Vivek Gautam | 4912dcc | 2013-09-14 14:02:45 +0530 | [diff] [blame^] | 1 | /* |
| 2 | * USB HOST XHCI Controller stack |
| 3 | * |
| 4 | * Based on xHCI host controller driver in linux-kernel |
| 5 | * by Sarah Sharp. |
| 6 | * |
| 7 | * Copyright (C) 2008 Intel Corp. |
| 8 | * Author: Sarah Sharp |
| 9 | * |
| 10 | * Copyright (C) 2013 Samsung Electronics Co.Ltd |
| 11 | * Authors: Vivek Gautam <gautam.vivek@samsung.com> |
| 12 | * Vikas Sajjan <vikas.sajjan@samsung.com> |
| 13 | * |
| 14 | * SPDX-License-Identifier: GPL-2.0+ |
| 15 | */ |
| 16 | |
| 17 | #include <common.h> |
| 18 | #include <asm/byteorder.h> |
| 19 | #include <usb.h> |
| 20 | #include <malloc.h> |
| 21 | #include <asm/cache.h> |
| 22 | #include <asm-generic/errno.h> |
| 23 | |
| 24 | #include "xhci.h" |
| 25 | |
| 26 | #define CACHELINE_SIZE CONFIG_SYS_CACHELINE_SIZE |
| 27 | /** |
| 28 | * flushes the address passed till the length |
| 29 | * |
| 30 | * @param addr pointer to memory region to be flushed |
| 31 | * @param len the length of the cache line to be flushed |
| 32 | * @return none |
| 33 | */ |
| 34 | void xhci_flush_cache(uint32_t addr, u32 len) |
| 35 | { |
| 36 | BUG_ON((void *)addr == NULL || len == 0); |
| 37 | |
| 38 | flush_dcache_range(addr & ~(CACHELINE_SIZE - 1), |
| 39 | ALIGN(addr + len, CACHELINE_SIZE)); |
| 40 | } |
| 41 | |
| 42 | /** |
| 43 | * invalidates the address passed till the length |
| 44 | * |
| 45 | * @param addr pointer to memory region to be invalidates |
| 46 | * @param len the length of the cache line to be invalidated |
| 47 | * @return none |
| 48 | */ |
| 49 | void xhci_inval_cache(uint32_t addr, u32 len) |
| 50 | { |
| 51 | BUG_ON((void *)addr == NULL || len == 0); |
| 52 | |
| 53 | invalidate_dcache_range(addr & ~(CACHELINE_SIZE - 1), |
| 54 | ALIGN(addr + len, CACHELINE_SIZE)); |
| 55 | } |
| 56 | |
| 57 | |
| 58 | /** |
| 59 | * frees the "segment" pointer passed |
| 60 | * |
| 61 | * @param ptr pointer to "segement" to be freed |
| 62 | * @return none |
| 63 | */ |
| 64 | static void xhci_segment_free(struct xhci_segment *seg) |
| 65 | { |
| 66 | free(seg->trbs); |
| 67 | seg->trbs = NULL; |
| 68 | |
| 69 | free(seg); |
| 70 | } |
| 71 | |
| 72 | /** |
| 73 | * frees the "ring" pointer passed |
| 74 | * |
| 75 | * @param ptr pointer to "ring" to be freed |
| 76 | * @return none |
| 77 | */ |
| 78 | static void xhci_ring_free(struct xhci_ring *ring) |
| 79 | { |
| 80 | struct xhci_segment *seg; |
| 81 | struct xhci_segment *first_seg; |
| 82 | |
| 83 | BUG_ON(!ring); |
| 84 | |
| 85 | first_seg = ring->first_seg; |
| 86 | seg = first_seg->next; |
| 87 | while (seg != first_seg) { |
| 88 | struct xhci_segment *next = seg->next; |
| 89 | xhci_segment_free(seg); |
| 90 | seg = next; |
| 91 | } |
| 92 | xhci_segment_free(first_seg); |
| 93 | |
| 94 | free(ring); |
| 95 | } |
| 96 | |
| 97 | /** |
| 98 | * frees the "xhci_container_ctx" pointer passed |
| 99 | * |
| 100 | * @param ptr pointer to "xhci_container_ctx" to be freed |
| 101 | * @return none |
| 102 | */ |
| 103 | static void xhci_free_container_ctx(struct xhci_container_ctx *ctx) |
| 104 | { |
| 105 | free(ctx->bytes); |
| 106 | free(ctx); |
| 107 | } |
| 108 | |
| 109 | /** |
