blob: 817fab4ca36ec86052ade407896a6bec871504d0 [file] [log] [blame]
Balamanikandan Gunasundarfe33c7d2022-10-25 16:21:01 +05301// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright 2022 ATMEL
4 * Copyright 2017 Free Electrons
5 *
6 * Author: Boris Brezillon <boris.brezillon@free-electrons.com>
7 *
8 * Derived from the atmel_nand.c driver which contained the following
9 * copyrights:
10 *
11 * Copyright 2003 Rick Bronson
12 *
13 * Derived from drivers/mtd/nand/autcpu12.c (removed in v3.8)
14 * Copyright 2001 Thomas Gleixner (gleixner@autronix.de)
15 *
16 * Derived from drivers/mtd/spia.c (removed in v3.8)
17 * Copyright 2000 Steven J. Hill (sjhill@cotw.com)
18 *
19 *
20 * Add Hardware ECC support for AT91SAM9260 / AT91SAM9263
21 * Richard Genoud (richard.genoud@gmail.com), Adeneo Copyright 2007
22 *
23 * Derived from Das U-Boot source code
24 * (u-boot-1.1.5/board/atmel/at91sam9263ek/nand.c)
25 * Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas
26 *
27 * Add Programmable Multibit ECC support for various AT91 SoC
28 * Copyright 2012 ATMEL, Hong Xu
29 *
30 * Add Nand Flash Controller support for SAMA5 SoC
31 * Copyright 2013 ATMEL, Josh Wu (josh.wu@atmel.com)
32 *
33 * Port from Linux
34 * Balamanikandan Gunasundar(balamanikandan.gunasundar@microchip.com)
35 * Copyright (C) 2022 Microchip Technology Inc.
36 *
37 * A few words about the naming convention in this file. This convention
38 * applies to structure and function names.
39 *
40 * Prefixes:
41 *
42 * - atmel_nand_: all generic structures/functions
43 * - atmel_smc_nand_: all structures/functions specific to the SMC interface
44 * (at91sam9 and avr32 SoCs)
45 * - atmel_hsmc_nand_: all structures/functions specific to the HSMC interface
46 * (sama5 SoCs and later)
47 * - atmel_nfc_: all structures/functions used to manipulate the NFC sub-block
48 * that is available in the HSMC block
49 * - <soc>_nand_: all SoC specific structures/functions
50 */
51
52#include <asm-generic/gpio.h>
53#include <clk.h>
54#include <dm/device_compat.h>
55#include <dm/devres.h>
56#include <dm/of_addr.h>
57#include <dm/of_access.h>
58#include <dm/uclass.h>
59#include <linux/completion.h>
60#include <linux/io.h>
61#include <linux/iopoll.h>
62#include <linux/ioport.h>
63#include <linux/mfd/syscon/atmel-matrix.h>
64#include <linux/mfd/syscon/atmel-smc.h>
65#include <linux/mtd/rawnand.h>
66#include <linux/mtd/mtd.h>
Igor Prusovc3421ea2023-11-09 20:10:04 +030067#include <linux/time.h>
Balamanikandan Gunasundarfe33c7d2022-10-25 16:21:01 +053068#include <mach/at91_sfr.h>
69#include <nand.h>
70#include <regmap.h>
71#include <syscon.h>
72
73#include "pmecc.h"
74
Balamanikandan Gunasundarfe33c7d2022-10-25 16:21:01 +053075#define ATMEL_HSMC_NFC_CFG 0x0
76#define ATMEL_HSMC_NFC_CFG_SPARESIZE(x) (((x) / 4) << 24)
77#define ATMEL_HSMC_NFC_CFG_SPARESIZE_MASK GENMASK(30, 24)
78#define ATMEL_HSMC_NFC_CFG_DTO(cyc, mul) (((cyc) << 16) | ((mul) << 20))
79#define ATMEL_HSMC_NFC_CFG_DTO_MAX GENMASK(22, 16)
80#define ATMEL_HSMC_NFC_CFG_RBEDGE BIT(13)
81#define ATMEL_HSMC_NFC_CFG_FALLING_EDGE BIT(12)
82#define ATMEL_HSMC_NFC_CFG_RSPARE BIT(9)
83#define ATMEL_HSMC_NFC_CFG_WSPARE BIT(8)
84#define ATMEL_HSMC_NFC_CFG_PAGESIZE_MASK GENMASK(2, 0)
85#define ATMEL_HSMC_NFC_CFG_PAGESIZE(x) (fls((x) / 512) - 1)
86
87#define ATMEL_HSMC_NFC_CTRL 0x4
88#define ATMEL_HSMC_NFC_CTRL_EN BIT(0)
89#define ATMEL_HSMC_NFC_CTRL_DIS BIT(1)
90
91#define ATMEL_HSMC_NFC_SR 0x8
92#define ATMEL_HSMC_NFC_IER 0xc
93#define ATMEL_HSMC_NFC_IDR 0x10
94#define ATMEL_HSMC_NFC_IMR 0x14
95#define ATMEL_HSMC_NFC_SR_ENABLED BIT(1)
96#define ATMEL_HSMC_NFC_SR_RB_RISE BIT(4)
97#define ATMEL_HSMC_NFC_SR_RB_FALL BIT(5)
98#define ATMEL_HSMC_NFC_SR_BUSY BIT(8)
99#define ATMEL_HSMC_NFC_SR_WR BIT(11)
100#define ATMEL_HSMC_NFC_SR_CSID GENMASK(14, 12)
101#define ATMEL_HSMC_NFC_SR_XFRDONE BIT(16)
102#define ATMEL_HSMC_NFC_SR_CMDDONE BIT(17)
103#define ATMEL_HSMC_NFC_SR_DTOE BIT(20)
104#define ATMEL_HSMC_NFC_SR_UNDEF BIT(21)
105#define ATMEL_HSMC_NFC_SR_AWB BIT(22)
106#define ATMEL_HSMC_NFC_SR_NFCASE BIT(23)
107#define ATMEL_HSMC_NFC_SR_ERRORS (ATMEL_HSMC_NFC_SR_DTOE | \
108 ATMEL_HSMC_NFC_SR_UNDEF | \
109 ATMEL_HSMC_NFC_SR_AWB | \
110 ATMEL_HSMC_NFC_SR_NFCASE)
111#define ATMEL_HSMC_NFC_SR_RBEDGE(x) BIT((x) + 24)
112
113#define ATMEL_HSMC_NFC_ADDR 0x18
114#define ATMEL_HSMC_NFC_BANK 0x1c
115
116#define ATMEL_NFC_MAX_RB_ID 7
117
118#define ATMEL_NFC_SRAM_SIZE 0x2400
119
120#define ATMEL_NFC_CMD(pos, cmd) ((cmd) << (((pos) * 8) + 2))
121#define ATMEL_NFC_VCMD2 BIT(18)
122#define ATMEL_NFC_ACYCLE(naddrs) ((naddrs) << 19)
123#define ATMEL_NFC_CSID(cs) ((cs) << 22)
124#define ATMEL_NFC_DATAEN BIT(25)
125#define ATMEL_NFC_NFCWR BIT(26)
126
127#define ATMEL_NFC_MAX_ADDR_CYCLES 5
128
129#define ATMEL_NAND_ALE_OFFSET BIT(21)
130#define ATMEL_NAND_CLE_OFFSET BIT(22)
131
132#define DEFAULT_TIMEOUT_MS 1000
133#define MIN_DMA_LEN 128
134
135static struct nand_ecclayout atmel_pmecc_oobinfo;
136
137struct nand_controller_ops {
138 int (*attach_chip)(struct nand_chip *chip);
139 int (*setup_data_interface)(struct mtd_info *mtd, int chipnr,
140 const struct nand_data_interface *conf);
141};
142
143struct nand_controller {
144 const struct nand_controller_ops *ops;
145};
146
147enum atmel_nand_rb_type {
148 ATMEL_NAND_NO_RB,
149 ATMEL_NAND_NATIVE_RB,
150 ATMEL_NAND_GPIO_RB,
151};
152
153struct atmel_nand_rb {
154 enum atmel_nand_rb_type type;
155 union {
156 struct gpio_desc gpio;
157 int id;
158 };
159};
160
161struct atmel_nand_cs {
162 int id;
163 struct atmel_nand_rb rb;
164 struct gpio_desc csgpio;
165 struct {
166 void __iomem *virt;
167 dma_addr_t dma;
168 } io;
169
170 struct atmel_smc_cs_conf smcconf;
171};
172
173struct atmel_nand {
174 struct list_head node;
175 struct udevice *dev;
176 struct nand_chip base;
177 struct atmel_nand_cs *activecs;
178 struct atmel_pmecc_user *pmecc;
179 struct gpio_desc cdgpio;
180 int numcs;
181 struct nand_controller *controller;
182 struct atmel_nand_cs cs[];
183};
184
185static inline struct atmel_nand *to_atmel_nand(struct nand_chip *chip)
186{
187 return container_of(chip, struct atmel_nand, base);
188}
189
190enum atmel_nfc_data_xfer {
191 ATMEL_NFC_NO_DATA,
192 ATMEL_NFC_READ_DATA,
193 ATMEL_NFC_WRITE_DATA,
194};
195
196struct atmel_nfc_op {
197 u8 cs;
198 u8 ncmds;
199 u8 cmds[2];
200 u8 naddrs;
201 u8 addrs[5];
202 enum atmel_nfc_data_xfer data;
203 u32 wait;
204 u32 errors;
205};
206
207struct atmel_nand_controller;
208struct atmel_nand_controller_caps;
209
210struct atmel_nand_controller_ops {
211 int (*probe)(struct udevice *udev,
212 const struct atmel_nand_controller_caps *caps);
213 int (*remove)(struct atmel_nand_controller *nc);
214 void (*nand_init)(struct atmel_nand_controller *nc,
215 struct atmel_nand *nand);
216 int (*ecc_init)(struct nand_chip *chip);
217 int (*setup_data_interface)(struct atmel_nand *nand, int csline,
218 const struct nand_data_interface *conf);
219};
220
221struct atmel_nand_controller_caps {
222 bool has_dma;
223 bool legacy_of_bindings;
224 u32 ale_offs;
225 u32 cle_offs;
226 const char *ebi_csa_regmap_name;
227 const struct atmel_nand_controller_ops *ops;
228};
229
230struct atmel_nand_controller {
231 struct nand_controller base;
232 const struct atmel_nand_controller_caps *caps;
233 struct udevice *dev;
234 struct regmap *smc;
235 struct dma_chan *dmac;
236 struct atmel_pmecc *pmecc;
237 struct list_head chips;
238 struct clk *mck;
239};
240
241static inline struct atmel_nand_controller *
242to_nand_controller(struct nand_controller *ctl)
243{
244 return container_of(ctl, struct atmel_nand_controller, base);
245}
246
247struct atmel_smc_nand_ebi_csa_cfg {
248 u32 offs;
249 u32 nfd0_on_d16;
250};
251
252struct atmel_smc_nand_controller {
253 struct atmel_nand_controller base;
254 struct regmap *ebi_csa_regmap;
255 struct atmel_smc_nand_ebi_csa_cfg *ebi_csa;
256};
257
258static inline struct atmel_smc_nand_controller *
259to_smc_nand_controller(struct nand_controller *ctl)
260{
261 return container_of(to_nand_controller(ctl),
262 struct atmel_smc_nand_controller, base);
263}
264
265struct atmel_hsmc_nand_controller {
266 struct atmel_nand_controller base;
267 struct {
268 struct gen_pool *pool;
269 void __iomem *virt;
270 dma_addr_t dma;
271 } sram;
272 const struct atmel_hsmc_reg_layout *hsmc_layout;
273 struct regmap *io;
274 struct atmel_nfc_op op;
275 struct completion complete;
276 int irq;
277
278 /* Only used when instantiating from legacy DT bindings. */
279 struct clk *clk;
280};
281
282static inline struct atmel_hsmc_nand_controller *
283to_hsmc_nand_controller(struct nand_controller *ctl)
284{
285 return container_of(to_nand_controller(ctl),
286 struct atmel_hsmc_nand_controller, base);
287}
288
289static void pmecc_config_ecc_layout(struct nand_ecclayout *layout,
290 int oobsize, int ecc_len)
291{
292 int i;
293
294 layout->eccbytes = ecc_len;
295
