blob: 9906d553fa61df9aad7056f870d8546a0ccfbfb8 [file] [log] [blame]
Tom Rini10e47792018-05-06 17:58:06 -04001// SPDX-License-Identifier: GPL-2.0+
Jorgen Lundman9b4a1f92012-07-19 20:48:25 +00002/*
3 *
4 * ZFS filesystem ported to u-boot by
5 * Jorgen Lundman <lundman at lundman.net>
6 *
7 * GRUB -- GRand Unified Bootloader
8 * Copyright (C) 1999,2000,2001,2002,2003,2004
9 * Free Software Foundation, Inc.
10 * Copyright 2004 Sun Microsystems, Inc.
Jorgen Lundman9b4a1f92012-07-19 20:48:25 +000011 */
12
Simon Glass0f2af882020-05-10 11:40:05 -060013#include <log.h>
Jorgen Lundman9b4a1f92012-07-19 20:48:25 +000014#include <malloc.h>
15#include <linux/stat.h>
16#include <linux/time.h>
17#include <linux/ctype.h>
18#include <asm/byteorder.h>
WHR1d4bd032024-05-01 00:40:38 +080019#include <u-boot/zlib.h>
Jorgen Lundman9b4a1f92012-07-19 20:48:25 +000020#include "zfs_common.h"
Alejandro Mery8b773142012-10-31 08:21:33 +000021#include "div64.h"
Jorgen Lundman9b4a1f92012-07-19 20:48:25 +000022
Simon Glasse3394752016-02-29 15:25:34 -070023struct blk_desc *zfs_dev_desc;
Jorgen Lundman9b4a1f92012-07-19 20:48:25 +000024
25/*
26 * The zfs plug-in routines for GRUB are:
27 *
28 * zfs_mount() - locates a valid uberblock of the root pool and reads
29 * in its MOS at the memory address MOS.
30 *
31 * zfs_open() - locates a plain file object by following the MOS
32 * and places its dnode at the memory address DNODE.
33 *
34 * zfs_read() - read in the data blocks pointed by the DNODE.
35 *
36 */
37
38#include <zfs/zfs.h>
39#include <zfs/zio.h>
40#include <zfs/dnode.h>
41#include <zfs/uberblock_impl.h>
42#include <zfs/vdev_impl.h>
43#include <zfs/zio_checksum.h>
44#include <zfs/zap_impl.h>
45#include <zfs/zap_leaf.h>
46#include <zfs/zfs_znode.h>
47#include <zfs/dmu.h>
48#include <zfs/dmu_objset.h>
49#include <zfs/sa_impl.h>
50#include <zfs/dsl_dir.h>
51#include <zfs/dsl_dataset.h>
52
53
54#define ZPOOL_PROP_BOOTFS "bootfs"
55
56
57/*
58 * For nvlist manipulation. (from nvpair.h)
59 */
60#define NV_ENCODE_NATIVE 0
61#define NV_ENCODE_XDR 1
62#define NV_BIG_ENDIAN 0
63#define NV_LITTLE_ENDIAN 1
64#define DATA_TYPE_UINT64 8
65#define DATA_TYPE_STRING 9
66#define DATA_TYPE_NVLIST 19
67#define DATA_TYPE_NVLIST_ARRAY 20
68
69
70/*
71 * Macros to get fields in a bp or DVA.
72 */
73#define P2PHASE(x, align) ((x) & ((align) - 1))
74#define DVA_OFFSET_TO_PHYS_SECTOR(offset) \
75 ((offset + VDEV_LABEL_START_SIZE) >> SPA_MINBLOCKSHIFT)
76
77/*
78 * return x rounded down to an align boundary
79 * eg, P2ALIGN(1200, 1024) == 1024 (1*align)
80 * eg, P2ALIGN(1024, 1024) == 1024 (1*align)
81 * eg, P2ALIGN(0x1234, 0x100) == 0x1200 (0x12*align)
82 * eg, P2ALIGN(0x5600, 0x100) == 0x5600 (0x56*align)
83 */
84#define P2ALIGN(x, align) ((x) & -(align))
85
86/*
87 * FAT ZAP data structures
88 */
89#define ZFS_CRC64_POLY 0xC96C5795D7870F42ULL /* ECMA-182, reflected form */
90#define ZAP_HASH_IDX(hash, n) (((n) == 0) ? 0 : ((hash) >> (64 - (n))))
91#define CHAIN_END 0xffff /* end of the chunk chain */
92
93/*
94 * The amount of space within the chunk available for the array is:
95 * chunk size - space for type (1) - space for next pointer (2)
96 */
97#define ZAP_LEAF_ARRAY_BYTES (ZAP_LEAF_CHUNKSIZE - 3)
98
99#define ZAP_LEAF_HASH_SHIFT(bs) (bs - 5)
100#define ZAP_LEAF_HASH_NUMENTRIES(bs) (1 << ZAP_LEAF_HASH_SHIFT(bs))
101#define LEAF_HASH(bs, h) \
102 ((ZAP_LEAF_HASH_NUMENTRIES(bs)-1) & \
103 ((h) >> (64 - ZAP_LEAF_HASH_SHIFT(bs)-l->l_hdr.lh_prefix_len)))
104
105/*
106 * The amount of space available for chunks is:
107 * block size shift - hash entry size (2) * number of hash
108 * entries - header space (2*chunksize)
109 */
110#define ZAP_LEAF_NUMCHUNKS(bs) \
111 (((1<<bs) - 2*ZAP_LEAF_HASH_NUMENTRIES(bs)) / \
112 ZAP_LEAF_CHUNKSIZE - 2)
113
114/*
115 * The chunks start immediately after the hash table. The end of the
116 * hash table is at l_hash + HASH_NUMENTRIES, which we simply cast to a
117 * chunk_t.
118 */
119#define ZAP_LEAF_CHUNK(l, bs, idx) \
120 ((zap_leaf_chunk_t *)(l->l_hash + ZAP_LEAF_HASH_NUMENTRIES(bs)))[idx]
121#define ZAP_LEAF_ENTRY(l, bs, idx) (&ZAP_LEAF_CHUNK(l, bs, idx).l_entry)
122
123
124/*
125 * Decompression Entry - lzjb
126 */
127#ifndef NBBY
128#define NBBY 8
129#endif
130
131
132
133typedef int zfs_decomp_func_t(void *s_start, void *d_start,
134 uint32_t s_len, uint32_t d_len);
135typedef struct decomp_entry {
136 char *name;
137 zfs_decomp_func_t *decomp_func;
138} decomp_entry_t;
139
140typedef struct dnode_end {
141 dnode_phys_t dn;
142 zfs_endian_t endian;
143} dnode_end_t;
144
145struct zfs_data {
146 /* cache for a file block of the currently zfs_open()-ed file */
147 char *file_buf;
148 uint64_t file_start;
149 uint64_t file_end;
150
151 /* XXX: ashift is per vdev, not per pool. We currently only ever touch
152 * a single vdev, but when/if raid-z or stripes are supported, this
153 * may need revision.
154 */
155 uint64_t vdev_ashift;
156 uint64_t label_txg;
157 uint64_t pool_guid;
158
159 /* cache for a dnode block */
160 dnode_phys_t *dnode_buf;
161 dnode_phys_t *dnode_mdn;
162 uint64_t dnode_start;
163 uint64_t dnode_end;
164 zfs_endian_t dnode_endian;
165
166 uberblock_t current_uberblock;
167
168 dnode_end_t mos;
169 dnode_end_t mdn;
170 dnode_end_t dnode;
171
172 uint64_t vdev_phys_sector;
173
174 int (*userhook)(const char *, const struct zfs_dirhook_info *);
175 struct zfs_dirhook_info *dirinfo;
176
177};
178
179
180
181
182static int
183zlib_decompress(void *s, void *d,
184 uint32_t slen, uint32_t dlen)
185{
WHR1d4bd032024-05-01 00:40:38 +0800186 uLongf z_dest_len = dlen;
187 if (uncompress(d, &z_dest_len, s, slen) != Z_OK)
Jorgen Lundman9b4a1f92012-07-19 20:48:25 +0000188 return ZFS_ERR_BAD_FS;
189 return ZFS_ERR_NONE;
190}
191
192static decomp_entry_t decomp_table[ZIO_COMPRESS_FUNCTIONS] = {
193 {"inherit", NULL}, /* ZIO_COMPRESS_INHERIT */
194 {"on", lzjb_decompress}, /* ZIO_COMPRESS_ON */
195 {"off", NULL}, /* ZIO_COMPRESS_OFF */
196 {"lzjb", lzjb_decompress}, /* ZIO_COMPRESS_LZJB */
197 {"empty", NULL}, /* ZIO_COMPRESS_EMPTY */
198 {"gzip-1", zlib_decompress}, /* ZIO_COMPRESS_GZIP1 */
199 {"gzip-2", zlib_decompress}, /* ZIO_COMPRESS_GZIP2 */
200 {"gzip-3", zlib_decompress}, /* ZIO_COMPRESS_GZIP3 */
201 {"gzip-4", zlib_decompress}, /* ZIO_COMPRESS_GZIP4 */
202 {"gzip-5", zlib_decompress}, /* ZIO_COMPRESS_GZIP5 */
203 {"gzip-6", zlib_decompress}, /* ZIO_COMPRESS_GZIP6 */
204 {"gzip-7", zlib_decompress}, /* ZIO_COMPRESS_GZIP7 */
205 {"gzip-8", zlib_decompress}, /* ZIO_COMPRESS_GZIP8 */
206 {"gzip-9", zlib_decompress}, /* ZIO_COMPRESS_GZIP9 */
207};
208
209
210
211static int zio_read_data(blkptr_t *bp, zfs_endian_t endian,
212 void *buf, struct zfs_data *data);
213
214static int
215zio_read(blkptr_t *bp, zfs_endian_t endian, void **buf,
216 size_t *size, struct zfs_data *data);
217
218/*
219 * Our own version of log2(). Same thing as highbit()-1.
220 */
221static int
222zfs_log2(uint64_t num)
223{
224 int i = 0;
225
226 while (num > 1) {
227 i++;
228 num = num >> 1;
229 }
230
231 return i;
232}
233
234
235/* Checksum Functions */
236static void
237zio_checksum_off(const void *buf __attribute__ ((unused)),
238 uint64_t size __attribute__ ((unused)),
239 zfs_endian_t endian __attribute__ ((unused)),
240 zio_cksum_t *zcp)
241{
242 ZIO_SET_CHECKSUM(zcp, 0, 0, 0, 0);
243}
244
245/* Checksum Table and Values */
246static zio_checksum_info_t zio_checksum_table[ZIO_CHECKSUM_FUNCTIONS] = {
247 {NULL, 0, 0, "inherit"},
248 {NULL, 0, 0, "on"},
249 {zio_checksum_off, 0, 0, "off"},
250 {zio_checksum_SHA256, 1, 1, "label"},
251 {zio_checksum_SHA256, 1, 1, "gang_header"},
252 {NULL, 0, 0, "zilog"},
253 {fletcher_2_endian, 0, 0, "fletcher2"},
254 {fletcher_4_endian, 1, 0, "fletcher4"},
255 {zio_checksum_SHA256, 1, 0, "SHA256"},
256 {NULL, 0, 0, "zilog2"},
257};
258
259/*
260 * zio_checksum_verify: Provides support for checksum verification.
