Yen Lin | 22e9f89 | 2012-04-10 05:17:02 +0000 | [diff] [blame] | 1 | /* |
| 2 | * (C) Copyright 2010 - 2011 |
| 3 | * NVIDIA Corporation <www.nvidia.com> |
| 4 | * |
| 5 | * See file CREDITS for list of people who contributed to this |
| 6 | * project. |
| 7 | * |
| 8 | * This program is free software; you can redistribute it and/or |
| 9 | * modify it under the terms of the GNU General Public License as |
| 10 | * published by the Free Software Foundation; either version 2 of |
| 11 | * the License, or (at your option) any later version. |
| 12 | * |
| 13 | * This program is distributed in the hope that it will be useful, |
| 14 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 15 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 16 | * GNU General Public License for more details. |
| 17 | * |
| 18 | * You should have received a copy of the GNU General Public License |
| 19 | * along with this program; if not, write to the Free Software |
| 20 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, |
| 21 | * MA 02111-1307 USA |
| 22 | */ |
| 23 | |
| 24 | #include <common.h> |
| 25 | #include <asm/io.h> |
| 26 | #include <asm/arch/ap20.h> |
| 27 | #include <asm/arch/clk_rst.h> |
| 28 | #include <asm/arch/clock.h> |
| 29 | #include <asm/arch/flow.h> |
| 30 | #include <asm/arch/pinmux.h> |
| 31 | #include <asm/arch/pmc.h> |
| 32 | #include <asm/arch/tegra2.h> |
| 33 | #include <asm/arch/warmboot.h> |
| 34 | #include "warmboot_avp.h" |
| 35 | |
| 36 | #define DEBUG_RESET_CORESIGHT |
| 37 | |
| 38 | void wb_start(void) |
| 39 | { |
| 40 | struct pmux_tri_ctlr *pmt = (struct pmux_tri_ctlr *)NV_PA_APB_MISC_BASE; |
| 41 | struct pmc_ctlr *pmc = (struct pmc_ctlr *)TEGRA2_PMC_BASE; |
| 42 | struct flow_ctlr *flow = (struct flow_ctlr *)NV_PA_FLOW_BASE; |
| 43 | struct clk_rst_ctlr *clkrst = |
| 44 | (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE; |
| 45 | union osc_ctrl_reg osc_ctrl; |
| 46 | union pllx_base_reg pllx_base; |
| 47 | union pllx_misc_reg pllx_misc; |
| 48 | union scratch3_reg scratch3; |
| 49 | u32 reg; |
| 50 | |
| 51 | /* enable JTAG & TBE */ |
| 52 | writel(CONFIG_CTL_TBE | CONFIG_CTL_JTAG, &pmt->pmt_cfg_ctl); |
| 53 | |
| 54 | /* Are we running where we're supposed to be? */ |
| 55 | asm volatile ( |
| 56 | "adr %0, wb_start;" /* reg: wb_start address */ |
| 57 | : "=r"(reg) /* output */ |
| 58 | /* no input, no clobber list */ |
| 59 | ); |
| 60 | |
| 61 | if (reg != AP20_WB_RUN_ADDRESS) |
| 62 | goto do_reset; |
| 63 | |
| 64 | /* Are we running with AVP? */ |
| 65 | if (readl(NV_PA_PG_UP_BASE + PG_UP_TAG_0) != PG_UP_TAG_AVP) |
| 66 | goto do_reset; |
| 67 | |
| 68 | #ifdef DEBUG_RESET_CORESIGHT |
| 69 | /* Assert CoreSight reset */ |
| 70 | reg = readl(&clkrst->crc_rst_dev[TEGRA_DEV_U]); |
| 71 | reg |= SWR_CSITE_RST; |
| 72 | writel(reg, &clkrst->crc_rst_dev[TEGRA_DEV_U]); |
| 73 | #endif |
| 74 | |
| 75 | /* TODO: Set the drive strength - maybe make this a board parameter? */ |
| 76 | osc_ctrl.word = readl(&clkrst->crc_osc_ctrl); |
| 77 | osc_ctrl.xofs = 4; |
| 78 | osc_ctrl.xoe = 1; |
| 79 | writel(osc_ctrl.word, &clkrst->crc_osc_ctrl); |
| 80 | |
| 81 | /* Power up the CPU complex if necessary */ |
| 82 | if (!(readl(&pmc->pmc_pwrgate_status) & PWRGATE_STATUS_CPU)) { |
