blob: 7489c896f9d5eeea4dd7e9c5101fb877ead82339 [file] [log] [blame]
Michael Walled3967f32019-12-18 00:09:58 +01001// SPDX-License-Identifier: GPL-2.0+
2/*
3 * NXP FlexSPI(FSPI) controller driver.
4 *
5 * Copyright (c) 2019 Michael Walle <michael@walle.cc>
6 * Copyright (c) 2019 NXP
7 *
8 * This driver was originally ported from the linux kernel v5.4-rc3, which had
9 * the following notes:
10 *
11 * FlexSPI is a flexsible SPI host controller which supports two SPI
12 * channels and up to 4 external devices. Each channel supports
13 * Single/Dual/Quad/Octal mode data transfer (1/2/4/8 bidirectional
14 * data lines).
15 *
16 * FlexSPI controller is driven by the LUT(Look-up Table) registers
17 * LUT registers are a look-up-table for sequences of instructions.
18 * A valid sequence consists of four LUT registers.
19 * Maximum 32 LUT sequences can be programmed simultaneously.
20 *
21 * LUTs are being created at run-time based on the commands passed
22 * from the spi-mem framework, thus using single LUT index.
23 *
24 * Software triggered Flash read/write access by IP Bus.
25 *
26 * Memory mapped read access by AHB Bus.
27 *
28 * Based on SPI MEM interface and spi-fsl-qspi.c driver.
29 *
30 * Author:
31 * Yogesh Narayan Gaur <yogeshnarayan.gaur@nxp.com>
32 * Boris Brezillon <bbrezillon@kernel.org>
33 * Frieder Schrempf <frieder.schrempf@kontron.de>
34 */
35
Sean Andersonacccaca2020-10-04 21:39:49 -040036#include <clk.h>
37#include <dm.h>
38#include <dm/device_compat.h>
Michael Walled3967f32019-12-18 00:09:58 +010039#include <malloc.h>
40#include <spi.h>
41#include <spi-mem.h>
Sean Andersonacccaca2020-10-04 21:39:49 -040042#include <asm/io.h>
Kuldeep Singh19e38b22021-08-03 14:32:58 +053043#ifdef CONFIG_FSL_LAYERSCAPE
44#include <asm/arch/clock.h>
45#include <asm/arch/soc.h>
46#include <asm/arch/speed.h>
47#endif
Simon Glass4dcacfc2020-05-10 11:40:13 -060048#include <linux/bitops.h>
Michael Walled3967f32019-12-18 00:09:58 +010049#include <linux/kernel.h>
50#include <linux/sizes.h>
51#include <linux/iopoll.h>
52#include <linux/bug.h>
Simon Glassfb6f4822020-02-03 07:36:17 -070053#include <linux/err.h>
Michael Walled3967f32019-12-18 00:09:58 +010054
55/*
56 * The driver only uses one single LUT entry, that is updated on
57 * each call of exec_op(). Index 0 is preset at boot with a basic
58 * read operation, so let's use the last entry (31).
59 */
60#define SEQID_LUT 31
61
62/* Registers used by the driver */
63#define FSPI_MCR0 0x00
64#define FSPI_MCR0_AHB_TIMEOUT(x) ((x) << 24)
65#define FSPI_MCR0_IP_TIMEOUT(x) ((x) << 16)
66#define FSPI_MCR0_LEARN_EN BIT(15)
67#define FSPI_MCR0_SCRFRUN_EN BIT(14)
68#define FSPI_MCR0_OCTCOMB_EN BIT(13)
69#define FSPI_MCR0_DOZE_EN BIT(12)
70#define FSPI_MCR0_HSEN BIT(11)
71#define FSPI_MCR0_SERCLKDIV BIT(8)
72#define FSPI_MCR0_ATDF_EN BIT(7)
73#define FSPI_MCR0_ARDF_EN BIT(6)
74#define FSPI_MCR0_RXCLKSRC(x) ((x) << 4)
75#define FSPI_MCR0_END_CFG(x) ((x) << 2)
76#define FSPI_MCR0_MDIS BIT(1)
77#define FSPI_MCR0_SWRST BIT(0)
78
79#define FSPI_MCR1 0x04
80#define FSPI_MCR1_SEQ_TIMEOUT(x) ((x) << 16)
81#define FSPI_MCR1_AHB_TIMEOUT(x) (x)
82
83#define FSPI_MCR2 0x08
84#define FSPI_MCR2_IDLE_WAIT(x) ((x) << 24)
85#define FSPI_MCR2_SAMEDEVICEEN BIT(15)
86#define FSPI_MCR2_CLRLRPHS BIT(14)
87#define FSPI_MCR2_ABRDATSZ BIT(8)
88#define FSPI_MCR2_ABRLEARN BIT(7)
89#define FSPI_MCR2_ABR_READ BIT(6)
90#define FSPI_MCR2_ABRWRITE BIT(5)
91#define FSPI_MCR2_ABRDUMMY BIT(4)
92#define FSPI_MCR2_ABR_MODE BIT(3)
93#define FSPI_MCR2_ABRCADDR BIT(2)
94#define FSPI_MCR2_ABRRADDR BIT(1)
95#define FSPI_MCR2_ABR_CMD BIT(0)
96
97#define FSPI_AHBCR 0x0c
98#define FSPI_AHBCR_RDADDROPT BIT(6)
99#define FSPI_AHBCR_PREF_EN BIT(5)
100#define FSPI_AHBCR_BUFF_EN BIT(4)
101#define FSPI_AHBCR_CACH_EN BIT(3)
102#define FSPI_AHBCR_CLRTXBUF BIT(2)
103#define FSPI_AHBCR_CLRRXBUF BIT(1)
104#define FSPI_AHBCR_PAR_EN BIT(0)
105
106#define FSPI_INTEN 0x10
107#define FSPI_INTEN_SCLKSBWR BIT(9)
108#define FSPI_INTEN_SCLKSBRD BIT(8)
