Vipin KUMAR | a4f5ec6 | 2010-01-15 19:15:47 +0530 | [diff] [blame] | 1 | /* |
| 2 | * Based on drivers/usb/gadget/omap1510_udc.c |
| 3 | * TI OMAP1510 USB bus interface driver |
| 4 | * |
| 5 | * (C) Copyright 2009 |
| 6 | * Vipin Kumar, ST Micoelectronics, vipin.kumar@st.com. |
| 7 | * |
| 8 | * See file CREDITS for list of people who contributed to this |
| 9 | * project. |
| 10 | * |
| 11 | * This program is free software; you can redistribute it and/or |
| 12 | * modify it under the terms of the GNU General Public License as |
| 13 | * published by the Free Software Foundation; either version 2 of |
| 14 | * the License, or (at your option) any later version. |
| 15 | * |
| 16 | * This program is distributed in the hope that it will be useful, |
| 17 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 18 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 19 | * GNU General Public License for more details. |
| 20 | * |
| 21 | * You should have received a copy of the GNU General Public License |
| 22 | * along with this program; if not, write to the Free Software |
| 23 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, |
| 24 | * MA 02111-1307 USA |
| 25 | */ |
| 26 | |
| 27 | #include <common.h> |
| 28 | #include <asm/io.h> |
| 29 | |
| 30 | #include <usbdevice.h> |
| 31 | #include "ep0.h" |
| 32 | #include <usb/spr_udc.h> |
| 33 | #include <asm/arch/hardware.h> |
| 34 | #include <asm/arch/spr_misc.h> |
| 35 | |
| 36 | #define UDC_INIT_MDELAY 80 /* Device settle delay */ |
| 37 | |
| 38 | /* Some kind of debugging output... */ |
| 39 | #ifndef DEBUG_SPRUSBTTY |
| 40 | #define UDCDBG(str) |
| 41 | #define UDCDBGA(fmt, args...) |
| 42 | #else |
| 43 | #define UDCDBG(str) serial_printf(str "\n") |
| 44 | #define UDCDBGA(fmt, args...) serial_printf(fmt "\n", ##args) |
| 45 | #endif |
| 46 | |
| 47 | static struct urb *ep0_urb; |
| 48 | static struct usb_device_instance *udc_device; |
| 49 | |
| 50 | static struct plug_regs *const plug_regs_p = |
| 51 | (struct plug_regs * const)CONFIG_SYS_PLUG_BASE; |
| 52 | static struct udc_regs *const udc_regs_p = |
| 53 | (struct udc_regs * const)CONFIG_SYS_USBD_BASE; |
| 54 | static struct udc_endp_regs *const outep_regs_p = |
| 55 | &((struct udc_regs * const)CONFIG_SYS_USBD_BASE)->out_regs[0]; |
| 56 | static struct udc_endp_regs *const inep_regs_p = |
| 57 | &((struct udc_regs * const)CONFIG_SYS_USBD_BASE)->in_regs[0]; |
| 58 | |
| 59 | /* |
| 60 | * udc_state_transition - Write the next packet to TxFIFO. |
| 61 | * @initial: Initial state. |
| 62 | * @final: Final state. |
| 63 | * |
| 64 | * Helper function to implement device state changes. The device states and |
| 65 | * the events that transition between them are: |
| 66 | * |
| 67 | * STATE_ATTACHED |
| 68 | * || /\ |
| 69 | * \/ || |
| 70 | * DEVICE_HUB_CONFIGURED DEVICE_HUB_RESET |
| 71 | * || /\ |
| 72 | * \/ || |
| 73 | * STATE_POWERED |
| 74 | * || /\ |
| 75 | * \/ || |
| 76 | * DEVICE_RESET DEVICE_POWER_INTERRUPTION |
| 77 | * || /\ |
| 78 | * \/ || |
| 79 | * STATE_DEFAULT |
| 80 | * || /\ |
| 81 | * \/ || |
| 82 | * DEVICE_ADDRESS_ASSIGNED DEVICE_RESET |
| 83 | * || /\ |
| 84 | * \/ || |
| 85 | * STATE_ADDRESSED |
| 86 | * || /\ |
| 87 | * \/ || |
| 88 | * DEVICE_CONFIGURED DEVICE_DE_CONFIGURED |
| 89 | * || /\ |
| 90 | * \/ || |
| 91 | * STATE_CONFIGURED |
| 92 | * |
| 93 | * udc_state_transition transitions up (in the direction from STATE_ATTACHED |
| 94 | * to STATE_CONFIGURED) from the specified initial state to the specified final |
| 95 | * state, passing through each intermediate state on the way. If the initial |
| 96 | * state is at or above (i.e. nearer to STATE_CONFIGURED) the final state, then |
| 97 | * no state transitions will take place. |
| 98 | * |
| 99 | * udc_state_transition also transitions down (in the direction from |
| 100 | * STATE_CONFIGURED to STATE_ATTACHED) from the specified initial state to the |
| 101 | * specified final state, passing through each intermediate state on the way. |
| 102 | * If the initial state is at or below (i.e. nearer to STATE_ATTACHED) the final |
| 103 | * state, then no state transitions will take place. |
| 104 | * |
| 105 | * This function must only be called with interrupts disabled. |
| 106 | */ |
| 107 | static void udc_state_transition(usb_device_state_t initial, |