261 *
262 * Fletcher2, Fletcher4, and SHA256 are supported.
263 *
264 */
265static int
266zio_checksum_verify(zio_cksum_t zc, uint32_t checksum,
267 zfs_endian_t endian, char *buf, int size)
268{
269 zio_eck_t *zec = (zio_eck_t *) (buf + size) - 1;
270 zio_checksum_info_t *ci = &zio_checksum_table[checksum];
271 zio_cksum_t actual_cksum, expected_cksum;
272
273 if (checksum >= ZIO_CHECKSUM_FUNCTIONS || ci->ci_func == NULL) {
274 printf("zfs unknown checksum function %d\n", checksum);
275 return ZFS_ERR_NOT_IMPLEMENTED_YET;
276 }
277
278 if (ci->ci_eck) {
279 expected_cksum = zec->zec_cksum;
280 zec->zec_cksum = zc;
281 ci->ci_func(buf, size, endian, &actual_cksum);
282 zec->zec_cksum = expected_cksum;
283 zc = expected_cksum;
284 } else {
285 ci->ci_func(buf, size, endian, &actual_cksum);
286 }
287
288 if ((actual_cksum.zc_word[0] != zc.zc_word[0])
289 || (actual_cksum.zc_word[1] != zc.zc_word[1])
290 || (actual_cksum.zc_word[2] != zc.zc_word[2])
291 || (actual_cksum.zc_word[3] != zc.zc_word[3])) {
292 return ZFS_ERR_BAD_FS;
293 }
294
295 return ZFS_ERR_NONE;
296}
297
298/*
299 * vdev_uberblock_compare takes two uberblock structures and returns an integer
300 * indicating the more recent of the two.
301 * Return Value = 1 if ub2 is more recent
302 * Return Value = -1 if ub1 is more recent
303 * The most recent uberblock is determined using its transaction number and
304 * timestamp. The uberblock with the highest transaction number is
305 * considered "newer". If the transaction numbers of the two blocks match, the
306 * timestamps are compared to determine the "newer" of the two.
307 */
308static int
309vdev_uberblock_compare(uberblock_t *ub1, uberblock_t *ub2)
310{
311 zfs_endian_t ub1_endian, ub2_endian;
312 if (zfs_to_cpu64(ub1->ub_magic, LITTLE_ENDIAN) == UBERBLOCK_MAGIC)
313 ub1_endian = LITTLE_ENDIAN;
314 else
315 ub1_endian = BIG_ENDIAN;
316 if (zfs_to_cpu64(ub2->ub_magic, LITTLE_ENDIAN) == UBERBLOCK_MAGIC)
317 ub2_endian = LITTLE_ENDIAN;
318 else
319 ub2_endian = BIG_ENDIAN;
320
321 if (zfs_to_cpu64(ub1->ub_txg, ub1_endian)
322 < zfs_to_cpu64(ub2->ub_txg, ub2_endian))
323 return -1;
324 if (zfs_to_cpu64(ub1->ub_txg, ub1_endian)
325 > zfs_to_cpu64(ub2->ub_txg, ub2_endian))
326 return 1;
327
328 if (zfs_to_cpu64(ub1->ub_timestamp, ub1_endian)
329 < zfs_to_cpu64(ub2->ub_timestamp, ub2_endian))
330 return -1;
331 if (zfs_to_cpu64(ub1->ub_timestamp, ub1_endian)
332 > zfs_to_cpu64(ub2->ub_timestamp, ub2_endian))
333 return 1;
334
335 return 0;
336}
337
WHR54ef5252024-05-01 00:28:32 +0800338static inline int
339is_supported_spa_version(uint64_t version) {
340 return version == FEATURES_SUPPORTED_SPA_VERSION ||
341 (version > 0 && version <= SPA_VERSION);
342}
343
Jorgen Lundman9b4a1f92012-07-19 20:48:25 +0000344/*
345 * Three pieces of information are needed to verify an uberblock: the magic
346 * number, the version number, and the checksum.
347 *
348 * Currently Implemented: version number, magic number, label txg
349 * Need to Implement: checksum
350 *
351 */
352static int
353uberblock_verify(uberblock_t *uber, int offset, struct zfs_data *data)
354{
355 int err;
356 zfs_endian_t endian = UNKNOWN_ENDIAN;
357 zio_cksum_t zc;
358
359 if (uber->ub_txg < data->label_txg) {
360 debug("ignoring partially written label: uber_txg < label_txg %llu %llu\n",
361 uber->ub_txg, data->label_txg);
362 return ZFS_ERR_BAD_FS;
363 }
364
WHR54ef5252024-05-01 00:28:32 +0800365 if (zfs_to_cpu64(uber->ub_magic, LITTLE_ENDIAN) == UBERBLOCK_MAGIC &&
366 is_supported_spa_version(zfs_to_cpu64(uber->ub_version, LITTLE_ENDIAN)))
Jorgen Lundman9b4a1f92012-07-19 20:48:25 +0000367 endian = LITTLE_ENDIAN;
368
WHR54ef5252024-05-01 00:28:32 +0800369 if (zfs_to_cpu64(uber->ub_magic, BIG_ENDIAN) == UBERBLOCK_MAGIC &&
370 is_supported_spa_version(zfs_to_cpu64(uber->ub_version, BIG_ENDIAN)))
Jorgen Lundman9b4a1f92012-07-19 20:48:25 +0000371 endian = BIG_ENDIAN;
372
373 if (endian == UNKNOWN_ENDIAN) {
374 printf("invalid uberblock magic\n");
375 return ZFS_ERR_BAD_FS;
376 }
377
378 memset(&zc, 0, sizeof(zc));
379 zc.zc_word[0] = cpu_to_zfs64(offset, endian);
380 err = zio_checksum_verify(zc, ZIO_CHECKSUM_LABEL, endian,
381 (char *) uber, UBERBLOCK_SIZE(data->vdev_ashift));
382
383 if (!err) {
384 /* Check that the data pointed by the rootbp is usable. */
385 void *osp = NULL;
386 size_t ospsize;
387 err = zio_read(&uber->ub_rootbp, endian, &osp, &ospsize, data);
388 free(osp);
389
390 if (!err && ospsize < OBJSET_PHYS_SIZE_V14) {
391 printf("uberblock rootbp points to invalid data\n");
392 return ZFS_ERR_BAD_FS;
393 }
394 }
395
396 return err;
397}
398
399/*
400 * Find the best uberblock.
401 * Return:
402 * Success - Pointer to the best uberblock.
403 * Failure - NULL
404 */
405static uberblock_t *find_bestub(char *ub_array, struct zfs_data *data)
406{
407 const uint64_t sector = data->vdev_phys_sector;
408 uberblock_t *ubbest = NULL;
409 uberblock_t *ubnext;
410 unsigned int i, offset, pickedub = 0;
411 int err = ZFS_ERR_NONE;
412
413 const unsigned int UBCOUNT = UBERBLOCK_COUNT(data->vdev_ashift);
414 const uint64_t UBBYTES = UBERBLOCK_SIZE(data->vdev_ashift);
415
416 for (i = 0; i < UBCOUNT; i++) {
417 ubnext = (uberblock_t *) (i * UBBYTES + ub_array);
418 offset = (sector << SPA_MINBLOCKSHIFT) + VDEV_PHYS_SIZE + (i * UBBYTES);
419
420 err = uberblock_verify(ubnext, offset, data);
421 if (err)
422 continue;
423
424 if (ubbest == NULL || vdev_uberblock_compare(ubnext, ubbest) > 0) {
425 ubbest = ubnext;
426 pickedub = i;
427 }
428 }
429
430 if (ubbest)
431 debug("zfs Found best uberblock at idx %d, txg %llu\n",
432 pickedub, (unsigned long long) ubbest->ub_txg);
433
434 return ubbest;
435}
436
437static inline size_t
438get_psize(blkptr_t *bp, zfs_endian_t endian)
439{
440 return (((zfs_to_cpu64((bp)->blk_prop, endian) >> 16) & 0xffff) + 1)
441 << SPA_MINBLOCKSHIFT;
442}
443
444static uint64_t
445dva_get_offset(dva_t *dva, zfs_endian_t endian)
446{
447 return zfs_to_cpu64((dva)->dva_word[1],
448 endian) << SPA_MINBLOCKSHIFT;
449}
450
451/*
452 * Read a block of data based on the gang block address dva,
453 * and put its data in buf.
454 *
455 */
456static int
457zio_read_gang(blkptr_t *bp, zfs_endian_t endian, dva_t *dva, void *buf,
458 struct zfs_data *data)
459{
460 zio_gbh_phys_t *zio_gb;
461 uint64_t offset, sector;
462 unsigned i;
463 int err;
464 zio_cksum_t zc;
465
466 memset(&zc, 0, sizeof(zc));
467
468 zio_gb = malloc(SPA_GANGBLOCKSIZE);
469 if (!zio_gb)
470 return ZFS_ERR_OUT_OF_MEMORY;
471
472 offset = dva_get_offset(dva, endian);
473 sector = DVA_OFFSET_TO_PHYS_SECTOR(offset);
474
475 /* read in the gang block header */
476 err = zfs_devread(sector, 0, SPA_GANGBLOCKSIZE, (char *) zio_gb);
477
478 if (err) {
479 free(zio_gb);
480 return err;
481 }
482
483 /* XXX */
484 /* self checksuming the gang block header */
485 ZIO_SET_CHECKSUM(&zc, DVA_GET_VDEV(dva),
486 dva_get_offset(dva, endian), bp->blk_birth, 0);
487 err = zio_checksum_verify(zc, ZIO_CHECKSUM_GANG_HEADER, endian,
488 (char *) zio_gb, SPA_GANGBLOCKSIZE);
489 if (err) {
490 free(zio_gb);
491 return err;
492 }
493
494 endian = (zfs_to_cpu64(bp->blk_prop, endian) >> 63) & 1;
495
496 for (i = 0; i < SPA_GBH_NBLKPTRS; i++) {
497 if (zio_gb->zg_blkptr[i].blk_birth == 0)
498 continue;
499
500 err = zio_read_data(&zio_gb->zg_blkptr[i], endian, buf, data);
501 if (err) {
502 free(zio_gb);
503 return err;
504 }
505 buf = (char *) buf + get_psize(&zio_gb->zg_blkptr[i], endian);
506 }
507 free(zio_gb);
508 return ZFS_ERR_NONE;
509}
510
511/*
512 * Read in a block of raw data to buf.
513 */
514static int
515zio_read_data(blkptr_t *bp, zfs_endian_t endian, void *buf,
516 struct zfs_data *data)
517{
518 int i, psize;
519 int err = ZFS_ERR_NONE;
520
521 psize = get_psize(bp, endian);
522
523 /* pick a good dva from the block pointer */
524 for (i = 0; i < SPA_DVAS_PER_BP; i++) {
525 uint64_t offset, sector;
526
527 if (bp->blk_dva[i].dva_word[0] == 0 && bp->blk_dva[i].dva_word[1] == 0)
528 continue;
529
530 if ((zfs_to_cpu64(bp->blk_dva[i].dva_word[1], endian)>>63) & 1) {
531 err = zio_read_gang(bp, endian, &bp->blk_dva[i], buf, data);
532 } else {
533 /* read in a data block */
534 offset = dva_get_offset(&bp->blk_dva[i], endian);
535 sector = DVA_OFFSET_TO_PHYS_SECTOR(offset);
536
537 err = zfs_devread(sector, 0, psize, buf);
538 }
539
540 if (!err) {
541 /*Check the underlying checksum before we rule this DVA as "good"*/
542 uint32_t checkalgo = (zfs_to_cpu64((bp)->blk_prop, endian) >> 40) & 0xff;
543
544 err = zio_checksum_verify(bp->blk_cksum, checkalgo, endian, buf, psize);
545 if (!err)
546 return ZFS_ERR_NONE;
547 }
548
549 /* If read failed or checksum bad, reset the error. Hopefully we've got some more DVA's to try.*/
550 }
551
552 if (!err) {
553 printf("couldn't find a valid DVA\n");
554 err = ZFS_ERR_BAD_FS;
555 }
556
557 return err;
558}
559
560/*
561 * Read in a block of data, verify its checksum, decompress if needed,
562 * and put the uncompressed data in buf.
