Jimmy Zhang | 5983ef8 | 2012-04-02 13:18:52 +0000 | [diff] [blame] | 1 | /* |
| 2 | * Copyright (c) 2011 The Chromium OS Authors. |
| 3 | * |
Wolfgang Denk | d79de1d | 2013-07-08 09:37:19 +0200 | [diff] [blame] | 4 | * SPDX-License-Identifier: GPL-2.0+ |
Jimmy Zhang | 5983ef8 | 2012-04-02 13:18:52 +0000 | [diff] [blame] | 5 | */ |
| 6 | |
| 7 | #include <common.h> |
| 8 | #include <fdtdec.h> |
| 9 | #include <asm/io.h> |
Tom Warren | ab37196 | 2012-09-19 15:50:56 -0700 | [diff] [blame] | 10 | #include <asm/arch-tegra/ap.h> |
Stephen Warren | fdb906f | 2014-03-21 12:28:53 -0600 | [diff] [blame] | 11 | #include <asm/arch-tegra/apb_misc.h> |
Jimmy Zhang | 5983ef8 | 2012-04-02 13:18:52 +0000 | [diff] [blame] | 12 | #include <asm/arch/clock.h> |
| 13 | #include <asm/arch/emc.h> |
Tom Warren | ab37196 | 2012-09-19 15:50:56 -0700 | [diff] [blame] | 14 | #include <asm/arch/tegra.h> |
Jimmy Zhang | 5983ef8 | 2012-04-02 13:18:52 +0000 | [diff] [blame] | 15 | |
| 16 | /* |
| 17 | * The EMC registers have shadow registers. When the EMC clock is updated |
| 18 | * in the clock controller, the shadow registers are copied to the active |
| 19 | * registers, allowing glitchless memory bus frequency changes. |
| 20 | * This function updates the shadow registers for a new clock frequency, |
| 21 | * and relies on the clock lock on the emc clock to avoid races between |
| 22 | * multiple frequency changes |
| 23 | */ |
| 24 | |
| 25 | /* |
| 26 | * This table defines the ordering of the registers provided to |
| 27 | * tegra_set_mmc() |
| 28 | * TODO: Convert to fdt version once available |
| 29 | */ |
| 30 | static const unsigned long emc_reg_addr[TEGRA_EMC_NUM_REGS] = { |
| 31 | 0x2c, /* RC */ |
| 32 | 0x30, /* RFC */ |
| 33 | 0x34, /* RAS */ |
| 34 | 0x38, /* RP */ |
| 35 | 0x3c, /* R2W */ |
| 36 | 0x40, /* W2R */ |
| 37 | 0x44, /* R2P */ |
| 38 | 0x48, /* W2P */ |
| 39 | 0x4c, /* RD_RCD */ |
| 40 | 0x50, /* WR_RCD */ |
| 41 | 0x54, /* RRD */ |
| 42 | 0x58, /* REXT */ |
| 43 | 0x5c, /* WDV */ |
| 44 | 0x60, /* QUSE */ |
| 45 | 0x64, /* QRST */ |
| 46 | 0x68, /* QSAFE */ |
| 47 | 0x6c, /* RDV */ |
| 48 | 0x70, /* REFRESH */ |
| 49 | 0x74, /* BURST_REFRESH_NUM */ |
| 50 | 0x78, /* PDEX2WR */ |
| 51 | 0x7c, /* PDEX2RD */ |
| 52 | 0x80, /* PCHG2PDEN */ |
| 53 | 0x84, /* ACT2PDEN */ |
| 54 | 0x88, /* AR2PDEN */ |
| 55 | 0x8c, /* RW2PDEN */ |
| 56 | 0x90, /* TXSR */ |
| 57 | 0x94, /* TCKE */ |
| 58 | 0x98, /* TFAW */ |
| 59 | 0x9c, /* TRPAB */ |
| 60 | 0xa0, /* TCLKSTABLE */ |
| 61 | 0xa4, /* TCLKSTOP */ |
| 62 | 0xa8, /* TREFBW */ |
| 63 | 0xac, /* QUSE_EXTRA */ |
| 64 | 0x114, /* FBIO_CFG6 */ |
| 65 | 0xb0, /* ODT_WRITE */ |
| 66 | 0xb4, /* ODT_READ */ |
| 67 | 0x104, /* FBIO_CFG5 */ |
| 68 | 0x2bc, /* CFG_DIG_DLL */ |
| 69 | 0x2c0, /* DLL_XFORM_DQS */ |
| 70 | 0x2c4, /* DLL_XFORM_QUSE */ |
| 71 | 0x2e0, /* ZCAL_REF_CNT */ |
| 72 | 0x2e4, /* ZCAL_WAIT_CNT */ |
| 73 | 0x2a8, /* AUTO_CAL_INTERVAL */ |
| 74 | 0x2d0, /* CFG_CLKTRIM_0 */ |
| 75 | 0x2d4, /* CFG_CLKTRIM_1 */ |
| 76 | 0x2d8, /* CFG_CLKTRIM_2 */ |
| 77 | }; |
| 78 | |
| 79 | struct emc_ctlr *emc_get_controller(const void *blob) |
| 80 | { |
| 81 | fdt_addr_t addr; |
| 82 | int node; |
| 83 | |
| 84 | node = fdtdec_next_compatible(blob, 0, COMPAT_NVIDIA_TEGRA20_EMC); |
| 85 | if (node > 0) { |
| 86 | addr = fdtdec_get_addr(blob, node, "reg"); |