| 108 | usb_device_state_t final) |
| 109 | { |
| 110 | if (initial < final) { |
| 111 | switch (initial) { |
| 112 | case STATE_ATTACHED: |
| 113 | usbd_device_event_irq(udc_device, |
| 114 | DEVICE_HUB_CONFIGURED, 0); |
| 115 | if (final == STATE_POWERED) |
| 116 | break; |
| 117 | case STATE_POWERED: |
| 118 | usbd_device_event_irq(udc_device, DEVICE_RESET, 0); |
| 119 | if (final == STATE_DEFAULT) |
| 120 | break; |
| 121 | case STATE_DEFAULT: |
| 122 | usbd_device_event_irq(udc_device, |
| 123 | DEVICE_ADDRESS_ASSIGNED, 0); |
| 124 | if (final == STATE_ADDRESSED) |
| 125 | break; |
| 126 | case STATE_ADDRESSED: |
| 127 | usbd_device_event_irq(udc_device, DEVICE_CONFIGURED, 0); |
| 128 | case STATE_CONFIGURED: |
| 129 | break; |
| 130 | default: |
| 131 | break; |
| 132 | } |
| 133 | } else if (initial > final) { |
| 134 | switch (initial) { |
| 135 | case STATE_CONFIGURED: |
| 136 | usbd_device_event_irq(udc_device, |
| 137 | DEVICE_DE_CONFIGURED, 0); |
| 138 | if (final == STATE_ADDRESSED) |
| 139 | break; |
| 140 | case STATE_ADDRESSED: |
| 141 | usbd_device_event_irq(udc_device, DEVICE_RESET, 0); |
| 142 | if (final == STATE_DEFAULT) |
| 143 | break; |
| 144 | case STATE_DEFAULT: |
| 145 | usbd_device_event_irq(udc_device, |
| 146 | DEVICE_POWER_INTERRUPTION, 0); |
| 147 | if (final == STATE_POWERED) |
| 148 | break; |
| 149 | case STATE_POWERED: |
| 150 | usbd_device_event_irq(udc_device, DEVICE_HUB_RESET, 0); |
| 151 | case STATE_ATTACHED: |
| 152 | break; |
| 153 | default: |
| 154 | break; |
| 155 | } |
| 156 | } |
| 157 | } |
| 158 | |
| 159 | /* Stall endpoint */ |
| 160 | static void udc_stall_ep(u32 ep_num) |
| 161 | { |
| 162 | writel(readl(&inep_regs_p[ep_num].endp_cntl) | ENDP_CNTL_STALL, |
| 163 | &inep_regs_p[ep_num].endp_cntl); |
| 164 | |
| 165 | writel(readl(&outep_regs_p[ep_num].endp_cntl) | ENDP_CNTL_STALL, |
| 166 | &outep_regs_p[ep_num].endp_cntl); |
| 167 | } |
| 168 | |
| 169 | static void *get_fifo(int ep_num, int in) |
| 170 | { |
| 171 | u32 *fifo_ptr = (u32 *)CONFIG_SYS_FIFO_BASE; |
| 172 | |
| 173 | switch (ep_num) { |
| 174 | case UDC_EP3: |
| 175 | fifo_ptr += readl(&inep_regs_p[1].endp_bsorfn); |
| 176 | /* break intentionally left out */ |
| 177 | |
| 178 | case UDC_EP1: |
| 179 | fifo_ptr += readl(&inep_regs_p[0].endp_bsorfn); |
| 180 | /* break intentionally left out */ |
| 181 | |
| 182 | case UDC_EP0: |
| 183 | default: |
| 184 | if (in) { |
| 185 | fifo_ptr += |
| 186 | readl(&outep_regs_p[2].endp_maxpacksize) >> 16; |
| 187 | /* break intentionally left out */ |
| 188 | } else { |
| 189 | break; |
| 190 | } |
| 191 | |
| 192 | case UDC_EP2: |
| 193 | fifo_ptr += readl(&outep_regs_p[0].endp_maxpacksize) >> 16; |
| 194 | /* break intentionally left out */ |
| 195 | } |
| 196 | |
| 197 | return (void *)fifo_ptr; |
| 198 | } |
| 199 | |
| 200 | static int usbgetpckfromfifo(int epNum, u8 *bufp, u32 len) |
| 201 | { |
| 202 | u8 *fifo_ptr = (u8 *)get_fifo(epNum, 0); |
| 203 | u32 i, nw, nb; |
| 204 | u32 *wrdp; |
| 205 | u8 *bytp; |
| 206 | |
| 207 | if (readl(&udc_regs_p->dev_stat) & DEV_STAT_RXFIFO_EMPTY) |
| 208 | return -1; |
| 209 | |
| 210 | nw = len / sizeof(u32); |
| 211 | nb = len % sizeof(u32); |
| 212 | |
| 213 | wrdp = (u32 *)bufp; |
| 214 | for (i = 0; i < nw; i++) { |
| 215 | writel(readl(fifo_ptr), wrdp); |
| 216 | wrdp++; |
| 217 | } |
| 218 | |
| 219 | bytp = (u8 *)wrdp; |
| 220 | for (i = 0; i < nb; i++) { |
| 221 | writeb(readb(fifo_ptr), bytp); |
| 222 | fifo_ptr++; |
| 223 | bytp++; |
| 224 | } |
| 225 | readl(&outep_regs_p[epNum].write_done); |
| 226 | |
| 227 | return 0; |
| 228 | } |
| 229 | |
| 230 | static void usbputpcktofifo(int epNum, u8 *bufp, u32 len) |
| 231 | { |
| 232 | u32 i, nw, nb; |
| 233 | u32 *wrdp; |
| 234 | u8 *bytp; |
| 235 | u8 *fifo_ptr = get_fifo(epNum, 1); |
| 236 | |
| 237 | nw = len / sizeof(int); |
| 238 | nb = len % sizeof(int); |
| 239 | wrdp = (u32 *)bufp; |
| 240 | for (i = 0; i < nw; i++) { |
| 241 | writel(*wrdp, fifo_ptr); |
| 242 | wrdp++; |
| 243 | } |
| 244 | |
| 245 | bytp = (u8 *)wrdp; |
| 246 | for (i = 0; i < nb; i++) { |
| 247 | writeb(*bytp, fifo_ptr); |
| 248 | fifo_ptr++; |
| 249 | bytp++; |
| 250 | } |
| 251 | } |
| 252 | |
| 253 | /* |
| 254 | * spear_write_noniso_tx_fifo - Write the next packet to TxFIFO. |