296 /* ECC will occupy the last ecc_len bytes continuously */
297 for (i = 0; i < ecc_len; i++)
298 layout->eccpos[i] = oobsize - ecc_len + i;
299
300 layout->oobfree[0].offset = 2;
301 layout->oobfree[0].length =
302 oobsize - ecc_len - layout->oobfree[0].offset;
303}
304
305static bool atmel_nfc_op_done(struct atmel_nfc_op *op, u32 status)
306{
307 op->errors |= status & ATMEL_HSMC_NFC_SR_ERRORS;
308 op->wait ^= status & op->wait;
309
310 return !op->wait || op->errors;
311}
312
313static int atmel_nfc_wait(struct atmel_hsmc_nand_controller *nc, bool poll,
314 unsigned int timeout_ms)
315{
316 int ret;
317 u32 status;
318
319 if (!timeout_ms)
320 timeout_ms = DEFAULT_TIMEOUT_MS;
321
322 if (poll)
323 ret = regmap_read_poll_timeout(nc->base.smc,
324 ATMEL_HSMC_NFC_SR, status,
325 atmel_nfc_op_done(&nc->op,
326 status),
327 0, timeout_ms);
328 else
329 return -EOPNOTSUPP;
330
331 if (nc->op.errors & ATMEL_HSMC_NFC_SR_DTOE) {
332 dev_err(nc->base.dev, "Waiting NAND R/B Timeout\n");
333 ret = -ETIMEDOUT;
334 }
335
336 if (nc->op.errors & ATMEL_HSMC_NFC_SR_UNDEF) {
337 dev_err(nc->base.dev, "Access to an undefined area\n");
338 ret = -EIO;
339 }
340
341 if (nc->op.errors & ATMEL_HSMC_NFC_SR_AWB) {
342 dev_err(nc->base.dev, "Access while busy\n");
343 ret = -EIO;
344 }
345
346 if (nc->op.errors & ATMEL_HSMC_NFC_SR_NFCASE) {
347 dev_err(nc->base.dev, "Wrong access size\n");
348 ret = -EIO;
349 }
350
351 return ret;
352}
353
Balamanikandan Gunasundarfe33c7d2022-10-25 16:21:01 +0530354static u8 atmel_nand_read_byte(struct mtd_info *mtd)
355{
356 struct nand_chip *chip = mtd_to_nand(mtd);
357 struct atmel_nand *nand = to_atmel_nand(chip);
358
359 return ioread8(nand->activecs->io.virt);
360}
361
362static void atmel_nand_write_byte(struct mtd_info *mtd, u8 byte)
363{
364 struct nand_chip *chip = mtd_to_nand(mtd);
365 struct atmel_nand *nand = to_atmel_nand(chip);
366
367 if (chip->options & NAND_BUSWIDTH_16)
368 iowrite16(byte | (byte << 8), nand->activecs->io.virt);
369 else
370 iowrite8(byte, nand->activecs->io.virt);
371}
372
373static void atmel_nand_read_buf(struct mtd_info *mtd, u8 *buf, int len)
374{
375 struct nand_chip *chip = mtd_to_nand(mtd);
376 struct atmel_nand *nand = to_atmel_nand(chip);
377
378 if (chip->options & NAND_BUSWIDTH_16)
379 ioread16_rep(nand->activecs->io.virt, buf, len / 2);
380 else
381 ioread8_rep(nand->activecs->io.virt, buf, len);
382}
383
384static void atmel_nand_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
385{
386 struct nand_chip *chip = mtd_to_nand(mtd);
387 struct atmel_nand *nand = to_atmel_nand(chip);
388
389 if (chip->options & NAND_BUSWIDTH_16)
390 iowrite16_rep(nand->activecs->io.virt, buf, len / 2);
391 else
392 iowrite8_rep(nand->activecs->io.virt, buf, len);
393}
394
395static int atmel_nand_dev_ready(struct mtd_info *mtd)
396{
397 struct nand_chip *chip = mtd_to_nand(mtd);
398 struct atmel_nand *nand = to_atmel_nand(chip);
399
400 return dm_gpio_get_value(&nand->activecs->rb.gpio);
401}
402
403static void atmel_nand_select_chip(struct mtd_info *mtd, int cs)
404{
405 struct nand_chip *chip = mtd_to_nand(mtd);
406 struct atmel_nand *nand = to_atmel_nand(chip);
407
408 if (cs < 0 || cs >= nand->numcs) {
409 nand->activecs = NULL;
410 chip->dev_ready = NULL;
411 return;
412 }
413
414 nand->activecs = &nand->cs[cs];
415
416 if (nand->activecs->rb.type == ATMEL_NAND_GPIO_RB)
417 chip->dev_ready = atmel_nand_dev_ready;
418}
419
420static int atmel_hsmc_nand_dev_ready(struct mtd_info *mtd)
421{
422 struct nand_chip *chip = mtd_to_nand(mtd);
423 struct atmel_nand *nand = to_atmel_nand(chip);
424 struct atmel_hsmc_nand_controller *nc;
425 u32 status;
426
427 nc = to_hsmc_nand_controller(nand->controller);
428
429 regmap_read(nc->base.smc, ATMEL_HSMC_NFC_SR, &status);
430
431 return status & ATMEL_HSMC_NFC_SR_RBEDGE(nand->activecs->rb.id);
432}
433
434static void atmel_hsmc_nand_select_chip(struct mtd_info *mtd, int cs)
435{
436 struct nand_chip *chip = mtd_to_nand(mtd);
437 struct atmel_nand *nand = to_atmel_nand(chip);
438 struct atmel_hsmc_nand_controller *nc;
439
440 nc = to_hsmc_nand_controller(nand->controller);
441
442 atmel_nand_select_chip(mtd, cs);
443
444 if (!nand->activecs) {
445 regmap_write(nc->base.smc, ATMEL_HSMC_NFC_CTRL,
446 ATMEL_HSMC_NFC_CTRL_DIS);
447 return;
448 }
449
450 if (nand->activecs->rb.type == ATMEL_NAND_NATIVE_RB)
451 chip->dev_ready = atmel_hsmc_nand_dev_ready;
452
453 regmap_update_bits(nc->base.smc, ATMEL_HSMC_NFC_CFG,
454 ATMEL_HSMC_NFC_CFG_PAGESIZE_MASK |
455 ATMEL_HSMC_NFC_CFG_SPARESIZE_MASK |
456 ATMEL_HSMC_NFC_CFG_RSPARE |
457 ATMEL_HSMC_NFC_CFG_WSPARE,
458 ATMEL_HSMC_NFC_CFG_PAGESIZE(mtd->writesize) |
459 ATMEL_HSMC_NFC_CFG_SPARESIZE(mtd->oobsize) |
460 ATMEL_HSMC_NFC_CFG_RSPARE);
461 regmap_write(nc->base.smc, ATMEL_HSMC_NFC_CTRL,
462 ATMEL_HSMC_NFC_CTRL_EN);
463}
464
465static int atmel_nfc_exec_op(struct atmel_hsmc_nand_controller *nc, bool poll)
466{
467 u8 *addrs = nc->op.addrs;
468 unsigned int op = 0;
469 u32 addr, val;
470 int i, ret;
471
472 nc->op.wait = ATMEL_HSMC_NFC_SR_CMDDONE;
473
474 for (i = 0; i < nc->op.ncmds; i++)
475 op |= ATMEL_NFC_CMD(i, nc->op.cmds[i]);
476
477 if (nc->op.naddrs == ATMEL_NFC_MAX_ADDR_CYCLES)
478 regmap_write(nc->base.smc, ATMEL_HSMC_NFC_ADDR, *addrs++);
479
480 op |= ATMEL_NFC_CSID(nc->op.cs) |
481 ATMEL_NFC_ACYCLE(nc->op.naddrs);
482
483 if (nc->op.ncmds > 1)
484 op |= ATMEL_NFC_VCMD2;
485
486 addr = addrs[0] | (addrs[1] << 8) | (addrs[2] << 16) |
487 (addrs[3] << 24);
488
489 if (nc->op.data != ATMEL_NFC_NO_DATA) {
490 op |= ATMEL_NFC_DATAEN;
491 nc->op.wait |= ATMEL_HSMC_NFC_SR_XFRDONE;
492
493 if (nc->op.data == ATMEL_NFC_WRITE_DATA)
494 op |= ATMEL_NFC_NFCWR;
495 }
496
497 /* Clear all flags. */
498 regmap_read(nc->base.smc, ATMEL_HSMC_NFC_SR, &val);
499
500 /* Send the command. */
501 regmap_write(nc->io, op, addr);
502
503 ret = atmel_nfc_wait(nc, poll, 0);
504 if (ret)
505 dev_err(nc->base.dev,
506 "Failed to send NAND command (err = %d)!",
507 ret);
508
509 /* Reset the op state. */
510 memset(&nc->op, 0, sizeof(nc->op));
511
512 return ret;
513}
514
515static void atmel_hsmc_nand_cmd_ctrl(struct mtd_info *mtd, int dat,
516 unsigned int ctrl)
517{
518 struct nand_chip *chip = mtd_to_nand(mtd);
519 struct atmel_nand *nand = to_atmel_nand(chip);
520 struct atmel_hsmc_nand_controller *nc;
521
522 nc = to_hsmc_nand_controller(nand->controller);
523
524 if (ctrl & NAND_ALE) {
525 if (nc->op.naddrs == ATMEL_NFC_MAX_ADDR_CYCLES)
526 return;
527
528 nc->op.addrs[nc->op.naddrs++] = dat;
529 } else if (ctrl & NAND_CLE) {
530 if (nc->op.ncmds > 1)
531 return;
532
533 nc->op.cmds[nc->op.ncmds++] = dat;
534 }
535
536 if (dat == NAND_CMD_NONE) {
537 nc->op.cs = nand->activecs->id;
538 atmel_nfc_exec_op(nc, true);
539 }
540}
541
542static void atmel_nand_cmd_ctrl(struct mtd_info *mtd, int cmd,
543 unsigned int ctrl)
544{
545 struct nand_chip *chip = mtd_to_nand(mtd);
546 struct atmel_nand *nand = to_atmel_nand(chip);
547 struct atmel_nand_controller *nc;
548
549 nc = to_nand_controller(nand->controller);
550
551 if ((ctrl & NAND_CTRL_CHANGE) &&
552 dm_gpio_is_valid(&nand->activecs->csgpio)) {
553 if (ctrl & NAND_NCE)
554 dm_gpio_set_value(&nand->activecs->csgpio, 0);
555 else
556 dm_gpio_set_value(&nand->activecs->csgpio, 1);
557 }
558
559 if (ctrl & NAND_ALE)
560 writeb(cmd, nand->activecs->io.virt + nc->caps->ale_offs);
561 else if (ctrl & NAND_CLE)
562 writeb(cmd, nand->activecs->io.virt + nc->caps->cle_offs);
563}
564
565static void atmel_nfc_copy_to_sram(struct nand_chip *chip, const u8 *buf,
566 bool oob_required)
567{
568 struct mtd_info *mtd = nand_to_mtd(chip);
569 struct atmel_nand *nand = to_atmel_nand(chip);
570 struct atmel_hsmc_nand_controller *nc;
571 int ret = -EIO;
572
573 nc = to_hsmc_nand_controller(nand->controller);
574
575 if (ret)
576 memcpy_toio(nc->sram.virt, buf, mtd->writesize);
577
578 if (oob_required)
579 memcpy_toio(nc->sram.virt + mtd->writesize, chip->oob_poi,
580 mtd->oobsize);
581}
582
583static void atmel_nfc_copy_from_sram(struct nand_chip *chip, u8 *buf,
584 bool oob_required)
585{
586 struct mtd_info *mtd = nand_to_mtd(chip);
587 struct atmel_nand *nand = to_atmel_nand(chip);
588 struct atmel_hsmc_nand_controller *nc;
589 int ret = -EIO;
590
591 nc = to_hsmc_nand_controller(nand->controller);
592
593 if (ret)
594 memcpy_fromio(buf, nc->sram.virt, mtd->writesize);
595
596 if (oob_required)
597 memcpy_fromio(chip->oob_poi, nc->sram.virt + mtd->writesize,
598 mtd->oobsize);
599}
600
601static void atmel_nfc_set_op_addr(struct nand_chip *chip, int page, int column)
602{
603 struct mtd_info *mtd = nand_to_mtd(chip);
604 struct atmel_nand *nand = to_atmel_nand(chip);
605 struct atmel_hsmc_nand_controller *nc;
606
607 nc = to_hsmc_nand_controller(nand->controller);
608
609 if (column >= 0) {
610 nc->op.addrs[nc->op.naddrs++] = column;
611
612 /*
613 * 2 address cycles for the column offset on large page NANDs.