109#define FSPI_INTEN_DATALRNFL BIT(7)
110#define FSPI_INTEN_IPTXWE BIT(6)
111#define FSPI_INTEN_IPRXWA BIT(5)
112#define FSPI_INTEN_AHBCMDERR BIT(4)
113#define FSPI_INTEN_IPCMDERR BIT(3)
114#define FSPI_INTEN_AHBCMDGE BIT(2)
115#define FSPI_INTEN_IPCMDGE BIT(1)
116#define FSPI_INTEN_IPCMDDONE BIT(0)
117
118#define FSPI_INTR 0x14
119#define FSPI_INTR_SCLKSBWR BIT(9)
120#define FSPI_INTR_SCLKSBRD BIT(8)
121#define FSPI_INTR_DATALRNFL BIT(7)
122#define FSPI_INTR_IPTXWE BIT(6)
123#define FSPI_INTR_IPRXWA BIT(5)
124#define FSPI_INTR_AHBCMDERR BIT(4)
125#define FSPI_INTR_IPCMDERR BIT(3)
126#define FSPI_INTR_AHBCMDGE BIT(2)
127#define FSPI_INTR_IPCMDGE BIT(1)
128#define FSPI_INTR_IPCMDDONE BIT(0)
129
130#define FSPI_LUTKEY 0x18
131#define FSPI_LUTKEY_VALUE 0x5AF05AF0
132
133#define FSPI_LCKCR 0x1C
134
135#define FSPI_LCKER_LOCK 0x1
136#define FSPI_LCKER_UNLOCK 0x2
137
138#define FSPI_BUFXCR_INVALID_MSTRID 0xE
139#define FSPI_AHBRX_BUF0CR0 0x20
140#define FSPI_AHBRX_BUF1CR0 0x24
141#define FSPI_AHBRX_BUF2CR0 0x28
142#define FSPI_AHBRX_BUF3CR0 0x2C
143#define FSPI_AHBRX_BUF4CR0 0x30
144#define FSPI_AHBRX_BUF5CR0 0x34
145#define FSPI_AHBRX_BUF6CR0 0x38
146#define FSPI_AHBRX_BUF7CR0 0x3C
147#define FSPI_AHBRXBUF0CR7_PREF BIT(31)
148
149#define FSPI_AHBRX_BUF0CR1 0x40
150#define FSPI_AHBRX_BUF1CR1 0x44
151#define FSPI_AHBRX_BUF2CR1 0x48
152#define FSPI_AHBRX_BUF3CR1 0x4C
153#define FSPI_AHBRX_BUF4CR1 0x50
154#define FSPI_AHBRX_BUF5CR1 0x54
155#define FSPI_AHBRX_BUF6CR1 0x58
156#define FSPI_AHBRX_BUF7CR1 0x5C
157
158#define FSPI_FLSHA1CR0 0x60
159#define FSPI_FLSHA2CR0 0x64
160#define FSPI_FLSHB1CR0 0x68
161#define FSPI_FLSHB2CR0 0x6C
162#define FSPI_FLSHXCR0_SZ_KB 10
163#define FSPI_FLSHXCR0_SZ(x) ((x) >> FSPI_FLSHXCR0_SZ_KB)
164
165#define FSPI_FLSHA1CR1 0x70
166#define FSPI_FLSHA2CR1 0x74
167#define FSPI_FLSHB1CR1 0x78
168#define FSPI_FLSHB2CR1 0x7C
169#define FSPI_FLSHXCR1_CSINTR(x) ((x) << 16)
170#define FSPI_FLSHXCR1_CAS(x) ((x) << 11)
171#define FSPI_FLSHXCR1_WA BIT(10)
172#define FSPI_FLSHXCR1_TCSH(x) ((x) << 5)
173#define FSPI_FLSHXCR1_TCSS(x) (x)
174
175#define FSPI_FLSHA1CR2 0x80
176#define FSPI_FLSHA2CR2 0x84
177#define FSPI_FLSHB1CR2 0x88
178#define FSPI_FLSHB2CR2 0x8C
179#define FSPI_FLSHXCR2_CLRINSP BIT(24)
180#define FSPI_FLSHXCR2_AWRWAIT BIT(16)
181#define FSPI_FLSHXCR2_AWRSEQN_SHIFT 13
182#define FSPI_FLSHXCR2_AWRSEQI_SHIFT 8
183#define FSPI_FLSHXCR2_ARDSEQN_SHIFT 5
184#define FSPI_FLSHXCR2_ARDSEQI_SHIFT 0
185
186#define FSPI_IPCR0 0xA0
187
188#define FSPI_IPCR1 0xA4
189#define FSPI_IPCR1_IPAREN BIT(31)
190#define FSPI_IPCR1_SEQNUM_SHIFT 24
191#define FSPI_IPCR1_SEQID_SHIFT 16
192#define FSPI_IPCR1_IDATSZ(x) (x)
193
194#define FSPI_IPCMD 0xB0
195#define FSPI_IPCMD_TRG BIT(0)
196
197#define FSPI_DLPR 0xB4
198
199#define FSPI_IPRXFCR 0xB8
200#define FSPI_IPRXFCR_CLR BIT(0)
201#define FSPI_IPRXFCR_DMA_EN BIT(1)
202#define FSPI_IPRXFCR_WMRK(x) ((x) << 2)
203
204#define FSPI_IPTXFCR 0xBC
205#define FSPI_IPTXFCR_CLR BIT(0)
206#define FSPI_IPTXFCR_DMA_EN BIT(1)
207#define FSPI_IPTXFCR_WMRK(x) ((x) << 2)
208
209#define FSPI_DLLACR 0xC0
210#define FSPI_DLLACR_OVRDEN BIT(8)
211
212#define FSPI_DLLBCR 0xC4
213#define FSPI_DLLBCR_OVRDEN BIT(8)
214
215#define FSPI_STS0 0xE0
216#define FSPI_STS0_DLPHB(x) ((x) << 8)
217#define FSPI_STS0_DLPHA(x) ((x) << 4)
218#define FSPI_STS0_CMD_SRC(x) ((x) << 2)
219#define FSPI_STS0_ARB_IDLE BIT(1)
220#define FSPI_STS0_SEQ_IDLE BIT(0)
221
222#define FSPI_STS1 0xE4
223#define FSPI_STS1_IP_ERRCD(x) ((x) << 24)
224#define FSPI_STS1_IP_ERRID(x) ((x) << 16)
225#define FSPI_STS1_AHB_ERRCD(x) ((x) << 8)
226#define FSPI_STS1_AHB_ERRID(x) (x)
227
228#define FSPI_AHBSPNST 0xEC
229#define FSPI_AHBSPNST_DATLFT(x) ((x) << 16)
230#define FSPI_AHBSPNST_BUFID(x) ((x) << 1)
231#define FSPI_AHBSPNST_ACTIVE BIT(0)
232
233#define FSPI_IPRXFSTS 0xF0
234#define FSPI_IPRXFSTS_RDCNTR(x) ((x) << 16)
235#define FSPI_IPRXFSTS_FILL(x) (x)
236
237#define FSPI_IPTXFSTS 0xF4
238#define FSPI_IPTXFSTS_WRCNTR(x) ((x) << 16)
239#define FSPI_IPTXFSTS_FILL(x) (x)