| 110 | * frees the virtual devices for "xhci_ctrl" pointer passed |
| 111 | * |
| 112 | * @param ptr pointer to "xhci_ctrl" whose virtual devices are to be freed |
| 113 | * @return none |
| 114 | */ |
| 115 | static void xhci_free_virt_devices(struct xhci_ctrl *ctrl) |
| 116 | { |
| 117 | int i; |
| 118 | int slot_id; |
| 119 | struct xhci_virt_device *virt_dev; |
| 120 | |
| 121 | /* |
| 122 | * refactored here to loop through all virt_dev |
| 123 | * Slot ID 0 is reserved |
| 124 | */ |
| 125 | for (slot_id = 0; slot_id < MAX_HC_SLOTS; slot_id++) { |
| 126 | virt_dev = ctrl->devs[slot_id]; |
| 127 | if (!virt_dev) |
| 128 | continue; |
| 129 | |
| 130 | ctrl->dcbaa->dev_context_ptrs[slot_id] = 0; |
| 131 | |
| 132 | for (i = 0; i < 31; ++i) |
| 133 | if (virt_dev->eps[i].ring) |
| 134 | xhci_ring_free(virt_dev->eps[i].ring); |
| 135 | |
| 136 | if (virt_dev->in_ctx) |
| 137 | xhci_free_container_ctx(virt_dev->in_ctx); |
| 138 | if (virt_dev->out_ctx) |
| 139 | xhci_free_container_ctx(virt_dev->out_ctx); |
| 140 | |
| 141 | free(virt_dev); |
| 142 | /* make sure we are pointing to NULL */ |
| 143 | ctrl->devs[slot_id] = NULL; |
| 144 | } |
| 145 | } |
| 146 | |
| 147 | /** |
| 148 | * frees all the memory allocated |
| 149 | * |
| 150 | * @param ptr pointer to "xhci_ctrl" to be cleaned up |
| 151 | * @return none |
| 152 | */ |
| 153 | void xhci_cleanup(struct xhci_ctrl *ctrl) |
| 154 | { |
| 155 | xhci_ring_free(ctrl->event_ring); |
| 156 | xhci_ring_free(ctrl->cmd_ring); |
| 157 | xhci_free_virt_devices(ctrl); |
| 158 | free(ctrl->erst.entries); |
| 159 | free(ctrl->dcbaa); |
| 160 | memset(ctrl, '\0', sizeof(struct xhci_ctrl)); |
| 161 | } |
| 162 | |
| 163 | /** |
| 164 | * Malloc the aligned memory |
| 165 | * |
| 166 | * @param size size of memory to be allocated |
| 167 | * @return allocates the memory and returns the aligned pointer |
| 168 | */ |
| 169 | static void *xhci_malloc(unsigned int size) |
| 170 | { |
| 171 | void *ptr; |
| 172 | size_t cacheline_size = max(XHCI_ALIGNMENT, CACHELINE_SIZE); |
| 173 | |
| 174 | ptr = memalign(cacheline_size, ALIGN(size, cacheline_size)); |
| 175 | BUG_ON(!ptr); |
| 176 | memset(ptr, '\0', size); |
| 177 | |
| 178 | xhci_flush_cache((uint32_t)ptr, size); |
| 179 | |
| 180 | return ptr; |
| 181 | } |
| 182 | |
| 183 | /** |
| 184 | * Make the prev segment point to the next segment. |
| 185 | * Change the last TRB in the prev segment to be a Link TRB which points to the |
| 186 | * address of the next segment. The caller needs to set any Link TRB |
| 187 | * related flags, such as End TRB, Toggle Cycle, and no snoop. |
| 188 | * |
| 189 | * @param prev pointer to the previous segment |
| 190 | * @param next pointer to the next segment |
| 191 | * @param link_trbs flag to indicate whether to link the trbs or NOT |
| 192 | * @return none |
| 193 | */ |
| 194 | static void xhci_link_segments(struct xhci_segment *prev, |
| 195 | struct xhci_segment *next, bool link_trbs) |
| 196 | { |
| 197 | u32 val; |
| 198 | u64 val_64 = 0; |
| 199 | |
| 200 | if (!prev || !next) |
| 201 | return; |
| 202 | prev->next = next; |
| 203 | if (link_trbs) { |
| 204 | val_64 = (uintptr_t)next->trbs; |
| 205 | prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr = val_64; |
