blob: 4ded5ee68a91bd44bb6fb08234b3469ee4fb6c09 [file] [log] [blame]
Tom Rini10e47792018-05-06 17:58:06 -04001/* SPDX-License-Identifier: GPL-2.0+ */
Fabio Estevam6ddec552015-11-05 12:43:22 -02002/* Integer base 2 logarithm calculation
3 *
4 * Copyright (C) 2006 Red Hat, Inc. All Rights Reserved.
5 * Written by David Howells (dhowells@redhat.com)
Fabio Estevam6ddec552015-11-05 12:43:22 -02006 */
7
8#ifndef _LINUX_LOG2_H
9#define _LINUX_LOG2_H
10
11#include <linux/types.h>
12#include <linux/bitops.h>
13
14/*
15 * deal with unrepresentable constant logarithms
16 */
17extern __attribute__((const, noreturn))
18int ____ilog2_NaN(void);
19
20/*
21 * non-constant log of base 2 calculators
22 * - the arch may override these in asm/bitops.h if they can be implemented
23 * more efficiently than using fls() and fls64()
24 * - the arch is not required to handle n==0 if implementing the fallback
25 */
26#ifndef CONFIG_ARCH_HAS_ILOG2_U32
27static inline __attribute__((const))
28int __ilog2_u32(u32 n)
29{
30 return fls(n) - 1;
31}
32#endif
33
34#ifndef CONFIG_ARCH_HAS_ILOG2_U64
35static inline __attribute__((const))
36int __ilog2_u64(u64 n)
37{
38 return fls64(n) - 1;
39}
40#endif
41
42/*
43 * Determine whether some value is a power of two, where zero is
44 * *not* considered a power of two.
45 */
46
47static inline __attribute__((const))
48bool is_power_of_2(unsigned long n)
49{
50 return (n != 0 && ((n & (n - 1)) == 0));
51}
52
53/*
54 * round up to nearest power of two
55 */
56static inline __attribute__((const))
57unsigned long __roundup_pow_of_two(unsigned long n)
58{
59 return 1UL << fls_long(n - 1);
60}
61
62/*
63 * round down to nearest power of two
64 */
65static inline __attribute__((const))
66unsigned long __rounddown_pow_of_two(unsigned long n)
67{
68 return 1UL << (fls_long(n) - 1);
69}
70
71/**
72 * ilog2 - log of base 2 of 32-bit or a 64-bit unsigned value
73 * @n - parameter
74 *
75 * constant-capable log of base 2 calculation
76 * - this can be used to initialise global variables from constant data, hence
77 * the massive ternary operator construction
78 *
79 * selects the appropriately-sized optimised version depending on sizeof(n)
80 */
81#define ilog2(n) \
82( \
83 __builtin_constant_p(n) ? ( \
84 (n) < 1 ? ____ilog2_NaN() : \
85 (n) & (1ULL << 63) ? 63 : \
86 (n) & (1ULL << 62) ? 62 : \
87 (n) & (1ULL << 61) ? 61 : \
88 (n) & (1ULL << 60) ? 60 : \
89 (n) & (1ULL << 59) ? 59 : \
90 (n) & (1ULL << 58) ? 58 : \
91 (n) & (1ULL << 57) ? 57 : \
92 (n) & (1ULL << 56) ? 56 : \
93 (n) & (1ULL << 55) ? 55 : \
94 (n) & (1ULL << 54) ? 54 : \
95 (n) & (1ULL << 53) ? 53 : \
96 (n) & (1ULL << 52) ? 52 : \
97 (n) & (1ULL << 51) ? 51 : \
98 (n) & (1ULL << 50) ? 50 : \
99 (n) & (1ULL << 49) ? 49 : \
100 (n) & (1ULL << 48) ? 48 : \
101 (n) & (1ULL << 47) ? 47 : \
102 (n) & (1ULL << 46) ? 46 : \
103 (n) & (1ULL << 45) ? 45 : \