614 */
615 if (mtd->writesize > 512)
616 nc->op.addrs[nc->op.naddrs++] = column >> 8;
617 }
618
619 if (page >= 0) {
620 nc->op.addrs[nc->op.naddrs++] = page;
621 nc->op.addrs[nc->op.naddrs++] = page >> 8;
622
623 if (chip->options & NAND_ROW_ADDR_3)
624 nc->op.addrs[nc->op.naddrs++] = page >> 16;
625 }
626}
627
628static int atmel_nand_pmecc_enable(struct nand_chip *chip, int op, bool raw)
629{
630 struct atmel_nand *nand = to_atmel_nand(chip);
631 struct atmel_nand_controller *nc;
632 int ret;
633
634 nc = to_nand_controller(nand->controller);
635
636 if (raw)
637 return 0;
638
639 ret = atmel_pmecc_enable(nand->pmecc, op);
640 if (ret)
641 dev_err(nc->dev,
642 "Failed to enable ECC engine (err = %d)\n", ret);
643
644 return ret;
645}
646
647static void atmel_nand_pmecc_disable(struct nand_chip *chip, bool raw)
648{
649 struct atmel_nand *nand = to_atmel_nand(chip);
650
651 if (!raw)
652 atmel_pmecc_disable(nand->pmecc);
653}
654
655static int atmel_nand_pmecc_generate_eccbytes(struct nand_chip *chip, bool raw)
656{
657 struct atmel_nand *nand = to_atmel_nand(chip);
658 struct mtd_info *mtd = nand_to_mtd(chip);
659 struct atmel_nand_controller *nc;
660 struct mtd_oob_region oobregion;
661 void *eccbuf;
662 int ret, i;
663
664 nc = to_nand_controller(nand->controller);
665
666 if (raw)
667 return 0;
668
669 ret = atmel_pmecc_wait_rdy(nand->pmecc);
670 if (ret) {
671 dev_err(nc->dev,
672 "Failed to transfer NAND page data (err = %d)\n",
673 ret);
674 return ret;
675 }
676
677 mtd_ooblayout_ecc(mtd, 0, &oobregion);
678 eccbuf = chip->oob_poi + oobregion.offset;
679
680 for (i = 0; i < chip->ecc.steps; i++) {
681 atmel_pmecc_get_generated_eccbytes(nand->pmecc, i,
682 eccbuf);
683 eccbuf += chip->ecc.bytes;
684 }
685
686 return 0;
687}
688
689static int atmel_nand_pmecc_correct_data(struct nand_chip *chip, void *buf,
690 bool raw)
691{
692 struct atmel_nand *nand = to_atmel_nand(chip);
693 struct mtd_info *mtd = nand_to_mtd(chip);
694 struct atmel_nand_controller *nc;
695 struct mtd_oob_region oobregion;
696 int ret, i, max_bitflips = 0;
697 void *databuf, *eccbuf;
698
699 nc = to_nand_controller(nand->controller);
700
701 if (raw)
702 return 0;
703
704 ret = atmel_pmecc_wait_rdy(nand->pmecc);
705 if (ret) {
706 dev_err(nc->dev,
707 "Failed to read NAND page data (err = %d)\n", ret);
708 return ret;
709 }
710
711 mtd_ooblayout_ecc(mtd, 0, &oobregion);
712 eccbuf = chip->oob_poi + oobregion.offset;
713 databuf = buf;
714
715 for (i = 0; i < chip->ecc.steps; i++) {
716 ret = atmel_pmecc_correct_sector(nand->pmecc, i, databuf,
717 eccbuf);
718 if (ret < 0 && !atmel_pmecc_correct_erased_chunks(nand->pmecc))
719 ret = nand_check_erased_ecc_chunk(databuf,
720 chip->ecc.size,
721 eccbuf,
722 chip->ecc.bytes,
723 NULL, 0,
724 chip->ecc.strength);
725
726 if (ret >= 0)
727 max_bitflips = max(ret, max_bitflips);
728 else
729 mtd->ecc_stats.failed++;
730
731 databuf += chip->ecc.size;
732 eccbuf += chip->ecc.bytes;
733 }
734
735 return max_bitflips;
736}
737
738static int atmel_nand_pmecc_write_pg(struct nand_chip *chip, const u8 *buf,
739 bool oob_required, int page, bool raw)
740{
741 struct mtd_info *mtd = nand_to_mtd(chip);
742 struct atmel_nand *nand = to_atmel_nand(chip);
743 int ret;
744
745 nand_prog_page_begin_op(chip, page, 0, NULL, 0);
746
747 ret = atmel_nand_pmecc_enable(chip, NAND_ECC_WRITE, raw);
748 if (ret)
749 return ret;
750
751 atmel_nand_write_buf(mtd, buf, mtd->writesize);
752
753 ret = atmel_nand_pmecc_generate_eccbytes(chip, raw);
754 if (ret) {
755 atmel_pmecc_disable(nand->pmecc);
756 return ret;
757 }
758
759 atmel_nand_pmecc_disable(chip, raw);
760
761 atmel_nand_write_buf(mtd, chip->oob_poi, mtd->oobsize);
762
763 return nand_prog_page_end_op(chip);
764}
765
766static int atmel_nand_pmecc_write_page(struct mtd_info *mtd,
767 struct nand_chip *chip, const u8 *buf,
768 int oob_required, int page)
769{
770 return atmel_nand_pmecc_write_pg(chip, buf, oob_required, page, false);
771}
772
773static int atmel_nand_pmecc_write_page_raw(struct mtd_info *mtd,
774 struct nand_chip *chip,
775 const u8 *buf, int oob_required,
776 int page)
777{
778 return atmel_nand_pmecc_write_pg(chip, buf, oob_required, page, true);
779}
780
781static int atmel_nand_pmecc_read_pg(struct nand_chip *chip, u8 *buf,
782 bool oob_required, int page, bool raw)
783{
784 struct mtd_info *mtd = nand_to_mtd(chip);
785 int ret;
786
787 nand_read_page_op(chip, page, 0, NULL, 0);
788
789 ret = atmel_nand_pmecc_enable(chip, NAND_ECC_READ, raw);
790 if (ret)
791 return ret;
792
793 atmel_nand_read_buf(mtd, buf, mtd->writesize);
794 atmel_nand_read_buf(mtd, chip->oob_poi, mtd->oobsize);
795
796 ret = atmel_nand_pmecc_correct_data(chip, buf, raw);
797
798 atmel_nand_pmecc_disable(chip, raw);
799
800 return ret;
801}
802
803static int atmel_nand_pmecc_read_page(struct mtd_info *mtd,
804 struct nand_chip *chip, u8 *buf,
805 int oob_required, int page)
806{
807 return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page, false);
808}
809
810static int atmel_nand_pmecc_read_page_raw(struct mtd_info *mtd,
811 struct nand_chip *chip, u8 *buf,
812 int oob_required, int page)
813{
814 return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page, true);
815}
816
817static int atmel_hsmc_nand_pmecc_write_pg(struct nand_chip *chip,
818 const u8 *buf, bool oob_required,
819 int page, bool raw)
820{
821 struct mtd_info *mtd = nand_to_mtd(chip);
822 struct atmel_nand *nand = to_atmel_nand(chip);
823 struct atmel_hsmc_nand_controller *nc;
824 int ret, status;
825
826 nc = to_hsmc_nand_controller(nand->controller);
827
828 atmel_nfc_copy_to_sram(chip, buf, false);
829
830 nc->op.cmds[0] = NAND_CMD_SEQIN;
831 nc->op.ncmds = 1;
832 atmel_nfc_set_op_addr(chip, page, 0x0);
833 nc->op.cs = nand->activecs->id;
834 nc->op.data = ATMEL_NFC_WRITE_DATA;
835
836 ret = atmel_nand_pmecc_enable(chip, NAND_ECC_WRITE, raw);
837 if (ret)
838 return ret;
839
840 ret = atmel_nfc_exec_op(nc, true);
841 if (ret) {
842 atmel_nand_pmecc_disable(chip, raw);
843 dev_err(nc->base.dev,
844 "Failed to transfer NAND page data (err = %d)\n",
845 ret);
846 return ret;
847 }
848
849 ret = atmel_nand_pmecc_generate_eccbytes(chip, raw);
850
851 atmel_nand_pmecc_disable(chip, raw);
852
853 if (ret)
854 return ret;
855
856 atmel_nand_write_buf(mtd, chip->oob_poi, mtd->oobsize);
857
858 nc->op.cmds[0] = NAND_CMD_PAGEPROG;
859 nc->op.ncmds = 1;
860 nc->op.cs = nand->activecs->id;
861 ret = atmel_nfc_exec_op(nc, true);
862 if (ret)
863 dev_err(nc->base.dev, "Failed to program NAND page (err = %d)\n",
864 ret);
865
866 status = chip->waitfunc(mtd, chip);
867 if (status & NAND_STATUS_FAIL)
868 return -EIO;
869
870 return ret;
871}
872
873static int
874atmel_hsmc_nand_pmecc_write_page(struct mtd_info *mtd, struct nand_chip *chip,
875 const u8 *buf, int oob_required,
876 int page)
877{
878 return atmel_hsmc_nand_pmecc_write_pg(chip, buf, oob_required, page,
879 false);
880}
881
882static int
883atmel_hsmc_nand_pmecc_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
884 const u8 *buf,
885 int oob_required, int page)
886{
887 return atmel_hsmc_nand_pmecc_write_pg(chip, buf, oob_required, page,
888 true);
889}
890
891static int atmel_hsmc_nand_pmecc_read_pg(struct nand_chip *chip, u8 *buf,
892 bool oob_required, int page,
893 bool raw)
894{
895 struct mtd_info *mtd = nand_to_mtd(chip);
896 struct atmel_nand *nand = to_atmel_nand(chip);
897 struct atmel_hsmc_nand_controller *nc;
898 int ret;
899
900 nc = to_hsmc_nand_controller(nand->controller);
901
902 /*
903 * Optimized read page accessors only work when the NAND R/B pin is
904 * connected to a native SoC R/B pin. If that's not the case, fallback
905 * to the non-optimized one.