240
241#define FSPI_RFDR 0x100
242#define FSPI_TFDR 0x180
243
244#define FSPI_LUT_BASE 0x200
245#define FSPI_LUT_OFFSET (SEQID_LUT * 4 * 4)
246#define FSPI_LUT_REG(idx) \
247 (FSPI_LUT_BASE + FSPI_LUT_OFFSET + (idx) * 4)
248
249/* register map end */
250
251/* Instruction set for the LUT register. */
252#define LUT_STOP 0x00
253#define LUT_CMD 0x01
254#define LUT_ADDR 0x02
255#define LUT_CADDR_SDR 0x03
256#define LUT_MODE 0x04
257#define LUT_MODE2 0x05
258#define LUT_MODE4 0x06
259#define LUT_MODE8 0x07
260#define LUT_NXP_WRITE 0x08
261#define LUT_NXP_READ 0x09
262#define LUT_LEARN_SDR 0x0A
263#define LUT_DATSZ_SDR 0x0B
264#define LUT_DUMMY 0x0C
265#define LUT_DUMMY_RWDS_SDR 0x0D
266#define LUT_JMP_ON_CS 0x1F
267#define LUT_CMD_DDR 0x21
268#define LUT_ADDR_DDR 0x22
269#define LUT_CADDR_DDR 0x23
270#define LUT_MODE_DDR 0x24
271#define LUT_MODE2_DDR 0x25
272#define LUT_MODE4_DDR 0x26
273#define LUT_MODE8_DDR 0x27
274#define LUT_WRITE_DDR 0x28
275#define LUT_READ_DDR 0x29
276#define LUT_LEARN_DDR 0x2A
277#define LUT_DATSZ_DDR 0x2B
278#define LUT_DUMMY_DDR 0x2C
279#define LUT_DUMMY_RWDS_DDR 0x2D
280
281/*
282 * Calculate number of required PAD bits for LUT register.
283 *
284 * The pad stands for the number of IO lines [0:7].
285 * For example, the octal read needs eight IO lines,
286 * so you should use LUT_PAD(8). This macro
287 * returns 3 i.e. use eight (2^3) IP lines for read.
288 */
289#define LUT_PAD(x) (fls(x) - 1)
290
291/*
292 * Macro for constructing the LUT entries with the following
293 * register layout:
294 *
295 * ---------------------------------------------------
296 * | INSTR1 | PAD1 | OPRND1 | INSTR0 | PAD0 | OPRND0 |
297 * ---------------------------------------------------
298 */
299#define PAD_SHIFT 8
300#define INSTR_SHIFT 10
301#define OPRND_SHIFT 16
302
303/* Macros for constructing the LUT register. */
304#define LUT_DEF(idx, ins, pad, opr) \
305 ((((ins) << INSTR_SHIFT) | ((pad) << PAD_SHIFT) | \
306 (opr)) << (((idx) % 2) * OPRND_SHIFT))
307
308#define POLL_TOUT 5000
309#define NXP_FSPI_MAX_CHIPSELECT 4
310
Kuldeep Singh66a813e2021-08-03 14:32:57 +0530311/* Access flash memory using IP bus only */
312#define FSPI_QUIRK_USE_IP_ONLY BIT(0)
313
Michael Walled3967f32019-12-18 00:09:58 +0100314struct nxp_fspi_devtype_data {
315 unsigned int rxfifo;
316 unsigned int txfifo;
317 unsigned int ahb_buf_size;
318 unsigned int quirks;
319 bool little_endian;
320};
321
Kuldeep Singh19e38b22021-08-03 14:32:58 +0530322static struct nxp_fspi_devtype_data lx2160a_data = {
Michael Walled3967f32019-12-18 00:09:58 +0100323 .rxfifo = SZ_512, /* (64 * 64 bits) */
324 .txfifo = SZ_1K, /* (128 * 64 bits) */
325 .ahb_buf_size = SZ_2K, /* (256 * 64 bits) */
326 .quirks = 0,
327 .little_endian = true, /* little-endian */
328};
329
Kuldeep Singh19e38b22021-08-03 14:32:58 +0530330static struct nxp_fspi_devtype_data imx8mm_data = {
Adam Fordcf559bf2021-01-18 15:32:50 -0600331 .rxfifo = SZ_512, /* (64 * 64 bits) */
332 .txfifo = SZ_1K, /* (128 * 64 bits) */
333 .ahb_buf_size = SZ_2K, /* (256 * 64 bits) */
334 .quirks = 0,
335 .little_endian = true, /* little-endian */
336};
337
Michael Walled3967f32019-12-18 00:09:58 +0100338struct nxp_fspi {
339 struct udevice *dev;
340 void __iomem *iobase;
341 void __iomem *ahb_addr;
342 u32 memmap_phy;
343 u32 memmap_phy_size;
344 struct clk clk, clk_en;
Kuldeep Singh19e38b22021-08-03 14:32:58 +0530345 struct nxp_fspi_devtype_data *devtype_data;
Michael Walled3967f32019-12-18 00:09:58 +0100346};
347
Kuldeep Singh66a813e2021-08-03 14:32:57 +0530348static inline int needs_ip_only(struct nxp_fspi *f)
349{
350 return f->devtype_data->quirks & FSPI_QUIRK_USE_IP_ONLY;
351}
352
Michael Walled3967f32019-12-18 00:09:58 +0100353/*
354 * R/W functions for big- or little-endian registers:
355 * The FSPI controller's endianness is independent of
356 * the CPU core's endianness. So far, although the CPU
357 * core is little-endian the FSPI controller can use
358 * big-endian or little-endian.
