blob: eec8ab75b9cef0453f717ce61ca2c8211b200ec3 [file] [log] [blame]
Oleksandr Andrushchenko7fd47cc2020-08-06 12:42:46 +03001/* SPDX-License-Identifier: MIT
2 *
3 * xen.h
4 *
5 * Guest OS interface to Xen.
6 *
7 * Copyright (c) 2004, K A Fraser
8 */
9
10#ifndef __XEN_PUBLIC_XEN_H__
11#define __XEN_PUBLIC_XEN_H__
12
13#include <xen/arm/interface.h>
14
15/*
16 * XEN "SYSTEM CALLS" (a.k.a. HYPERCALLS).
17 */
18
19/*
20 * x86_32: EAX = vector; EBX, ECX, EDX, ESI, EDI = args 1, 2, 3, 4, 5.
21 * EAX = return value
22 * (argument registers may be clobbered on return)
23 * x86_64: RAX = vector; RDI, RSI, RDX, R10, R8, R9 = args 1, 2, 3, 4, 5, 6.
24 * RAX = return value
25 * (argument registers not clobbered on return; RCX, R11 are)
26 */
27#define __HYPERVISOR_set_trap_table 0
28#define __HYPERVISOR_mmu_update 1
29#define __HYPERVISOR_set_gdt 2
30#define __HYPERVISOR_stack_switch 3
31#define __HYPERVISOR_set_callbacks 4
32#define __HYPERVISOR_fpu_taskswitch 5
33#define __HYPERVISOR_sched_op_compat 6
34#define __HYPERVISOR_platform_op 7
35#define __HYPERVISOR_set_debugreg 8
36#define __HYPERVISOR_get_debugreg 9
37#define __HYPERVISOR_update_descriptor 10
38#define __HYPERVISOR_memory_op 12
39#define __HYPERVISOR_multicall 13
40#define __HYPERVISOR_update_va_mapping 14
41#define __HYPERVISOR_set_timer_op 15
42#define __HYPERVISOR_event_channel_op_compat 16
43#define __HYPERVISOR_xen_version 17
44#define __HYPERVISOR_console_io 18
45#define __HYPERVISOR_physdev_op_compat 19
46#define __HYPERVISOR_grant_table_op 20
47#define __HYPERVISOR_vm_assist 21
48#define __HYPERVISOR_update_va_mapping_otherdomain 22
49#define __HYPERVISOR_iret 23 /* x86 only */
50#define __HYPERVISOR_vcpu_op 24
51#define __HYPERVISOR_set_segment_base 25 /* x86/64 only */
52#define __HYPERVISOR_mmuext_op 26
53#define __HYPERVISOR_xsm_op 27
54#define __HYPERVISOR_nmi_op 28
55#define __HYPERVISOR_sched_op 29
56#define __HYPERVISOR_callback_op 30
57#define __HYPERVISOR_xenoprof_op 31
58#define __HYPERVISOR_event_channel_op 32
59#define __HYPERVISOR_physdev_op 33
60#define __HYPERVISOR_hvm_op 34
61#define __HYPERVISOR_sysctl 35
62#define __HYPERVISOR_domctl 36
63#define __HYPERVISOR_kexec_op 37
64#define __HYPERVISOR_tmem_op 38
65#define __HYPERVISOR_xc_reserved_op 39 /* reserved for XenClient */
66#define __HYPERVISOR_xenpmu_op 40
67#define __HYPERVISOR_dm_op 41
68
69/* Architecture-specific hypercall definitions. */
70#define __HYPERVISOR_arch_0 48
71#define __HYPERVISOR_arch_1 49
72#define __HYPERVISOR_arch_2 50
73#define __HYPERVISOR_arch_3 51
74#define __HYPERVISOR_arch_4 52
75#define __HYPERVISOR_arch_5 53
76#define __HYPERVISOR_arch_6 54
77#define __HYPERVISOR_arch_7 55
78
79#ifndef __ASSEMBLY__
80
81typedef u16 domid_t;
82
83/* Domain ids >= DOMID_FIRST_RESERVED cannot be used for ordinary domains. */
84#define DOMID_FIRST_RESERVED (0x7FF0U)
85
86/* DOMID_SELF is used in certain contexts to refer to oneself. */
87#define DOMID_SELF (0x7FF0U)
88
89/*
90 * DOMID_IO is used to restrict page-table updates to mapping I/O memory.
91 * Although no Foreign Domain need be specified to map I/O pages, DOMID_IO
92 * is useful to ensure that no mappings to the OS's own heap are accidentally
93 * installed. (e.g., in Linux this could cause havoc as reference counts
94 * aren't adjusted on the I/O-mapping code path).
95 * This only makes sense in MMUEXT_SET_FOREIGNDOM, but in that context can
96 * be specified by any calling domain.
97 */
98#define DOMID_IO (0x7FF1U)
99
100/*
101 * DOMID_XEN is used to allow privileged domains to map restricted parts of
102 * Xen's heap space (e.g., the machine_to_phys table).