906 */
907 if (nand->activecs->rb.type != ATMEL_NAND_NATIVE_RB) {
908 nand_read_page_op(chip, page, 0, NULL, 0);
909
910 return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page,
911 raw);
912 }
913
914 nc->op.cmds[nc->op.ncmds++] = NAND_CMD_READ0;
915
916 if (mtd->writesize > 512)
917 nc->op.cmds[nc->op.ncmds++] = NAND_CMD_READSTART;
918
919 atmel_nfc_set_op_addr(chip, page, 0x0);
920 nc->op.cs = nand->activecs->id;
921 nc->op.data = ATMEL_NFC_READ_DATA;
922
923 ret = atmel_nand_pmecc_enable(chip, NAND_ECC_READ, raw);
924 if (ret)
925 return ret;
926
927 ret = atmel_nfc_exec_op(nc, true);
928 if (ret) {
929 atmel_nand_pmecc_disable(chip, raw);
930 dev_err(nc->base.dev,
931 "Failed to load NAND page data (err = %d)\n",
932 ret);
933 return ret;
934 }
935
936 atmel_nfc_copy_from_sram(chip, buf, true);
937
938 ret = atmel_nand_pmecc_correct_data(chip, buf, raw);
939
940 atmel_nand_pmecc_disable(chip, raw);
941
942 return ret;
943}
944
945static int atmel_hsmc_nand_pmecc_read_page(struct mtd_info *mtd,
946 struct nand_chip *chip, u8 *buf,
947 int oob_required, int page)
948{
949 return atmel_hsmc_nand_pmecc_read_pg(chip, buf, oob_required, page,
950 false);
951}
952
953static int atmel_hsmc_nand_pmecc_read_page_raw(struct mtd_info *mtd,
954 struct nand_chip *chip,
955 u8 *buf, int oob_required,
956 int page)
957{
958 return atmel_hsmc_nand_pmecc_read_pg(chip, buf, oob_required, page,
959 true);
960}
961
962static int nand_ooblayout_ecc_lp(struct mtd_info *mtd, int section,
963 struct mtd_oob_region *oobregion)
964{
965 struct nand_chip *chip = mtd_to_nand(mtd);
966 struct nand_ecc_ctrl *ecc = &chip->ecc;
967
968 if (section || !ecc->total)
969 return -ERANGE;
970
971 oobregion->length = ecc->total;
972 oobregion->offset = mtd->oobsize - oobregion->length;
973
974 return 0;
975}
976
977static int nand_ooblayout_free_lp(struct mtd_info *mtd, int section,
978 struct mtd_oob_region *oobregion)
979{
980 struct nand_chip *chip = mtd_to_nand(mtd);
981 struct nand_ecc_ctrl *ecc = &chip->ecc;
982
983 if (section)
984 return -ERANGE;
985
986 oobregion->length = mtd->oobsize - ecc->total - 2;
987 oobregion->offset = 2;
988
989 return 0;
990}
991
992static const struct mtd_ooblayout_ops nand_ooblayout_lp_ops = {
993 .ecc = nand_ooblayout_ecc_lp,
994 .rfree = nand_ooblayout_free_lp,
995};
996
997const struct mtd_ooblayout_ops *nand_get_large_page_ooblayout(void)
998{
999 return &nand_ooblayout_lp_ops;
1000}
1001
1002static int atmel_nand_pmecc_init(struct nand_chip *chip)
1003{
1004 struct mtd_info *mtd = nand_to_mtd(chip);
1005 struct atmel_nand *nand = to_atmel_nand(chip);
1006 struct atmel_nand_controller *nc;
1007 struct atmel_pmecc_user_req req;
1008
1009 nc = to_nand_controller(nand->controller);
1010
1011 if (!nc->pmecc) {
1012 dev_err(nc->dev, "HW ECC not supported\n");
1013 return -EOPNOTSUPP;
1014 }
1015
1016 if (nc->caps->legacy_of_bindings) {
1017 u32 val;
1018
1019 if (!ofnode_read_u32(nc->dev->node_, "atmel,pmecc-cap", &val))
1020 chip->ecc.strength = val;
1021
1022 if (!ofnode_read_u32(nc->dev->node_,
1023 "atmel,pmecc-sector-size",
1024 &val))
1025 chip->ecc.size = val;
1026 }
1027
1028 if (chip->ecc.options & NAND_ECC_MAXIMIZE)
1029 req.ecc.strength = ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH;
1030 else if (chip->ecc.strength)
1031 req.ecc.strength = chip->ecc.strength;
Zixun LI4de19a92024-07-21 23:45:52 +02001032 else if (chip->ecc_strength_ds)
1033 req.ecc.strength = chip->ecc_strength_ds;
Balamanikandan Gunasundarfe33c7d2022-10-25 16:21:01 +05301034 else
1035 req.ecc.strength = ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH;
1036
1037 if (chip->ecc.size)
1038 req.ecc.sectorsize = chip->ecc.size;
Zixun LI4de19a92024-07-21 23:45:52 +02001039 else if (chip->ecc_step_ds)
1040 req.ecc.sectorsize = chip->ecc_step_ds;
Balamanikandan Gunasundarfe33c7d2022-10-25 16:21:01 +05301041 else
1042 req.ecc.sectorsize = ATMEL_PMECC_SECTOR_SIZE_AUTO;
1043
1044 req.pagesize = mtd->writesize;
1045 req.oobsize = mtd->oobsize;
1046
1047 if (mtd->writesize <= 512) {
1048 req.ecc.bytes = 4;
1049 req.ecc.ooboffset = 0;
1050 } else {
1051 req.ecc.bytes = mtd->oobsize - 2;
1052 req.ecc.ooboffset = ATMEL_PMECC_OOBOFFSET_AUTO;
1053 }
1054
1055 nand->pmecc = atmel_pmecc_create_user(nc->pmecc, &req);
1056 if (IS_ERR(nand->pmecc))
1057 return PTR_ERR(nand->pmecc);
1058
1059 chip->ecc.algo = NAND_ECC_BCH;
1060 chip->ecc.size = req.ecc.sectorsize;
1061 chip->ecc.bytes = req.ecc.bytes / req.ecc.nsectors;
1062 chip->ecc.strength = req.ecc.strength;
1063
1064 chip->options |= NAND_NO_SUBPAGE_WRITE;
1065
1066 mtd_set_ooblayout(mtd, nand_get_large_page_ooblayout());
1067 pmecc_config_ecc_layout(&atmel_pmecc_oobinfo,
1068 mtd->oobsize,
1069 chip->ecc.bytes);
1070 chip->ecc.layout = &atmel_pmecc_oobinfo;
1071
1072 return 0;
1073}
1074
1075static int atmel_nand_ecc_init(struct nand_chip *chip)
1076{
1077 struct atmel_nand_controller *nc;
1078 struct atmel_nand *nand = to_atmel_nand(chip);
1079 int ret;
1080
1081 nc = to_nand_controller(nand->controller);
1082
1083 switch (chip->ecc.mode) {
1084 case NAND_ECC_NONE:
1085 case NAND_ECC_SOFT:
1086 /*
1087 * Nothing to do, the core will initialize everything for us.
1088 */
1089 break;
1090
1091 case NAND_ECC_HW:
1092 ret = atmel_nand_pmecc_init(chip);
1093 if (ret)
1094 return ret;
1095
1096 chip->ecc.read_page = atmel_nand_pmecc_read_page;
1097 chip->ecc.write_page = atmel_nand_pmecc_write_page;
1098 chip->ecc.read_page_raw = atmel_nand_pmecc_read_page_raw;
1099 chip->ecc.write_page_raw = atmel_nand_pmecc_write_page_raw;
1100 break;
1101
1102 default:
1103 /* Other modes are not supported. */
1104 dev_err(nc->dev, "Unsupported ECC mode: %d\n",
1105 chip->ecc.mode);
1106 return -EOPNOTSUPP;
1107 }
1108
1109 return 0;
1110}
1111
1112static int atmel_hsmc_nand_ecc_init(struct nand_chip *chip)
1113{
1114 int ret;
1115
1116 ret = atmel_nand_ecc_init(chip);
1117 if (ret)
1118 return ret;
1119
1120 if (chip->ecc.mode != NAND_ECC_HW)
1121 return 0;
1122
1123 /* Adjust the ECC operations for the HSMC IP. */
1124 chip->ecc.read_page = atmel_hsmc_nand_pmecc_read_page;
1125 chip->ecc.write_page = atmel_hsmc_nand_pmecc_write_page;
1126 chip->ecc.read_page_raw = atmel_hsmc_nand_pmecc_read_page_raw;
1127 chip->ecc.write_page_raw = atmel_hsmc_nand_pmecc_write_page_raw;
1128
1129 return 0;
1130}
1131
1132static int atmel_smc_nand_prepare_smcconf(struct atmel_nand *nand,
1133 const struct nand_data_interface *conf,
1134 struct atmel_smc_cs_conf *smcconf)
1135{
1136 u32 ncycles, totalcycles, timeps, mckperiodps;
1137 struct atmel_nand_controller *nc;
1138 int ret;
1139
1140 nc = to_nand_controller(nand->controller);
1141
1142 /* DDR interface not supported. */
1143 if (conf->type != NAND_SDR_IFACE)
1144 return -EOPNOTSUPP;
1145
1146 /*
1147 * tRC < 30ns implies EDO mode. This controller does not support this
1148 * mode.