| 255 | * @endpoint: Endpoint pointer. |
| 256 | * |
| 257 | * If the endpoint has an active tx_urb, then the next packet of data from the |
| 258 | * URB is written to the tx FIFO. The total amount of data in the urb is given |
| 259 | * by urb->actual_length. The maximum amount of data that can be sent in any |
| 260 | * one packet is given by endpoint->tx_packetSize. The number of data bytes |
| 261 | * from this URB that have already been transmitted is given by endpoint->sent. |
| 262 | * endpoint->last is updated by this routine with the number of data bytes |
| 263 | * transmitted in this packet. |
| 264 | * |
| 265 | */ |
| 266 | static void spear_write_noniso_tx_fifo(struct usb_endpoint_instance |
| 267 | *endpoint) |
| 268 | { |
| 269 | struct urb *urb = endpoint->tx_urb; |
| 270 | int align; |
| 271 | |
| 272 | if (urb) { |
| 273 | u32 last; |
| 274 | |
| 275 | UDCDBGA("urb->buffer %p, buffer_length %d, actual_length %d", |
| 276 | urb->buffer, urb->buffer_length, urb->actual_length); |
| 277 | |
| 278 | last = MIN(urb->actual_length - endpoint->sent, |
| 279 | endpoint->tx_packetSize); |
| 280 | |
| 281 | if (last) { |
| 282 | u8 *cp = urb->buffer + endpoint->sent; |
| 283 | |
| 284 | /* |
| 285 | * This ensures that USBD packet fifo is accessed |
| 286 | * - through word aligned pointer or |
| 287 | * - through non word aligned pointer but only |
| 288 | * with a max length to make the next packet |
| 289 | * word aligned |
| 290 | */ |
| 291 | |
| 292 | align = ((ulong)cp % sizeof(int)); |
| 293 | if (align) |
| 294 | last = MIN(last, sizeof(int) - align); |
| 295 | |
| 296 | UDCDBGA("endpoint->sent %d, tx_packetSize %d, last %d", |
| 297 | endpoint->sent, endpoint->tx_packetSize, last); |
| 298 | |
| 299 | usbputpcktofifo(endpoint->endpoint_address & |
| 300 | USB_ENDPOINT_NUMBER_MASK, cp, last); |
| 301 | } |
| 302 | endpoint->last = last; |
| 303 | } |
| 304 | } |
| 305 | |
| 306 | /* |
| 307 | * Handle SETUP USB interrupt. |
| 308 | * This function implements TRM Figure 14-14. |
| 309 | */ |
| 310 | static void spear_udc_setup(struct usb_endpoint_instance *endpoint) |
| 311 | { |
| 312 | u8 *datap = (u8 *)&ep0_urb->device_request; |
| 313 | int ep_addr = endpoint->endpoint_address; |
| 314 | |
| 315 | UDCDBG("-> Entering device setup"); |
| 316 | usbgetpckfromfifo(ep_addr, datap, 8); |
| 317 | |
| 318 | /* Try to process setup packet */ |
| 319 | if (ep0_recv_setup(ep0_urb)) { |
| 320 | /* Not a setup packet, stall next EP0 transaction */ |
| 321 | udc_stall_ep(0); |
| 322 | UDCDBG("can't parse setup packet, still waiting for setup"); |
| 323 | return; |
| 324 | } |
| 325 | |
| 326 | /* Check direction */ |
| 327 | if ((ep0_urb->device_request.bmRequestType & USB_REQ_DIRECTION_MASK) |
| 328 | == USB_REQ_HOST2DEVICE) { |
| 329 | UDCDBG("control write on EP0"); |
| 330 | if (le16_to_cpu(ep0_urb->device_request.wLength)) { |
| 331 | /* Stall this request */ |
| 332 | UDCDBG("Stalling unsupported EP0 control write data " |
| 333 | "stage."); |
| 334 | udc_stall_ep(0); |
| 335 | } |
| 336 | } else { |
| 337 | |
| 338 | UDCDBG("control read on EP0"); |
| 339 | /* |
| 340 | * The ep0_recv_setup function has already placed our response |
| 341 | * packet data in ep0_urb->buffer and the packet length in |
| 342 | * ep0_urb->actual_length. |
| 343 | */ |
| 344 | endpoint->tx_urb = ep0_urb; |
| 345 | endpoint->sent = 0; |
| 346 | /* |
| 347 | * Write packet data to the FIFO. spear_write_noniso_tx_fifo |
| 348 | * will update endpoint->last with the number of bytes written |
| 349 | * to the FIFO. |
| 350 | */ |
| 351 | spear_write_noniso_tx_fifo(endpoint); |
| 352 | |
| 353 | writel(0x0, &inep_regs_p[ep_addr].write_done); |
| 354 | } |
| 355 | |
| 356 | udc_unset_nak(endpoint->endpoint_address); |
| 357 | |
| 358 | UDCDBG("<- Leaving device setup"); |
| 359 | } |
| 360 | |
| 361 | /* |
| 362 | * Handle endpoint 0 RX interrupt |
| 363 | */ |
| 364 | static void spear_udc_ep0_rx(struct usb_endpoint_instance *endpoint) |
| 365 | { |
| 366 | u8 dummy[64]; |
| 367 | |
| 368 | UDCDBG("RX on EP0"); |
| 369 | |
| 370 | /* Check direction */ |
| 371 | if ((ep0_urb->device_request.bmRequestType |
| 372 | & USB_REQ_DIRECTION_MASK) == USB_REQ_HOST2DEVICE) { |
| 373 | /* |
| 374 | * This rx interrupt must be for a control write data |