| 206 | |
| 207 | /* |
| 208 | * Set the last TRB in the segment to |
| 209 | * have a TRB type ID of Link TRB |
| 210 | */ |
| 211 | val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control); |
| 212 | val &= ~TRB_TYPE_BITMASK; |
| 213 | val |= (TRB_LINK << TRB_TYPE_SHIFT); |
| 214 | |
| 215 | prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val); |
| 216 | } |
| 217 | } |
| 218 | |
| 219 | /** |
| 220 | * Initialises the Ring's enqueue,dequeue,enq_seg pointers |
| 221 | * |
| 222 | * @param ring pointer to the RING to be intialised |
| 223 | * @return none |
| 224 | */ |
| 225 | static void xhci_initialize_ring_info(struct xhci_ring *ring) |
| 226 | { |
| 227 | /* |
| 228 | * The ring is empty, so the enqueue pointer == dequeue pointer |
| 229 | */ |
| 230 | ring->enqueue = ring->first_seg->trbs; |
| 231 | ring->enq_seg = ring->first_seg; |
| 232 | ring->dequeue = ring->enqueue; |
| 233 | ring->deq_seg = ring->first_seg; |
| 234 | |
| 235 | /* |
| 236 | * The ring is initialized to 0. The producer must write 1 to the |
| 237 | * cycle bit to handover ownership of the TRB, so PCS = 1. |
| 238 | * The consumer must compare CCS to the cycle bit to |
| 239 | * check ownership, so CCS = 1. |
| 240 | */ |
| 241 | ring->cycle_state = 1; |
| 242 | } |
| 243 | |
| 244 | /** |
| 245 | * Allocates a generic ring segment from the ring pool, sets the dma address, |
| 246 | * initializes the segment to zero, and sets the private next pointer to NULL. |
| 247 | * Section 4.11.1.1: |
| 248 | * "All components of all Command and Transfer TRBs shall be initialized to '0'" |
| 249 | * |
| 250 | * @param none |
| 251 | * @return pointer to the newly allocated SEGMENT |
| 252 | */ |
| 253 | static struct xhci_segment *xhci_segment_alloc(void) |
| 254 | { |
| 255 | struct xhci_segment *seg; |
| 256 | |
| 257 | seg = (struct xhci_segment *)malloc(sizeof(struct xhci_segment)); |
| 258 | BUG_ON(!seg); |
| 259 | |
| 260 | seg->trbs = (union xhci_trb *)xhci_malloc(SEGMENT_SIZE); |
| 261 | |
| 262 | seg->next = NULL; |
| 263 | |
| 264 | return seg; |
| 265 | } |
| 266 | |
| 267 | /** |
| 268 | * Create a new ring with zero or more segments. |
| 269 | * TODO: current code only uses one-time-allocated single-segment rings |
| 270 | * of 1KB anyway, so we might as well get rid of all the segment and |
| 271 | * linking code (and maybe increase the size a bit, e.g. 4KB). |
| 272 | * |
| 273 | * |
| 274 | * Link each segment together into a ring. |
| 275 | * Set the end flag and the cycle toggle bit on the last segment. |
| 276 | * See section 4.9.2 and figures 15 and 16 of XHCI spec rev1.0. |
| 277 | * |
| 278 | * @param num_segs number of segments in the ring |
| 279 | * @param link_trbs flag to indicate whether to link the trbs or NOT |
| 280 | * @return pointer to the newly created RING |
| 281 | */ |
| 282 | struct xhci_ring *xhci_ring_alloc(unsigned int num_segs, bool link_trbs) |
| 283 | { |
| 284 | struct xhci_ring *ring; |
| 285 | struct xhci_segment *prev; |
| 286 | |
| 287 | ring = (struct xhci_ring *)malloc(sizeof(struct xhci_ring)); |
| 288 | BUG_ON(!ring); |
| 289 | |
| 290 | if (num_segs == 0) |
| 291 | return ring; |
| 292 | |