359 */
360static void fspi_writel(struct nxp_fspi *f, u32 val, void __iomem *addr)
361{
362 if (f->devtype_data->little_endian)
363 out_le32(addr, val);
364 else
365 out_be32(addr, val);
366}
367
368static u32 fspi_readl(struct nxp_fspi *f, void __iomem *addr)
369{
370 if (f->devtype_data->little_endian)
371 return in_le32(addr);
372 else
373 return in_be32(addr);
374}
375
376static int nxp_fspi_check_buswidth(struct nxp_fspi *f, u8 width)
377{
378 switch (width) {
379 case 1:
380 case 2:
381 case 4:
382 case 8:
383 return 0;
384 }
385
386 return -ENOTSUPP;
387}
388
389static bool nxp_fspi_supports_op(struct spi_slave *slave,
390 const struct spi_mem_op *op)
391{
392 struct nxp_fspi *f;
393 struct udevice *bus;
394 int ret;
395
396 bus = slave->dev->parent;
397 f = dev_get_priv(bus);
398
399 ret = nxp_fspi_check_buswidth(f, op->cmd.buswidth);
400
401 if (op->addr.nbytes)
402 ret |= nxp_fspi_check_buswidth(f, op->addr.buswidth);
403
404 if (op->dummy.nbytes)
405 ret |= nxp_fspi_check_buswidth(f, op->dummy.buswidth);
406
407 if (op->data.nbytes)
408 ret |= nxp_fspi_check_buswidth(f, op->data.buswidth);
409
410 if (ret)
411 return false;
412
413 /*
414 * The number of address bytes should be equal to or less than 4 bytes.
415 */
416 if (op->addr.nbytes > 4)
417 return false;
418
419 /*
420 * If requested address value is greater than controller assigned
421 * memory mapped space, return error as it didn't fit in the range
422 * of assigned address space.
423 */
424 if (op->addr.val >= f->memmap_phy_size)
425 return false;
426
427 /* Max 64 dummy clock cycles supported */
428 if (op->dummy.buswidth &&
429 (op->dummy.nbytes * 8 / op->dummy.buswidth > 64))
430 return false;
431
432 /* Max data length, check controller limits and alignment */
433 if (op->data.dir == SPI_MEM_DATA_IN &&
434 (op->data.nbytes > f->devtype_data->ahb_buf_size ||
435 (op->data.nbytes > f->devtype_data->rxfifo - 4 &&
436 !IS_ALIGNED(op->data.nbytes, 8))))
437 return false;
438
439 if (op->data.dir == SPI_MEM_DATA_OUT &&
440 op->data.nbytes > f->devtype_data->txfifo)
441 return false;
442
Michael Walled9d57332021-07-26 21:35:28 +0200443 return spi_mem_default_supports_op(slave, op);
Michael Walled3967f32019-12-18 00:09:58 +0100444}
445
Kuldeep Singhcab56512020-04-27 12:38:51 +0530446/* Instead of busy looping invoke readl_poll_sleep_timeout functionality. */
Michael Walled3967f32019-12-18 00:09:58 +0100447static int fspi_readl_poll_tout(struct nxp_fspi *f, void __iomem *base,
448 u32 mask, u32 delay_us,
449 u32 timeout_us, bool c)
450{
451 u32 reg;
452
453 if (!f->devtype_data->little_endian)
454 mask = (u32)cpu_to_be32(mask);
455
456 if (c)
Kuldeep Singhcab56512020-04-27 12:38:51 +0530457 return readl_poll_sleep_timeout(base, reg, (reg & mask),
458 delay_us, timeout_us);
Michael Walled3967f32019-12-18 00:09:58 +0100459 else
Kuldeep Singhcab56512020-04-27 12:38:51 +0530460 return readl_poll_sleep_timeout(base, reg, !(reg & mask),
461 delay_us, timeout_us);
Michael Walled3967f32019-12-18 00:09:58 +0100462}
463
464/*
465 * If the slave device content being changed by Write/Erase, need to
466 * invalidate the AHB buffer. This can be achieved by doing the reset
467 * of controller after setting MCR0[SWRESET] bit.
468 */
469static inline void nxp_fspi_invalid(struct nxp_fspi *f)
470{
471 u32 reg;
472 int ret;
473
474 reg = fspi_readl(f, f->iobase + FSPI_MCR0);
475 fspi_writel(f, reg | FSPI_MCR0_SWRST, f->iobase + FSPI_MCR0);
476
477 /* w1c register, wait unit clear */
478 ret = fspi_readl_poll_tout(f, f->iobase + FSPI_MCR0,
479 FSPI_MCR0_SWRST, 0, POLL_TOUT, false);
480 WARN_ON(ret);
481}
482
483static void nxp_fspi_prepare_lut(struct nxp_fspi *f,
484 const struct spi_mem_op *op)
485{
486 void __iomem *base = f->iobase;
487 u32 lutval[4] = {};
488 int lutidx = 1, i;
489
490 /* cmd */
491 lutval[0] |= LUT_DEF(0, LUT_CMD, LUT_PAD(op->cmd.buswidth),
492 op->cmd.opcode);
493
494 /* addr bytes */
495 if (op->addr.nbytes) {
496 lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_ADDR,
497 LUT_PAD(op->addr.buswidth),
498 op->addr.nbytes * 8);
499 lutidx++;
500 }
501
502 /* dummy bytes, if needed */
503 if (op->dummy.nbytes) {
504 lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_DUMMY,
505 /*
506 * Due to FlexSPI controller limitation number of PAD for dummy
507 * buswidth needs to be programmed as equal to data buswidth.
508 */
509 LUT_PAD(op->data.buswidth),
510 op->dummy.nbytes * 8 /
511 op->dummy.buswidth);
512 lutidx++;
513 }
514
515 /* read/write data bytes */
516 if (op->data.nbytes) {
517 lutval[lutidx / 2] |= LUT_DEF(lutidx,
518 op->data.dir == SPI_MEM_DATA_IN ?