| 375 | * stage packet. |
| 376 | * |
| 377 | * We don't support control write data stages. |
| 378 | * We should never end up here. |
| 379 | */ |
| 380 | |
| 381 | UDCDBG("Stalling unexpected EP0 control write " |
| 382 | "data stage packet"); |
| 383 | udc_stall_ep(0); |
| 384 | } else { |
| 385 | /* |
| 386 | * This rx interrupt must be for a control read status |
| 387 | * stage packet. |
| 388 | */ |
| 389 | UDCDBG("ACK on EP0 control read status stage packet"); |
| 390 | u32 len = (readl(&outep_regs_p[0].endp_status) >> 11) & 0xfff; |
| 391 | usbgetpckfromfifo(0, dummy, len); |
| 392 | } |
| 393 | } |
| 394 | |
| 395 | /* |
| 396 | * Handle endpoint 0 TX interrupt |
| 397 | */ |
| 398 | static void spear_udc_ep0_tx(struct usb_endpoint_instance *endpoint) |
| 399 | { |
| 400 | struct usb_device_request *request = &ep0_urb->device_request; |
| 401 | int ep_addr; |
| 402 | |
| 403 | UDCDBG("TX on EP0"); |
| 404 | |
| 405 | /* Check direction */ |
| 406 | if ((request->bmRequestType & USB_REQ_DIRECTION_MASK) == |
| 407 | USB_REQ_HOST2DEVICE) { |
| 408 | /* |
| 409 | * This tx interrupt must be for a control write status |
| 410 | * stage packet. |
| 411 | */ |
| 412 | UDCDBG("ACK on EP0 control write status stage packet"); |
| 413 | } else { |
| 414 | /* |
| 415 | * This tx interrupt must be for a control read data |
| 416 | * stage packet. |
| 417 | */ |
| 418 | int wLength = le16_to_cpu(request->wLength); |
| 419 | |
| 420 | /* |
| 421 | * Update our count of bytes sent so far in this |
| 422 | * transfer. |
| 423 | */ |
| 424 | endpoint->sent += endpoint->last; |
| 425 | |
| 426 | /* |
| 427 | * We are finished with this transfer if we have sent |
| 428 | * all of the bytes in our tx urb (urb->actual_length) |
| 429 | * unless we need a zero-length terminating packet. We |
| 430 | * need a zero-length terminating packet if we returned |
| 431 | * fewer bytes than were requested (wLength) by the host, |
| 432 | * and the number of bytes we returned is an exact |
| 433 | * multiple of the packet size endpoint->tx_packetSize. |
| 434 | */ |
| 435 | if ((endpoint->sent == ep0_urb->actual_length) && |
| 436 | ((ep0_urb->actual_length == wLength) || |
| 437 | (endpoint->last != endpoint->tx_packetSize))) { |
| 438 | /* Done with control read data stage. */ |
| 439 | UDCDBG("control read data stage complete"); |
| 440 | } else { |
| 441 | /* |
| 442 | * We still have another packet of data to send |
| 443 | * in this control read data stage or else we |
| 444 | * need a zero-length terminating packet. |
| 445 | */ |
| 446 | UDCDBG("ACK control read data stage packet"); |
| 447 | spear_write_noniso_tx_fifo(endpoint); |
| 448 | |
| 449 | ep_addr = endpoint->endpoint_address; |
| 450 | writel(0x0, &inep_regs_p[ep_addr].write_done); |
| 451 | } |
| 452 | } |
| 453 | } |
| 454 | |
| 455 | static struct usb_endpoint_instance *spear_find_ep(int ep) |
| 456 | { |
| 457 | int i; |
| 458 | |
| 459 | for (i = 0; i < udc_device->bus->max_endpoints; i++) { |
| 460 | if ((udc_device->bus->endpoint_array[i].endpoint_address & |
| 461 | USB_ENDPOINT_NUMBER_MASK) == ep) |
| 462 | return &udc_device->bus->endpoint_array[i]; |
| 463 | } |
| 464 | return NULL; |
| 465 | } |
| 466 | |
| 467 | /* |
| 468 | * Handle RX transaction on non-ISO endpoint. |
| 469 | * The ep argument is a physical endpoint number for a non-ISO IN endpoint |
| 470 | * in the range 1 to 15. |
| 471 | */ |
| 472 | static void spear_udc_epn_rx(int ep) |
| 473 | { |
| 474 | int nbytes = 0; |
| 475 | struct urb *urb; |
| 476 | struct usb_endpoint_instance *endpoint = spear_find_ep(ep); |
| 477 | |
| 478 | if (endpoint) { |
| 479 | urb = endpoint->rcv_urb; |
| 480 | |
| 481 | if (urb) { |
| 482 | u8 *cp = urb->buffer + urb->actual_length; |
| 483 | |
| 484 | nbytes = (readl(&outep_regs_p[ep].endp_status) >> 11) & |
| 485 | 0xfff; |
| 486 | usbgetpckfromfifo(ep, cp, nbytes); |
| 487 | usbd_rcv_complete(endpoint, nbytes, 0); |
| 488 | } |
| 489 | } |
| 490 | } |
| 491 | |
| 492 | /* |
| 493 | * Handle TX transaction on non-ISO endpoint. |
| 494 | * The ep argument is a physical endpoint number for a non-ISO IN endpoint |
| 495 | * in the range 16 to 30. |
| 496 | */ |
| 497 | static void spear_udc_epn_tx(int ep) |
| 498 | { |
| 499 | struct usb_endpoint_instance *endpoint = spear_find_ep(ep); |