| 293 | ring->first_seg = xhci_segment_alloc(); |
| 294 | BUG_ON(!ring->first_seg); |
| 295 | |
| 296 | num_segs--; |
| 297 | |
| 298 | prev = ring->first_seg; |
| 299 | while (num_segs > 0) { |
| 300 | struct xhci_segment *next; |
| 301 | |
| 302 | next = xhci_segment_alloc(); |
| 303 | BUG_ON(!next); |
| 304 | |
| 305 | xhci_link_segments(prev, next, link_trbs); |
| 306 | |
| 307 | prev = next; |
| 308 | num_segs--; |
| 309 | } |
| 310 | xhci_link_segments(prev, ring->first_seg, link_trbs); |
| 311 | if (link_trbs) { |
| 312 | /* See section 4.9.2.1 and 6.4.4.1 */ |
| 313 | prev->trbs[TRBS_PER_SEGMENT-1].link.control |= |
| 314 | cpu_to_le32(LINK_TOGGLE); |
| 315 | } |
| 316 | xhci_initialize_ring_info(ring); |
| 317 | |
| 318 | return ring; |
| 319 | } |
| 320 | |
| 321 | /** |
| 322 | * Allocates the Container context |
| 323 | * |
| 324 | * @param ctrl Host controller data structure |
| 325 | * @param type type of XHCI Container Context |
| 326 | * @return NULL if failed else pointer to the context on success |
| 327 | */ |
| 328 | static struct xhci_container_ctx |
| 329 | *xhci_alloc_container_ctx(struct xhci_ctrl *ctrl, int type) |
| 330 | { |
| 331 | struct xhci_container_ctx *ctx; |
| 332 | |
| 333 | ctx = (struct xhci_container_ctx *) |
| 334 | malloc(sizeof(struct xhci_container_ctx)); |
| 335 | BUG_ON(!ctx); |
| 336 | |
| 337 | BUG_ON((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT)); |
| 338 | ctx->type = type; |
| 339 | ctx->size = (MAX_EP_CTX_NUM + 1) * |
| 340 | CTX_SIZE(readl(&ctrl->hccr->cr_hccparams)); |
| 341 | if (type == XHCI_CTX_TYPE_INPUT) |
| 342 | ctx->size += CTX_SIZE(readl(&ctrl->hccr->cr_hccparams)); |
| 343 | |
| 344 | ctx->bytes = (u8 *)xhci_malloc(ctx->size); |
| 345 | |
| 346 | return ctx; |
| 347 | } |
| 348 | |
| 349 | /** |
| 350 | * Allocating virtual device |
| 351 | * |
| 352 | * @param udev pointer to USB deivce structure |
| 353 | * @return 0 on success else -1 on failure |
| 354 | */ |
| 355 | int xhci_alloc_virt_device(struct usb_device *udev) |
| 356 | { |
| 357 | u64 byte_64 = 0; |
| 358 | unsigned int slot_id = udev->slot_id; |
| 359 | struct xhci_virt_device *virt_dev; |
| 360 | struct xhci_ctrl *ctrl = udev->controller; |
| 361 | |
| 362 | /* Slot ID 0 is reserved */ |
| 363 | if (ctrl->devs[slot_id]) { |
| 364 | printf("Virt dev for slot[%d] already allocated\n", slot_id); |
| 365 | return -EEXIST; |
| 366 | } |
| 367 | |
| 368 | ctrl->devs[slot_id] = (struct xhci_virt_device *) |
| 369 | malloc(sizeof(struct xhci_virt_device)); |
| 370 | |
| 371 | if (!ctrl->devs[slot_id]) { |
| 372 | puts("Failed to allocate virtual device\n"); |
| 373 | return -ENOMEM; |
| 374 | } |
| 375 | |
| 376 | memset(ctrl->devs[slot_id], 0, sizeof(struct xhci_virt_device)); |
| 377 | virt_dev = ctrl->devs[slot_id]; |
| 378 | |
| 379 | /* Allocate the (output) device context that will be used in the HC. */ |
| 380 | virt_dev->out_ctx = xhci_alloc_container_ctx(ctrl, |
| 381 | XHCI_CTX_TYPE_DEVICE); |
| 382 | if (!virt_dev->out_ctx) { |
| 383 | puts("Failed to allocate out context for virt dev\n"); |
| 384 | return -ENOMEM; |
| 385 | } |
| 386 | |
| 387 | /* Allocate the (input) device context for address device command */ |