1149 */
1150 if (conf->timings.sdr.tRC_min < 30000)
1151 return -EOPNOTSUPP;
1152
1153 atmel_smc_cs_conf_init(smcconf);
1154
1155 mckperiodps = NSEC_PER_SEC / clk_get_rate(nc->mck);
1156 mckperiodps *= 1000;
1157
1158 /*
1159 * Set write pulse timing. This one is easy to extract:
1160 *
1161 * NWE_PULSE = tWP
1162 */
1163 ncycles = DIV_ROUND_UP(conf->timings.sdr.tWP_min, mckperiodps);
1164 totalcycles = ncycles;
1165 ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NWE_SHIFT,
1166 ncycles);
1167 if (ret)
1168 return ret;
1169
1170 /*
1171 * The write setup timing depends on the operation done on the NAND.
1172 * All operations goes through the same data bus, but the operation
1173 * type depends on the address we are writing to (ALE/CLE address
1174 * lines).
1175 * Since we have no way to differentiate the different operations at
1176 * the SMC level, we must consider the worst case (the biggest setup
1177 * time among all operation types):
1178 *
1179 * NWE_SETUP = max(tCLS, tCS, tALS, tDS) - NWE_PULSE
1180 */
1181 timeps = max3(conf->timings.sdr.tCLS_min, conf->timings.sdr.tCS_min,
1182 conf->timings.sdr.tALS_min);
1183 timeps = max(timeps, conf->timings.sdr.tDS_min);
1184 ncycles = DIV_ROUND_UP(timeps, mckperiodps);
1185 ncycles = ncycles > totalcycles ? ncycles - totalcycles : 0;
1186 totalcycles += ncycles;
1187 ret = atmel_smc_cs_conf_set_setup(smcconf, ATMEL_SMC_NWE_SHIFT,
1188 ncycles);
1189 if (ret)
1190 return ret;
1191
1192 /*
1193 * As for the write setup timing, the write hold timing depends on the
1194 * operation done on the NAND:
1195 *
1196 * NWE_HOLD = max(tCLH, tCH, tALH, tDH, tWH)
1197 */
1198 timeps = max3(conf->timings.sdr.tCLH_min, conf->timings.sdr.tCH_min,
1199 conf->timings.sdr.tALH_min);
1200 timeps = max3(timeps, conf->timings.sdr.tDH_min,
1201 conf->timings.sdr.tWH_min);
1202 ncycles = DIV_ROUND_UP(timeps, mckperiodps);
1203 totalcycles += ncycles;
1204
1205 /*
1206 * The write cycle timing is directly matching tWC, but is also
1207 * dependent on the other timings on the setup and hold timings we
1208 * calculated earlier, which gives:
1209 *
1210 * NWE_CYCLE = max(tWC, NWE_SETUP + NWE_PULSE + NWE_HOLD)
1211 */
1212 ncycles = DIV_ROUND_UP(conf->timings.sdr.tWC_min, mckperiodps);
1213 ncycles = max(totalcycles, ncycles);
1214 ret = atmel_smc_cs_conf_set_cycle(smcconf, ATMEL_SMC_NWE_SHIFT,
1215 ncycles);
1216 if (ret)
1217 return ret;
1218
1219 /*
1220 * We don't want the CS line to be toggled between each byte/word
1221 * transfer to the NAND. The only way to guarantee that is to have the
1222 * NCS_{WR,RD}_{SETUP,HOLD} timings set to 0, which in turn means:
1223 *
1224 * NCS_WR_PULSE = NWE_CYCLE
1225 */
1226 ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NCS_WR_SHIFT,
1227 ncycles);
1228 if (ret)
1229 return ret;
1230
1231 /*
1232 * As for the write setup timing, the read hold timing depends on the
1233 * operation done on the NAND:
1234 *
1235 * NRD_HOLD = max(tREH, tRHOH)
1236 */
1237 timeps = max(conf->timings.sdr.tREH_min, conf->timings.sdr.tRHOH_min);
1238 ncycles = DIV_ROUND_UP(timeps, mckperiodps);
1239 totalcycles = ncycles;
1240
1241 /*
1242 * TDF = tRHZ - NRD_HOLD
1243 */
1244 ncycles = DIV_ROUND_UP(conf->timings.sdr.tRHZ_max, mckperiodps);
1245 ncycles -= totalcycles;
1246
1247 /*
1248 * In ONFI 4.0 specs, tRHZ has been increased to support EDO NANDs and
1249 * we might end up with a config that does not fit in the TDF field.
1250 * Just take the max value in this case and hope that the NAND is more
1251 * tolerant than advertised.
1252 */
1253 if (ncycles > ATMEL_SMC_MODE_TDF_MAX)
1254 ncycles = ATMEL_SMC_MODE_TDF_MAX;
1255 else if (ncycles < ATMEL_SMC_MODE_TDF_MIN)
1256 ncycles = ATMEL_SMC_MODE_TDF_MIN;
1257
1258 smcconf->mode |= ATMEL_SMC_MODE_TDF(ncycles) |
1259 ATMEL_SMC_MODE_TDFMODE_OPTIMIZED;
1260
1261 /*
1262 * Read pulse timing directly matches tRP:
1263 *
1264 * NRD_PULSE = tRP
1265 */
1266 ncycles = DIV_ROUND_UP(conf->timings.sdr.tRP_min, mckperiodps);
1267 totalcycles += ncycles;
1268 ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NRD_SHIFT,
1269 ncycles);
1270 if (ret)
1271 return ret;
1272
1273 /*
Alexander Dahl681c2fb2024-03-20 10:02:13 +01001274 * The read cycle timing is directly matching tRC, but is also
Balamanikandan Gunasundarfe33c7d2022-10-25 16:21:01 +05301275 * dependent on the setup and hold timings we calculated earlier,
1276 * which gives:
1277 *
1278 * NRD_CYCLE = max(tRC, NRD_PULSE + NRD_HOLD)
1279 *
1280 * NRD_SETUP is always 0.
1281 */
1282 ncycles = DIV_ROUND_UP(conf->timings.sdr.tRC_min, mckperiodps);
1283 ncycles = max(totalcycles, ncycles);
1284 ret = atmel_smc_cs_conf_set_cycle(smcconf, ATMEL_SMC_NRD_SHIFT,
1285 ncycles);
1286 if (ret)
1287 return ret;
1288
1289 /*
1290 * We don't want the CS line to be toggled between each byte/word
1291 * transfer from the NAND. The only way to guarantee that is to have
1292 * the NCS_{WR,RD}_{SETUP,HOLD} timings set to 0, which in turn means:
1293 *
1294 * NCS_RD_PULSE = NRD_CYCLE
1295 */
1296 ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NCS_RD_SHIFT,
1297 ncycles);
1298 if (ret)
1299 return ret;
1300
1301 /* Txxx timings are directly matching tXXX ones. */
1302 ncycles = DIV_ROUND_UP(conf->timings.sdr.tCLR_min, mckperiodps);
1303 ret = atmel_smc_cs_conf_set_timing(smcconf,
1304 ATMEL_HSMC_TIMINGS_TCLR_SHIFT,
1305 ncycles);
1306 if (ret)
1307 return ret;
1308
1309 ncycles = DIV_ROUND_UP(conf->timings.sdr.tADL_min, mckperiodps);
1310 ret = atmel_smc_cs_conf_set_timing(smcconf,
1311 ATMEL_HSMC_TIMINGS_TADL_SHIFT,
1312 ncycles);
1313 /*
1314 * Version 4 of the ONFI spec mandates that tADL be at least 400
1315 * nanoseconds, but, depending on the master clock rate, 400 ns may not
1316 * fit in the tADL field of the SMC reg. We need to relax the check and
1317 * accept the -ERANGE return code.
1318 *
1319 * Note that previous versions of the ONFI spec had a lower tADL_min
1320 * (100 or 200 ns). It's not clear why this timing constraint got
1321 * increased but it seems most NANDs are fine with values lower than
1322 * 400ns, so we should be safe.