| 500 | |
| 501 | /* |
| 502 | * We need to transmit a terminating zero-length packet now if |
| 503 | * we have sent all of the data in this URB and the transfer |
| 504 | * size was an exact multiple of the packet size. |
| 505 | */ |
| 506 | if (endpoint && endpoint->tx_urb && endpoint->tx_urb->actual_length) { |
| 507 | if (endpoint->last == endpoint->tx_packetSize) { |
| 508 | /* handle zero length packet here */ |
| 509 | writel(0x0, &inep_regs_p[ep].write_done); |
| 510 | } |
| 511 | /* retire the data that was just sent */ |
| 512 | usbd_tx_complete(endpoint); |
| 513 | /* |
| 514 | * Check to see if we have more data ready to transmit |
| 515 | * now. |
| 516 | */ |
| 517 | if (endpoint->tx_urb && endpoint->tx_urb->actual_length) { |
| 518 | /* write data to FIFO */ |
| 519 | spear_write_noniso_tx_fifo(endpoint); |
| 520 | writel(0x0, &inep_regs_p[ep].write_done); |
| 521 | |
| 522 | } else if (endpoint->tx_urb |
| 523 | && (endpoint->tx_urb->actual_length == 0)) { |
| 524 | /* udc_set_nak(ep); */ |
| 525 | } |
| 526 | } |
| 527 | } |
| 528 | |
| 529 | /* |
| 530 | * Start of public functions. |
| 531 | */ |
| 532 | |
| 533 | /* Called to start packet transmission. */ |
| 534 | int udc_endpoint_write(struct usb_endpoint_instance *endpoint) |
| 535 | { |
| 536 | udc_unset_nak(endpoint->endpoint_address & USB_ENDPOINT_NUMBER_MASK); |
| 537 | return 0; |
| 538 | } |
| 539 | |
| 540 | /* Start to initialize h/w stuff */ |
| 541 | int udc_init(void) |
| 542 | { |
| 543 | int i; |
| 544 | u32 plug_st; |
| 545 | |
| 546 | udc_device = NULL; |
| 547 | |
| 548 | UDCDBG("starting"); |
| 549 | |
| 550 | readl(&plug_regs_p->plug_pending); |
| 551 | |
| 552 | udc_disconnect(); |
| 553 | |
| 554 | for (i = 0; i < UDC_INIT_MDELAY; i++) |
| 555 | udelay(1000); |
| 556 | |
| 557 | plug_st = readl(&plug_regs_p->plug_state); |
| 558 | writel(plug_st | PLUG_STATUS_EN, &plug_regs_p->plug_state); |
| 559 | |
| 560 | writel(~0x0, &udc_regs_p->endp_int); |
| 561 | writel(~0x0, &udc_regs_p->dev_int_mask); |
| 562 | writel(~0x0, &udc_regs_p->endp_int_mask); |
| 563 | |
| 564 | writel(DEV_CONF_FS_SPEED | DEV_CONF_REMWAKEUP | DEV_CONF_SELFPOW | |
| 565 | /* Dev_Conf_SYNCFRAME | */ |
| 566 | DEV_CONF_PHYINT_16, &udc_regs_p->dev_conf); |
| 567 | |
| 568 | writel(0x0, &udc_regs_p->dev_cntl); |
| 569 | |
| 570 | /* Clear all interrupts pending */ |
| 571 | writel(DEV_INT_MSK, &udc_regs_p->dev_int); |
| 572 | |
| 573 | return 0; |
| 574 | } |
| 575 | |
| 576 | /* |
| 577 | * udc_setup_ep - setup endpoint |
| 578 | * Associate a physical endpoint with endpoint_instance |
| 579 | */ |
| 580 | void udc_setup_ep(struct usb_device_instance *device, |
| 581 | u32 ep, struct usb_endpoint_instance *endpoint) |
| 582 | { |
| 583 | UDCDBGA("setting up endpoint addr %x", endpoint->endpoint_address); |
| 584 | int ep_addr; |
| 585 | int ep_num, ep_type; |
| 586 | int packet_size; |
| 587 | int buffer_size; |
| 588 | int attributes; |
| 589 | char *tt; |
| 590 | u32 endp_intmask; |
| 591 | |
| 592 | tt = getenv("usbtty"); |
| 593 | if (!tt) |
| 594 | tt = "generic"; |
| 595 | |
| 596 | ep_addr = endpoint->endpoint_address; |
| 597 | ep_num = ep_addr & USB_ENDPOINT_NUMBER_MASK; |
| 598 | |
| 599 | if ((ep_addr & USB_ENDPOINT_DIR_MASK) == USB_DIR_IN) { |
| 600 | /* IN endpoint */ |
| 601 | packet_size = endpoint->tx_packetSize; |
| 602 | buffer_size = packet_size * 2; |
| 603 | attributes = endpoint->tx_attributes; |
| 604 | } else { |
| 605 | /* OUT endpoint */ |
| 606 | packet_size = endpoint->rcv_packetSize; |
| 607 | buffer_size = packet_size * 2; |
| 608 | attributes = endpoint->rcv_attributes; |
| 609 | } |
| 610 | |
| 611 | switch (attributes & USB_ENDPOINT_XFERTYPE_MASK) { |
| 612 | case USB_ENDPOINT_XFER_CONTROL: |
| 613 | ep_type = ENDP_EPTYPE_CNTL; |
| 614 | break; |
| 615 | case USB_ENDPOINT_XFER_BULK: |
| 616 | default: |
| 617 | ep_type = ENDP_EPTYPE_BULK; |
| 618 | break; |
| 619 | case USB_ENDPOINT_XFER_INT: |
| 620 | ep_type = ENDP_EPTYPE_INT; |
| 621 | break; |
| 622 | case USB_ENDPOINT_XFER_ISOC: |
| 623 | ep_type = ENDP_EPTYPE_ISO; |
| 624 | break; |
| 625 | } |
| 626 | |
| 627 | struct udc_endp_regs *out_p = &outep_regs_p[ep_num]; |
| 628 | struct udc_endp_regs *in_p = &inep_regs_p[ep_num]; |
| 629 | |
| 630 | if (!ep_addr) { |
| 631 | /* Setup endpoint 0 */ |