| 388 | virt_dev->in_ctx = xhci_alloc_container_ctx(ctrl, |
| 389 | XHCI_CTX_TYPE_INPUT); |
| 390 | if (!virt_dev->in_ctx) { |
| 391 | puts("Failed to allocate in context for virt dev\n"); |
| 392 | return -ENOMEM; |
| 393 | } |
| 394 | |
| 395 | /* Allocate endpoint 0 ring */ |
| 396 | virt_dev->eps[0].ring = xhci_ring_alloc(1, true); |
| 397 | |
| 398 | byte_64 = (uintptr_t)(virt_dev->out_ctx->bytes); |
| 399 | |
| 400 | /* Point to output device context in dcbaa. */ |
| 401 | ctrl->dcbaa->dev_context_ptrs[slot_id] = byte_64; |
| 402 | |
| 403 | xhci_flush_cache((uint32_t)&ctrl->dcbaa->dev_context_ptrs[slot_id], |
| 404 | sizeof(__le64)); |
| 405 | return 0; |
| 406 | } |
| 407 | |
| 408 | /** |
| 409 | * Allocates the necessary data structures |
| 410 | * for XHCI host controller |
| 411 | * |
| 412 | * @param ctrl Host controller data structure |
| 413 | * @param hccr pointer to HOST Controller Control Registers |
| 414 | * @param hcor pointer to HOST Controller Operational Registers |
| 415 | * @return 0 if successful else -1 on failure |
| 416 | */ |
| 417 | int xhci_mem_init(struct xhci_ctrl *ctrl, struct xhci_hccr *hccr, |
| 418 | struct xhci_hcor *hcor) |
| 419 | { |
| 420 | uint64_t val_64; |
| 421 | uint64_t trb_64; |
| 422 | uint32_t val; |
| 423 | unsigned long deq; |
| 424 | int i; |
| 425 | struct xhci_segment *seg; |
| 426 | |
| 427 | /* DCBAA initialization */ |
| 428 | ctrl->dcbaa = (struct xhci_device_context_array *) |
| 429 | xhci_malloc(sizeof(struct xhci_device_context_array)); |
| 430 | if (ctrl->dcbaa == NULL) { |
| 431 | puts("unable to allocate DCBA\n"); |
| 432 | return -ENOMEM; |
| 433 | } |
| 434 | |
| 435 | val_64 = (uintptr_t)ctrl->dcbaa; |
| 436 | /* Set the pointer in DCBAA register */ |
| 437 | xhci_writeq(&hcor->or_dcbaap, val_64); |
| 438 | |
| 439 | /* Command ring control pointer register initialization */ |
| 440 | ctrl->cmd_ring = xhci_ring_alloc(1, true); |
| 441 | |
| 442 | /* Set the address in the Command Ring Control register */ |
| 443 | trb_64 = (uintptr_t)ctrl->cmd_ring->first_seg->trbs; |
| 444 | val_64 = xhci_readq(&hcor->or_crcr); |
| 445 | val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) | |
| 446 | (trb_64 & (u64) ~CMD_RING_RSVD_BITS) | |
| 447 | ctrl->cmd_ring->cycle_state; |
| 448 | xhci_writeq(&hcor->or_crcr, val_64); |
| 449 | |
| 450 | /* write the address of db register */ |
| 451 | val = xhci_readl(&hccr->cr_dboff); |
| 452 | val &= DBOFF_MASK; |
| 453 | ctrl->dba = (struct xhci_doorbell_array *)((char *)hccr + val); |
| 454 | |
| 455 | /* write the address of runtime register */ |
| 456 | val = xhci_readl(&hccr->cr_rtsoff); |
| 457 | val &= RTSOFF_MASK; |
| 458 | ctrl->run_regs = (struct xhci_run_regs *)((char *)hccr + val); |
| 459 | |
| 460 | /* writting the address of ir_set structure */ |
| 461 | ctrl->ir_set = &ctrl->run_regs->ir_set[0]; |
| 462 | |
| 463 | /* Event ring does not maintain link TRB */ |
| 464 | ctrl->event_ring = xhci_ring_alloc(ERST_NUM_SEGS, false); |
| 465 | ctrl->erst.entries = (struct xhci_erst_entry *) |
| 466 | xhci_malloc(sizeof(struct xhci_erst_entry) * ERST_NUM_SEGS); |
| 467 | |
| 468 | ctrl->erst.num_entries = ERST_NUM_SEGS; |
| 469 | |