563 */
564static int
565zio_read(blkptr_t *bp, zfs_endian_t endian, void **buf,
566 size_t *size, struct zfs_data *data)
567{
568 size_t lsize, psize;
569 unsigned int comp;
570 char *compbuf = NULL;
571 int err;
572
573 *buf = NULL;
574
575 comp = (zfs_to_cpu64((bp)->blk_prop, endian)>>32) & 0xff;
576 lsize = (BP_IS_HOLE(bp) ? 0 :
577 (((zfs_to_cpu64((bp)->blk_prop, endian) & 0xffff) + 1)
578 << SPA_MINBLOCKSHIFT));
579 psize = get_psize(bp, endian);
580
581 if (size)
582 *size = lsize;
583
584 if (comp >= ZIO_COMPRESS_FUNCTIONS) {
585 printf("compression algorithm %u not supported\n", (unsigned int) comp);
586 return ZFS_ERR_NOT_IMPLEMENTED_YET;
587 }
588
589 if (comp != ZIO_COMPRESS_OFF && decomp_table[comp].decomp_func == NULL) {
590 printf("compression algorithm %s not supported\n", decomp_table[comp].name);
591 return ZFS_ERR_NOT_IMPLEMENTED_YET;
592 }
593
594 if (comp != ZIO_COMPRESS_OFF) {
595 compbuf = malloc(psize);
596 if (!compbuf)
597 return ZFS_ERR_OUT_OF_MEMORY;
598 } else {
599 compbuf = *buf = malloc(lsize);
600 }
601
602 err = zio_read_data(bp, endian, compbuf, data);
603 if (err) {
604 free(compbuf);
605 *buf = NULL;
606 return err;
607 }
608
609 if (comp != ZIO_COMPRESS_OFF) {
610 *buf = malloc(lsize);
611 if (!*buf) {
612 free(compbuf);
613 return ZFS_ERR_OUT_OF_MEMORY;
614 }
615
616 err = decomp_table[comp].decomp_func(compbuf, *buf, psize, lsize);
617 free(compbuf);
618 if (err) {
619 free(*buf);
620 *buf = NULL;
621 return err;
622 }
623 }
624
625 return ZFS_ERR_NONE;
626}
627
628/*
629 * Get the block from a block id.
630 * push the block onto the stack.
631 *
632 */
633static int
634dmu_read(dnode_end_t *dn, uint64_t blkid, void **buf,
635 zfs_endian_t *endian_out, struct zfs_data *data)
636{
637 int idx, level;
638 blkptr_t *bp_array = dn->dn.dn_blkptr;
639 int epbs = dn->dn.dn_indblkshift - SPA_BLKPTRSHIFT;
640 blkptr_t *bp;
641 void *tmpbuf = 0;
642 zfs_endian_t endian;
643 int err = ZFS_ERR_NONE;
644
645 bp = malloc(sizeof(blkptr_t));
646 if (!bp)
647 return ZFS_ERR_OUT_OF_MEMORY;
648
649 endian = dn->endian;
650 for (level = dn->dn.dn_nlevels - 1; level >= 0; level--) {
651 idx = (blkid >> (epbs * level)) & ((1 << epbs) - 1);
652 *bp = bp_array[idx];
653 if (bp_array != dn->dn.dn_blkptr) {
654 free(bp_array);
655 bp_array = 0;
656 }
657
658 if (BP_IS_HOLE(bp)) {
659 size_t size = zfs_to_cpu16(dn->dn.dn_datablkszsec,
660 dn->endian)
661 << SPA_MINBLOCKSHIFT;
662 *buf = malloc(size);
mwleeds@mailtundra.com14a9faa2024-04-06 18:47:25 -0700663 if (!*buf) {
Jorgen Lundman9b4a1f92012-07-19 20:48:25 +0000664 err = ZFS_ERR_OUT_OF_MEMORY;
665 break;
666 }
667 memset(*buf, 0, size);
668 endian = (zfs_to_cpu64(bp->blk_prop, endian) >> 63) & 1;
669 break;
670 }
671 if (level == 0) {
672 err = zio_read(bp, endian, buf, 0, data);
673 endian = (zfs_to_cpu64(bp->blk_prop, endian) >> 63) & 1;
674 break;
675 }
676 err = zio_read(bp, endian, &tmpbuf, 0, data);
677 endian = (zfs_to_cpu64(bp->blk_prop, endian) >> 63) & 1;
678 if (err)
679 break;
680 bp_array = tmpbuf;
681 }
682 if (bp_array != dn->dn.dn_blkptr)
683 free(bp_array);
684 if (endian_out)
685 *endian_out = endian;
686
687 free(bp);
688 return err;
689}
690
691/*
692 * mzap_lookup: Looks up property described by "name" and returns the value
693 * in "value".
694 */
695static int
696mzap_lookup(mzap_phys_t *zapobj, zfs_endian_t endian,
697 int objsize, char *name, uint64_t * value)
698{
699 int i, chunks;
700 mzap_ent_phys_t *mzap_ent = zapobj->mz_chunk;
701
702 chunks = objsize / MZAP_ENT_LEN - 1;
703 for (i = 0; i < chunks; i++) {
704 if (strcmp(mzap_ent[i].mze_name, name) == 0) {
705 *value = zfs_to_cpu64(mzap_ent[i].mze_value, endian);
706 return ZFS_ERR_NONE;
707 }
708 }
709
710 printf("couldn't find '%s'\n", name);
711 return ZFS_ERR_FILE_NOT_FOUND;
712}
713
714static int
715mzap_iterate(mzap_phys_t *zapobj, zfs_endian_t endian, int objsize,
716 int (*hook)(const char *name,
717 uint64_t val,
718 struct zfs_data *data),
719 struct zfs_data *data)
720{
721 int i, chunks;
722 mzap_ent_phys_t *mzap_ent = zapobj->mz_chunk;
723
724 chunks = objsize / MZAP_ENT_LEN - 1;
725 for (i = 0; i < chunks; i++) {
726 if (hook(mzap_ent[i].mze_name,
727 zfs_to_cpu64(mzap_ent[i].mze_value, endian),
728 data))
729 return 1;
730 }
731
732 return 0;
733}
734
735static uint64_t
736zap_hash(uint64_t salt, const char *name)
737{
738 static uint64_t table[256];
739 const uint8_t *cp;
740 uint8_t c;
741 uint64_t crc = salt;
742
743 if (table[128] == 0) {
Jorgen Lundman8d119d82014-11-07 10:08:35 +0900744 uint64_t *ct = NULL;
Jorgen Lundman9b4a1f92012-07-19 20:48:25 +0000745 int i, j;
746 for (i = 0; i < 256; i++) {
747 for (ct = table + i, *ct = i, j = 8; j > 0; j--)
748 *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
749 }
750 }
751
752 for (cp = (const uint8_t *) name; (c = *cp) != '\0'; cp++)
753 crc = (crc >> 8) ^ table[(crc ^ c) & 0xFF];
754
755 /*
756 * Only use 28 bits, since we need 4 bits in the cookie for the
757 * collision differentiator. We MUST use the high bits, since
758 * those are the onces that we first pay attention to when
759 * chosing the bucket.
760 */
761 crc &= ~((1ULL << (64 - ZAP_HASHBITS)) - 1);
762
763 return crc;
764}
765
766/*
767 * Only to be used on 8-bit arrays.
768 * array_len is actual len in bytes (not encoded le_value_length).
769 * buf is null-terminated.
770 */
771/* XXX */
772static int
773zap_leaf_array_equal(zap_leaf_phys_t *l, zfs_endian_t endian,
774 int blksft, int chunk, int array_len, const char *buf)
775{
776 int bseen = 0;
777
778 while (bseen < array_len) {
779 struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, blksft, chunk).l_array;
Masahiro Yamadab62b39b2014-09-18 13:28:06 +0900780 int toread = min(array_len - bseen, ZAP_LEAF_ARRAY_BYTES);
Jorgen Lundman9b4a1f92012-07-19 20:48:25 +0000781
782 if (chunk >= ZAP_LEAF_NUMCHUNKS(blksft))
783 return 0;
784
785 if (memcmp(la->la_array, buf + bseen, toread) != 0)
786 break;
787 chunk = zfs_to_cpu16(la->la_next, endian);
788 bseen += toread;
789 }
790 return (bseen == array_len);
791}
792
793/* XXX */
794static int
795zap_leaf_array_get(zap_leaf_phys_t *l, zfs_endian_t endian, int blksft,
796 int chunk, int array_len, char *buf)
797{
798 int bseen = 0;
799
800 while (bseen < array_len) {
801 struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, blksft, chunk).l_array;
Masahiro Yamadab62b39b2014-09-18 13:28:06 +0900802 int toread = min(array_len - bseen, ZAP_LEAF_ARRAY_BYTES);
Jorgen Lundman9b4a1f92012-07-19 20:48:25 +0000803
804 if (chunk >= ZAP_LEAF_NUMCHUNKS(blksft))
805 /* Don't use errno because this error is to be ignored. */
806 return ZFS_ERR_BAD_FS;
807
808 memcpy(buf + bseen, la->la_array, toread);
809 chunk = zfs_to_cpu16(la->la_next, endian);
810 bseen += toread;
811 }
812 return ZFS_ERR_NONE;
813}
814
815
816/*
817 * Given a zap_leaf_phys_t, walk thru the zap leaf chunks to get the
818 * value for the property "name".