| 632 | buffer_size = packet_size; |
| 633 | |
| 634 | writel(readl(&in_p->endp_cntl) | ENDP_CNTL_CNAK, |
| 635 | &in_p->endp_cntl); |
| 636 | |
| 637 | writel(readl(&out_p->endp_cntl) | ENDP_CNTL_CNAK, |
| 638 | &out_p->endp_cntl); |
| 639 | |
| 640 | writel(ENDP_CNTL_CONTROL | ENDP_CNTL_FLUSH, &in_p->endp_cntl); |
| 641 | |
| 642 | writel(buffer_size / sizeof(int), &in_p->endp_bsorfn); |
| 643 | |
| 644 | writel(packet_size, &in_p->endp_maxpacksize); |
| 645 | |
| 646 | writel(ENDP_CNTL_CONTROL | ENDP_CNTL_RRDY, &out_p->endp_cntl); |
| 647 | |
| 648 | writel(packet_size | ((buffer_size / sizeof(int)) << 16), |
| 649 | &out_p->endp_maxpacksize); |
| 650 | |
| 651 | writel((packet_size << 19) | ENDP_EPTYPE_CNTL, |
| 652 | &udc_regs_p->udc_endp_reg[ep_num]); |
| 653 | |
| 654 | } else if ((ep_addr & USB_ENDPOINT_DIR_MASK) == USB_DIR_IN) { |
| 655 | /* Setup the IN endpoint */ |
| 656 | writel(0x0, &in_p->endp_status); |
| 657 | writel((ep_type << 4) | ENDP_CNTL_RRDY, &in_p->endp_cntl); |
| 658 | writel(buffer_size / sizeof(int), &in_p->endp_bsorfn); |
| 659 | writel(packet_size, &in_p->endp_maxpacksize); |
| 660 | |
| 661 | if (!strcmp(tt, "cdc_acm")) { |
| 662 | if (ep_type == ENDP_EPTYPE_INT) { |
| 663 | /* Conf no. 1 Interface no. 0 */ |
| 664 | writel((packet_size << 19) | |
| 665 | ENDP_EPDIR_IN | (1 << 7) | |
| 666 | (0 << 11) | (ep_type << 5) | ep_num, |
| 667 | &udc_regs_p->udc_endp_reg[ep_num]); |
| 668 | } else { |
| 669 | /* Conf no. 1 Interface no. 1 */ |
| 670 | writel((packet_size << 19) | |
| 671 | ENDP_EPDIR_IN | (1 << 7) | |
| 672 | (1 << 11) | (ep_type << 5) | ep_num, |
| 673 | &udc_regs_p->udc_endp_reg[ep_num]); |
| 674 | } |
| 675 | } else { |
| 676 | /* Conf no. 1 Interface no. 0 */ |
| 677 | writel((packet_size << 19) | |
| 678 | ENDP_EPDIR_IN | (1 << 7) | |
| 679 | (0 << 11) | (ep_type << 5) | ep_num, |
| 680 | &udc_regs_p->udc_endp_reg[ep_num]); |
| 681 | } |
| 682 | |
| 683 | } else { |
| 684 | /* Setup the OUT endpoint */ |
| 685 | writel(0x0, &out_p->endp_status); |
| 686 | writel((ep_type << 4) | ENDP_CNTL_RRDY, &out_p->endp_cntl); |
| 687 | writel(packet_size | ((buffer_size / sizeof(int)) << 16), |
| 688 | &out_p->endp_maxpacksize); |
| 689 | |
| 690 | if (!strcmp(tt, "cdc_acm")) { |
| 691 | writel((packet_size << 19) | |
| 692 | ENDP_EPDIR_OUT | (1 << 7) | |
| 693 | (1 << 11) | (ep_type << 5) | ep_num, |
| 694 | &udc_regs_p->udc_endp_reg[ep_num]); |
| 695 | } else { |
| 696 | writel((packet_size << 19) | |
| 697 | ENDP_EPDIR_OUT | (1 << 7) | |
| 698 | (0 << 11) | (ep_type << 5) | ep_num, |
| 699 | &udc_regs_p->udc_endp_reg[ep_num]); |
| 700 | } |
| 701 | |
| 702 | } |
| 703 | |
| 704 | endp_intmask = readl(&udc_regs_p->endp_int_mask); |
| 705 | endp_intmask &= ~((1 << ep_num) | 0x10000 << ep_num); |
| 706 | writel(endp_intmask, &udc_regs_p->endp_int_mask); |
| 707 | } |
| 708 | |
| 709 | /* Turn on the USB connection by enabling the pullup resistor */ |
| 710 | void udc_connect(void) |
| 711 | { |
| 712 | u32 plug_st; |
| 713 | |
| 714 | plug_st = readl(&plug_regs_p->plug_state); |
| 715 | plug_st &= ~(PLUG_STATUS_PHY_RESET | PLUG_STATUS_PHY_MODE); |
| 716 | writel(plug_st, &plug_regs_p->plug_state); |
| 717 | } |
| 718 | |
| 719 | /* Turn off the USB connection by disabling the pullup resistor */ |
| 720 | void udc_disconnect(void) |
| 721 | { |
| 722 | u32 plug_st; |
| 723 | |
| 724 | plug_st = readl(&plug_regs_p->plug_state); |
| 725 | plug_st |= (PLUG_STATUS_PHY_RESET | PLUG_STATUS_PHY_MODE); |
| 726 | writel(plug_st, &plug_regs_p->plug_state); |
| 727 | } |
| 728 | |
| 729 | /* Switch on the UDC */ |
| 730 | void udc_enable(struct usb_device_instance *device) |
| 731 | { |
| 732 | UDCDBGA("enable device %p, status %d", device, device->status); |
| 733 | |
| 734 | /* Save the device structure pointer */ |
| 735 | udc_device = device; |
| 736 | |
| 737 | /* Setup ep0 urb */ |
| 738 | if (!ep0_urb) { |
| 739 | ep0_urb = |
| 740 | usbd_alloc_urb(udc_device, udc_device->bus->endpoint_array); |
| 741 | } else { |
| 742 | serial_printf("udc_enable: ep0_urb already allocated %p\n", |
| 743 | ep0_urb); |
| 744 | } |
| 745 | |
| 746 | writel(DEV_INT_SOF, &udc_regs_p->dev_int_mask); |
| 747 | } |
| 748 | |
| 749 | /** |
| 750 | * udc_startup - allow udc code to do any additional startup |
| 751 | */ |