1323 */
1324 if (ret && ret != -ERANGE)
1325 return ret;
1326
1327 ncycles = DIV_ROUND_UP(conf->timings.sdr.tAR_min, mckperiodps);
1328 ret = atmel_smc_cs_conf_set_timing(smcconf,
1329 ATMEL_HSMC_TIMINGS_TAR_SHIFT,
1330 ncycles);
1331 if (ret)
1332 return ret;
1333
1334 ncycles = DIV_ROUND_UP(conf->timings.sdr.tRR_min, mckperiodps);
1335 ret = atmel_smc_cs_conf_set_timing(smcconf,
1336 ATMEL_HSMC_TIMINGS_TRR_SHIFT,
1337 ncycles);
1338 if (ret)
1339 return ret;
1340
1341 ncycles = DIV_ROUND_UP(conf->timings.sdr.tWB_max, mckperiodps);
1342 ret = atmel_smc_cs_conf_set_timing(smcconf,
1343 ATMEL_HSMC_TIMINGS_TWB_SHIFT,
1344 ncycles);
1345 if (ret)
1346 return ret;
1347
1348 /* Attach the CS line to the NFC logic. */
1349 smcconf->timings |= ATMEL_HSMC_TIMINGS_NFSEL;
1350
1351 /* Set the appropriate data bus width. */
1352 if (nand->base.options & NAND_BUSWIDTH_16)
1353 smcconf->mode |= ATMEL_SMC_MODE_DBW_16;
1354
1355 /* Operate in NRD/NWE READ/WRITEMODE. */
1356 smcconf->mode |= ATMEL_SMC_MODE_READMODE_NRD |
1357 ATMEL_SMC_MODE_WRITEMODE_NWE;
1358
1359 return 0;
1360}
1361
1362static int
1363atmel_smc_nand_setup_data_interface(struct atmel_nand *nand,
1364 int csline,
1365 const struct nand_data_interface *conf)
1366{
1367 struct atmel_nand_controller *nc;
1368 struct atmel_smc_cs_conf smcconf;
1369 struct atmel_nand_cs *cs;
1370 int ret;
1371
1372 nc = to_nand_controller(nand->controller);
1373
1374 ret = atmel_smc_nand_prepare_smcconf(nand, conf, &smcconf);
1375 if (ret)
1376 return ret;
1377
1378 if (csline == NAND_DATA_IFACE_CHECK_ONLY)
1379 return 0;
1380
1381 cs = &nand->cs[csline];
1382 cs->smcconf = smcconf;
1383
1384 atmel_smc_cs_conf_apply(nc->smc, cs->id, &cs->smcconf);
1385
1386 return 0;
1387}
1388
1389static int
1390atmel_hsmc_nand_setup_data_interface(struct atmel_nand *nand,
1391 int csline,
1392 const struct nand_data_interface *conf)
1393{
1394 struct atmel_hsmc_nand_controller *nc;
1395 struct atmel_smc_cs_conf smcconf;
1396 struct atmel_nand_cs *cs;
1397 int ret;
1398
1399 nc = to_hsmc_nand_controller(nand->controller);
1400
1401 ret = atmel_smc_nand_prepare_smcconf(nand, conf, &smcconf);
1402 if (ret)
1403 return ret;
1404
1405 if (csline == NAND_DATA_IFACE_CHECK_ONLY)
1406 return 0;
1407
1408 cs = &nand->cs[csline];
1409 cs->smcconf = smcconf;
1410
1411 if (cs->rb.type == ATMEL_NAND_NATIVE_RB)
1412 cs->smcconf.timings |= ATMEL_HSMC_TIMINGS_RBNSEL(cs->rb.id);
1413
1414 atmel_hsmc_cs_conf_apply(nc->base.smc, nc->hsmc_layout, cs->id,
1415 &cs->smcconf);
1416
1417 return 0;
1418}
1419
1420static int atmel_nand_setup_data_interface(struct mtd_info *mtd, int csline,
1421 const struct nand_data_interface *conf)
1422{
1423 struct nand_chip *chip = mtd_to_nand(mtd);
1424 struct atmel_nand *nand = to_atmel_nand(chip);
1425 struct atmel_nand_controller *nc;
1426
1427 nc = to_nand_controller(nand->controller);
1428
1429 if (csline >= nand->numcs ||
1430 (csline < 0 && csline != NAND_DATA_IFACE_CHECK_ONLY))
1431 return -EINVAL;
1432
1433 return nc->caps->ops->setup_data_interface(nand, csline, conf);
1434}
1435
Balamanikandan Gunasundarfe33c7d2022-10-25 16:21:01 +05301436static void atmel_nand_init(struct atmel_nand_controller *nc,
1437 struct atmel_nand *nand)
1438{
1439 struct nand_chip *chip = &nand->base;
1440 struct mtd_info *mtd = nand_to_mtd(chip);
1441
1442 mtd->dev->parent = nc->dev;
1443 nand->controller = &nc->base;
Balamanikandan Gunasundarfe33c7d2022-10-25 16:21:01 +05301444
1445 chip->cmd_ctrl = atmel_nand_cmd_ctrl;
1446 chip->read_byte = atmel_nand_read_byte;
1447 chip->write_byte = atmel_nand_write_byte;
1448 chip->read_buf = atmel_nand_read_buf;
1449 chip->write_buf = atmel_nand_write_buf;
1450 chip->select_chip = atmel_nand_select_chip;
1451 chip->setup_data_interface = atmel_nand_setup_data_interface;
1452
1453 if (!nc->mck || !nc->caps->ops->setup_data_interface)
1454 chip->options |= NAND_KEEP_TIMINGS;
1455
1456 /* Some NANDs require a longer delay than the default one (20us). */
1457 chip->chip_delay = 40;
1458
1459 /* Default to HW ECC if pmecc is available. */
1460 if (nc->pmecc)
1461 chip->ecc.mode = NAND_ECC_HW;
1462}
1463
1464static void atmel_smc_nand_init(struct atmel_nand_controller *nc,
1465 struct atmel_nand *nand)
1466{
1467 struct atmel_smc_nand_controller *smc_nc;
1468 int i;
1469
1470 atmel_nand_init(nc, nand);
1471
1472 smc_nc = to_smc_nand_controller(nand->controller);
1473 if (!smc_nc->ebi_csa_regmap)
1474 return;
1475
1476 /* Attach the CS to the NAND Flash logic. */
1477 for (i = 0; i < nand->numcs; i++)
1478 regmap_update_bits(smc_nc->ebi_csa_regmap,
1479 smc_nc->ebi_csa->offs,
1480 BIT(nand->cs[i].id), BIT(nand->cs[i].id));
1481
1482 if (smc_nc->ebi_csa->nfd0_on_d16)
1483 regmap_update_bits(smc_nc->ebi_csa_regmap,
1484 smc_nc->ebi_csa->offs,
1485 smc_nc->ebi_csa->nfd0_on_d16,
1486 smc_nc->ebi_csa->nfd0_on_d16);
1487}
1488
1489static void atmel_hsmc_nand_init(struct atmel_nand_controller *nc,
1490 struct atmel_nand *nand)
1491{
1492 struct nand_chip *chip = &nand->base;
1493
1494 atmel_nand_init(nc, nand);
1495
1496 /* Overload some methods for the HSMC controller. */
1497 chip->cmd_ctrl = atmel_hsmc_nand_cmd_ctrl;
1498 chip->select_chip = atmel_hsmc_nand_select_chip;
1499}
1500
1501static int atmel_nand_controller_remove_nand(struct atmel_nand *nand)
1502{
1503 list_del(&nand->node);
1504
1505 return 0;
1506}
1507
1508static struct atmel_nand *atmel_nand_create(struct atmel_nand_controller *nc,
1509 ofnode np,
1510 int reg_cells)
1511{
1512 struct atmel_nand *nand;
1513 ofnode n;
1514 int numcs = 0;
1515 int ret, i;
1516 u32 val;
1517 fdt32_t faddr;
1518 phys_addr_t base;
1519
1520 /* Count num of nand nodes */
1521 ofnode_for_each_subnode(n, ofnode_get_parent(np))
1522 numcs++;
1523 if (numcs < 1) {
1524 dev_err(nc->dev, "Missing or invalid reg property\n");
1525 return ERR_PTR(-EINVAL);
1526 }
1527
1528 nand = devm_kzalloc(nc->dev,
1529 sizeof(struct atmel_nand) +
1530 (numcs * sizeof(struct atmel_nand_cs)),
1531 GFP_KERNEL);
1532 if (!nand) {
1533 dev_err(nc->dev, "Failed to allocate NAND object\n");
1534 return ERR_PTR(-ENOMEM);
1535 }
1536
1537 nand->numcs = numcs;
1538
1539 gpio_request_by_name_nodev(np, "det-gpios", 0, &nand->cdgpio,
1540 GPIOD_IS_IN);
1541
1542 for (i = 0; i < numcs; i++) {
1543 ret = ofnode_read_u32(np, "reg", &val);
1544 if (ret) {
1545 dev_err(nc->dev, "Invalid reg property (err = %d)\n",
1546 ret);
1547 return ERR_PTR(ret);
1548 }
1549 nand->cs[i].id = val;
1550
1551 /* Read base address */
1552 struct resource res;
1553
1554 if (ofnode_read_resource(np, 0, &res)) {
1555 dev_err(nc->dev, "Unable to read resource\n");
1556 return ERR_PTR(-ENOMEM);
1557 }
1558
1559 faddr = cpu_to_fdt32(val);
1560 base = ofnode_translate_address(np, &faddr);
1561 nand->cs[i].io.virt = (void *)base;
1562
1563 if (!ofnode_read_u32(np, "atmel,rb", &val)) {
1564 if (val > ATMEL_NFC_MAX_RB_ID)
1565 return ERR_PTR(-EINVAL);
1566
1567 nand->cs[i].rb.type = ATMEL_NAND_NATIVE_RB;
1568 nand->cs[i].rb.id = val;
1569 } else {
Alexander Dahld8f077a2023-09-22 11:08:56 +02001570 ret = gpio_request_by_name_nodev(np, "rb-gpios", 0,
1571 &nand->cs[i].rb.gpio,
1572 GPIOD_IS_IN);
1573 if (ret && ret != -ENOENT)
1574 dev_err(nc->dev, "Failed to get R/B gpio (err = %d)\n", ret);
1575 if (!ret)
1576 nand->cs[i].rb.type = ATMEL_NAND_GPIO_RB;
Balamanikandan Gunasundarfe33c7d2022-10-25 16:21:01 +05301577 }
1578
1579 gpio_request_by_name_nodev(np, "cs-gpios", 0,
1580 &nand->cs[i].csgpio,
1581 GPIOD_IS_OUT);
1582 }
1583
1584 nand_set_flash_node(&nand->base, np);
1585
1586 return nand;
1587}
1588
1589static int nand_attach(struct nand_chip *chip)
1590{
1591 struct atmel_nand *nand = to_atmel_nand(chip);
1592
1593 if (nand->controller->ops && nand->controller->ops->attach_chip)
1594 return nand->controller->ops->attach_chip(chip);
1595
1596 return 0;
1597}
1598
1599int atmel_nand_scan(struct mtd_info *mtd, int maxchips)
1600{
1601 int ret;
1602
1603 ret = nand_scan_ident(mtd, maxchips, NULL);
1604 if (ret)
1605 return ret;
1606
1607 ret = nand_attach(mtd_to_nand(mtd));
1608 if (ret)
1609 return ret;
1610
1611 ret = nand_scan_tail(mtd);
1612 return ret;
1613}
1614
1615static int
1616atmel_nand_controller_add_nand(struct atmel_nand_controller *nc,
1617 struct atmel_nand *nand)