819 *
820 */
821/* XXX */
822static int
823zap_leaf_lookup(zap_leaf_phys_t *l, zfs_endian_t endian,
824 int blksft, uint64_t h,
825 const char *name, uint64_t *value)
826{
827 uint16_t chunk;
828 struct zap_leaf_entry *le;
829
830 /* Verify if this is a valid leaf block */
831 if (zfs_to_cpu64(l->l_hdr.lh_block_type, endian) != ZBT_LEAF) {
832 printf("invalid leaf type\n");
833 return ZFS_ERR_BAD_FS;
834 }
835 if (zfs_to_cpu32(l->l_hdr.lh_magic, endian) != ZAP_LEAF_MAGIC) {
836 printf("invalid leaf magic\n");
837 return ZFS_ERR_BAD_FS;
838 }
839
840 for (chunk = zfs_to_cpu16(l->l_hash[LEAF_HASH(blksft, h)], endian);
841 chunk != CHAIN_END; chunk = le->le_next) {
842
843 if (chunk >= ZAP_LEAF_NUMCHUNKS(blksft)) {
844 printf("invalid chunk number\n");
845 return ZFS_ERR_BAD_FS;
846 }
847
848 le = ZAP_LEAF_ENTRY(l, blksft, chunk);
849
850 /* Verify the chunk entry */
851 if (le->le_type != ZAP_CHUNK_ENTRY) {
852 printf("invalid chunk entry\n");
853 return ZFS_ERR_BAD_FS;
854 }
855
856 if (zfs_to_cpu64(le->le_hash, endian) != h)
857 continue;
858
859 if (zap_leaf_array_equal(l, endian, blksft,
860 zfs_to_cpu16(le->le_name_chunk, endian),
861 zfs_to_cpu16(le->le_name_length, endian),
862 name)) {
863 struct zap_leaf_array *la;
864
865 if (le->le_int_size != 8 || le->le_value_length != 1) {
866 printf("invalid leaf chunk entry\n");
867 return ZFS_ERR_BAD_FS;
868 }
869 /* get the uint64_t property value */
870 la = &ZAP_LEAF_CHUNK(l, blksft, le->le_value_chunk).l_array;
871
872 *value = be64_to_cpu(la->la_array64);
873
874 return ZFS_ERR_NONE;
875 }
876 }
877
878 printf("couldn't find '%s'\n", name);
879 return ZFS_ERR_FILE_NOT_FOUND;
880}
881
882
883/* Verify if this is a fat zap header block */
884static int
885zap_verify(zap_phys_t *zap)
886{
887 if (zap->zap_magic != (uint64_t) ZAP_MAGIC) {
888 printf("bad ZAP magic\n");
889 return ZFS_ERR_BAD_FS;
890 }
891
892 if (zap->zap_flags != 0) {
893 printf("bad ZAP flags\n");
894 return ZFS_ERR_BAD_FS;
895 }
896
897 if (zap->zap_salt == 0) {
898 printf("bad ZAP salt\n");
899 return ZFS_ERR_BAD_FS;
900 }
901
902 return ZFS_ERR_NONE;
903}
904
905/*
906 * Fat ZAP lookup
907 *
908 */
909/* XXX */
910static int
911fzap_lookup(dnode_end_t *zap_dnode, zap_phys_t *zap,
912 char *name, uint64_t *value, struct zfs_data *data)
913{
914 void *l;
915 uint64_t hash, idx, blkid;
916 int blksft = zfs_log2(zfs_to_cpu16(zap_dnode->dn.dn_datablkszsec,
917 zap_dnode->endian) << DNODE_SHIFT);
918 int err;
919 zfs_endian_t leafendian;
920
921 err = zap_verify(zap);
922 if (err)
923 return err;
924
925 hash = zap_hash(zap->zap_salt, name);
926
927 /* get block id from index */
928 if (zap->zap_ptrtbl.zt_numblks != 0) {
929 printf("external pointer tables not supported\n");
930 return ZFS_ERR_NOT_IMPLEMENTED_YET;
931 }
932 idx = ZAP_HASH_IDX(hash, zap->zap_ptrtbl.zt_shift);
933 blkid = ((uint64_t *) zap)[idx + (1 << (blksft - 3 - 1))];
934
935 /* Get the leaf block */
936 if ((1U << blksft) < sizeof(zap_leaf_phys_t)) {
937 printf("ZAP leaf is too small\n");
938 return ZFS_ERR_BAD_FS;
939 }
940 err = dmu_read(zap_dnode, blkid, &l, &leafendian, data);
941 if (err)
942 return err;
943
944 err = zap_leaf_lookup(l, leafendian, blksft, hash, name, value);
945 free(l);
946 return err;
947}
948
949/* XXX */
950static int
951fzap_iterate(dnode_end_t *zap_dnode, zap_phys_t *zap,
952 int (*hook)(const char *name,
953 uint64_t val,
954 struct zfs_data *data),
955 struct zfs_data *data)
956{
957 zap_leaf_phys_t *l;
958 void *l_in;
959 uint64_t idx, blkid;
960 uint16_t chunk;
961 int blksft = zfs_log2(zfs_to_cpu16(zap_dnode->dn.dn_datablkszsec,
962 zap_dnode->endian) << DNODE_SHIFT);
963 int err;
964 zfs_endian_t endian;
965
966 if (zap_verify(zap))
967 return 0;
968
969 /* get block id from index */
970 if (zap->zap_ptrtbl.zt_numblks != 0) {
971 printf("external pointer tables not supported\n");
972 return 0;
973 }
974 /* Get the leaf block */
975 if ((1U << blksft) < sizeof(zap_leaf_phys_t)) {
976 printf("ZAP leaf is too small\n");
977 return 0;
978 }
979 for (idx = 0; idx < zap->zap_ptrtbl.zt_numblks; idx++) {
980 blkid = ((uint64_t *) zap)[idx + (1 << (blksft - 3 - 1))];
981
982 err = dmu_read(zap_dnode, blkid, &l_in, &endian, data);
983 l = l_in;
984 if (err)
985 continue;
986
987 /* Verify if this is a valid leaf block */
988 if (zfs_to_cpu64(l->l_hdr.lh_block_type, endian) != ZBT_LEAF) {
989 free(l);
990 continue;
991 }
992 if (zfs_to_cpu32(l->l_hdr.lh_magic, endian) != ZAP_LEAF_MAGIC) {
993 free(l);
994 continue;
995 }
996
997 for (chunk = 0; chunk < ZAP_LEAF_NUMCHUNKS(blksft); chunk++) {
998 char *buf;
999 struct zap_leaf_array *la;
1000 struct zap_leaf_entry *le;
1001 uint64_t val;
1002 le = ZAP_LEAF_ENTRY(l, blksft, chunk);
1003
1004 /* Verify the chunk entry */
1005 if (le->le_type != ZAP_CHUNK_ENTRY)
1006 continue;
1007
1008 buf = malloc(zfs_to_cpu16(le->le_name_length, endian)
1009 + 1);
1010 if (zap_leaf_array_get(l, endian, blksft, le->le_name_chunk,
1011 le->le_name_length, buf)) {
1012 free(buf);
1013 continue;
1014 }
1015 buf[le->le_name_length] = 0;
1016
1017 if (le->le_int_size != 8
1018 || zfs_to_cpu16(le->le_value_length, endian) != 1)
1019 continue;
1020
1021 /* get the uint64_t property value */
1022 la = &ZAP_LEAF_CHUNK(l, blksft, le->le_value_chunk).l_array;
1023 val = be64_to_cpu(la->la_array64);
1024 if (hook(buf, val, data))
1025 return 1;
1026 free(buf);
1027 }
1028 }
1029 return 0;
1030}
1031
1032
1033/*
1034 * Read in the data of a zap object and find the value for a matching
1035 * property name.
1036 *
1037 */
1038static int
1039zap_lookup(dnode_end_t *zap_dnode, char *name, uint64_t *val,
1040 struct zfs_data *data)
1041{
1042 uint64_t block_type;
1043 int size;
1044 void *zapbuf;
1045 int err;
1046 zfs_endian_t endian;
1047
1048 /* Read in the first block of the zap object data. */
1049 size = zfs_to_cpu16(zap_dnode->dn.dn_datablkszsec,
1050 zap_dnode->endian) << SPA_MINBLOCKSHIFT;
1051 err = dmu_read(zap_dnode, 0, &zapbuf, &endian, data);
1052 if (err)
1053 return err;
1054 block_type = zfs_to_cpu64(*((uint64_t *) zapbuf), endian);
1055
1056 if (block_type == ZBT_MICRO) {
1057 err = (mzap_lookup(zapbuf, endian, size, name, val));
1058 free(zapbuf);
1059 return err;
1060 } else if (block_type == ZBT_HEADER) {
1061 /* this is a fat zap */
1062 err = (fzap_lookup(zap_dnode, zapbuf, name, val, data));
1063 free(zapbuf);
1064 return err;
1065 }
1066
1067 printf("unknown ZAP type\n");
Jorgen Lundman8d119d82014-11-07 10:08:35 +09001068 free(zapbuf);
Jorgen Lundman9b4a1f92012-07-19 20:48:25 +00001069 return ZFS_ERR_BAD_FS;
1070}
1071
1072static int
1073zap_iterate(dnode_end_t *zap_dnode,
1074 int (*hook)(const char *name, uint64_t val,
1075 struct zfs_data *data),
1076 struct zfs_data *data)
1077{
1078 uint64_t block_type;
1079 int size;
1080 void *zapbuf;
1081 int err;
1082 int ret;
1083 zfs_endian_t endian;
1084
1085 /* Read in the first block of the zap object data. */
1086 size = zfs_to_cpu16(zap_dnode->dn.dn_datablkszsec, zap_dnode->endian) << SPA_MINBLOCKSHIFT;
1087 err = dmu_read(zap_dnode, 0, &zapbuf, &endian, data);
1088 if (err)
1089 return 0;
1090 block_type = zfs_to_cpu64(*((uint64_t *) zapbuf), endian);
1091
1092 if (block_type == ZBT_MICRO) {
1093 ret = mzap_iterate(zapbuf, endian, size, hook, data);
1094 free(zapbuf);
1095 return ret;
1096 } else if (block_type == ZBT_HEADER) {
1097 /* this is a fat zap */
1098 ret = fzap_iterate(zap_dnode, zapbuf, hook, data);
1099 free(zapbuf);
1100 return ret;
1101 }
1102 printf("unknown ZAP type\n");
Jorgen Lundman8d119d82014-11-07 10:08:35 +09001103 free(zapbuf);
Jorgen Lundman9b4a1f92012-07-19 20:48:25 +00001104 return 0;
1105}
1106
1107
1108/*
1109 * Get the dnode of an object number from the metadnode of an object set.
1110 *
1111 * Input
1112 * mdn - metadnode to get the object dnode
1113 * objnum - object number for the object dnode
1114 * buf - data buffer that holds the returning dnode
1115 */
1116static int
1117dnode_get(dnode_end_t *mdn, uint64_t objnum, uint8_t type,
1118 dnode_end_t *buf, struct zfs_data *data)
1119{
1120 uint64_t blkid, blksz; /* the block id this object dnode is in */
1121 int epbs; /* shift of number of dnodes in a block */
1122 int idx; /* index within a block */
1123 void *dnbuf;
1124 int err;
1125 zfs_endian_t endian;
1126
1127 blksz = zfs_to_cpu16(mdn->dn.dn_datablkszsec,
1128 mdn->endian) << SPA_MINBLOCKSHIFT;
1129
1130 epbs = zfs_log2(blksz) - DNODE_SHIFT;
1131 blkid = objnum >> epbs;
1132 idx = objnum & ((1 << epbs) - 1);
1133
1134 if (data->dnode_buf != NULL && memcmp(data->dnode_mdn, mdn,
1135 sizeof(*mdn)) == 0
1136 && objnum >= data->dnode_start && objnum < data->dnode_end) {
1137 memmove(&(buf->dn), &(data->dnode_buf)[idx], DNODE_SIZE);
1138 buf->endian = data->dnode_endian;
1139 if (type && buf->dn.dn_type != type) {
1140 printf("incorrect dnode type: %02X != %02x\n", buf->dn.dn_type, type);
1141 return ZFS_ERR_BAD_FS;
1142 }
1143 return ZFS_ERR_NONE;
1144 }
1145
1146 err = dmu_read(mdn, blkid, &dnbuf, &endian, data);
1147 if (err)
1148 return err;
1149
1150 free(data->dnode_buf);
1151 free(data->dnode_mdn);
1152 data->dnode_mdn = malloc(sizeof(*mdn));
1153 if (!data->dnode_mdn) {
1154 data->dnode_buf = 0;
1155 } else {
1156 memcpy(data->dnode_mdn, mdn, sizeof(*mdn));
1157 data->dnode_buf = dnbuf;
1158 data->dnode_start = blkid << epbs;
1159 data->dnode_end = (blkid + 1) << epbs;
1160 data->dnode_endian = endian;
1161 }
1162
1163 memmove(&(buf->dn), (dnode_phys_t *) dnbuf + idx, DNODE_SIZE);
1164 buf->endian = endian;
1165 if (type && buf->dn.dn_type != type) {
1166 printf("incorrect dnode type\n");
1167 return ZFS_ERR_BAD_FS;
1168 }
1169
1170 return ZFS_ERR_NONE;
1171}
1172
1173/*
1174 * Get the file dnode for a given file name where mdn is the meta dnode
1175 * for this ZFS object set. When found, place the file dnode in dn.