| 87 | if (addr != FDT_ADDR_T_NONE) |
| 88 | return (struct emc_ctlr *)addr; |
| 89 | } |
| 90 | return NULL; |
| 91 | } |
| 92 | |
| 93 | /* Error codes we use */ |
| 94 | enum { |
| 95 | ERR_NO_EMC_NODE = -10, |
| 96 | ERR_NO_EMC_REG, |
| 97 | ERR_NO_FREQ, |
| 98 | ERR_FREQ_NOT_FOUND, |
| 99 | ERR_BAD_REGS, |
| 100 | ERR_NO_RAM_CODE, |
| 101 | ERR_RAM_CODE_NOT_FOUND, |
| 102 | }; |
| 103 | |
| 104 | /** |
| 105 | * Find EMC tables for the given ram code. |
| 106 | * |
| 107 | * The tegra EMC binding has two options, one using the ram code and one not. |
| 108 | * We detect which is in use by looking for the nvidia,use-ram-code property. |
| 109 | * If this is not present, then the EMC tables are directly below 'node', |
| 110 | * otherwise we select the correct emc-tables subnode based on the 'ram_code' |
| 111 | * value. |
| 112 | * |
| 113 | * @param blob Device tree blob |
| 114 | * @param node EMC node (nvidia,tegra20-emc compatible string) |
| 115 | * @param ram_code RAM code to select (0-3, or -1 if unknown) |
| 116 | * @return 0 if ok, otherwise a -ve ERR_ code (see enum above) |
| 117 | */ |
| 118 | static int find_emc_tables(const void *blob, int node, int ram_code) |
| 119 | { |
| 120 | int need_ram_code; |
| 121 | int depth; |
| 122 | int offset; |
| 123 | |
| 124 | /* If we are using RAM codes, scan through the tables for our code */ |
| 125 | need_ram_code = fdtdec_get_bool(blob, node, "nvidia,use-ram-code"); |
| 126 | if (!need_ram_code) |
| 127 | return node; |
| 128 | if (ram_code == -1) { |
| 129 | debug("%s: RAM code required but not supplied\n", __func__); |
| 130 | return ERR_NO_RAM_CODE; |
| 131 | } |
| 132 | |
| 133 | offset = node; |
| 134 | depth = 0; |
| 135 | do { |
| 136 | /* |
| 137 | * Sadly there is no compatible string so we cannot use |
| 138 | * fdtdec_next_compatible_subnode(). |
| 139 | */ |
| 140 | offset = fdt_next_node(blob, offset, &depth); |
| 141 | if (depth <= 0) |
| 142 | break; |
| 143 | |
| 144 | /* Make sure this is a direct subnode */ |
| 145 | if (depth != 1) |
| 146 | continue; |
| 147 | if (strcmp("emc-tables", fdt_get_name(blob, offset, NULL))) |
| 148 | continue; |
| 149 | |
| 150 | if (fdtdec_get_int(blob, offset, "nvidia,ram-code", -1) |
| 151 | == ram_code) |
| 152 | return offset; |
| 153 | } while (1); |
| 154 | |
| 155 | debug("%s: Could not find tables for RAM code %d\n", __func__, |
| 156 | ram_code); |
| 157 | return ERR_RAM_CODE_NOT_FOUND; |
| 158 | } |
| 159 | |
| 160 | /** |
| 161 | * Decode the EMC node of the device tree, returning a pointer to the emc |
| 162 | * controller and the table to be used for the given rate. |
| 163 | * |
| 164 | * @param blob Device tree blob |
| 165 | * @param rate Clock speed of memory controller in Hz (=2x memory bus rate) |
| 166 | * @param emcp Returns address of EMC controller registers |
| 167 | * @param tablep Returns pointer to table to program into EMC. There are |
| 168 | * TEGRA_EMC_NUM_REGS entries, destined for offsets as per the |
| 169 | * emc_reg_addr array. |
| 170 | * @return 0 if ok, otherwise a -ve error code which will allow someone to |
| 171 | * figure out roughly what went wrong by looking at this code. |
| 172 | */ |
| 173 | static int decode_emc(const void *blob, unsigned rate, struct emc_ctlr **emcp, |
| 174 | const u32 **tablep) |
| 175 | { |