519 LUT_NXP_READ : LUT_NXP_WRITE,
520 LUT_PAD(op->data.buswidth),
521 0);
522 lutidx++;
523 }
524
525 /* stop condition. */
526 lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_STOP, 0, 0);
527
528 /* unlock LUT */
529 fspi_writel(f, FSPI_LUTKEY_VALUE, f->iobase + FSPI_LUTKEY);
530 fspi_writel(f, FSPI_LCKER_UNLOCK, f->iobase + FSPI_LCKCR);
531
532 /* fill LUT */
533 for (i = 0; i < ARRAY_SIZE(lutval); i++)
534 fspi_writel(f, lutval[i], base + FSPI_LUT_REG(i));
535
Kuldeep Singh19e38b22021-08-03 14:32:58 +0530536 dev_dbg(f->dev, "CMD[%x] lutval[0:%x \t 1:%x \t 2:%x \t 3:%x], size: 0x%08x\n",
537 op->cmd.opcode, lutval[0], lutval[1], lutval[2], lutval[3], op->data.nbytes);
Michael Walled3967f32019-12-18 00:09:58 +0100538
539 /* lock LUT */
540 fspi_writel(f, FSPI_LUTKEY_VALUE, f->iobase + FSPI_LUTKEY);
541 fspi_writel(f, FSPI_LCKER_LOCK, f->iobase + FSPI_LCKCR);
542}
543
Alper Nebi Yasak5de2f332020-10-05 09:57:29 +0300544#if CONFIG_IS_ENABLED(CLK)
Michael Walled3967f32019-12-18 00:09:58 +0100545static int nxp_fspi_clk_prep_enable(struct nxp_fspi *f)
546{
547 int ret;
548
549 ret = clk_enable(&f->clk_en);
550 if (ret)
551 return ret;
552
553 ret = clk_enable(&f->clk);
554 if (ret) {
555 clk_disable(&f->clk_en);
556 return ret;
557 }
558
559 return 0;
560}
561
562static void nxp_fspi_clk_disable_unprep(struct nxp_fspi *f)
563{
564 clk_disable(&f->clk);
565 clk_disable(&f->clk_en);
566}
567#endif
568
569/*
570 * In FlexSPI controller, flash access is based on value of FSPI_FLSHXXCR0
571 * register and start base address of the slave device.
572 *
573 * (Higher address)
574 * -------- <-- FLSHB2CR0
575 * | B2 |
576 * | |
577 * B2 start address --> -------- <-- FLSHB1CR0
578 * | B1 |
579 * | |
580 * B1 start address --> -------- <-- FLSHA2CR0
581 * | A2 |
582 * | |
583 * A2 start address --> -------- <-- FLSHA1CR0
584 * | A1 |
585 * | |
586 * A1 start address --> -------- (Lower address)
587 *
588 *
589 * Start base address defines the starting address range for given CS and
590 * FSPI_FLSHXXCR0 defines the size of the slave device connected at given CS.
591 *
592 * But, different targets are having different combinations of number of CS,
593 * some targets only have single CS or two CS covering controller's full
594 * memory mapped space area.
595 * Thus, implementation is being done as independent of the size and number
596 * of the connected slave device.
597 * Assign controller memory mapped space size as the size to the connected
598 * slave device.
599 * Mark FLSHxxCR0 as zero initially and then assign value only to the selected
600 * chip-select Flash configuration register.
601 *
602 * For e.g. to access CS2 (B1), FLSHB1CR0 register would be equal to the
603 * memory mapped size of the controller.
604 * Value for rest of the CS FLSHxxCR0 register would be zero.
605 *
606 */
607static void nxp_fspi_select_mem(struct nxp_fspi *f, int chip_select)
608{
609 u64 size_kb;
610
611 /* Reset FLSHxxCR0 registers */
612 fspi_writel(f, 0, f->iobase + FSPI_FLSHA1CR0);
613 fspi_writel(f, 0, f->iobase + FSPI_FLSHA2CR0);
614 fspi_writel(f, 0, f->iobase + FSPI_FLSHB1CR0);
615 fspi_writel(f, 0, f->iobase + FSPI_FLSHB2CR0);
616
617 /* Assign controller memory mapped space as size, KBytes, of flash. */
618 size_kb = FSPI_FLSHXCR0_SZ(f->memmap_phy_size);
619
620 fspi_writel(f, size_kb, f->iobase + FSPI_FLSHA1CR0 +
621 4 * chip_select);
622
623 dev_dbg(f->dev, "Slave device [CS:%x] selected\n", chip_select);
624}
625
626static void nxp_fspi_read_ahb(struct nxp_fspi *f, const struct spi_mem_op *op)
627{
628 u32 len = op->data.nbytes;
629
630 /* Read out the data directly from the AHB buffer. */
631 memcpy_fromio(op->data.buf.in, (f->ahb_addr + op->addr.val), len);
632}
633
634static void nxp_fspi_fill_txfifo(struct nxp_fspi *f,
635 const struct spi_mem_op *op)
636{
637 void __iomem *base = f->iobase;
638 int i, ret;
639 u8 *buf = (u8 *)op->data.buf.out;
640
641 /* clear the TX FIFO. */
642 fspi_writel(f, FSPI_IPTXFCR_CLR, base + FSPI_IPTXFCR);
643
644 /*
645 * Default value of water mark level is 8 bytes, hence in single
646 * write request controller can write max 8 bytes of data.
647 */
648
649 for (i = 0; i < ALIGN_DOWN(op->data.nbytes, 8); i += 8) {
650 /* Wait for TXFIFO empty */
651 ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
652 FSPI_INTR_IPTXWE, 0,
653 POLL_TOUT, true);
654 WARN_ON(ret);
655
656 fspi_writel(f, *(u32 *)(buf + i), base + FSPI_TFDR);
657 fspi_writel(f, *(u32 *)(buf + i + 4), base + FSPI_TFDR + 4);
658 fspi_writel(f, FSPI_INTR_IPTXWE, base + FSPI_INTR);
659 }
660
661 if (i < op->data.nbytes) {
662 u32 data = 0;
663 int j;
664 /* Wait for TXFIFO empty */
665 ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
666 FSPI_INTR_IPTXWE, 0,
667 POLL_TOUT, true);
668 WARN_ON(ret);
669
670 for (j = 0; j < ALIGN(op->data.nbytes - i, 4); j += 4) {
671 memcpy(&data, buf + i + j, 4);
672 fspi_writel(f, data, base + FSPI_TFDR + j);
673 }
674 fspi_writel(f, FSPI_INTR_IPTXWE, base + FSPI_INTR);
675 }
676}
677
678static void nxp_fspi_read_rxfifo(struct nxp_fspi *f,
679 const struct spi_mem_op *op)
680{
681 void __iomem *base = f->iobase;
682 int i, ret;
683 int len = op->data.nbytes;
684 u8 *buf = (u8 *)op->data.buf.in;
685
686 /*
687 * Default value of water mark level is 8 bytes, hence in single
688 * read request controller can read max 8 bytes of data.