| 752 | void udc_startup_events(struct usb_device_instance *device) |
| 753 | { |
| 754 | /* The DEVICE_INIT event puts the USB device in the state STATE_INIT. */ |
| 755 | usbd_device_event_irq(device, DEVICE_INIT, 0); |
| 756 | |
| 757 | /* |
| 758 | * The DEVICE_CREATE event puts the USB device in the state |
| 759 | * STATE_ATTACHED. |
| 760 | */ |
| 761 | usbd_device_event_irq(device, DEVICE_CREATE, 0); |
| 762 | |
| 763 | /* |
| 764 | * Some USB controller driver implementations signal |
| 765 | * DEVICE_HUB_CONFIGURED and DEVICE_RESET events here. |
| 766 | * DEVICE_HUB_CONFIGURED causes a transition to the state STATE_POWERED, |
| 767 | * and DEVICE_RESET causes a transition to the state STATE_DEFAULT. |
| 768 | * The SPEAr USB client controller has the capability to detect when the |
| 769 | * USB cable is connected to a powered USB bus, so we will defer the |
| 770 | * DEVICE_HUB_CONFIGURED and DEVICE_RESET events until later. |
| 771 | */ |
| 772 | |
| 773 | udc_enable(device); |
| 774 | } |
| 775 | |
| 776 | /* |
| 777 | * Plug detection interrupt handling |
| 778 | */ |
| 779 | void spear_udc_plug_irq(void) |
| 780 | { |
| 781 | if (readl(&plug_regs_p->plug_state) & PLUG_STATUS_ATTACHED) { |
| 782 | /* |
| 783 | * USB cable attached |
| 784 | * Turn off PHY reset bit (PLUG detect). |
| 785 | * Switch PHY opmode to normal operation (PLUG detect). |
| 786 | */ |
| 787 | udc_connect(); |
| 788 | writel(DEV_INT_SOF, &udc_regs_p->dev_int_mask); |
| 789 | |
| 790 | UDCDBG("device attached and powered"); |
| 791 | udc_state_transition(udc_device->device_state, STATE_POWERED); |
| 792 | } else { |
| 793 | /* |
| 794 | * USB cable detached |
| 795 | * Reset the PHY and switch the mode. |
| 796 | */ |
| 797 | udc_disconnect(); |
| 798 | writel(~0x0, &udc_regs_p->dev_int_mask); |
| 799 | |
| 800 | UDCDBG("device detached or unpowered"); |
| 801 | udc_state_transition(udc_device->device_state, STATE_ATTACHED); |
| 802 | } |
| 803 | } |
| 804 | |
| 805 | /* |
| 806 | * Device interrupt handling |
| 807 | */ |
| 808 | void spear_udc_dev_irq(void) |
| 809 | { |
| 810 | if (readl(&udc_regs_p->dev_int) & DEV_INT_USBRESET) { |
| 811 | writel(~0x0, &udc_regs_p->endp_int_mask); |
| 812 | |
| 813 | udc_connect(); |
| 814 | |
| 815 | writel(readl(&inep_regs_p[0].endp_cntl) | ENDP_CNTL_FLUSH, |
| 816 | &inep_regs_p[0].endp_cntl); |
| 817 | |
| 818 | writel(DEV_INT_USBRESET, &udc_regs_p->dev_int); |
| 819 | |
| 820 | UDCDBG("device reset in progess"); |
| 821 | udc_state_transition(udc_device->device_state, STATE_DEFAULT); |
| 822 | } |
| 823 | |
| 824 | /* Device Enumeration completed */ |
| 825 | if (readl(&udc_regs_p->dev_int) & DEV_INT_ENUM) { |
| 826 | writel(DEV_INT_ENUM, &udc_regs_p->dev_int); |
| 827 | |
| 828 | /* Endpoint interrupt enabled for Ctrl IN & Ctrl OUT */ |
| 829 | writel(readl(&udc_regs_p->endp_int_mask) & ~0x10001, |
| 830 | &udc_regs_p->endp_int_mask); |
| 831 | |
| 832 | UDCDBG("default -> addressed"); |
| 833 | udc_state_transition(udc_device->device_state, STATE_ADDRESSED); |
| 834 | } |
| 835 | |
| 836 | /* The USB will be in SUSPEND in 3 ms */ |
| 837 | if (readl(&udc_regs_p->dev_int) & DEV_INT_INACTIVE) { |
| 838 | writel(DEV_INT_INACTIVE, &udc_regs_p->dev_int); |
| 839 | |
| 840 | UDCDBG("entering inactive state"); |
| 841 | /* usbd_device_event_irq(udc_device, DEVICE_BUS_INACTIVE, 0); */ |
| 842 | } |
| 843 | |
| 844 | /* SetConfiguration command received */ |
| 845 | if (readl(&udc_regs_p->dev_int) & DEV_INT_SETCFG) { |
| 846 | writel(DEV_INT_SETCFG, &udc_regs_p->dev_int); |
| 847 | |
| 848 | UDCDBG("entering configured state"); |
| 849 | udc_state_transition(udc_device->device_state, |
| 850 | STATE_CONFIGURED); |
| 851 | } |
| 852 | |
| 853 | /* SetInterface command received */ |
| 854 | if (readl(&udc_regs_p->dev_int) & DEV_INT_SETINTF) |
| 855 | writel(DEV_INT_SETINTF, &udc_regs_p->dev_int); |
| 856 | |
| 857 | /* USB Suspend detected on cable */ |
| 858 | if (readl(&udc_regs_p->dev_int) & DEV_INT_SUSPUSB) { |
| 859 | writel(DEV_INT_SUSPUSB, &udc_regs_p->dev_int); |
| 860 | |
| 861 | UDCDBG("entering suspended state"); |
| 862 | usbd_device_event_irq(udc_device, DEVICE_BUS_INACTIVE, 0); |
| 863 | } |
| 864 | |
| 865 | /* USB Start-Of-Frame detected on cable */ |
| 866 | if (readl(&udc_regs_p->dev_int) & DEV_INT_SOF) |