1618{
1619 struct nand_chip *chip = &nand->base;
1620 struct mtd_info *mtd = nand_to_mtd(chip);
1621 int ret;
1622
1623 /* No card inserted, skip this NAND. */
1624 if (dm_gpio_is_valid(&nand->cdgpio) &&
1625 dm_gpio_get_value(&nand->cdgpio)) {
1626 dev_info(nc->dev, "No SmartMedia card inserted.\n");
1627 return 0;
1628 }
1629
1630 nc->caps->ops->nand_init(nc, nand);
1631
1632 ret = atmel_nand_scan(mtd, nand->numcs);
1633 if (ret) {
1634 dev_err(nc->dev, "NAND scan failed: %d\n", ret);
1635 return ret;
1636 }
1637
1638 ret = nand_register(0, mtd);
1639 if (ret) {
1640 dev_err(nc->dev, "nand register failed: %d\n", ret);
1641 return ret;
1642 }
1643
1644 list_add_tail(&nand->node, &nc->chips);
1645
1646 return 0;
1647}
1648
1649static int
1650atmel_nand_controller_remove_nands(struct atmel_nand_controller *nc)
1651{
1652 struct atmel_nand *nand, *tmp;
1653 int ret;
1654
1655 list_for_each_entry_safe(nand, tmp, &nc->chips, node) {
1656 ret = atmel_nand_controller_remove_nand(nand);
1657 if (ret)
1658 return ret;
1659 }
1660
1661 return 0;
1662}
1663
1664static int atmel_nand_controller_add_nands(struct atmel_nand_controller *nc)
1665{
1666 ofnode np;
1667 ofnode nand_np;
1668 int ret, reg_cells;
1669 u32 val;
1670
1671 /* TODO:
1672 * Add support for legacy nands
1673 */
1674
1675 np = nc->dev->node_;
1676
1677 ret = ofnode_read_u32(np, "#address-cells", &val);
1678 if (ret) {
1679 dev_err(nc->dev, "missing #address-cells property\n");
1680 return ret;
1681 }
1682
1683 reg_cells = val;
1684
1685 ret = ofnode_read_u32(np, "#size-cells", &val);
1686 if (ret) {
1687 dev_err(nc->dev, "missing #size-cells property\n");
1688 return ret;
1689 }
1690
1691 reg_cells += val;
1692
1693 ofnode_for_each_subnode(nand_np, np) {
1694 struct atmel_nand *nand;
1695
1696 nand = atmel_nand_create(nc, nand_np, reg_cells);
1697 if (IS_ERR(nand)) {
1698 ret = PTR_ERR(nand);
1699 goto err;
1700 }
1701
1702 ret = atmel_nand_controller_add_nand(nc, nand);
1703 if (ret)
1704 goto err;
1705 }
1706
1707 return 0;
1708
1709err:
1710 atmel_nand_controller_remove_nands(nc);
1711
1712 return ret;
1713}
1714
1715static const struct atmel_smc_nand_ebi_csa_cfg at91sam9260_ebi_csa = {
1716 .offs = AT91SAM9260_MATRIX_EBICSA,
1717};
1718
1719static const struct atmel_smc_nand_ebi_csa_cfg at91sam9261_ebi_csa = {
1720 .offs = AT91SAM9261_MATRIX_EBICSA,
1721};
1722
1723static const struct atmel_smc_nand_ebi_csa_cfg at91sam9263_ebi_csa = {
1724 .offs = AT91SAM9263_MATRIX_EBI0CSA,
1725};
1726
1727static const struct atmel_smc_nand_ebi_csa_cfg at91sam9rl_ebi_csa = {
1728 .offs = AT91SAM9RL_MATRIX_EBICSA,
1729};
1730
1731static const struct atmel_smc_nand_ebi_csa_cfg at91sam9g45_ebi_csa = {
1732 .offs = AT91SAM9G45_MATRIX_EBICSA,
1733};
1734
1735static const struct atmel_smc_nand_ebi_csa_cfg at91sam9n12_ebi_csa = {
1736 .offs = AT91SAM9N12_MATRIX_EBICSA,
1737};
1738
1739static const struct atmel_smc_nand_ebi_csa_cfg at91sam9x5_ebi_csa = {
1740 .offs = AT91SAM9X5_MATRIX_EBICSA,
1741};
1742
1743static const struct atmel_smc_nand_ebi_csa_cfg sam9x60_ebi_csa = {
1744 .offs = AT91_SFR_CCFG_EBICSA,
1745 .nfd0_on_d16 = AT91_SFR_CCFG_NFD0_ON_D16,
1746};
1747
1748static const struct udevice_id atmel_ebi_csa_regmap_of_ids[] = {
1749 {
1750 .compatible = "atmel,at91sam9260-matrix",
1751 .data = (ulong)&at91sam9260_ebi_csa,
1752 },
1753 {
1754 .compatible = "atmel,at91sam9261-matrix",
1755 .data = (ulong)&at91sam9261_ebi_csa,
1756 },
1757 {
1758 .compatible = "atmel,at91sam9263-matrix",
1759 .data = (ulong)&at91sam9263_ebi_csa,
1760 },
1761 {
1762 .compatible = "atmel,at91sam9rl-matrix",
1763 .data = (ulong)&at91sam9rl_ebi_csa,
1764 },
1765 {
1766 .compatible = "atmel,at91sam9g45-matrix",
1767 .data = (ulong)&at91sam9g45_ebi_csa,
1768 },
1769 {
1770 .compatible = "atmel,at91sam9n12-matrix",
1771 .data = (ulong)&at91sam9n12_ebi_csa,
1772 },
1773 {
1774 .compatible = "atmel,at91sam9x5-matrix",
1775 .data = (ulong)&at91sam9x5_ebi_csa,
1776 },
1777 {
1778 .compatible = "microchip,sam9x60-sfr",
1779 .data = (ulong)&sam9x60_ebi_csa,
1780 },
1781 { /* sentinel */ },
1782};
1783
1784static int atmel_nand_attach_chip(struct nand_chip *chip)
1785{
1786 struct atmel_nand *nand = to_atmel_nand(chip);
1787 struct atmel_nand_controller *nc = to_nand_controller(nand->controller);
1788 struct mtd_info *mtd = nand_to_mtd(chip);
1789 int ret;
1790
1791 ret = nc->caps->ops->ecc_init(chip);
1792 if (ret)
1793 return ret;
1794
1795 if (nc->caps->legacy_of_bindings || !ofnode_valid(nc->dev->node_)) {
1796 /*
1797 * We keep the MTD name unchanged to avoid breaking platforms
1798 * where the MTD cmdline parser is used and the bootloader
1799 * has not been updated to use the new naming scheme.
1800 */
1801 mtd->name = "atmel_nand";
1802 } else if (!mtd->name) {
1803 /*
1804 * If the new bindings are used and the bootloader has not been
1805 * updated to pass a new mtdparts parameter on the cmdline, you
1806 * should define the following property in your nand node:
1807 *
1808 * label = "atmel_nand";
1809 *
1810 * This way, mtd->name will be set by the core when
1811 * nand_set_flash_node() is called.
1812 */
1813 sprintf(mtd->name, "%s:nand.%d", nc->dev->name, nand->cs[0].id);
1814 }
1815
1816 return 0;
1817}
1818
1819static const struct nand_controller_ops atmel_nand_controller_ops = {
1820 .attach_chip = atmel_nand_attach_chip,
1821};
1822
1823static int
1824atmel_nand_controller_init(struct atmel_nand_controller *nc,
1825 struct udevice *dev,
1826 const struct atmel_nand_controller_caps *caps)
1827{
1828 struct ofnode_phandle_args args;
1829 int ret;
1830
1831 nc->base.ops = &atmel_nand_controller_ops;
1832 INIT_LIST_HEAD(&nc->chips);
1833 nc->dev = dev;
1834 nc->caps = caps;
1835
1836 nc->pmecc = devm_atmel_pmecc_get(dev);
1837 if (IS_ERR(nc->pmecc)) {
1838 ret = PTR_ERR(nc->pmecc);
1839 if (ret != -EPROBE_DEFER)
1840 dev_err(dev, "Could not get PMECC object (err = %d)\n",
1841 ret);
1842 return ret;
1843 }
1844
1845 /* We do not retrieve the SMC syscon when parsing old DTs. */
1846 if (nc->caps->legacy_of_bindings)
1847 return 0;
1848
1849 nc->mck = devm_kzalloc(dev, sizeof(nc->mck), GFP_KERNEL);
1850 if (!nc->mck)
1851 return -ENOMEM;
1852
1853 clk_get_by_index(dev->parent, 0, nc->mck);
1854 if (IS_ERR(nc->mck)) {
1855 dev_err(dev, "Failed to retrieve MCK clk\n");
1856 return PTR_ERR(nc->mck);
1857 }
1858
1859 ret = ofnode_parse_phandle_with_args(dev->parent->node_,
1860 "atmel,smc", NULL, 0, 0, &args);
1861 if (ret) {
1862 dev_err(dev, "Missing or invalid atmel,smc property\n");
1863 return -EINVAL;
1864 }
1865
1866 nc->smc = syscon_node_to_regmap(args.node);
1867 if (IS_ERR(nc->smc)) {
1868 ret = PTR_ERR(nc->smc);
1869 dev_err(dev, "Could not get SMC regmap (err = %d)\n", ret);
1870 return 0;
1871 }
1872
1873 return 0;
1874}
1875
1876static int
1877atmel_smc_nand_controller_init(struct atmel_smc_nand_controller *nc)
1878{
1879 struct udevice *dev = nc->base.dev;
1880 struct ofnode_phandle_args args;
1881 const struct udevice_id *match = NULL;
1882 const char *name;
1883 int ret;
1884 int len;
1885 int i;
1886
1887 /* We do not retrieve the EBICSA regmap when parsing old DTs. */
1888 if (nc->base.caps->legacy_of_bindings)
1889 return 0;
1890
1891 ret = ofnode_parse_phandle_with_args(dev->parent->node_,
1892 nc->base.caps->ebi_csa_regmap_name,
1893 NULL, 0, 0, &args);
1894 if (ret) {
1895 dev_err(dev, "Unable to read ebi csa regmap\n");
1896 return -EINVAL;
1897 }
1898
1899 name = ofnode_get_property(args.node, "compatible", &len);
1900
1901 for (i = 0; i < ARRAY_SIZE(atmel_ebi_csa_regmap_of_ids); i++) {
1902 if (!strcmp(name, atmel_ebi_csa_regmap_of_ids[i].compatible)) {
1903 match = &atmel_ebi_csa_regmap_of_ids[i];
1904 break;
1905 }
1906 }
1907
1908 if (!match) {
1909 dev_err(dev, "Unable to find ebi csa conf");
1910 return -EINVAL;
1911 }
1912 nc->ebi_csa = (struct atmel_smc_nand_ebi_csa_cfg *)match->data;
1913
1914 nc->ebi_csa_regmap = syscon_node_to_regmap(args.node);
1915 if (IS_ERR(nc->ebi_csa_regmap)) {
1916 ret = PTR_ERR(nc->ebi_csa_regmap);
1917 dev_err(dev, "Could not get EBICSA regmap (err = %d)\n", ret);
1918 return ret;
1919 }
1920
1921 /* TODO:
1922 * The at91sam9263 has 2 EBIs, if the NAND controller is under EBI1
1923 * add 4 to ->ebi_csa->offs.