689 */
690 for (i = 0; i < ALIGN_DOWN(len, 8); i += 8) {
691 /* Wait for RXFIFO available */
692 ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
693 FSPI_INTR_IPRXWA, 0,
694 POLL_TOUT, true);
695 WARN_ON(ret);
696
697 *(u32 *)(buf + i) = fspi_readl(f, base + FSPI_RFDR);
698 *(u32 *)(buf + i + 4) = fspi_readl(f, base + FSPI_RFDR + 4);
699 /* move the FIFO pointer */
700 fspi_writel(f, FSPI_INTR_IPRXWA, base + FSPI_INTR);
701 }
702
703 if (i < len) {
704 u32 tmp;
705 int size, j;
706
707 buf = op->data.buf.in + i;
708 /* Wait for RXFIFO available */
709 ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
710 FSPI_INTR_IPRXWA, 0,
711 POLL_TOUT, true);
712 WARN_ON(ret);
713
714 len = op->data.nbytes - i;
715 for (j = 0; j < op->data.nbytes - i; j += 4) {
716 tmp = fspi_readl(f, base + FSPI_RFDR + j);
717 size = min(len, 4);
718 memcpy(buf + j, &tmp, size);
719 len -= size;
720 }
721 }
722
723 /* invalid the RXFIFO */
724 fspi_writel(f, FSPI_IPRXFCR_CLR, base + FSPI_IPRXFCR);
725 /* move the FIFO pointer */
726 fspi_writel(f, FSPI_INTR_IPRXWA, base + FSPI_INTR);
727}
728
729static int nxp_fspi_do_op(struct nxp_fspi *f, const struct spi_mem_op *op)
730{
731 void __iomem *base = f->iobase;
732 int seqnum = 0;
733 int err = 0;
734 u32 reg;
735
736 reg = fspi_readl(f, base + FSPI_IPRXFCR);
737 /* invalid RXFIFO first */
738 reg &= ~FSPI_IPRXFCR_DMA_EN;
739 reg = reg | FSPI_IPRXFCR_CLR;
740 fspi_writel(f, reg, base + FSPI_IPRXFCR);
741
742 fspi_writel(f, op->addr.val, base + FSPI_IPCR0);
743 /*
744 * Always start the sequence at the same index since we update
745 * the LUT at each exec_op() call. And also specify the DATA
746 * length, since it's has not been specified in the LUT.
747 */
748 fspi_writel(f, op->data.nbytes |
749 (SEQID_LUT << FSPI_IPCR1_SEQID_SHIFT) |
750 (seqnum << FSPI_IPCR1_SEQNUM_SHIFT),
751 base + FSPI_IPCR1);
752
753 /* Trigger the LUT now. */
754 fspi_writel(f, FSPI_IPCMD_TRG, base + FSPI_IPCMD);
755
756 /* Wait for the completion. */
757 err = fspi_readl_poll_tout(f, f->iobase + FSPI_STS0,
758 FSPI_STS0_ARB_IDLE, 1, 1000 * 1000, true);
759
760 /* Invoke IP data read, if request is of data read. */
761 if (!err && op->data.nbytes && op->data.dir == SPI_MEM_DATA_IN)
762 nxp_fspi_read_rxfifo(f, op);
763
764 return err;
765}
766
767static int nxp_fspi_exec_op(struct spi_slave *slave,
768 const struct spi_mem_op *op)
769{
770 struct nxp_fspi *f;
771 struct udevice *bus;
772 int err = 0;
773
774 bus = slave->dev->parent;
775 f = dev_get_priv(bus);
776
777 /* Wait for controller being ready. */
778 err = fspi_readl_poll_tout(f, f->iobase + FSPI_STS0,
779 FSPI_STS0_ARB_IDLE, 1, POLL_TOUT, true);
780 WARN_ON(err);
781
782 nxp_fspi_prepare_lut(f, op);
783 /*
Kuldeep Singh66a813e2021-08-03 14:32:57 +0530784 * If we have large chunks of data, we read them through the AHB bus by
785 * accessing the mapped memory. In all other cases we use IP commands
786 * to access the flash. Read via AHB bus may be corrupted due to
787 * existence of an errata and therefore discard AHB read in such cases.