| 83 | reg = PWRGATE_TOGGLE_PARTID_CPU | PWRGATE_TOGGLE_START; |
| 84 | writel(reg, &pmc->pmc_pwrgate_toggle); |
| 85 | while (!(readl(&pmc->pmc_pwrgate_status) & PWRGATE_STATUS_CPU)) |
| 86 | ; |
| 87 | } |
| 88 | |
| 89 | /* Remove the I/O clamps from the CPU power partition. */ |
| 90 | reg = readl(&pmc->pmc_remove_clamping); |
| 91 | reg |= CPU_CLMP; |
| 92 | writel(reg, &pmc->pmc_remove_clamping); |
| 93 | |
| 94 | reg = EVENT_ZERO_VAL_20 | EVENT_MSEC | EVENT_MODE_STOP; |
| 95 | writel(reg, &flow->halt_cop_events); |
| 96 | |
| 97 | /* Assert CPU complex reset */ |
| 98 | reg = readl(&clkrst->crc_rst_dev[TEGRA_DEV_L]); |
| 99 | reg |= CPU_RST; |
| 100 | writel(reg, &clkrst->crc_rst_dev[TEGRA_DEV_L]); |
| 101 | |
| 102 | /* Hold both CPUs in reset */ |
| 103 | reg = CPU_CMPLX_CPURESET0 | CPU_CMPLX_CPURESET1 | CPU_CMPLX_DERESET0 | |
| 104 | CPU_CMPLX_DERESET1 | CPU_CMPLX_DBGRESET0 | CPU_CMPLX_DBGRESET1; |
| 105 | writel(reg, &clkrst->crc_cpu_cmplx_set); |
| 106 | |
| 107 | /* Halt CPU1 at the flow controller for uni-processor configurations */ |
| 108 | writel(EVENT_MODE_STOP, &flow->halt_cpu1_events); |
| 109 | |
| 110 | /* |
| 111 | * Set the CPU reset vector. SCRATCH41 contains the physical |
| 112 | * address of the CPU-side restoration code. |
| 113 | */ |
| 114 | reg = readl(&pmc->pmc_scratch41); |
| 115 | writel(reg, EXCEP_VECTOR_CPU_RESET_VECTOR); |
| 116 | |
| 117 | /* Select CPU complex clock source */ |
| 118 | writel(CCLK_PLLP_BURST_POLICY, &clkrst->crc_cclk_brst_pol); |
| 119 | |
| 120 | /* Start the CPU0 clock and stop the CPU1 clock */ |
| 121 | reg = CPU_CMPLX_CPU_BRIDGE_CLKDIV_4 | CPU_CMPLX_CPU0_CLK_STP_RUN | |
| 122 | CPU_CMPLX_CPU1_CLK_STP_STOP; |
| 123 | writel(reg, &clkrst->crc_clk_cpu_cmplx); |
| 124 | |
| 125 | /* Enable the CPU complex clock */ |
| 126 | reg = readl(&clkrst->crc_clk_out_enb[TEGRA_DEV_L]); |
| 127 | reg |= CLK_ENB_CPU; |
| 128 | writel(reg, &clkrst->crc_clk_out_enb[TEGRA_DEV_L]); |
| 129 | |
| 130 | /* Make sure the resets were held for at least 2 microseconds */ |
| 131 | reg = readl(TIMER_USEC_CNTR); |
| 132 | while (readl(TIMER_USEC_CNTR) <= (reg + 2)) |
| 133 | ; |
| 134 | |
| 135 | #ifdef DEBUG_RESET_CORESIGHT |
| 136 | /* |
| 137 | * De-assert CoreSight reset. |
| 138 | * NOTE: We're leaving the CoreSight clock on the oscillator for |
| 139 | * now. It will be restored to its original clock source |
| 140 | * when the CPU-side restoration code runs. |
| 141 | */ |
| 142 | reg = readl(&clkrst->crc_rst_dev[TEGRA_DEV_U]); |
| 143 | reg &= ~SWR_CSITE_RST; |
| 144 | writel(reg, &clkrst->crc_rst_dev[TEGRA_DEV_U]); |
| 145 | #endif |
| 146 | |
| 147 | /* Unlock the CPU CoreSight interfaces */ |
| 148 | reg = 0xC5ACCE55; |
| 149 | writel(reg, CSITE_CPU_DBG0_LAR); |
| 150 | writel(reg, CSITE_CPU_DBG1_LAR); |
| 151 | |
| 152 | /* |
| 153 | * Sample the microsecond timestamp again. This is the time we must |
| 154 | * use when returning from LP0 for PLL stabilization delays. |
| 155 | */ |
| 156 | reg = readl(TIMER_USEC_CNTR); |
| 157 | writel(reg, &pmc->pmc_scratch1); |
| 158 | |
| 159 | pllx_base.word = 0; |
| 160 | pllx_misc.word = 0; |
| 161 | scratch3.word = readl(&pmc->pmc_scratch3); |
| 162 | |