104 (n) & (1ULL << 44) ? 44 : \
105 (n) & (1ULL << 43) ? 43 : \
106 (n) & (1ULL << 42) ? 42 : \
107 (n) & (1ULL << 41) ? 41 : \
108 (n) & (1ULL << 40) ? 40 : \
109 (n) & (1ULL << 39) ? 39 : \
110 (n) & (1ULL << 38) ? 38 : \
111 (n) & (1ULL << 37) ? 37 : \
112 (n) & (1ULL << 36) ? 36 : \
113 (n) & (1ULL << 35) ? 35 : \
114 (n) & (1ULL << 34) ? 34 : \
115 (n) & (1ULL << 33) ? 33 : \
116 (n) & (1ULL << 32) ? 32 : \
117 (n) & (1ULL << 31) ? 31 : \
118 (n) & (1ULL << 30) ? 30 : \
119 (n) & (1ULL << 29) ? 29 : \
120 (n) & (1ULL << 28) ? 28 : \
121 (n) & (1ULL << 27) ? 27 : \
122 (n) & (1ULL << 26) ? 26 : \
123 (n) & (1ULL << 25) ? 25 : \
124 (n) & (1ULL << 24) ? 24 : \
125 (n) & (1ULL << 23) ? 23 : \
126 (n) & (1ULL << 22) ? 22 : \
127 (n) & (1ULL << 21) ? 21 : \
128 (n) & (1ULL << 20) ? 20 : \
129 (n) & (1ULL << 19) ? 19 : \
130 (n) & (1ULL << 18) ? 18 : \
131 (n) & (1ULL << 17) ? 17 : \
132 (n) & (1ULL << 16) ? 16 : \
133 (n) & (1ULL << 15) ? 15 : \
134 (n) & (1ULL << 14) ? 14 : \
135 (n) & (1ULL << 13) ? 13 : \
136 (n) & (1ULL << 12) ? 12 : \
137 (n) & (1ULL << 11) ? 11 : \
138 (n) & (1ULL << 10) ? 10 : \
139 (n) & (1ULL << 9) ? 9 : \
140 (n) & (1ULL << 8) ? 8 : \
141 (n) & (1ULL << 7) ? 7 : \
142 (n) & (1ULL << 6) ? 6 : \
143 (n) & (1ULL << 5) ? 5 : \
144 (n) & (1ULL << 4) ? 4 : \
145 (n) & (1ULL << 3) ? 3 : \
146 (n) & (1ULL << 2) ? 2 : \
147 (n) & (1ULL << 1) ? 1 : \
148 (n) & (1ULL << 0) ? 0 : \
149 ____ilog2_NaN() \
150 ) : \
151 (sizeof(n) <= 4) ? \
152 __ilog2_u32(n) : \
153 __ilog2_u64(n) \
154 )
155
156/**
157 * roundup_pow_of_two - round the given value up to nearest power of two
158 * @n - parameter
159 *
160 * round the given value up to the nearest power of two
161 * - the result is undefined when n == 0
162 * - this can be used to initialise global variables from constant data
163 */
164#define roundup_pow_of_two(n) \
165( \
166 __builtin_constant_p(n) ? ( \
167 (n == 1) ? 1 : \
168 (1UL << (ilog2((n) - 1) + 1)) \
169 ) : \
170 __roundup_pow_of_two(n) \
171 )
172
173/**
174 * rounddown_pow_of_two - round the given value down to nearest power of two
175 * @n - parameter
176 *
177 * round the given value down to the nearest power of two
178 * - the result is undefined when n == 0
179 * - this can be used to initialise global variables from constant data
180 */
181#define rounddown_pow_of_two(n) \
182( \
183 __builtin_constant_p(n) ? ( \
184 (1UL << ilog2(n))) : \
185 __rounddown_pow_of_two(n) \
186 )
187
188/**
189 * order_base_2 - calculate the (rounded up) base 2 order of the argument
190 * @n: parameter
191 *
192 * The first few values calculated by this routine:
193 * ob2(0) = 0
194 * ob2(1) = 0
195 * ob2(2) = 1
196 * ob2(3) = 2
197 * ob2(4) = 2
198 * ob2(5) = 3
199 * ... and so on.
200 */
201
202#define order_base_2(n) ilog2(roundup_pow_of_two(n))
203
204#endif /* _LINUX_LOG2_H */