1176 * The 'path' argument will be mangled.
1177 *
1178 */
1179static int
1180dnode_get_path(dnode_end_t *mdn, const char *path_in, dnode_end_t *dn,
1181 struct zfs_data *data)
1182{
1183 uint64_t objnum, version;
1184 char *cname, ch;
1185 int err = ZFS_ERR_NONE;
1186 char *path, *path_buf;
1187 struct dnode_chain {
1188 struct dnode_chain *next;
1189 dnode_end_t dn;
1190 };
1191 struct dnode_chain *dnode_path = 0, *dn_new, *root;
1192
1193 dn_new = malloc(sizeof(*dn_new));
1194 if (!dn_new)
1195 return ZFS_ERR_OUT_OF_MEMORY;
1196 dn_new->next = 0;
1197 dnode_path = root = dn_new;
1198
1199 err = dnode_get(mdn, MASTER_NODE_OBJ, DMU_OT_MASTER_NODE,
1200 &(dnode_path->dn), data);
1201 if (err) {
1202 free(dn_new);
1203 return err;
1204 }
1205
1206 err = zap_lookup(&(dnode_path->dn), ZPL_VERSION_STR, &version, data);
1207 if (err) {
1208 free(dn_new);
1209 return err;
1210 }
1211 if (version > ZPL_VERSION) {
1212 free(dn_new);
1213 printf("too new ZPL version\n");
1214 return ZFS_ERR_NOT_IMPLEMENTED_YET;
1215 }
1216
1217 err = zap_lookup(&(dnode_path->dn), ZFS_ROOT_OBJ, &objnum, data);
1218 if (err) {
1219 free(dn_new);
1220 return err;
1221 }
1222
1223 err = dnode_get(mdn, objnum, 0, &(dnode_path->dn), data);
1224 if (err) {
1225 free(dn_new);
1226 return err;
1227 }
1228
1229 path = path_buf = strdup(path_in);
1230 if (!path_buf) {
1231 free(dn_new);
1232 return ZFS_ERR_OUT_OF_MEMORY;
1233 }
1234
1235 while (1) {
1236 /* skip leading slashes */
1237 while (*path == '/')
1238 path++;
1239 if (!*path)
1240 break;
1241 /* get the next component name */
1242 cname = path;
1243 while (*path && *path != '/')
1244 path++;
1245 /* Skip dot. */
1246 if (cname + 1 == path && cname[0] == '.')
1247 continue;
1248 /* Handle double dot. */
1249 if (cname + 2 == path && cname[0] == '.' && cname[1] == '.') {
1250 if (dn_new->next) {
1251 dn_new = dnode_path;
1252 dnode_path = dn_new->next;
1253 free(dn_new);
1254 } else {
1255 printf("can't resolve ..\n");
1256 err = ZFS_ERR_FILE_NOT_FOUND;
1257 break;
1258 }
1259 continue;
1260 }
1261
1262 ch = *path;
1263 *path = 0; /* ensure null termination */
1264
1265 if (dnode_path->dn.dn.dn_type != DMU_OT_DIRECTORY_CONTENTS) {
1266 free(path_buf);
1267 printf("not a directory\n");
1268 return ZFS_ERR_BAD_FILE_TYPE;
1269 }
1270 err = zap_lookup(&(dnode_path->dn), cname, &objnum, data);
1271 if (err)
1272 break;
1273
1274 dn_new = malloc(sizeof(*dn_new));
1275 if (!dn_new) {
1276 err = ZFS_ERR_OUT_OF_MEMORY;
1277 break;
1278 }
1279 dn_new->next = dnode_path;
1280 dnode_path = dn_new;
1281
1282 objnum = ZFS_DIRENT_OBJ(objnum);
1283 err = dnode_get(mdn, objnum, 0, &(dnode_path->dn), data);
1284 if (err)
1285 break;
1286
1287 *path = ch;
1288 }
1289
1290 if (!err)
1291 memcpy(dn, &(dnode_path->dn), sizeof(*dn));
1292
1293 while (dnode_path) {
1294 dn_new = dnode_path->next;
1295 free(dnode_path);
1296 dnode_path = dn_new;
1297 }
1298 free(path_buf);
1299 return err;
1300}
1301
1302
1303/*
1304 * Given a MOS metadnode, get the metadnode of a given filesystem name (fsname),
1305 * e.g. pool/rootfs, or a given object number (obj), e.g. the object number
1306 * of pool/rootfs.
1307 *
1308 * If no fsname and no obj are given, return the DSL_DIR metadnode.
1309 * If fsname is given, return its metadnode and its matching object number.
1310 * If only obj is given, return the metadnode for this object number.
1311 *
1312 */
1313static int
1314get_filesystem_dnode(dnode_end_t *mosmdn, char *fsname,
1315 dnode_end_t *mdn, struct zfs_data *data)
1316{
1317 uint64_t objnum;
1318 int err;
1319
1320 err = dnode_get(mosmdn, DMU_POOL_DIRECTORY_OBJECT,
1321 DMU_OT_OBJECT_DIRECTORY, mdn, data);
1322 if (err)
1323 return err;
1324
1325 err = zap_lookup(mdn, DMU_POOL_ROOT_DATASET, &objnum, data);
1326 if (err)
1327 return err;
1328
1329 err = dnode_get(mosmdn, objnum, DMU_OT_DSL_DIR, mdn, data);
1330 if (err)
1331 return err;
1332
1333 while (*fsname) {
1334 uint64_t childobj;
1335 char *cname, ch;
1336
1337 while (*fsname == '/')
1338 fsname++;
1339
1340 if (!*fsname || *fsname == '@')
1341 break;
1342
1343 cname = fsname;
1344 while (*fsname && !isspace(*fsname) && *fsname != '/')
1345 fsname++;
1346 ch = *fsname;
1347 *fsname = 0;
1348
1349 childobj = zfs_to_cpu64((((dsl_dir_phys_t *) DN_BONUS(&mdn->dn)))->dd_child_dir_zapobj, mdn->endian);
1350 err = dnode_get(mosmdn, childobj,
1351 DMU_OT_DSL_DIR_CHILD_MAP, mdn, data);
1352 if (err)
1353 return err;
1354
1355 err = zap_lookup(mdn, cname, &objnum, data);
1356 if (err)
1357 return err;
1358
1359 err = dnode_get(mosmdn, objnum, DMU_OT_DSL_DIR, mdn, data);
1360 if (err)
1361 return err;
1362
1363 *fsname = ch;
1364 }
1365 return ZFS_ERR_NONE;
1366}
1367
1368static int
1369make_mdn(dnode_end_t *mdn, struct zfs_data *data)
1370{
1371 void *osp;
1372 blkptr_t *bp;
1373 size_t ospsize;
1374 int err;
1375
1376 bp = &(((dsl_dataset_phys_t *) DN_BONUS(&mdn->dn))->ds_bp);
1377 err = zio_read(bp, mdn->endian, &osp, &ospsize, data);
1378 if (err)
1379 return err;
1380 if (ospsize < OBJSET_PHYS_SIZE_V14) {
1381 free(osp);
1382 printf("too small osp\n");
1383 return ZFS_ERR_BAD_FS;
1384 }
1385
1386 mdn->endian = (zfs_to_cpu64(bp->blk_prop, mdn->endian)>>63) & 1;
1387 memmove((char *) &(mdn->dn),
1388 (char *) &((objset_phys_t *) osp)->os_meta_dnode, DNODE_SIZE);
1389 free(osp);
1390 return ZFS_ERR_NONE;
1391}
1392
1393static int
1394dnode_get_fullpath(const char *fullpath, dnode_end_t *mdn,
1395 uint64_t *mdnobj, dnode_end_t *dn, int *isfs,
1396 struct zfs_data *data)
1397{
1398 char *fsname, *snapname;
1399 const char *ptr_at, *filename;
1400 uint64_t headobj;
1401 int err;
1402
1403 ptr_at = strchr(fullpath, '@');
1404 if (!ptr_at) {
1405 *isfs = 1;
1406 filename = 0;
1407 snapname = 0;
1408 fsname = strdup(fullpath);
1409 } else {
1410 const char *ptr_slash = strchr(ptr_at, '/');
1411
1412 *isfs = 0;
1413 fsname = malloc(ptr_at - fullpath + 1);
1414 if (!fsname)
1415 return ZFS_ERR_OUT_OF_MEMORY;
1416 memcpy(fsname, fullpath, ptr_at - fullpath);
1417 fsname[ptr_at - fullpath] = 0;
1418 if (ptr_at[1] && ptr_at[1] != '/') {
1419 snapname = malloc(ptr_slash - ptr_at);
1420 if (!snapname) {
1421 free(fsname);
1422 return ZFS_ERR_OUT_OF_MEMORY;
1423 }
1424 memcpy(snapname, ptr_at + 1, ptr_slash - ptr_at - 1);
1425 snapname[ptr_slash - ptr_at - 1] = 0;
1426 } else {
1427 snapname = 0;
1428 }
1429 if (ptr_slash)
1430 filename = ptr_slash;
1431 else
1432 filename = "/";
1433 printf("zfs fsname = '%s' snapname='%s' filename = '%s'\n",
1434 fsname, snapname, filename);
1435 }
1436
1437
1438 err = get_filesystem_dnode(&(data->mos), fsname, dn, data);
1439
1440 if (err) {
1441 free(fsname);
1442 free(snapname);
1443 return err;
1444 }
1445
1446 headobj = zfs_to_cpu64(((dsl_dir_phys_t *) DN_BONUS(&dn->dn))->dd_head_dataset_obj, dn->endian);
1447
1448 err = dnode_get(&(data->mos), headobj, DMU_OT_DSL_DATASET, mdn, data);
1449 if (err) {
1450 free(fsname);
1451 free(snapname);
1452 return err;
1453 }
1454
1455 if (snapname) {
1456 uint64_t snapobj;
1457
1458 snapobj = zfs_to_cpu64(((dsl_dataset_phys_t *) DN_BONUS(&mdn->dn))->ds_snapnames_zapobj, mdn->endian);
1459
1460 err = dnode_get(&(data->mos), snapobj,
1461 DMU_OT_DSL_DS_SNAP_MAP, mdn, data);
1462 if (!err)
1463 err = zap_lookup(mdn, snapname, &headobj, data);
1464 if (!err)
1465 err = dnode_get(&(data->mos), headobj, DMU_OT_DSL_DATASET, mdn, data);
1466 if (err) {
1467 free(fsname);
1468 free(snapname);
1469 return err;
1470 }
1471 }
1472
1473 if (mdnobj)
1474 *mdnobj = headobj;
1475
1476 make_mdn(mdn, data);
1477
1478 if (*isfs) {
1479 free(fsname);
1480 free(snapname);
1481 return ZFS_ERR_NONE;
1482 }
1483 err = dnode_get_path(mdn, filename, dn, data);
1484 free(fsname);
1485 free(snapname);
1486 return err;
1487}
1488
1489/*
1490 * For a given XDR packed nvlist, verify the first 4 bytes and move on.