| 176 | struct apb_misc_pp_ctlr *pp = |
| 177 | (struct apb_misc_pp_ctlr *)NV_PA_APB_MISC_BASE; |
| 178 | int ram_code; |
| 179 | int depth; |
| 180 | int node; |
| 181 | |
| 182 | ram_code = (readl(&pp->strapping_opt_a) & RAM_CODE_MASK) |
| 183 | >> RAM_CODE_SHIFT; |
| 184 | /* |
| 185 | * The EMC clock rate is twice the bus rate, and the bus rate is |
| 186 | * measured in kHz |
| 187 | */ |
| 188 | rate = rate / 2 / 1000; |
| 189 | |
| 190 | node = fdtdec_next_compatible(blob, 0, COMPAT_NVIDIA_TEGRA20_EMC); |
| 191 | if (node < 0) { |
| 192 | debug("%s: No EMC node found in FDT\n", __func__); |
| 193 | return ERR_NO_EMC_NODE; |
| 194 | } |
| 195 | *emcp = (struct emc_ctlr *)fdtdec_get_addr(blob, node, "reg"); |
| 196 | if (*emcp == (struct emc_ctlr *)FDT_ADDR_T_NONE) { |
| 197 | debug("%s: No EMC node reg property\n", __func__); |
| 198 | return ERR_NO_EMC_REG; |
| 199 | } |
| 200 | |
| 201 | /* Work out the parent node which contains our EMC tables */ |
| 202 | node = find_emc_tables(blob, node, ram_code & 3); |
| 203 | if (node < 0) |
| 204 | return node; |
| 205 | |
| 206 | depth = 0; |
| 207 | for (;;) { |
| 208 | int node_rate; |
| 209 | |
| 210 | node = fdtdec_next_compatible_subnode(blob, node, |
| 211 | COMPAT_NVIDIA_TEGRA20_EMC_TABLE, &depth); |
| 212 | if (node < 0) |
| 213 | break; |
| 214 | node_rate = fdtdec_get_int(blob, node, "clock-frequency", -1); |
| 215 | if (node_rate == -1) { |
| 216 | debug("%s: Missing clock-frequency\n", __func__); |
| 217 | return ERR_NO_FREQ; /* we expect this property */ |
| 218 | } |
| 219 | |
| 220 | if (node_rate == rate) |
| 221 | break; |
| 222 | } |
| 223 | if (node < 0) { |
| 224 | debug("%s: No node found for clock frequency %d\n", __func__, |
| 225 | rate); |
| 226 | return ERR_FREQ_NOT_FOUND; |
| 227 | } |
| 228 | |
| 229 | *tablep = fdtdec_locate_array(blob, node, "nvidia,emc-registers", |
| 230 | TEGRA_EMC_NUM_REGS); |
| 231 | if (!*tablep) { |
| 232 | debug("%s: node '%s' array missing / wrong size\n", __func__, |
| 233 | fdt_get_name(blob, node, NULL)); |
| 234 | return ERR_BAD_REGS; |
| 235 | } |
| 236 | |
| 237 | /* All seems well */ |
| 238 | return 0; |
| 239 | } |
| 240 | |
| 241 | int tegra_set_emc(const void *blob, unsigned rate) |
| 242 | { |
| 243 | struct emc_ctlr *emc; |
Allen Martin | ec356ed | 2012-10-19 21:18:03 +0000 | [diff] [blame] | 244 | const u32 *table = NULL; |
Jimmy Zhang | 5983ef8 | 2012-04-02 13:18:52 +0000 | [diff] [blame] | 245 | int err, i; |
| 246 | |
| 247 | err = decode_emc(blob, rate, &emc, &table); |
| 248 | if (err) { |
| 249 | debug("Warning: no valid EMC (%d), memory timings unset\n", |
| 250 | err); |
| 251 | return err; |
| 252 | } |
| 253 | |
| 254 | debug("%s: Table found, setting EMC values as follows:\n", __func__); |
| 255 | for (i = 0; i < TEGRA_EMC_NUM_REGS; i++) { |
| 256 | u32 value = fdt32_to_cpu(table[i]); |
| 257 | u32 addr = (uintptr_t)emc + emc_reg_addr[i]; |
| 258 | |
| 259 | debug(" %#x: %#x\n", addr, value); |
| 260 | writel(value, addr); |
| 261 | } |
| 262 | |
| 263 | /* trigger emc with new settings */ |
| 264 | clock_adjust_periph_pll_div(PERIPH_ID_EMC, CLOCK_ID_MEMORY, |
| 265 | clock_get_rate(CLOCK_ID_MEMORY), NULL); |
| 266 | debug("EMC clock set to %lu\n", |
| 267 | clock_get_periph_rate(PERIPH_ID_EMC, CLOCK_ID_MEMORY)); |
| 268 | |
| 269 | return 0; |
| 270 | } |