| 470 | for (val = 0, seg = ctrl->event_ring->first_seg; |
| 471 | val < ERST_NUM_SEGS; |
| 472 | val++) { |
| 473 | trb_64 = 0; |
| 474 | trb_64 = (uintptr_t)seg->trbs; |
| 475 | struct xhci_erst_entry *entry = &ctrl->erst.entries[val]; |
| 476 | xhci_writeq(&entry->seg_addr, trb_64); |
| 477 | entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT); |
| 478 | entry->rsvd = 0; |
| 479 | seg = seg->next; |
| 480 | } |
| 481 | xhci_flush_cache((uint32_t)ctrl->erst.entries, |
| 482 | ERST_NUM_SEGS * sizeof(struct xhci_erst_entry)); |
| 483 | |
| 484 | deq = (unsigned long)ctrl->event_ring->dequeue; |
| 485 | |
| 486 | /* Update HC event ring dequeue pointer */ |
| 487 | xhci_writeq(&ctrl->ir_set->erst_dequeue, |
| 488 | (u64)deq & (u64)~ERST_PTR_MASK); |
| 489 | |
| 490 | /* set ERST count with the number of entries in the segment table */ |
| 491 | val = xhci_readl(&ctrl->ir_set->erst_size); |
| 492 | val &= ERST_SIZE_MASK; |
| 493 | val |= ERST_NUM_SEGS; |
| 494 | xhci_writel(&ctrl->ir_set->erst_size, val); |
| 495 | |
| 496 | /* this is the event ring segment table pointer */ |
| 497 | val_64 = xhci_readq(&ctrl->ir_set->erst_base); |
| 498 | val_64 &= ERST_PTR_MASK; |
| 499 | val_64 |= ((u32)(ctrl->erst.entries) & ~ERST_PTR_MASK); |
| 500 | |
| 501 | xhci_writeq(&ctrl->ir_set->erst_base, val_64); |
| 502 | |
| 503 | /* initializing the virtual devices to NULL */ |
| 504 | for (i = 0; i < MAX_HC_SLOTS; ++i) |
| 505 | ctrl->devs[i] = NULL; |
| 506 | |
| 507 | /* |
| 508 | * Just Zero'ing this register completely, |
| 509 | * or some spurious Device Notification Events |
| 510 | * might screw things here. |
| 511 | */ |
| 512 | xhci_writel(&hcor->or_dnctrl, 0x0); |
| 513 | |
| 514 | return 0; |
| 515 | } |
| 516 | |
| 517 | /** |
| 518 | * Give the input control context for the passed container context |
| 519 | * |
| 520 | * @param ctx pointer to the context |
| 521 | * @return pointer to the Input control context data |
| 522 | */ |
| 523 | struct xhci_input_control_ctx |
| 524 | *xhci_get_input_control_ctx(struct xhci_container_ctx *ctx) |
| 525 | { |
| 526 | BUG_ON(ctx->type != XHCI_CTX_TYPE_INPUT); |
| 527 | return (struct xhci_input_control_ctx *)ctx->bytes; |
| 528 | } |
| 529 | |
| 530 | /** |
| 531 | * Give the slot context for the passed container context |
| 532 | * |
| 533 | * @param ctrl Host controller data structure |
| 534 | * @param ctx pointer to the context |
| 535 | * @return pointer to the slot control context data |
| 536 | */ |
| 537 | struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_ctrl *ctrl, |
| 538 | struct xhci_container_ctx *ctx) |
| 539 | { |
| 540 | if (ctx->type == XHCI_CTX_TYPE_DEVICE) |
| 541 | return (struct xhci_slot_ctx *)ctx->bytes; |
| 542 | |
| 543 | return (struct xhci_slot_ctx *) |
| 544 | (ctx->bytes + CTX_SIZE(readl(&ctrl->hccr->cr_hccparams))); |
| 545 | } |
| 546 | |
| 547 | /** |
| 548 | * Gets the EP context from based on the ep_index |
| 549 | * |
| 550 | * @param ctrl Host controller data structure |
| 551 | * @param ctx context container |
| 552 | * @param ep_index index of the endpoint |
| 553 | * @return pointer to the End point context |
| 554 | */ |
| 555 | struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_ctrl *ctrl, |