1491 *
1492 * An XDR packed nvlist is encoded as (comments from nvs_xdr_create) :
1493 *
1494 * encoding method/host endian (4 bytes)
1495 * nvl_version (4 bytes)
1496 * nvl_nvflag (4 bytes)
1497 * encoded nvpairs:
1498 * encoded size of the nvpair (4 bytes)
1499 * decoded size of the nvpair (4 bytes)
1500 * name string size (4 bytes)
1501 * name string data (sizeof(NV_ALIGN4(string))
1502 * data type (4 bytes)
1503 * # of elements in the nvpair (4 bytes)
1504 * data
1505 * 2 zero's for the last nvpair
1506 * (end of the entire list) (8 bytes)
1507 *
1508 */
1509
1510static int
1511nvlist_find_value(char *nvlist, char *name, int valtype, char **val,
1512 size_t *size_out, size_t *nelm_out)
1513{
1514 int name_len, type, encode_size;
1515 char *nvpair, *nvp_name;
1516
1517 /* Verify if the 1st and 2nd byte in the nvlist are valid. */
1518 /* NOTE: independently of what endianness header announces all
1519 subsequent values are big-endian. */
1520 if (nvlist[0] != NV_ENCODE_XDR || (nvlist[1] != NV_LITTLE_ENDIAN
1521 && nvlist[1] != NV_BIG_ENDIAN)) {
1522 printf("zfs incorrect nvlist header\n");
1523 return ZFS_ERR_BAD_FS;
1524 }
1525
1526 /* skip the header, nvl_version, and nvl_nvflag */
1527 nvlist = nvlist + 4 * 3;
1528 /*
1529 * Loop thru the nvpair list
1530 * The XDR representation of an integer is in big-endian byte order.
1531 */
1532 while ((encode_size = be32_to_cpu(*(uint32_t *) nvlist))) {
1533 int nelm;
1534
1535 nvpair = nvlist + 4 * 2; /* skip the encode/decode size */
1536
1537 name_len = be32_to_cpu(*(uint32_t *) nvpair);
1538 nvpair += 4;
1539
1540 nvp_name = nvpair;
1541 nvpair = nvpair + ((name_len + 3) & ~3); /* align */
1542
1543 type = be32_to_cpu(*(uint32_t *) nvpair);
1544 nvpair += 4;
1545
1546 nelm = be32_to_cpu(*(uint32_t *) nvpair);
1547 if (nelm < 1) {
1548 printf("empty nvpair\n");
1549 return ZFS_ERR_BAD_FS;
1550 }
1551
1552 nvpair += 4;
1553
1554 if ((strncmp(nvp_name, name, name_len) == 0) && type == valtype) {
1555 *val = nvpair;
1556 *size_out = encode_size;
1557 if (nelm_out)
1558 *nelm_out = nelm;
1559 return 1;
1560 }
1561
1562 nvlist += encode_size; /* goto the next nvpair */
1563 }
1564 return 0;
1565}
1566
mwleeds@mailtundra.comf5eb1222024-04-06 18:47:27 -07001567int is_word_aligned_ptr(void *ptr) {
1568 return ((uintptr_t)ptr & (sizeof(void *) - 1)) == 0;
1569}
1570
Jorgen Lundman9b4a1f92012-07-19 20:48:25 +00001571int
1572zfs_nvlist_lookup_uint64(char *nvlist, char *name, uint64_t *out)
1573{
1574 char *nvpair;
1575 size_t size;
1576 int found;
1577
1578 found = nvlist_find_value(nvlist, name, DATA_TYPE_UINT64, &nvpair, &size, 0);
1579 if (!found)
1580 return 0;
1581 if (size < sizeof(uint64_t)) {
1582 printf("invalid uint64\n");
1583 return ZFS_ERR_BAD_FS;
1584 }
1585
mwleeds@mailtundra.comf5eb1222024-04-06 18:47:27 -07001586 /* On arm64, calling be64_to_cpu() on a value stored at a memory address
1587 * that's not 8-byte aligned causes the CPU to reset. Avoid that by copying the
1588 * value somewhere else if needed.
1589 */
1590 if (!is_word_aligned_ptr((void *)nvpair)) {
1591 uint64_t *alignedptr = malloc(sizeof(uint64_t));
1592 if (!alignedptr)
1593 return 0;
1594 memcpy(alignedptr, nvpair, sizeof(uint64_t));
1595 *out = be64_to_cpu(*alignedptr);
1596 free(alignedptr);
1597 return 1;
1598 }
1599
Jorgen Lundman9b4a1f92012-07-19 20:48:25 +00001600 *out = be64_to_cpu(*(uint64_t *) nvpair);
1601 return 1;
1602}
1603
1604char *
1605zfs_nvlist_lookup_string(char *nvlist, char *name)
1606{
1607 char *nvpair;
1608 char *ret;
1609 size_t slen;
1610 size_t size;
1611 int found;
1612
1613 found = nvlist_find_value(nvlist, name, DATA_TYPE_STRING, &nvpair, &size, 0);
1614 if (!found)
1615 return 0;
1616 if (size < 4) {
1617 printf("invalid string\n");
1618 return 0;
1619 }
1620 slen = be32_to_cpu(*(uint32_t *) nvpair);
1621 if (slen > size - 4)
1622 slen = size - 4;
1623 ret = malloc(slen + 1);
1624 if (!ret)
1625 return 0;
1626 memcpy(ret, nvpair + 4, slen);
1627 ret[slen] = 0;
1628 return ret;
1629}
1630
1631char *
1632zfs_nvlist_lookup_nvlist(char *nvlist, char *name)
1633{
1634 char *nvpair;
1635 char *ret;
1636 size_t size;
1637 int found;
1638
1639 found = nvlist_find_value(nvlist, name, DATA_TYPE_NVLIST, &nvpair,
1640 &size, 0);
1641 if (!found)
1642 return 0;
mwleeds@mailtundra.com437d7882024-04-06 18:47:26 -07001643
1644 /* Allocate 12 bytes in addition to the nvlist size: One uint32 before the
1645 * nvlist to hold the encoding method, and two zero uint32's after the
1646 * nvlist as the NULL terminator.
1647 */
Jorgen Lundman9b4a1f92012-07-19 20:48:25 +00001648 ret = calloc(1, size + 3 * sizeof(uint32_t));
1649 if (!ret)
1650 return 0;
1651 memcpy(ret, nvlist, sizeof(uint32_t));
1652
1653 memcpy(ret + sizeof(uint32_t), nvpair, size);
1654 return ret;
1655}
1656
1657int
1658zfs_nvlist_lookup_nvlist_array_get_nelm(char *nvlist, char *name)
1659{
1660 char *nvpair;
1661 size_t nelm, size;
1662 int found;
1663
1664 found = nvlist_find_value(nvlist, name, DATA_TYPE_NVLIST, &nvpair,
1665 &size, &nelm);
1666 if (!found)
1667 return -1;
1668 return nelm;
1669}
1670
1671char *
1672zfs_nvlist_lookup_nvlist_array(char *nvlist, char *name,
1673 size_t index)
1674{
1675 char *nvpair, *nvpairptr;
1676 int found;
1677 char *ret;
1678 size_t size;
1679 unsigned i;
1680 size_t nelm;
1681
1682 found = nvlist_find_value(nvlist, name, DATA_TYPE_NVLIST, &nvpair,
1683 &size, &nelm);
1684 if (!found)
1685 return 0;
1686 if (index >= nelm) {
1687 printf("trying to lookup past nvlist array\n");
1688 return 0;
1689 }
1690
1691 nvpairptr = nvpair;
1692
1693 for (i = 0; i < index; i++) {
1694 uint32_t encode_size;
1695
1696 /* skip the header, nvl_version, and nvl_nvflag */
1697 nvpairptr = nvpairptr + 4 * 2;
1698
1699 while (nvpairptr < nvpair + size
1700 && (encode_size = be32_to_cpu(*(uint32_t *) nvpairptr)))
1701 nvlist += encode_size; /* goto the next nvpair */
1702
1703 nvlist = nvlist + 4 * 2; /* skip the ending 2 zeros - 8 bytes */
1704 }
1705
1706 if (nvpairptr >= nvpair + size
1707 || nvpairptr + be32_to_cpu(*(uint32_t *) (nvpairptr + 4 * 2))
1708 >= nvpair + size) {
1709 printf("incorrect nvlist array\n");
1710 return 0;
1711 }
1712
1713 ret = calloc(1, be32_to_cpu(*(uint32_t *) (nvpairptr + 4 * 2))
1714 + 3 * sizeof(uint32_t));
1715 if (!ret)
1716 return 0;
1717 memcpy(ret, nvlist, sizeof(uint32_t));
1718
1719 memcpy(ret + sizeof(uint32_t), nvpairptr, size);
1720 return ret;
1721}
1722
1723static int
1724int_zfs_fetch_nvlist(struct zfs_data *data, char **nvlist)
1725{
1726 int err;
1727
1728 *nvlist = malloc(VDEV_PHYS_SIZE);
1729 /* Read in the vdev name-value pair list (112K). */
1730 err = zfs_devread(data->vdev_phys_sector, 0, VDEV_PHYS_SIZE, *nvlist);
1731 if (err) {
1732 free(*nvlist);
1733 *nvlist = 0;
1734 return err;
1735 }
1736 return ZFS_ERR_NONE;
1737}
1738
1739/*
1740 * Check the disk label information and retrieve needed vdev name-value pairs.