Michael Walled3967f32019-12-18 00:09:58 +0100788 */
789 if (op->data.nbytes > (f->devtype_data->rxfifo - 4) &&
Kuldeep Singh66a813e2021-08-03 14:32:57 +0530790 op->data.dir == SPI_MEM_DATA_IN &&
791 !needs_ip_only(f)) {
Michael Walled3967f32019-12-18 00:09:58 +0100792 nxp_fspi_read_ahb(f, op);
793 } else {
794 if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_OUT)
795 nxp_fspi_fill_txfifo(f, op);
796
797 err = nxp_fspi_do_op(f, op);
798 }
799
800 /* Invalidate the data in the AHB buffer. */
801 nxp_fspi_invalid(f);
802
803 return err;
804}
805
806static int nxp_fspi_adjust_op_size(struct spi_slave *slave,
807 struct spi_mem_op *op)
808{
809 struct nxp_fspi *f;
810 struct udevice *bus;
811
812 bus = slave->dev->parent;
813 f = dev_get_priv(bus);
814
815 if (op->data.dir == SPI_MEM_DATA_OUT) {
816 if (op->data.nbytes > f->devtype_data->txfifo)
817 op->data.nbytes = f->devtype_data->txfifo;
818 } else {
819 if (op->data.nbytes > f->devtype_data->ahb_buf_size)
820 op->data.nbytes = f->devtype_data->ahb_buf_size;
821 else if (op->data.nbytes > (f->devtype_data->rxfifo - 4))
822 op->data.nbytes = ALIGN_DOWN(op->data.nbytes, 8);
823 }
824
Kuldeep Singh66a813e2021-08-03 14:32:57 +0530825 /* Limit data bytes to RX FIFO in case of IP read only */
826 if (needs_ip_only(f) &&
827 op->data.dir == SPI_MEM_DATA_IN &&
828 op->data.nbytes > f->devtype_data->rxfifo)
829 op->data.nbytes = f->devtype_data->rxfifo;
830
Michael Walled3967f32019-12-18 00:09:58 +0100831 return 0;
832}
833
Kuldeep Singh19e38b22021-08-03 14:32:58 +0530834#ifdef CONFIG_FSL_LAYERSCAPE
835static void erratum_err050568(struct nxp_fspi *f)
836{
837 struct sys_info sysinfo;
838 u32 svr = 0, freq = 0;
839
840 /* Check for LS1028A variants */
841 svr = SVR_SOC_VER(get_svr());
842 if (svr != SVR_LS1017A ||
843 svr != SVR_LS1018A ||
844 svr != SVR_LS1027A ||
845 svr != SVR_LS1028A) {
846 dev_dbg(f->dev, "Errata applicable only for LS1028A variants\n");
847 return;
848 }
849
850 /* Read PLL frequency */
851 get_sys_info(&sysinfo);
852 freq = sysinfo.freq_systembus / 1000000; /* Convert to MHz */
853 dev_dbg(f->dev, "svr: %08x, Frequency: %dMhz\n", svr, freq);
854
855 /* Use IP bus only if PLL is 300MHz */
856 if (freq == 300)
857 f->devtype_data->quirks |= FSPI_QUIRK_USE_IP_ONLY;
858}
859#endif
860
Michael Walled3967f32019-12-18 00:09:58 +0100861static int nxp_fspi_default_setup(struct nxp_fspi *f)
862{
863 void __iomem *base = f->iobase;
864 int ret, i;
865 u32 reg;
866
Alper Nebi Yasak5de2f332020-10-05 09:57:29 +0300867#if CONFIG_IS_ENABLED(CLK)
Michael Walled3967f32019-12-18 00:09:58 +0100868 /* the default frequency, we will change it later if necessary. */
869 ret = clk_set_rate(&f->clk, 20000000);
Adam Fordc9ad0482021-01-18 15:32:49 -0600870 if (ret < 0)
Michael Walled3967f32019-12-18 00:09:58 +0100871 return ret;
872
873 ret = nxp_fspi_clk_prep_enable(f);
874 if (ret)
875 return ret;
876#endif
877
Kuldeep Singh19e38b22021-08-03 14:32:58 +0530878#ifdef CONFIG_FSL_LAYERSCAPE
879 /*
880 * ERR050568: Flash access by FlexSPI AHB command may not work with
881 * platform frequency equal to 300 MHz on LS1028A.
882 * LS1028A reuses LX2160A compatible entry. Make errata applicable for
883 * Layerscape LS1028A platform family.
884 */
885 if (device_is_compatible(f->dev, "nxp,lx2160a-fspi"))
886 erratum_err050568(f);
887#endif
888
Michael Walled3967f32019-12-18 00:09:58 +0100889 /* Reset the module */
890 /* w1c register, wait unit clear */
891 ret = fspi_readl_poll_tout(f, f->iobase + FSPI_MCR0,
892 FSPI_MCR0_SWRST, 0, POLL_TOUT, false);
893 WARN_ON(ret);
894
895 /* Disable the module */
896 fspi_writel(f, FSPI_MCR0_MDIS, base + FSPI_MCR0);
897
898 /* Reset the DLL register to default value */
899 fspi_writel(f, FSPI_DLLACR_OVRDEN, base + FSPI_DLLACR);
900 fspi_writel(f, FSPI_DLLBCR_OVRDEN, base + FSPI_DLLBCR);
901
902 /* enable module */
903 fspi_writel(f, FSPI_MCR0_AHB_TIMEOUT(0xFF) | FSPI_MCR0_IP_TIMEOUT(0xFF),
904 base + FSPI_MCR0);
905
906 /*
907 * Disable same device enable bit and configure all slave devices
908 * independently.
909 */
910 reg = fspi_readl(f, f->iobase + FSPI_MCR2);
911 reg = reg & ~(FSPI_MCR2_SAMEDEVICEEN);
912 fspi_writel(f, reg, base + FSPI_MCR2);
913
914 /* AHB configuration for access buffer 0~7. */
915 for (i = 0; i < 7; i++)
916 fspi_writel(f, 0, base + FSPI_AHBRX_BUF0CR0 + 4 * i);
917
918 /*
919 * Set ADATSZ with the maximum AHB buffer size to improve the read
920 * performance.