| 556 | struct xhci_container_ctx *ctx, |
| 557 | unsigned int ep_index) |
| 558 | { |
| 559 | /* increment ep index by offset of start of ep ctx array */ |
| 560 | ep_index++; |
| 561 | if (ctx->type == XHCI_CTX_TYPE_INPUT) |
| 562 | ep_index++; |
| 563 | |
| 564 | return (struct xhci_ep_ctx *) |
| 565 | (ctx->bytes + |
| 566 | (ep_index * CTX_SIZE(readl(&ctrl->hccr->cr_hccparams)))); |
| 567 | } |
| 568 | |
| 569 | /** |
| 570 | * Copy output xhci_ep_ctx to the input xhci_ep_ctx copy. |
| 571 | * Useful when you want to change one particular aspect of the endpoint |
| 572 | * and then issue a configure endpoint command. |
| 573 | * |
| 574 | * @param ctrl Host controller data structure |
| 575 | * @param in_ctx contains the input context |
| 576 | * @param out_ctx contains the input context |
| 577 | * @param ep_index index of the end point |
| 578 | * @return none |
| 579 | */ |
| 580 | void xhci_endpoint_copy(struct xhci_ctrl *ctrl, |
| 581 | struct xhci_container_ctx *in_ctx, |
| 582 | struct xhci_container_ctx *out_ctx, |
| 583 | unsigned int ep_index) |
| 584 | { |
| 585 | struct xhci_ep_ctx *out_ep_ctx; |
| 586 | struct xhci_ep_ctx *in_ep_ctx; |
| 587 | |
| 588 | out_ep_ctx = xhci_get_ep_ctx(ctrl, out_ctx, ep_index); |
| 589 | in_ep_ctx = xhci_get_ep_ctx(ctrl, in_ctx, ep_index); |
| 590 | |
| 591 | in_ep_ctx->ep_info = out_ep_ctx->ep_info; |
| 592 | in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2; |
| 593 | in_ep_ctx->deq = out_ep_ctx->deq; |
| 594 | in_ep_ctx->tx_info = out_ep_ctx->tx_info; |
| 595 | } |
| 596 | |
| 597 | /** |
| 598 | * Copy output xhci_slot_ctx to the input xhci_slot_ctx. |
| 599 | * Useful when you want to change one particular aspect of the endpoint |
| 600 | * and then issue a configure endpoint command. |
| 601 | * Only the context entries field matters, but |
| 602 | * we'll copy the whole thing anyway. |
| 603 | * |
| 604 | * @param ctrl Host controller data structure |
| 605 | * @param in_ctx contains the inpout context |
| 606 | * @param out_ctx contains the inpout context |
| 607 | * @return none |
| 608 | */ |
| 609 | void xhci_slot_copy(struct xhci_ctrl *ctrl, struct xhci_container_ctx *in_ctx, |
| 610 | struct xhci_container_ctx *out_ctx) |
| 611 | { |
| 612 | struct xhci_slot_ctx *in_slot_ctx; |
| 613 | struct xhci_slot_ctx *out_slot_ctx; |
| 614 | |
| 615 | in_slot_ctx = xhci_get_slot_ctx(ctrl, in_ctx); |
| 616 | out_slot_ctx = xhci_get_slot_ctx(ctrl, out_ctx); |
| 617 | |
| 618 | in_slot_ctx->dev_info = out_slot_ctx->dev_info; |
| 619 | in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2; |
| 620 | in_slot_ctx->tt_info = out_slot_ctx->tt_info; |
| 621 | in_slot_ctx->dev_state = out_slot_ctx->dev_state; |
| 622 | } |
| 623 | |
| 624 | /** |
| 625 | * Setup an xHCI virtual device for a Set Address command |
| 626 | * |
| 627 | * @param udev pointer to the Device Data Structure |
| 628 | * @return returns negative value on failure else 0 on success |
| 629 | */ |
| 630 | void xhci_setup_addressable_virt_dev(struct usb_device *udev) |
| 631 | { |
| 632 | struct usb_device *hop = udev; |
| 633 | struct xhci_virt_device *virt_dev; |
| 634 | struct xhci_ep_ctx *ep0_ctx; |
| 635 | struct xhci_slot_ctx *slot_ctx; |