1741 *
1742 */
1743static int
1744check_pool_label(struct zfs_data *data)
1745{
1746 uint64_t pool_state;
1747 char *nvlist; /* for the pool */
1748 char *vdevnvlist; /* for the vdev */
1749 uint64_t diskguid;
1750 uint64_t version;
1751 int found;
1752 int err;
1753
1754 err = int_zfs_fetch_nvlist(data, &nvlist);
1755 if (err)
1756 return err;
1757
1758 found = zfs_nvlist_lookup_uint64(nvlist, ZPOOL_CONFIG_POOL_STATE,
1759 &pool_state);
1760 if (!found) {
1761 free(nvlist);
1762 printf("zfs pool state not found\n");
1763 return ZFS_ERR_BAD_FS;
1764 }
1765
1766 if (pool_state == POOL_STATE_DESTROYED) {
1767 free(nvlist);
1768 printf("zpool is marked as destroyed\n");
1769 return ZFS_ERR_BAD_FS;
1770 }
1771
1772 data->label_txg = 0;
1773 found = zfs_nvlist_lookup_uint64(nvlist, ZPOOL_CONFIG_POOL_TXG,
1774 &data->label_txg);
1775 if (!found) {
1776 free(nvlist);
1777 printf("zfs pool txg not found\n");
1778 return ZFS_ERR_BAD_FS;
1779 }
1780
1781 /* not an active device */
1782 if (data->label_txg == 0) {
1783 free(nvlist);
1784 printf("zpool is not active\n");
1785 return ZFS_ERR_BAD_FS;
1786 }
1787
1788 found = zfs_nvlist_lookup_uint64(nvlist, ZPOOL_CONFIG_VERSION,
1789 &version);
1790 if (!found) {
1791 free(nvlist);
1792 printf("zpool config version not found\n");
1793 return ZFS_ERR_BAD_FS;
1794 }
1795
WHR54ef5252024-05-01 00:28:32 +08001796 if (!is_supported_spa_version(version)) {
Jorgen Lundman9b4a1f92012-07-19 20:48:25 +00001797 free(nvlist);
1798 printf("SPA version too new %llu > %llu\n",
1799 (unsigned long long) version,
1800 (unsigned long long) SPA_VERSION);
1801 return ZFS_ERR_NOT_IMPLEMENTED_YET;
1802 }
1803
1804 vdevnvlist = zfs_nvlist_lookup_nvlist(nvlist, ZPOOL_CONFIG_VDEV_TREE);
1805 if (!vdevnvlist) {
1806 free(nvlist);
1807 printf("ZFS config vdev tree not found\n");
1808 return ZFS_ERR_BAD_FS;
1809 }
1810
1811 found = zfs_nvlist_lookup_uint64(vdevnvlist, ZPOOL_CONFIG_ASHIFT,
1812 &data->vdev_ashift);
1813 free(vdevnvlist);
1814 if (!found) {
1815 free(nvlist);
1816 printf("ZPOOL config ashift not found\n");
1817 return ZFS_ERR_BAD_FS;
1818 }
1819
1820 found = zfs_nvlist_lookup_uint64(nvlist, ZPOOL_CONFIG_GUID, &diskguid);
1821 if (!found) {
1822 free(nvlist);
1823 printf("ZPOOL config guid not found\n");
1824 return ZFS_ERR_BAD_FS;
1825 }
1826
1827 found = zfs_nvlist_lookup_uint64(nvlist, ZPOOL_CONFIG_POOL_GUID, &data->pool_guid);
1828 if (!found) {
1829 free(nvlist);
1830 printf("ZPOOL config pool guid not found\n");
1831 return ZFS_ERR_BAD_FS;
1832 }
1833
1834 free(nvlist);
1835
1836 printf("ZFS Pool GUID: %llu (%016llx) Label: GUID: %llu (%016llx), txg: %llu, SPA v%llu, ashift: %llu\n",
1837 (unsigned long long) data->pool_guid,
1838 (unsigned long long) data->pool_guid,
1839 (unsigned long long) diskguid,
1840 (unsigned long long) diskguid,
1841 (unsigned long long) data->label_txg,
1842 (unsigned long long) version,
1843 (unsigned long long) data->vdev_ashift);
1844
1845 return ZFS_ERR_NONE;
1846}
1847
1848/*
1849 * vdev_label_start returns the physical disk offset (in bytes) of
1850 * label "l".
1851 */
1852static uint64_t vdev_label_start(uint64_t psize, int l)
1853{
1854 return (l * sizeof(vdev_label_t) + (l < VDEV_LABELS / 2 ?
1855 0 : psize -
1856 VDEV_LABELS * sizeof(vdev_label_t)));
1857}
1858
1859void
1860zfs_unmount(struct zfs_data *data)
1861{
1862 free(data->dnode_buf);
1863 free(data->dnode_mdn);
1864 free(data->file_buf);
1865 free(data);
1866}
1867
1868/*
1869 * zfs_mount() locates a valid uberblock of the root pool and read in its MOS
1870 * to the memory address MOS.
1871 *
1872 */
1873struct zfs_data *
1874zfs_mount(device_t dev)
1875{
1876 struct zfs_data *data = 0;
1877 int label = 0, bestlabel = -1;
1878 char *ub_array;
1879 uberblock_t *ubbest;
1880 uberblock_t *ubcur = NULL;
1881 void *osp = 0;
1882 size_t ospsize;
1883 int err;
1884
1885 data = malloc(sizeof(*data));
1886 if (!data)
1887 return 0;
1888 memset(data, 0, sizeof(*data));
1889
1890 ub_array = malloc(VDEV_UBERBLOCK_RING);
1891 if (!ub_array) {
1892 zfs_unmount(data);
1893 return 0;
1894 }
1895
1896 ubbest = malloc(sizeof(*ubbest));
1897 if (!ubbest) {
Jorgen Lundman8d119d82014-11-07 10:08:35 +09001898 free(ub_array);
Jorgen Lundman9b4a1f92012-07-19 20:48:25 +00001899 zfs_unmount(data);
1900 return 0;
1901 }
1902 memset(ubbest, 0, sizeof(*ubbest));
1903
1904 /*
1905 * some eltorito stacks don't give us a size and
1906 * we end up setting the size to MAXUINT, further
1907 * some of these devices stop working once a single
1908 * read past the end has been issued. Checking
1909 * for a maximum part_length and skipping the backup
1910 * labels at the end of the slice/partition/device
1911 * avoids breaking down on such devices.
1912 */
1913 const int vdevnum =
1914 dev->part_length == 0 ?
1915 VDEV_LABELS / 2 : VDEV_LABELS;
1916
1917 /* Size in bytes of the device (disk or partition) aligned to label size*/
1918 uint64_t device_size =
1919 dev->part_length << SECTOR_BITS;
1920
1921 const uint64_t alignedbytes =
1922 P2ALIGN(device_size, (uint64_t) sizeof(vdev_label_t));
1923
1924 for (label = 0; label < vdevnum; label++) {
1925 uint64_t labelstartbytes = vdev_label_start(alignedbytes, label);
1926 uint64_t labelstart = labelstartbytes >> SECTOR_BITS;
1927
1928 debug("zfs reading label %d at sector %llu (byte %llu)\n",
1929 label, (unsigned long long) labelstart,
1930 (unsigned long long) labelstartbytes);
1931
1932 data->vdev_phys_sector = labelstart +
1933 ((VDEV_SKIP_SIZE + VDEV_BOOT_HEADER_SIZE) >> SECTOR_BITS);
1934
1935 err = check_pool_label(data);
1936 if (err) {
1937 printf("zfs error checking label %d\n", label);
1938 continue;
1939 }
1940
1941 /* Read in the uberblock ring (128K). */
1942 err = zfs_devread(data->vdev_phys_sector +
1943 (VDEV_PHYS_SIZE >> SECTOR_BITS),
1944 0, VDEV_UBERBLOCK_RING, ub_array);
1945 if (err) {
1946 printf("zfs error reading uberblock ring for label %d\n", label);
1947 continue;
1948 }
1949
1950 ubcur = find_bestub(ub_array, data);
1951 if (!ubcur) {
1952 printf("zfs No good uberblocks found in label %d\n", label);
1953 continue;
1954 }
1955
1956 if (vdev_uberblock_compare(ubcur, ubbest) > 0) {
1957 /* Looks like the block is good, so use it.*/
1958 memcpy(ubbest, ubcur, sizeof(*ubbest));
1959 bestlabel = label;
1960 debug("zfs Current best uberblock found in label %d\n", label);
1961 }
1962 }
1963 free(ub_array);
1964
1965 /* We zero'd the structure to begin with. If we never assigned to it,
1966 magic will still be zero. */
1967 if (!ubbest->ub_magic) {
1968 printf("couldn't find a valid ZFS label\n");
1969 zfs_unmount(data);
1970 free(ubbest);
1971 return 0;
1972 }
1973
1974 debug("zfs ubbest %p in label %d\n", ubbest, bestlabel);
1975
1976 zfs_endian_t ub_endian =
1977 zfs_to_cpu64(ubbest->ub_magic, LITTLE_ENDIAN) == UBERBLOCK_MAGIC
1978 ? LITTLE_ENDIAN : BIG_ENDIAN;
1979
1980 debug("zfs endian set to %s\n", !ub_endian ? "big" : "little");
1981
1982 err = zio_read(&ubbest->ub_rootbp, ub_endian, &osp, &ospsize, data);
1983
1984 if (err) {
1985 printf("couldn't zio_read object directory\n");
1986 zfs_unmount(data);
Jorgen Lundman8d119d82014-11-07 10:08:35 +09001987 free(osp);
Jorgen Lundman9b4a1f92012-07-19 20:48:25 +00001988 free(ubbest);
1989 return 0;
1990 }
1991
1992 if (ospsize < OBJSET_PHYS_SIZE_V14) {
1993 printf("osp too small\n");
1994 zfs_unmount(data);
1995 free(osp);
1996 free(ubbest);
1997 return 0;
1998 }
1999
2000 /* Got the MOS. Save it at the memory addr MOS. */
2001 memmove(&(data->mos.dn), &((objset_phys_t *) osp)->os_meta_dnode, DNODE_SIZE);
2002 data->mos.endian =
2003 (zfs_to_cpu64(ubbest->ub_rootbp.blk_prop, ub_endian) >> 63) & 1;
2004 memmove(&(data->current_uberblock), ubbest, sizeof(uberblock_t));
2005
2006 free(osp);
2007 free(ubbest);
2008
2009 return data;
2010}
2011
2012int
2013zfs_fetch_nvlist(device_t dev, char **nvlist)
2014{
2015 struct zfs_data *zfs;
2016 int err;
2017
2018 zfs = zfs_mount(dev);
2019 if (!zfs)
2020 return ZFS_ERR_BAD_FS;
2021 err = int_zfs_fetch_nvlist(zfs, nvlist);
2022 zfs_unmount(zfs);
2023 return err;
2024}
2025
Jorgen Lundman9b4a1f92012-07-19 20:48:25 +00002026/*
2027 * zfs_open() locates a file in the rootpool by following the
2028 * MOS and places the dnode of the file in the memory address DNODE.
2029 */
2030int
2031zfs_open(struct zfs_file *file, const char *fsfilename)
2032{
2033 struct zfs_data *data;
2034 int err;
2035 int isfs;
2036
2037 data = zfs_mount(file->device);
2038 if (!data)
2039 return ZFS_ERR_BAD_FS;
2040
2041 err = dnode_get_fullpath(fsfilename, &(data->mdn), 0,
2042 &(data->dnode), &isfs, data);
2043 if (err) {
2044 zfs_unmount(data);
2045 return err;
2046 }
2047
2048 if (isfs) {
2049 zfs_unmount(data);
2050 printf("Missing @ or / separator\n");
2051 return ZFS_ERR_FILE_NOT_FOUND;
2052 }
2053
2054 /* We found the dnode for this file. Verify if it is a plain file. */
2055 if (data->dnode.dn.dn_type != DMU_OT_PLAIN_FILE_CONTENTS) {
2056 zfs_unmount(data);
2057 printf("not a file\n");
2058 return ZFS_ERR_BAD_FILE_TYPE;
2059 }
2060
2061 /* get the file size and set the file position to 0 */
2062
2063 /*
2064 * For DMU_OT_SA we will need to locate the SIZE attribute
2065 * attribute, which could be either in the bonus buffer
2066 * or the "spill" block.