| 163 | /* Get the OSC. For 19.2 MHz, use 19 to make the calculations easier */ |
| 164 | reg = (readl(TIMER_USEC_CFG) & USEC_CFG_DIVISOR_MASK) + 1; |
| 165 | |
| 166 | /* |
| 167 | * According to the TRM, for 19.2MHz OSC, the USEC_DIVISOR is 0x5f, and |
| 168 | * USEC_DIVIDEND is 0x04. So, if USEC_DIVISOR > 26, OSC is 19.2 MHz. |
| 169 | * |
| 170 | * reg is used to calculate the pllx freq, which is used to determine if |
| 171 | * to set dccon or not. |
| 172 | */ |
| 173 | if (reg > 26) |
| 174 | reg = 19; |
| 175 | |
| 176 | /* PLLX_BASE.PLLX_DIVM */ |
| 177 | if (scratch3.pllx_base_divm == reg) |
| 178 | reg = 0; |
| 179 | else |
| 180 | reg = 1; |
| 181 | |
| 182 | /* PLLX_BASE.PLLX_DIVN */ |
| 183 | pllx_base.divn = scratch3.pllx_base_divn; |
| 184 | reg = scratch3.pllx_base_divn << reg; |
| 185 | |
| 186 | /* PLLX_BASE.PLLX_DIVP */ |
| 187 | pllx_base.divp = scratch3.pllx_base_divp; |
| 188 | reg = reg >> scratch3.pllx_base_divp; |
| 189 | |
| 190 | pllx_base.bypass = 1; |
| 191 | |
| 192 | /* PLLX_MISC_DCCON must be set for pllx frequency > 600 MHz. */ |
| 193 | if (reg > 600) |
| 194 | pllx_misc.dccon = 1; |
| 195 | |
| 196 | /* PLLX_MISC_LFCON */ |
| 197 | pllx_misc.lfcon = scratch3.pllx_misc_lfcon; |
| 198 | |
| 199 | /* PLLX_MISC_CPCON */ |
| 200 | pllx_misc.cpcon = scratch3.pllx_misc_cpcon; |
| 201 | |
| 202 | writel(pllx_misc.word, &clkrst->crc_pll_simple[SIMPLE_PLLX].pll_misc); |
| 203 | writel(pllx_base.word, &clkrst->crc_pll_simple[SIMPLE_PLLX].pll_base); |
| 204 | |
| 205 | pllx_base.enable = 1; |
| 206 | writel(pllx_base.word, &clkrst->crc_pll_simple[SIMPLE_PLLX].pll_base); |
| 207 | pllx_base.bypass = 0; |
| 208 | writel(pllx_base.word, &clkrst->crc_pll_simple[SIMPLE_PLLX].pll_base); |
| 209 | |
| 210 | writel(0, flow->halt_cpu_events); |
| 211 | |
| 212 | reg = CPU_CMPLX_CPURESET0 | CPU_CMPLX_DBGRESET0 | CPU_CMPLX_DERESET0; |
| 213 | writel(reg, &clkrst->crc_cpu_cmplx_clr); |
| 214 | |
| 215 | reg = PLLM_OUT1_RSTN_RESET_DISABLE | PLLM_OUT1_CLKEN_ENABLE | |
| 216 | PLLM_OUT1_RATIO_VAL_8; |
| 217 | writel(reg, &clkrst->crc_pll[CLOCK_ID_MEMORY].pll_out); |
| 218 | |
| 219 | reg = SCLK_SWAKE_FIQ_SRC_PLLM_OUT1 | SCLK_SWAKE_IRQ_SRC_PLLM_OUT1 | |
| 220 | SCLK_SWAKE_RUN_SRC_PLLM_OUT1 | SCLK_SWAKE_IDLE_SRC_PLLM_OUT1 | |
| 221 | SCLK_SYS_STATE_IDLE; |
| 222 | writel(reg, &clkrst->crc_sclk_brst_pol); |
| 223 | |
| 224 | /* avp_resume: no return after the write */ |
| 225 | reg = readl(&clkrst->crc_rst_dev[TEGRA_DEV_L]); |
| 226 | reg &= ~CPU_RST; |
| 227 | writel(reg, &clkrst->crc_rst_dev[TEGRA_DEV_L]); |
| 228 | |
| 229 | /* avp_halt: */ |
| 230 | avp_halt: |
| 231 | reg = EVENT_MODE_STOP | EVENT_JTAG; |
| 232 | writel(reg, flow->halt_cop_events); |
| 233 | goto avp_halt; |
| 234 | |
| 235 | do_reset: |
| 236 | /* |
| 237 | * Execution comes here if something goes wrong. The chip is reset and |
| 238 | * a cold boot is performed. |
| 239 | */ |
| 240 | writel(SWR_TRIG_SYS_RST, &clkrst->crc_rst_dev[TEGRA_DEV_L]); |
| 241 | goto do_reset; |
| 242 | } |
| 243 | |
| 244 | /* |
| 245 | * wb_end() is a dummy function, and must be directly following wb_start(), |
| 246 | * and is used to calculate the size of wb_start(). |
| 247 | */ |
| 248 | void wb_end(void) |
| 249 | { |
| 250 | } |