Tom Rini | 10e4779 | 2018-05-06 17:58:06 -0400 | [diff] [blame] | 1 | /* SPDX-License-Identifier: GPL-2.0+ */ |
Fabio Estevam | 6ddec55 | 2015-11-05 12:43:22 -0200 | [diff] [blame] | 2 | /* Integer base 2 logarithm calculation |
| 3 | * |
| 4 | * Copyright (C) 2006 Red Hat, Inc. All Rights Reserved. |
| 5 | * Written by David Howells (dhowells@redhat.com) |
Fabio Estevam | 6ddec55 | 2015-11-05 12:43:22 -0200 | [diff] [blame] | 6 | */ |
| 7 | |
| 8 | #ifndef _LINUX_LOG2_H |
| 9 | #define _LINUX_LOG2_H |
| 10 | |
| 11 | #include <linux/types.h> |
| 12 | #include <linux/bitops.h> |
| 13 | |
| 14 | /* |
| 15 | * deal with unrepresentable constant logarithms |
| 16 | */ |
| 17 | extern __attribute__((const, noreturn)) |
| 18 | int ____ilog2_NaN(void); |
| 19 | |
| 20 | /* |
| 21 | * non-constant log of base 2 calculators |
| 22 | * - the arch may override these in asm/bitops.h if they can be implemented |
| 23 | * more efficiently than using fls() and fls64() |
| 24 | * - the arch is not required to handle n==0 if implementing the fallback |
| 25 | */ |
| 26 | #ifndef CONFIG_ARCH_HAS_ILOG2_U32 |
| 27 | static inline __attribute__((const)) |
| 28 | int __ilog2_u32(u32 n) |
| 29 | { |
| 30 | return fls(n) - 1; |
| 31 | } |
| 32 | #endif |
| 33 | |
| 34 | #ifndef CONFIG_ARCH_HAS_ILOG2_U64 |
| 35 | static inline __attribute__((const)) |
| 36 | int __ilog2_u64(u64 n) |
| 37 | { |
| 38 | return fls64(n) - 1; |
| 39 | } |
| 40 | #endif |
| 41 | |
| 42 | /* |
| 43 | * Determine whether some value is a power of two, where zero is |
| 44 | * *not* considered a power of two. |
| 45 | */ |
| 46 | |
| 47 | static inline __attribute__((const)) |
| 48 | bool is_power_of_2(unsigned long n) |
| 49 | { |
| 50 | return (n != 0 && ((n & (n - 1)) == 0)); |
| 51 | } |
| 52 | |
| 53 | /* |
| 54 | * round up to nearest power of two |
| 55 | */ |
| 56 | static inline __attribute__((const)) |
| 57 | unsigned long __roundup_pow_of_two(unsigned long n) |
| 58 | { |
| 59 | return 1UL << fls_long(n - 1); |
| 60 | } |
| 61 | |
| 62 | /* |
| 63 | * round down to nearest power of two |
| 64 | */ |
| 65 | static inline __attribute__((const)) |
| 66 | unsigned long __rounddown_pow_of_two(unsigned long n) |
| 67 | { |
| 68 | return 1UL << (fls_long(n) - 1); |
| 69 | } |
| 70 | |
| 71 | /** |
| 72 | * ilog2 - log of base 2 of 32-bit or a 64-bit unsigned value |
| 73 | * @n - parameter |
| 74 | * |
| 75 | * constant-capable log of base 2 calculation |
| 76 | * - this can be used to initialise global variables from constant data, hence |
| 77 | * the massive ternary operator construction |
| 78 | * |
| 79 | * selects the appropriately-sized optimised version depending on sizeof(n) |
| 80 | */ |
| 81 | #define ilog2(n) \ |
| 82 | ( \ |
| 83 | __builtin_constant_p(n) ? ( \ |
| 84 | (n) < 1 ? ____ilog2_NaN() : \ |
| 85 | (n) & (1ULL << 63) ? 63 : \ |
| 86 | (n) & (1ULL << 62) ? 62 : \ |
| 87 | (n) & (1ULL << 61) ? 61 : \ |
| 88 | (n) & (1ULL << 60) ? 60 : \ |
| 89 | (n) & (1ULL << 59) ? 59 : \ |
| 90 | (n) & (1ULL << 58) ? 58 : \ |
| 91 | (n) & (1ULL << 57) ? 57 : \ |
| 92 | (n) & (1ULL << 56) ? 56 : \ |
| 93 | (n) & (1ULL << 55) ? 55 : \ |
| 94 | (n) & (1ULL << 54) ? 54 : \ |
| 95 | (n) & (1ULL << 53) ? 53 : \ |
| 96 | (n) & (1ULL << 52) ? 52 : \ |
| 97 | (n) & (1ULL << 51) ? 51 : \ |
| 98 | (n) & (1ULL << 50) ? 50 : \ |
| 99 | (n) & (1ULL << 49) ? 49 : \ |
| 100 | (n) & (1ULL << 48) ? 48 : \ |
| 101 | (n) & (1ULL << 47) ? 47 : \ |
| 102 | (n) & (1ULL << 46) ? 46 : \ |
