSCR = 0x4000, PHY_16_BPALIGN = 0x2000,
486 PHY_16_BP_ADPOK = 0x1000, PHY_16_Repeatmode = 0x0800,
487 PHY_16_TXselect = 0x0400,
488 PHY_16_Rsvd = 0x0200, PHY_16_RMIIEnable = 0x0100,
489 PHY_16_Force100LNK = 0x0080,
490 PHY_16_APDLED_CTL = 0x0040, PHY_16_COLLED_CTL = 0x0020,
491 PHY_16_RPDCTR_EN = 0x0010,
492 PHY_16_ResetStMch = 0x0008, PHY_16_PreamSupr = 0x0004,
493 PHY_16_Sleepmode = 0x0002,
494 PHY_16_RemoteLoopOut = 0x0001,
495};