| 867 | writel(DEV_INT_SOF, &udc_regs_p->dev_int); |
| 868 | } |
| 869 | |
| 870 | /* |
| 871 | * Endpoint interrupt handling |
| 872 | */ |
| 873 | void spear_udc_endpoint_irq(void) |
| 874 | { |
| 875 | while (readl(&udc_regs_p->endp_int) & ENDP0_INT_CTRLOUT) { |
| 876 | |
| 877 | writel(ENDP0_INT_CTRLOUT, &udc_regs_p->endp_int); |
| 878 | |
| 879 | if ((readl(&outep_regs_p[0].endp_status) & ENDP_STATUS_OUTMSK) |
| 880 | == ENDP_STATUS_OUT_SETUP) { |
| 881 | spear_udc_setup(udc_device->bus->endpoint_array + 0); |
| 882 | writel(ENDP_STATUS_OUT_SETUP, |
| 883 | &outep_regs_p[0].endp_status); |
| 884 | |
| 885 | } else if ((readl(&outep_regs_p[0].endp_status) & |
| 886 | ENDP_STATUS_OUTMSK) == ENDP_STATUS_OUT_DATA) { |
| 887 | spear_udc_ep0_rx(udc_device->bus->endpoint_array + 0); |
| 888 | writel(ENDP_STATUS_OUT_DATA, |
| 889 | &outep_regs_p[0].endp_status); |
| 890 | |
| 891 | } else if ((readl(&outep_regs_p[0].endp_status) & |
| 892 | ENDP_STATUS_OUTMSK) == ENDP_STATUS_OUT_NONE) { |
| 893 | /* NONE received */ |
| 894 | } |
| 895 | |
| 896 | writel(0x0, &outep_regs_p[0].endp_status); |
| 897 | } |
| 898 | |
| 899 | if (readl(&udc_regs_p->endp_int) & ENDP0_INT_CTRLIN) { |
| 900 | spear_udc_ep0_tx(udc_device->bus->endpoint_array + 0); |
| 901 | |
| 902 | writel(ENDP_STATUS_IN, &inep_regs_p[0].endp_status); |
| 903 | writel(ENDP0_INT_CTRLIN, &udc_regs_p->endp_int); |
| 904 | } |
| 905 | |
| 906 | while (readl(&udc_regs_p->endp_int) & ENDP_INT_NONISOOUT_MSK) { |
| 907 | u32 epnum = 0; |
| 908 | u32 ep_int = readl(&udc_regs_p->endp_int) & |
| 909 | ENDP_INT_NONISOOUT_MSK; |
| 910 | |
| 911 | ep_int >>= 16; |
| 912 | while (0x0 == (ep_int & 0x1)) { |
| 913 | ep_int >>= 1; |
| 914 | epnum++; |
| 915 | } |
| 916 | |
| 917 | writel((1 << 16) << epnum, &udc_regs_p->endp_int); |
| 918 | |
| 919 | if ((readl(&outep_regs_p[epnum].endp_status) & |
| 920 | ENDP_STATUS_OUTMSK) == ENDP_STATUS_OUT_DATA) { |
| 921 | |
| 922 | spear_udc_epn_rx(epnum); |
| 923 | writel(ENDP_STATUS_OUT_DATA, |
| 924 | &outep_regs_p[epnum].endp_status); |
| 925 | } else if ((readl(&outep_regs_p[epnum].endp_status) & |
| 926 | ENDP_STATUS_OUTMSK) == ENDP_STATUS_OUT_NONE) { |
| 927 | writel(0x0, &outep_regs_p[epnum].endp_status); |
| 928 | } |
| 929 | } |
| 930 | |
| 931 | if (readl(&udc_regs_p->endp_int) & ENDP_INT_NONISOIN_MSK) { |
| 932 | u32 epnum = 0; |
| 933 | u32 ep_int = readl(&udc_regs_p->endp_int) & |
| 934 | ENDP_INT_NONISOIN_MSK; |
| 935 | |
| 936 | while (0x0 == (ep_int & 0x1)) { |
| 937 | ep_int >>= 1; |
| 938 | epnum++; |
| 939 | } |
| 940 | |
| 941 | if (readl(&inep_regs_p[epnum].endp_status) & ENDP_STATUS_IN) { |
| 942 | writel(ENDP_STATUS_IN, |
| 943 | &outep_regs_p[epnum].endp_status); |
| 944 | spear_udc_epn_tx(epnum); |
| 945 | |
| 946 | writel(ENDP_STATUS_IN, |
| 947 | &outep_regs_p[epnum].endp_status); |
| 948 | } |
| 949 | |
| 950 | writel((1 << epnum), &udc_regs_p->endp_int); |
| 951 | } |
| 952 | } |
| 953 | |
| 954 | /* |
| 955 | * UDC interrupts |
| 956 | */ |
| 957 | void udc_irq(void) |
| 958 | { |
| 959 | /* |
| 960 | * Loop while we have interrupts. |
| 961 | * If we don't do this, the input chain |
| 962 | * polling delay is likely to miss |
| 963 | * host requests. |
| 964 | */ |
| 965 | while (readl(&plug_regs_p->plug_pending)) |
| 966 | spear_udc_plug_irq(); |
| 967 | |
| 968 | while (readl(&udc_regs_p->dev_int)) |
| 969 | spear_udc_dev_irq(); |
| 970 | |
| 971 | if (readl(&udc_regs_p->endp_int)) |
| 972 | spear_udc_endpoint_irq(); |
| 973 | } |
| 974 | |
| 975 | /* Flow control */ |
| 976 | void udc_set_nak(int epid) |
| 977 | { |
| 978 | writel(readl(&inep_regs_p[epid].endp_cntl) | ENDP_CNTL_SNAK, |
| 979 | &inep_regs_p[epid].endp_cntl); |
| 980 | |
| 981 | writel(readl(&outep_regs_p[epid].endp_cntl) | ENDP_CNTL_SNAK, |
| 982 | &outep_regs_p[epid].endp_cntl); |
| 983 | } |
| 984 | |
| 985 | void udc_unset_nak(int epid) |
| 986 | { |
| 987 | u32 val; |
| 988 | |
| 989 | val = readl(&inep_regs_p[epid].endp_cntl); |
| 990 | val &= ~ENDP_CNTL_SNAK; |
| 991 | val |= ENDP_CNTL_CNAK; |
| 992 | writel(val, &inep_regs_p[epid].endp_cntl); |
| 993 | |
| 994 | val = readl(&outep_regs_p[epid].endp_cntl); |
| 995 | val &= ~ENDP_CNTL_SNAK; |
| 996 | val |= ENDP_CNTL_CNAK; |
| 997 | writel(val, &outep_regs_p[epid].endp_cntl); |
| 998 | } |