| 103 | (n) & (1ULL << 45) ? 45 : \ |
| 104 | (n) & (1ULL << 44) ? 44 : \ |
| 105 | (n) & (1ULL << 43) ? 43 : \ |
| 106 | (n) & (1ULL << 42) ? 42 : \ |
| 107 | (n) & (1ULL << 41) ? 41 : \ |
| 108 | (n) & (1ULL << 40) ? 40 : \ |
| 109 | (n) & (1ULL << 39) ? 39 : \ |
| 110 | (n) & (1ULL << 38) ? 38 : \ |
| 111 | (n) & (1ULL << 37) ? 37 : \ |
| 112 | (n) & (1ULL << 36) ? 36 : \ |
| 113 | (n) & (1ULL << 35) ? 35 : \ |
| 114 | (n) & (1ULL << 34) ? 34 : \ |
| 115 | (n) & (1ULL << 33) ? 33 : \ |
| 116 | (n) & (1ULL << 32) ? 32 : \ |
| 117 | (n) & (1ULL << 31) ? 31 : \ |
| 118 | (n) & (1ULL << 30) ? 30 : \ |
| 119 | (n) & (1ULL << 29) ? 29 : \ |
| 120 | (n) & (1ULL << 28) ? 28 : \ |
| 121 | (n) & (1ULL << 27) ? 27 : \ |
| 122 | (n) & (1ULL << 26) ? 26 : \ |
| 123 | (n) & (1ULL << 25) ? 25 : \ |
| 124 | (n) & (1ULL << 24) ? 24 : \ |
| 125 | (n) & (1ULL << 23) ? 23 : \ |
| 126 | (n) & (1ULL << 22) ? 22 : \ |
| 127 | (n) & (1ULL << 21) ? 21 : \ |
| 128 | (n) & (1ULL << 20) ? 20 : \ |
| 129 | (n) & (1ULL << 19) ? 19 : \ |
| 130 | (n) & (1ULL << 18) ? 18 : \ |
| 131 | (n) & (1ULL << 17) ? 17 : \ |
| 132 | (n) & (1ULL << 16) ? 16 : \ |
| 133 | (n) & (1ULL << 15) ? 15 : \ |
| 134 | (n) & (1ULL << 14) ? 14 : \ |
| 135 | (n) & (1ULL << 13) ? 13 : \ |
| 136 | (n) & (1ULL << 12) ? 12 : \ |
| 137 | (n) & (1ULL << 11) ? 11 : \ |
| 138 | (n) & (1ULL << 10) ? 10 : \ |
| 139 | (n) & (1ULL << 9) ? 9 : \ |
| 140 | (n) & (1ULL << 8) ? 8 : \ |
| 141 | (n) & (1ULL << 7) ? 7 : \ |
| 142 | (n) & (1ULL << 6) ? 6 : \ |
| 143 | (n) & (1ULL << 5) ? 5 : \ |
| 144 | (n) & (1ULL << 4) ? 4 : \ |
| 145 | (n) & (1ULL << 3) ? 3 : \ |
| 146 | (n) & (1ULL << 2) ? 2 : \ |
| 147 | (n) & (1ULL << 1) ? 1 : \ |
| 148 | (n) & (1ULL << 0) ? 0 : \ |
| 149 | ____ilog2_NaN() \ |
| 150 | ) : \ |
| 151 | (sizeof(n) <= 4) ? \ |
| 152 | __ilog2_u32(n) : \ |
| 153 | __ilog2_u64(n) \ |
| 154 | ) |
| 155 | |
| 156 | /** |
| 157 | * roundup_pow_of_two - round the given value up to nearest power of two |
| 158 | * @n - parameter |
| 159 | * |
| 160 | * round the given value up to the nearest power of two |
| 161 | * - the result is undefined when n == 0 |
| 162 | * - this can be used to initialise global variables from constant data |
| 163 | */ |
| 164 | #define roundup_pow_of_two(n) \ |
| 165 | ( \ |
| 166 | __builtin_constant_p(n) ? ( \ |
| 167 | (n == 1) ? 1 : \ |
| 168 | (1UL << (ilog2((n) - 1) + 1)) \ |
| 169 | ) : \ |
| 170 | __roundup_pow_of_two(n) \ |
| 171 | ) |
| 172 | |
| 173 | /** |
| 174 | * rounddown_pow_of_two - round the given value down to nearest power of two |
| 175 | * @n - parameter |
| 176 | * |
| 177 | * round the given value down to the nearest power of two |
| 178 | * - the result is undefined when n == 0 |
| 179 | * - this can be used to initialise global variables from constant data |
| 180 | */ |
| 181 | #define rounddown_pow_of_two(n) \ |
| 182 | ( \ |
| 183 | __builtin_constant_p(n) ? ( \ |
| 184 | (1UL << ilog2(n))) : \ |
| 185 | __rounddown_pow_of_two(n) \ |
| 186 | ) |
| 187 | |
| 188 | /** |
| 189 | * order_base_2 - calculate the (rounded up) base 2 order of the argument |
| 190 | * @n: parameter |
| 191 | * |
| 192 | * The first few values calculated by this routine: |
| 193 | * ob2(0) = 0 |
| 194 | * ob2(1) = 0 |
| 195 | * ob2(2) = 1 |
| 196 | * ob2(3) = 2 |
| 197 | * ob2(4) = 2 |
| 198 | * ob2(5) = 3 |
| 199 | * ... and so on. |
| 200 | */ |
| 201 | |
| 202 | #define order_base_2(n) ilog2(roundup_pow_of_two(n)) |
| 203 | |
| 204 | #endif /* _LINUX_LOG2_H */ |