921 */
922 fspi_writel(f, (f->devtype_data->ahb_buf_size / 8 |
923 FSPI_AHBRXBUF0CR7_PREF), base + FSPI_AHBRX_BUF7CR0);
924
925 /* prefetch and no start address alignment limitation */
926 fspi_writel(f, FSPI_AHBCR_PREF_EN | FSPI_AHBCR_RDADDROPT,
927 base + FSPI_AHBCR);
928
Han Xud2744882023-09-13 16:15:35 -0500929 /* Reset the flashx control1 registers */
930 reg = FSPI_FLSHXCR1_TCSH(0x3) | FSPI_FLSHXCR1_TCSS(0x3);
931 fspi_writel(f, reg, base + FSPI_FLSHA1CR1);
932 fspi_writel(f, reg, base + FSPI_FLSHA2CR1);
933 fspi_writel(f, reg, base + FSPI_FLSHB1CR1);
934 fspi_writel(f, reg, base + FSPI_FLSHB2CR1);
935
Michael Walled3967f32019-12-18 00:09:58 +0100936 /* AHB Read - Set lut sequence ID for all CS. */
937 fspi_writel(f, SEQID_LUT, base + FSPI_FLSHA1CR2);
938 fspi_writel(f, SEQID_LUT, base + FSPI_FLSHA2CR2);
939 fspi_writel(f, SEQID_LUT, base + FSPI_FLSHB1CR2);
940 fspi_writel(f, SEQID_LUT, base + FSPI_FLSHB2CR2);
941
942 return 0;
943}
944
945static int nxp_fspi_probe(struct udevice *bus)
946{
947 struct nxp_fspi *f = dev_get_priv(bus);
948
949 f->devtype_data =
950 (struct nxp_fspi_devtype_data *)dev_get_driver_data(bus);
951 nxp_fspi_default_setup(f);
952
953 return 0;
954}
955
956static int nxp_fspi_claim_bus(struct udevice *dev)
957{
958 struct nxp_fspi *f;
959 struct udevice *bus;
Simon Glassb75b15b2020-12-03 16:55:23 -0700960 struct dm_spi_slave_plat *slave_plat = dev_get_parent_plat(dev);
Michael Walled3967f32019-12-18 00:09:58 +0100961
962 bus = dev->parent;
963 f = dev_get_priv(bus);
964
Venkatesh Yadav Abbarapu91b9e372024-09-26 10:25:05 +0530965 nxp_fspi_select_mem(f, slave_plat->cs[0]);
Michael Walled3967f32019-12-18 00:09:58 +0100966
967 return 0;
968}
969
970static int nxp_fspi_set_speed(struct udevice *bus, uint speed)
971{
Alper Nebi Yasak5de2f332020-10-05 09:57:29 +0300972#if CONFIG_IS_ENABLED(CLK)
Michael Walled3967f32019-12-18 00:09:58 +0100973 struct nxp_fspi *f = dev_get_priv(bus);
974 int ret;
975
976 nxp_fspi_clk_disable_unprep(f);
977
978 ret = clk_set_rate(&f->clk, speed);
Adam Fordc9ad0482021-01-18 15:32:49 -0600979 if (ret < 0)
Michael Walled3967f32019-12-18 00:09:58 +0100980 return ret;
981
982 ret = nxp_fspi_clk_prep_enable(f);
983 if (ret)
984 return ret;
985#endif
986 return 0;
987}
988
989static int nxp_fspi_set_mode(struct udevice *bus, uint mode)
990{
991 /* Nothing to do */
992 return 0;
993}
994
Simon Glassaad29ae2020-12-03 16:55:21 -0700995static int nxp_fspi_of_to_plat(struct udevice *bus)
Michael Walled3967f32019-12-18 00:09:58 +0100996{
997 struct nxp_fspi *f = dev_get_priv(bus);
Alper Nebi Yasak5de2f332020-10-05 09:57:29 +0300998#if CONFIG_IS_ENABLED(CLK)
Michael Walled3967f32019-12-18 00:09:58 +0100999 int ret;
1000#endif
1001
1002 fdt_addr_t iobase;
1003 fdt_addr_t iobase_size;
1004 fdt_addr_t ahb_addr;
1005 fdt_addr_t ahb_size;
1006
1007 f->dev = bus;
1008
1009 iobase = devfdt_get_addr_size_name(bus, "fspi_base", &iobase_size);
1010 if (iobase == FDT_ADDR_T_NONE) {
1011 dev_err(bus, "fspi_base regs missing\n");
1012 return -ENODEV;
1013 }
1014 f->iobase = map_physmem(iobase, iobase_size, MAP_NOCACHE);
1015
1016 ahb_addr = devfdt_get_addr_size_name(bus, "fspi_mmap", &ahb_size);
1017 if (ahb_addr == FDT_ADDR_T_NONE) {
1018 dev_err(bus, "fspi_mmap regs missing\n");
1019 return -ENODEV;
1020 }
1021 f->ahb_addr = map_physmem(ahb_addr, ahb_size, MAP_NOCACHE);
1022 f->memmap_phy_size = ahb_size;
1023
Alper Nebi Yasak5de2f332020-10-05 09:57:29 +03001024#if CONFIG_IS_ENABLED(CLK)
Michael Walled3967f32019-12-18 00:09:58 +01001025 ret = clk_get_by_name(bus, "fspi_en", &f->clk_en);
1026 if (ret) {
1027 dev_err(bus, "failed to get fspi_en clock\n");
1028 return ret;
1029 }
1030
1031 ret = clk_get_by_name(bus, "fspi", &f->clk);
1032 if (ret) {
1033 dev_err(bus, "failed to get fspi clock\n");
1034 return ret;
1035 }
1036#endif
1037
1038 dev_dbg(bus, "iobase=<0x%llx>, ahb_addr=<0x%llx>\n", iobase, ahb_addr);
1039
1040 return 0;
1041}
1042
1043static const struct spi_controller_mem_ops nxp_fspi_mem_ops = {
1044 .adjust_op_size = nxp_fspi_adjust_op_size,
1045 .supports_op = nxp_fspi_supports_op,
1046 .exec_op = nxp_fspi_exec_op,
1047};
1048
1049static const struct dm_spi_ops nxp_fspi_ops = {
1050 .claim_bus = nxp_fspi_claim_bus,
1051 .set_speed = nxp_fspi_set_speed,
1052 .set_mode = nxp_fspi_set_mode,
1053 .mem_ops = &nxp_fspi_mem_ops,
1054};
1055
1056static const struct udevice_id nxp_fspi_ids[] = {
1057 { .compatible = "nxp,lx2160a-fspi", .data = (ulong)&lx2160a_data, },
Adam Fordcf559bf2021-01-18 15:32:50 -06001058 { .compatible = "nxp,imx8mm-fspi", .data = (ulong)&imx8mm_data, },
Marek Vasut2e4b63b2022-03-09 04:18:57 +01001059 { .compatible = "nxp,imx8mp-fspi", .data = (ulong)&imx8mm_data, },
Michael Walled3967f32019-12-18 00:09:58 +01001060 { }
1061};
1062
1063U_BOOT_DRIVER(nxp_fspi) = {
1064 .name = "nxp_fspi",
1065 .id = UCLASS_SPI,
1066 .of_match = nxp_fspi_ids,
1067 .ops = &nxp_fspi_ops,
Simon Glassaad29ae2020-12-03 16:55:21 -07001068 .of_to_plat = nxp_fspi_of_to_plat,
Simon Glass8a2b47f2020-12-03 16:55:17 -07001069 .priv_auto = sizeof(struct nxp_fspi),
Michael Walled3967f32019-12-18 00:09:58 +01001070 .probe = nxp_fspi_probe,
1071};