1924 */
1925
1926 return 0;
1927}
1928
1929static int atmel_hsmc_nand_controller_init(struct atmel_hsmc_nand_controller *nc)
1930{
1931 struct udevice *dev = nc->base.dev;
1932 struct ofnode_phandle_args args;
1933 struct clk smc_clk;
1934 int ret;
1935 u32 addr;
1936
1937 ret = ofnode_parse_phandle_with_args(dev->parent->node_,
1938 "atmel,smc", NULL, 0, 0, &args);
1939 if (ret) {
1940 dev_err(dev, "Missing or invalid atmel,smc property\n");
1941 return -EINVAL;
1942 }
1943
1944 nc->hsmc_layout = atmel_hsmc_get_reg_layout(args.node);
1945 if (IS_ERR(nc->hsmc_layout)) {
1946 dev_err(dev, "Could not get hsmc layout\n");
1947 return -EINVAL;
1948 }
1949
1950 /* Enable smc clock */
1951 ret = clk_get_by_index_nodev(args.node, 0, &smc_clk);
1952 if (ret) {
1953 dev_err(dev, "Unable to get smc clock (err = %d)", ret);
1954 return ret;
1955 }
1956
1957 ret = clk_prepare_enable(&smc_clk);
1958 if (ret)
1959 return ret;
1960
1961 ret = ofnode_parse_phandle_with_args(dev->node_,
1962 "atmel,nfc-io", NULL, 0, 0, &args);
1963 if (ret) {
1964 dev_err(dev, "Missing or invalid atmel,nfc-io property\n");
1965 return -EINVAL;
1966 }
1967
1968 nc->io = syscon_node_to_regmap(args.node);
1969 if (IS_ERR(nc->io)) {
1970 ret = PTR_ERR(nc->io);
1971 dev_err(dev, "Could not get NFC IO regmap\n");
1972 return ret;
1973 }
1974
1975 ret = ofnode_parse_phandle_with_args(dev->node_,
1976 "atmel,nfc-sram", NULL, 0, 0, &args);
1977 if (ret) {
1978 dev_err(dev, "Missing or invalid atmel,nfc-sram property\n");
1979 return ret;
1980 }
1981
1982 ret = ofnode_read_u32(args.node, "reg", &addr);
1983 if (ret) {
1984 dev_err(dev, "Could not read reg addr of nfc sram");
1985 return ret;
1986 }
1987 nc->sram.virt = (void *)addr;
1988
1989 return 0;
1990}
1991
1992static int
1993atmel_hsmc_nand_controller_remove(struct atmel_nand_controller *nc)
1994{
1995 struct atmel_hsmc_nand_controller *hsmc_nc;
1996 int ret;
1997
1998 ret = atmel_nand_controller_remove_nands(nc);
1999 if (ret)
2000 return ret;
2001
2002 hsmc_nc = container_of(nc, struct atmel_hsmc_nand_controller, base);
2003
Sean Andersond318eb32023-12-16 14:38:42 -05002004 if (hsmc_nc->clk)
Balamanikandan Gunasundarfe33c7d2022-10-25 16:21:01 +05302005 clk_disable_unprepare(hsmc_nc->clk);
Balamanikandan Gunasundarfe33c7d2022-10-25 16:21:01 +05302006
2007 return 0;
2008}
2009
2010static int
2011atmel_hsmc_nand_controller_probe(struct udevice *dev,
2012 const struct atmel_nand_controller_caps *caps)
2013{
2014 struct atmel_hsmc_nand_controller *nc;
2015 int ret;
2016
2017 nc = devm_kzalloc(dev, sizeof(*nc), GFP_KERNEL);
2018 if (!nc)
2019 return -ENOMEM;
2020
2021 ret = atmel_nand_controller_init(&nc->base, dev, caps);
2022 if (ret)
2023 return ret;
2024
2025 ret = atmel_hsmc_nand_controller_init(nc);
2026 if (ret)
2027 return ret;
2028
2029 /* Make sure all irqs are masked before registering our IRQ handler. */
2030 regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IDR, 0xffffffff);
2031
2032 /* Initial NFC configuration. */
2033 regmap_write(nc->base.smc, ATMEL_HSMC_NFC_CFG,
2034 ATMEL_HSMC_NFC_CFG_DTO_MAX);
2035
2036 ret = atmel_nand_controller_add_nands(&nc->base);
2037 if (ret)
2038 goto err;
2039
2040 return 0;
2041
2042err:
2043 atmel_hsmc_nand_controller_remove(&nc->base);
2044
2045 return ret;
2046}
2047
2048static const struct atmel_nand_controller_ops atmel_hsmc_nc_ops = {
2049 .probe = atmel_hsmc_nand_controller_probe,
2050 .remove = atmel_hsmc_nand_controller_remove,
2051 .ecc_init = atmel_hsmc_nand_ecc_init,
2052 .nand_init = atmel_hsmc_nand_init,
2053 .setup_data_interface = atmel_hsmc_nand_setup_data_interface,
2054};
2055
2056static const struct atmel_nand_controller_caps atmel_sama5_nc_caps = {
2057 .has_dma = true,
2058 .ale_offs = BIT(21),
2059 .cle_offs = BIT(22),
2060 .ops = &atmel_hsmc_nc_ops,
2061};
2062
2063static int
2064atmel_smc_nand_controller_probe(struct udevice *dev,
2065 const struct atmel_nand_controller_caps *caps)
2066{
2067 struct atmel_smc_nand_controller *nc;
2068 int ret;
2069
2070 nc = devm_kzalloc(dev, sizeof(*nc), GFP_KERNEL);
2071 if (!nc)
2072 return -ENOMEM;
2073
2074 ret = atmel_nand_controller_init(&nc->base, dev, caps);
2075 if (ret)
2076 return ret;
2077
2078 ret = atmel_smc_nand_controller_init(nc);
2079 if (ret)
2080 return ret;
2081
2082 return atmel_nand_controller_add_nands(&nc->base);
2083}
2084
2085static int
2086atmel_smc_nand_controller_remove(struct atmel_nand_controller *nc)
2087{
2088 int ret;
2089
2090 ret = atmel_nand_controller_remove_nands(nc);
2091 if (ret)
2092 return ret;
2093
2094 return 0;
2095}
2096
2097/*
2098 * The SMC reg layout of at91rm9200 is completely different which prevents us
2099 * from re-using atmel_smc_nand_setup_data_interface() for the
2100 * ->setup_data_interface() hook.
2101 * At this point, there's no support for the at91rm9200 SMC IP, so we leave
2102 * ->setup_data_interface() unassigned.
2103 */
2104static const struct atmel_nand_controller_ops at91rm9200_nc_ops = {
2105 .probe = atmel_smc_nand_controller_probe,
2106 .remove = atmel_smc_nand_controller_remove,
2107 .ecc_init = atmel_nand_ecc_init,
2108 .nand_init = atmel_smc_nand_init,
2109};
2110
2111static const struct atmel_nand_controller_caps atmel_rm9200_nc_caps = {
2112 .ale_offs = BIT(21),
2113 .cle_offs = BIT(22),
2114 .ebi_csa_regmap_name = "atmel,matrix",
2115 .ops = &at91rm9200_nc_ops,
2116};
2117
2118static const struct atmel_nand_controller_ops atmel_smc_nc_ops = {
2119 .probe = atmel_smc_nand_controller_probe,
2120 .remove = atmel_smc_nand_controller_remove,
2121 .ecc_init = atmel_nand_ecc_init,
2122 .nand_init = atmel_smc_nand_init,
2123 .setup_data_interface = atmel_smc_nand_setup_data_interface,
2124};
2125
2126static const struct atmel_nand_controller_caps atmel_sam9260_nc_caps = {
2127 .ale_offs = BIT(21),
2128 .cle_offs = BIT(22),
2129 .ebi_csa_regmap_name = "atmel,matrix",
2130 .ops = &atmel_smc_nc_ops,
2131};
2132
2133static const struct atmel_nand_controller_caps atmel_sam9261_nc_caps = {
2134 .ale_offs = BIT(22),
2135 .cle_offs = BIT(21),
2136 .ebi_csa_regmap_name = "atmel,matrix",
2137 .ops = &atmel_smc_nc_ops,
2138};
2139
2140static const struct atmel_nand_controller_caps atmel_sam9g45_nc_caps = {
2141 .has_dma = true,
2142 .ale_offs = BIT(21),
2143 .cle_offs = BIT(22),
2144 .ebi_csa_regmap_name = "atmel,matrix",
2145 .ops = &atmel_smc_nc_ops,
2146};
2147
2148static const struct atmel_nand_controller_caps microchip_sam9x60_nc_caps = {
2149 .has_dma = true,
2150 .ale_offs = BIT(21),
2151 .cle_offs = BIT(22),
2152 .ebi_csa_regmap_name = "microchip,sfr",
2153 .ops = &atmel_smc_nc_ops,
2154};
2155
2156/* Only used to parse old bindings. */
2157static const struct atmel_nand_controller_caps atmel_rm9200_nand_caps = {
2158 .ale_offs = BIT(21),
2159 .cle_offs = BIT(22),
2160 .ops = &atmel_smc_nc_ops,
2161 .legacy_of_bindings = true,
2162};
2163
2164static const struct udevice_id atmel_nand_controller_of_ids[] = {
2165 {
2166 .compatible = "atmel,at91rm9200-nand-controller",
2167 .data = (ulong)&atmel_rm9200_nc_caps,
2168 },
2169 {
2170 .compatible = "atmel,at91sam9260-nand-controller",
2171 .data = (ulong)&atmel_sam9260_nc_caps,
2172 },
2173 {
2174 .compatible = "atmel,at91sam9261-nand-controller",
2175 .data = (ulong)&atmel_sam9261_nc_caps,
2176 },
2177 {
2178 .compatible = "atmel,at91sam9g45-nand-controller",
2179 .data = (ulong)&atmel_sam9g45_nc_caps,
2180 },
2181 {
2182 .compatible = "atmel,sama5d3-nand-controller",
2183 .data = (ulong)&atmel_sama5_nc_caps,
2184 },
2185 {
2186 .compatible = "microchip,sam9x60-nand-controller",
2187 .data = (ulong)&microchip_sam9x60_nc_caps,
2188 },
2189 /* Support for old/deprecated bindings: */
2190 {
2191 .compatible = "atmel,at91rm9200-nand",
2192 .data = (ulong)&atmel_rm9200_nand_caps,
2193 },
2194 {
2195 .compatible = "atmel,sama5d4-nand",
2196 .data = (ulong)&atmel_rm9200_nand_caps,
2197 },
2198 {
2199 .compatible = "atmel,sama5d2-nand",
2200 .data = (ulong)&atmel_rm9200_nand_caps,
2201 },
2202 { /* sentinel */ },
2203};
2204
2205static int atmel_nand_controller_probe(struct udevice *dev)
2206{
2207 const struct atmel_nand_controller_caps *caps;
2208 struct udevice *pmecc_dev;
2209
2210 caps = (struct atmel_nand_controller_caps *)dev_get_driver_data(dev);
2211 if (!caps) {
2212 printf("Could not retrieve NFC caps\n");
2213 return -EINVAL;
2214 }
2215
2216 /* Probe pmecc driver */
2217 if (uclass_get_device(UCLASS_MTD, 1, &pmecc_dev)) {
2218 printf("%s: get device fail\n", __func__);
2219 return -EINVAL;
2220 }
2221
2222 return caps->ops->probe(dev, caps);
2223}
2224
2225static int atmel_nand_controller_remove(struct udevice *dev)
2226{
2227 struct atmel_nand_controller *nc;
2228
2229 nc = (struct atmel_nand_controller *)dev_get_driver_data(dev);
2230
2231 return nc->caps->ops->remove(nc);
2232}
2233
2234U_BOOT_DRIVER(atmel_nand_controller) = {
2235 .name = "atmel-nand-controller",
2236 .id = UCLASS_MTD,
2237 .of_match = atmel_nand_controller_of_ids,
2238 .probe = atmel_nand_controller_probe,
2239 .remove = atmel_nand_controller_remove,
2240};
2241
2242void board_nand_init(void)
2243{
2244 struct udevice *dev;
2245 int ret;
2246
2247 ret = uclass_get_device_by_driver(UCLASS_MTD,
2248 DM_DRIVER_GET(atmel_nand_controller),
2249 &dev);
2250 if (ret && ret != -ENODEV)
2251 printf("Failed to initialize NAND controller. (error %d)\n",
2252 ret);
2253}