| 636 | u32 port_num = 0; |
| 637 | u64 trb_64 = 0; |
| 638 | struct xhci_ctrl *ctrl = udev->controller; |
| 639 | |
| 640 | virt_dev = ctrl->devs[udev->slot_id]; |
| 641 | |
| 642 | BUG_ON(!virt_dev); |
| 643 | |
| 644 | /* Extract the EP0 and Slot Ctrl */ |
| 645 | ep0_ctx = xhci_get_ep_ctx(ctrl, virt_dev->in_ctx, 0); |
| 646 | slot_ctx = xhci_get_slot_ctx(ctrl, virt_dev->in_ctx); |
| 647 | |
| 648 | /* Only the control endpoint is valid - one endpoint context */ |
| 649 | slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | 0); |
| 650 | |
| 651 | switch (udev->speed) { |
| 652 | case USB_SPEED_SUPER: |
| 653 | slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS); |
| 654 | break; |
| 655 | case USB_SPEED_HIGH: |
| 656 | slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS); |
| 657 | break; |
| 658 | case USB_SPEED_FULL: |
| 659 | slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS); |
| 660 | break; |
| 661 | case USB_SPEED_LOW: |
| 662 | slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS); |
| 663 | break; |
| 664 | default: |
| 665 | /* Speed was set earlier, this shouldn't happen. */ |
| 666 | BUG(); |
| 667 | } |
| 668 | |
| 669 | /* Extract the root hub port number */ |
| 670 | if (hop->parent) |
| 671 | while (hop->parent->parent) |
| 672 | hop = hop->parent; |
| 673 | port_num = hop->portnr; |
| 674 | debug("port_num = %d\n", port_num); |
| 675 | |
| 676 | slot_ctx->dev_info2 |= |
| 677 | cpu_to_le32(((port_num & ROOT_HUB_PORT_MASK) << |
| 678 | ROOT_HUB_PORT_SHIFT)); |
| 679 | |
| 680 | /* Step 4 - ring already allocated */ |
| 681 | /* Step 5 */ |
| 682 | ep0_ctx->ep_info2 = cpu_to_le32(CTRL_EP << EP_TYPE_SHIFT); |
| 683 | debug("SPEED = %d\n", udev->speed); |
| 684 | |
| 685 | switch (udev->speed) { |
| 686 | case USB_SPEED_SUPER: |
| 687 | ep0_ctx->ep_info2 |= cpu_to_le32(((512 & MAX_PACKET_MASK) << |
| 688 | MAX_PACKET_SHIFT)); |
| 689 | debug("Setting Packet size = 512bytes\n"); |
| 690 | break; |
| 691 | case USB_SPEED_HIGH: |
| 692 | /* USB core guesses at a 64-byte max packet first for FS devices */ |
| 693 | case USB_SPEED_FULL: |
| 694 | ep0_ctx->ep_info2 |= cpu_to_le32(((64 & MAX_PACKET_MASK) << |
| 695 | MAX_PACKET_SHIFT)); |
| 696 | debug("Setting Packet size = 64bytes\n"); |
| 697 | break; |
| 698 | case USB_SPEED_LOW: |
| 699 | ep0_ctx->ep_info2 |= cpu_to_le32(((8 & MAX_PACKET_MASK) << |
| 700 | MAX_PACKET_SHIFT)); |
| 701 | debug("Setting Packet size = 8bytes\n"); |
| 702 | break; |
| 703 | default: |
| 704 | /* New speed? */ |
| 705 | BUG(); |
| 706 | } |
| 707 | |
| 708 | /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */ |
| 709 | ep0_ctx->ep_info2 |= |
| 710 | cpu_to_le32(((0 & MAX_BURST_MASK) << MAX_BURST_SHIFT) | |
| 711 | ((3 & ERROR_COUNT_MASK) << ERROR_COUNT_SHIFT)); |
| 712 | |
| 713 | trb_64 = (uintptr_t)virt_dev->eps[0].ring->first_seg->trbs; |
| 714 | ep0_ctx->deq = cpu_to_le64(trb_64 | virt_dev->eps[0].ring->cycle_state); |
| 715 | |
| 716 | /* Steps 7 and 8 were done in xhci_alloc_virt_device() */ |
| 717 | |
| 718 | xhci_flush_cache((uint32_t)ep0_ctx, sizeof(struct xhci_ep_ctx)); |
| 719 | xhci_flush_cache((uint32_t)slot_ctx, sizeof(struct xhci_slot_ctx)); |
| 720 | } |