2067 */
2068 if (data->dnode.dn.dn_bonustype == DMU_OT_SA) {
2069 void *sahdrp;
2070 int hdrsize;
2071
2072 if (data->dnode.dn.dn_bonuslen != 0) {
2073 sahdrp = (sa_hdr_phys_t *) DN_BONUS(&data->dnode.dn);
2074 } else if (data->dnode.dn.dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
2075 blkptr_t *bp = &data->dnode.dn.dn_spill;
2076
2077 err = zio_read(bp, data->dnode.endian, &sahdrp, NULL, data);
2078 if (err)
2079 return err;
2080 } else {
2081 printf("filesystem is corrupt :(\n");
2082 return ZFS_ERR_BAD_FS;
2083 }
2084
2085 hdrsize = SA_HDR_SIZE(((sa_hdr_phys_t *) sahdrp));
2086 file->size = *(uint64_t *) ((char *) sahdrp + hdrsize + SA_SIZE_OFFSET);
Jorgen Lundman8d119d82014-11-07 10:08:35 +09002087 if ((data->dnode.dn.dn_bonuslen == 0) &&
2088 (data->dnode.dn.dn_flags & DNODE_FLAG_SPILL_BLKPTR))
2089 free(sahdrp);
Jorgen Lundman9b4a1f92012-07-19 20:48:25 +00002090 } else {
2091 file->size = zfs_to_cpu64(((znode_phys_t *) DN_BONUS(&data->dnode.dn))->zp_size, data->dnode.endian);
2092 }
2093
2094 file->data = data;
2095 file->offset = 0;
2096
2097 return ZFS_ERR_NONE;
2098}
2099
2100uint64_t
2101zfs_read(zfs_file_t file, char *buf, uint64_t len)
2102{
2103 struct zfs_data *data = (struct zfs_data *) file->data;
2104 int blksz, movesize;
2105 uint64_t length;
2106 int64_t red;
2107 int err;
2108
2109 if (data->file_buf == NULL) {
2110 data->file_buf = malloc(SPA_MAXBLOCKSIZE);
2111 if (!data->file_buf)
2112 return -1;
2113 data->file_start = data->file_end = 0;
2114 }
2115
2116 /*
2117 * If offset is in memory, move it into the buffer provided and return.
2118 */
2119 if (file->offset >= data->file_start
2120 && file->offset + len <= data->file_end) {
2121 memmove(buf, data->file_buf + file->offset - data->file_start,
2122 len);
2123 return len;
2124 }
2125
2126 blksz = zfs_to_cpu16(data->dnode.dn.dn_datablkszsec,
2127 data->dnode.endian) << SPA_MINBLOCKSHIFT;
2128
2129 /*
2130 * Entire Dnode is too big to fit into the space available. We
2131 * will need to read it in chunks. This could be optimized to
2132 * read in as large a chunk as there is space available, but for
2133 * now, this only reads in one data block at a time.
2134 */
2135 length = len;
2136 red = 0;
2137 while (length) {
2138 void *t;
2139 /*
2140 * Find requested blkid and the offset within that block.
2141 */
Alejandro Mery8b773142012-10-31 08:21:33 +00002142 uint64_t blkid = file->offset + red;
mwleeds@mailtundra.com67766f72024-04-06 18:47:29 -07002143 uint64_t blkoff = do_div(blkid, blksz);
Jorgen Lundman9b4a1f92012-07-19 20:48:25 +00002144 free(data->file_buf);
2145 data->file_buf = 0;
2146
2147 err = dmu_read(&(data->dnode), blkid, &t,
2148 0, data);
2149 data->file_buf = t;
2150 if (err)
2151 return -1;
2152
2153 data->file_start = blkid * blksz;
2154 data->file_end = data->file_start + blksz;
2155
Masahiro Yamadab62b39b2014-09-18 13:28:06 +09002156 movesize = min(length, data->file_end - (int)file->offset - red);
Jorgen Lundman9b4a1f92012-07-19 20:48:25 +00002157
mwleeds@mailtundra.com67766f72024-04-06 18:47:29 -07002158 memmove(buf, data->file_buf + blkoff, movesize);
Jorgen Lundman9b4a1f92012-07-19 20:48:25 +00002159 buf += movesize;
2160 length -= movesize;
2161 red += movesize;
2162 }
2163
2164 return len;
2165}
2166
2167int
2168zfs_close(zfs_file_t file)
2169{
2170 zfs_unmount((struct zfs_data *) file->data);
2171 return ZFS_ERR_NONE;
2172}
2173
2174int
2175zfs_getmdnobj(device_t dev, const char *fsfilename,
2176 uint64_t *mdnobj)
2177{
2178 struct zfs_data *data;
2179 int err;
2180 int isfs;
2181
2182 data = zfs_mount(dev);
2183 if (!data)
2184 return ZFS_ERR_BAD_FS;
2185
2186 err = dnode_get_fullpath(fsfilename, &(data->mdn), mdnobj,
2187 &(data->dnode), &isfs, data);
2188 zfs_unmount(data);
2189 return err;
2190}
2191
2192static void
2193fill_fs_info(struct zfs_dirhook_info *info,
2194 dnode_end_t mdn, struct zfs_data *data)
2195{
2196 int err;
2197 dnode_end_t dn;
2198 uint64_t objnum;
2199 uint64_t headobj;
2200
2201 memset(info, 0, sizeof(*info));
2202
2203 info->dir = 1;
2204
2205 if (mdn.dn.dn_type == DMU_OT_DSL_DIR) {
2206 headobj = zfs_to_cpu64(((dsl_dir_phys_t *) DN_BONUS(&mdn.dn))->dd_head_dataset_obj, mdn.endian);
2207
2208 err = dnode_get(&(data->mos), headobj, DMU_OT_DSL_DATASET, &mdn, data);
2209 if (err) {
2210 printf("zfs failed here 1\n");
2211 return;
2212 }
2213 }
2214 make_mdn(&mdn, data);
2215 err = dnode_get(&mdn, MASTER_NODE_OBJ, DMU_OT_MASTER_NODE,
2216 &dn, data);
2217 if (err) {
2218 printf("zfs failed here 2\n");
2219 return;
2220 }
2221
2222 err = zap_lookup(&dn, ZFS_ROOT_OBJ, &objnum, data);
2223 if (err) {
2224 printf("zfs failed here 3\n");
2225 return;
2226 }
2227
2228 err = dnode_get(&mdn, objnum, 0, &dn, data);
2229 if (err) {
2230 printf("zfs failed here 4\n");
2231 return;
2232 }
2233
2234 info->mtimeset = 1;
2235 info->mtime = zfs_to_cpu64(((znode_phys_t *) DN_BONUS(&dn.dn))->zp_mtime[0], dn.endian);
2236
2237 return;
2238}
2239
2240static int iterate_zap(const char *name, uint64_t val, struct zfs_data *data)
2241{
2242 struct zfs_dirhook_info info;
2243 dnode_end_t dn;
2244
2245 memset(&info, 0, sizeof(info));
2246
2247 dnode_get(&(data->mdn), val, 0, &dn, data);
2248 info.mtimeset = 1;
2249 info.mtime = zfs_to_cpu64(((znode_phys_t *) DN_BONUS(&dn.dn))->zp_mtime[0], dn.endian);
2250 info.dir = (dn.dn.dn_type == DMU_OT_DIRECTORY_CONTENTS);
2251 debug("zfs type=%d, name=%s\n",
2252 (int)dn.dn.dn_type, (char *)name);
2253 if (!data->userhook)
2254 return 0;
2255 return data->userhook(name, &info);
2256}
2257
2258static int iterate_zap_fs(const char *name, uint64_t val, struct zfs_data *data)
2259{
2260 struct zfs_dirhook_info info;
2261 dnode_end_t mdn;
2262 int err;
2263 err = dnode_get(&(data->mos), val, 0, &mdn, data);
2264 if (err)
2265 return 0;
2266 if (mdn.dn.dn_type != DMU_OT_DSL_DIR)
2267 return 0;
2268
2269 fill_fs_info(&info, mdn, data);
2270
2271 if (!data->userhook)
2272 return 0;
2273 return data->userhook(name, &info);
2274}
2275
2276static int iterate_zap_snap(const char *name, uint64_t val, struct zfs_data *data)
2277{
2278 struct zfs_dirhook_info info;
2279 char *name2;
2280 int ret = 0;
2281 dnode_end_t mdn;
2282 int err;
2283
2284 err = dnode_get(&(data->mos), val, 0, &mdn, data);
2285 if (err)
2286 return 0;
2287
2288 if (mdn.dn.dn_type != DMU_OT_DSL_DATASET)
2289 return 0;
2290
2291 fill_fs_info(&info, mdn, data);
2292
2293 name2 = malloc(strlen(name) + 2);
2294 name2[0] = '@';
2295 memcpy(name2 + 1, name, strlen(name) + 1);
2296 if (data->userhook)
2297 ret = data->userhook(name2, &info);
2298 free(name2);
2299 return ret;
2300}
2301
2302int
2303zfs_ls(device_t device, const char *path,
2304 int (*hook)(const char *, const struct zfs_dirhook_info *))
2305{
2306 struct zfs_data *data;
2307 int err;
2308 int isfs;
Jorgen Lundman9b4a1f92012-07-19 20:48:25 +00002309
2310 data = zfs_mount(device);
2311 if (!data)
2312 return ZFS_ERR_BAD_FS;
2313
2314 data->userhook = hook;
2315
2316 err = dnode_get_fullpath(path, &(data->mdn), 0, &(data->dnode), &isfs, data);
2317 if (err) {
2318 zfs_unmount(data);
2319 return err;
2320 }
2321 if (isfs) {
2322 uint64_t childobj, headobj;
2323 uint64_t snapobj;
2324 dnode_end_t dn;
2325 struct zfs_dirhook_info info;
2326
2327 fill_fs_info(&info, data->dnode, data);
2328 hook("@", &info);
2329
2330 childobj = zfs_to_cpu64(((dsl_dir_phys_t *) DN_BONUS(&data->dnode.dn))->dd_child_dir_zapobj, data->dnode.endian);
2331 headobj = zfs_to_cpu64(((dsl_dir_phys_t *) DN_BONUS(&data->dnode.dn))->dd_head_dataset_obj, data->dnode.endian);
2332 err = dnode_get(&(data->mos), childobj,
2333 DMU_OT_DSL_DIR_CHILD_MAP, &dn, data);
2334 if (err) {
2335 zfs_unmount(data);
2336 return err;
2337 }
2338
2339
2340 zap_iterate(&dn, iterate_zap_fs, data);
2341
2342 err = dnode_get(&(data->mos), headobj, DMU_OT_DSL_DATASET, &dn, data);
2343 if (err) {
2344 zfs_unmount(data);
2345 return err;
2346 }
2347
2348 snapobj = zfs_to_cpu64(((dsl_dataset_phys_t *) DN_BONUS(&dn.dn))->ds_snapnames_zapobj, dn.endian);
2349
2350 err = dnode_get(&(data->mos), snapobj,
2351 DMU_OT_DSL_DS_SNAP_MAP, &dn, data);
2352 if (err) {
2353 zfs_unmount(data);
2354 return err;
2355 }
2356
2357 zap_iterate(&dn, iterate_zap_snap, data);
2358 } else {
2359 if (data->dnode.dn.dn_type != DMU_OT_DIRECTORY_CONTENTS) {
2360 zfs_unmount(data);
2361 printf("not a directory\n");
2362 return ZFS_ERR_BAD_FILE_TYPE;
2363 }
2364 zap_iterate(&(data->dnode), iterate_zap, data);
2365 }
2366 zfs_unmount(data);
2367 return ZFS_ERR_NONE;
2368}