103 * This only makes sense in MMUEXT_SET_FOREIGNDOM, and is only permitted if
104 * the caller is privileged.
105 */
106#define DOMID_XEN (0x7FF2U)
107
108/* DOMID_COW is used as the owner of sharable pages */
109#define DOMID_COW (0x7FF3U)
110
111/* DOMID_INVALID is used to identify pages with unknown owner. */
112#define DOMID_INVALID (0x7FF4U)
113
114/* Idle domain. */
115#define DOMID_IDLE (0x7FFFU)
116
117struct vcpu_info {
118 /*
119 * 'evtchn_upcall_pending' is written non-zero by Xen to indicate
120 * a pending notification for a particular VCPU. It is then cleared
121 * by the guest OS /before/ checking for pending work, thus avoiding
122 * a set-and-check race. Note that the mask is only accessed by Xen
123 * on the CPU that is currently hosting the VCPU. This means that the
124 * pending and mask flags can be updated by the guest without special
125 * synchronisation (i.e., no need for the x86 LOCK prefix).
126 * This may seem suboptimal because if the pending flag is set by
127 * a different CPU then an IPI may be scheduled even when the mask
128 * is set. However, note:
129 * 1. The task of 'interrupt holdoff' is covered by the per-event-
130 * channel mask bits. A 'noisy' event that is continually being
131 * triggered can be masked at source at this very precise
132 * granularity.
133 * 2. The main purpose of the per-VCPU mask is therefore to restrict
134 * reentrant execution: whether for concurrency control, or to
135 * prevent unbounded stack usage. Whatever the purpose, we expect
136 * that the mask will be asserted only for short periods at a time,
137 * and so the likelihood of a 'spurious' IPI is suitably small.
138 * The mask is read before making an event upcall to the guest: a
139 * non-zero mask therefore guarantees that the VCPU will not receive
140 * an upcall activation. The mask is cleared when the VCPU requests
141 * to block: this avoids wakeup-waiting races.
142 */
143 u8 evtchn_upcall_pending;
144 u8 evtchn_upcall_mask;
145 xen_ulong_t evtchn_pending_sel;
146 struct arch_vcpu_info arch;
147 struct pvclock_vcpu_time_info time;
148}; /* 64 bytes (x86) */
149
150/*
151 * Xen/kernel shared data -- pointer provided in start_info.
152 * NB. We expect that this struct is smaller than a page.
153 */
154struct shared_info {
155 struct vcpu_info vcpu_info[MAX_VIRT_CPUS];
156
157 /*
158 * A domain can create "event channels" on which it can send and receive
159 * asynchronous event notifications. There are three classes of event that
160 * are delivered by this mechanism:
161 * 1. Bi-directional inter- and intra-domain connections. Domains must
162 * arrange out-of-band to set up a connection (usually by allocating
163 * an unbound 'listener' port and avertising that via a storage service
164 * such as xenstore).
165 * 2. Physical interrupts. A domain with suitable hardware-access
166 * privileges can bind an event-channel port to a physical interrupt
167 * source.
168 * 3. Virtual interrupts ('events'). A domain can bind an event-channel
169 * port to a virtual interrupt source, such as the virtual-timer
170 * device or the emergency console.
171 *
172 * Event channels are addressed by a "port index". Each channel is
173 * associated with two bits of information:
174 * 1. PENDING -- notifies the domain that there is a pending notification
175 * to be processed. This bit is cleared by the guest.
176 * 2. MASK -- if this bit is clear then a 0->1 transition of PENDING
177 * will cause an asynchronous upcall to be scheduled. This bit is only
178 * updated by the guest. It is read-only within Xen. If a channel
179 * becomes pending while the channel is masked then the 'edge' is lost
180 * (i.e., when the channel is unmasked, the guest must manually handle
181 * pending notifications as no upcall will be scheduled by Xen).
182 *
183 * To expedite scanning of pending notifications, any 0->1 pending
184 * transition on an unmasked channel causes a corresponding bit in a
185 * per-vcpu selector word to be set. Each bit in the selector covers a
186 * 'C long' in the PENDING bitfield array.
187 */
188 xen_ulong_t evtchn_pending[sizeof(xen_ulong_t) * 8];
189 xen_ulong_t evtchn_mask[sizeof(xen_ulong_t) * 8];
190
191 /*
192 * Wallclock time: updated only by control software. Guests should base
193 * their gettimeofday() syscall on this wallclock-base value.
194 */
195 struct pvclock_wall_clock wc;
196
197 struct arch_shared_info arch;
198
199};
200
201#else /* __ASSEMBLY__ */
202
203/* In assembly code we cannot use C numeric constant suffixes. */
204#define mk_unsigned_long(x) x
205
206#endif /* !__ASSEMBLY__ */
207
208#endif /* __XEN_PUBLIC_XEN_H__ */